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Discovery chemists routinely identify purpose-tailored molecules through an iterative structural

optimization approach, but the preparation of each successive candidate in a compound series can

rarely be conducted in a manner matching their thought process. This is because many of the necessary

chemical transformations required to modify compound cores in a straightforward fashion are not

applicable in complex contexts. We report a method that addresses one facet of this problem by allowing

chemists to hop directly between chemically distinct heteroaromatic scaffolds. Specifically, we show that

selective photolysis of quinoline N-oxides with 390-nanometer light followed by acid-promoted

rearrangement affords N-acylindoles while showing broad compatibility with medicinally relevant

functionality. Applications to late-stage skeletal modification of compounds of pharmaceutical interest

and more complex transformations involving serial single-atom changes are demonstrated.

T
he maturation of chemical synthesis has

given rise to an era in which molecules

can be exhaustively optimized to serve

specific purposes under exceptional multi-

dimensional constraints, enabling increas-

ingly precise applications of these compounds.

The intensity of this enterprise manifests most

visibly inmedicinal chemistry, where the simul-

taneous management of efficacy, specificity,

absorption, and lifetime is accomplished through

meticulous tailoring of promising candidate

molecules (1, 2). While these molecular opti-

mizations establish structure-activity relation-

ships by iterative modification of a series of

parent compounds, the synthetic practice un-

derlying these campaigns is rarely in line with

its philosophical roots. Rather than convert-

ing a lead compound to the next candidate in

a manner matching their underlying thought

process, these campaigns instead largely rely

on iterative resynthesis, because the reactions

necessary to perform the envisioned direct con-

version are often not applicable in complex

settings (Fig. 1A) (3, 4). This shortcoming is

particularly conspicuous when conducting a

“scaffoldhop”—a commonstrategy that leverages

computational estimates of three-dimensional

molecular similarity (or in silico binding affinity

to the target) to predict isofunctional structures

with distinct cores (5, 6). The logic of this strat-

egy can be immediately appreciated by compar-

ingmembers of a given class of pharmaceuticals,

for example, the cholesterol-lowering thera-

peutics pitavastatin and fluvastatin or the anti-

inflammatory drugs etoricoxib and celecoxib;

this same logic is also clear when comparing

compounds in a given development series,

such as the dideazafolic acid antecedent to

the chemotherapy agent pemetrexed (Fig. 1B)

(7–9). Unfortunately, the execution of a pre-

dicted scaffold hop is among themost difficult

of possible lead optimization strategies to per-

form directly. Unlike diversification strategies

relying on robust, late-stage coupling reactions

that can target some peripheral substruc-

tures of a lead molecule for rapid interroga-

tion, molecular cores are far more challenging

to examine in a similar fashion because of the

often-distinct preparative methods for the rel-

evant (hetero)cyclic frameworks. As such, chem-

ists interested in examining a scaffold hop

are typically required to resort instead to an

effective reset of their synthetic campaign,

beginning from scratch to traverse laterally

in chemical space.

Accordingly, a pressing challenge and in-

creasing recent area of focus formodern organic

synthesis is the development of transforma-

tions that can address the molecular skele-

ton with precision and enable direct scaffold

hops between distinct core substructures within

a given class of compounds. Ideally, such trans-

formations would enable control at the level

of single-atom precision (Fig. 1C), with more

sophisticated changes possible through itera-

tive elementary skeletal modifications (10). No-

table recent contributions from several groups

have been reported in the context of saturated

aliphatic heterocycles (11–13). Although the

centrality of aromatic and heteroaromatic scaf-

folds in medicinal chemistry suggests a clear

priority for similar azaarene interconversion

strategies, the stability of aromatic systems

poses a substantial challenge: The reactive

species typically required to breach the core

are often not compatible with densely func-

tionalized druglike compounds and rarely

promote precise, selective downstream chem-

istry (14–16). We report here a transformation

that confronts this challenge, enabling a broad-

ly applicable ring contraction of quinoline

N-oxides and related azaarenes. Subsequent

deacylation of the productN-acylindole allows

this transformation to serve as a net carbon

deletion (Fig. 1D).

This advance is built on the classical photo-

chemistry of quinoline N-oxides (1), whose di-

verse rearrangement products weremeticulously

cataloged by Buchardt, Streith, Kaneko, and

Albini (Fig. 2A) (17–19). Although N-acylindoles

(2) and related hydration products have been

observed arising from a limited set of substrates,

more complex rearrangement products often

predominate, including quinolones, 2- and

3-acylindoles (bearing noncleavable acyl groups),

and 3-hydroxyquinolines. Product mixtures of

these compounds are typically observed, and

inmany cases, seeminglyminute perturbations

to the substrate structure result in drastic

changes to the product distribution (see figs.

S20 to S28 and the associated discussion for

a brief summary). Beyond this, the classical

mercury (Hg) lamp irradiation conditions

are incompatible with many complex quino-

lines of relevance to medicinal chemistry (an

observation we have reproduced—see below).

On the basis of prior mechanistic work on these

and related photochemical transformations,

we suspected that the undesired products were

the result of secondary photoprocesses of the

intermediate, formally antiaromatic 2,1- and/or

3,1-benzoxazepines (3) (20, 21). We hypothe-

sized that these two-photon by-products could

be avoided using a milder, narrow-spectrum

light source.

Indeed,we have found that the use of 390-nm

light-emitting diodes (LEDs) in place of tradi-

tionalmercury lamps substantially improves this

classical photoreaction, turning an academic

curiosity into a potential workhorse transforma-

tion with broad utility (22–27). This selective

irradiation of quinolineN-oxides produces high

yields of the corresponding 3,1-benzoxazepine

in the photolysate, with subsequent in situ treat-

ment with an acid catalyst promoting isomer-

ization to the N-acylindoles in similarly high

yield. As detailed below, this enables challeng-

ing indole and azaindole syntheses; facilitates

late-stage, direct scaffold hopping of medic-

inal compounds; and serves as a productive

springboard for further skeletal modification

strategies.

We began our investigation with 2-methyl-

quinolineN-oxide (1a) (Fig. 2B). Irradiationwith

a 390-nm LED in toluene at ambient tempera-

ture for 5 hours resulted in complete consump-

tion of the quinoline N-oxide, affording the

corresponding benzoxazepine 3a in 91% nu-

clear magnetic resonance (NMR) yield, along

with a minor quantity of the deoxygenation

product 4a (15:1 selectivity). Although 3a was

not isolable without substantial decomposi-

tion, its conversion could bemonitored by LED-

NMR, allowing measurement of a quantum
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yield,F, of 0.096 for conversion of the quino-

line N-oxide (28). In contrast to 3a, cyano-

substituted benzoxazepine 3bwas found to be

readily isolable and could similarly be prepared

by irradiation with a 390-nm LED in 83%

isolated yield. The increased stability of 3b

offered an opportunity to probe our light source

hypothesis. As predicted, 3b was found to be

substantially more stable upon further irra-

diation by the LED than under mercury lamp

irradiation (Fig. 2C). The benzoxazepine was

returned in near-quantitative recovery after

6 hours in the former case, whereas nearly

half of the material degraded to a mixture of

products in the same period under the latter

conditions. Examination of the absorption

spectra of 1b and 3b reveals the origin of this

drastic light source effect (Fig. 2D). Whereas

the quinoline N-oxide has a relative absorption

maximum, lmax, at 386 nm, the benzoxazepine

shows a substantial hypsochromic shift to a lmax

of 323 nm, such that the LED accomplishes

selective irradiation of the starting material

while the mercury lamp promotes photodegra-

dation of the benzoxazepine.

Our interest in the photochemical behav-

ior of quinoline N-oxides stemmed not from

the benzoxazepine intermediates themselves

but rather from the indole products presumed

to arise from them. Classical studies had sug-

gested that these indole products were the re-

sult of adventitious (or added) water generating

acid,which in turnactedon the3,1-benzoxazepine

(29). This prompted us to examine the effect

of exogenous acid additives. The crude photo-

lysate consisting predominantly of methyl-

substituted benzoxazepine 3a reacted smoothly

under the action of trifluoroacetic acid to af-

ford acylindole 2a in 78% yield relative to 1a.

To determine the mechanism by which the

protonated benzoxazepine evolves to product,

we conducted an
18
O labeling study, which

showed substantial but incomplete mainte-

nance of the isotopic label in the hydrolysis

process. This result is most consistent with

two concurrent pathways for benzoxazepine

hydrolysis, although the potential for
18
O-

water liberated in the N-protonation pathway

to react further precludes a quantitative anal-

ysis of the partitioning between these path-

ways (Fig. 2E) (30).

Although direct photochemistry can often

vary as a function of substrate structure, the

efficacy and advantage of the 390-nm LED

was found to be surprisingly general, both with

respect to the substituent on the excised carbon

and the residual indole substituents (Fig. 3). A

wide range of quinolineN-oxides with varying

substitution patterns were found to undergo

facile photorearrangement to afford the cor-

responding benzoxazepine, and the subsequent

acid-promoted rearrangement was likewise

found to be generally applicable. For most sub-

strates, trifluoroacetic acid was effective for

this latter operation, although in cases bear-

ing 3-substituents (1m, 1ac, 1x, and 1ag) or

electron-withdrawing groups (1b and 1s) on

the quinoline, the more acidic para-toluene-

sulfonic acid affordedhigher yields. Thisprotocol
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Fig. 1. Introduction to scaffold hopping and single-atom skeletal editing. (A) Schematic representation of the disconnect between design and synthesis in

molecular optimization. (B) Selected examples of scaffold hopping in medicinal chemistry. HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; Me, methyl group;

COX-2, cyclooxygenase-2. (C) Single-atom skeletal editing for heterocycle interconversion. (D) Carbon deletion of azaarenes delineated in this work.
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was also found to be amenable to a one-pot

process, with initial formation of the N-oxide

induced by hydrogen peroxide in dichloro-

methane followed by dilution of the crude

reaction mixture with toluene (95:5) before

irradiation affording the N-acylindole in only

slightly diminished yields (69%) relative to the

two-pot procedure with purifiedN-oxide (78%).

As noted above, this transformation was found

to be robust to a wide variety of functionality

commonly encountered in medicinal chemis-

try, including other heterocycles (2d, 2e, 2f,
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Fig. 2. Mechanistic basis for light source effects in quinoline N-oxide pho-

tochemistry and mechanism of acid-promoted benzoxazepine rearrangement

to indole. (A) Summary of classical photochemical rearrangements promoted by

broadbandmercury lamp irradiation. (B) LED-NMR study of 390-nm LED photolysis of

1a and isolation of 2-cyano-3,1-benzoxazepine (3b) from LED photolysate of quinoline

N-oxide 1b. ppm, parts per million. (C) Photostability study of 3b under LED and Hg

lamp irradiation. (D) Ultraviolet–visible absorption spectra of 1b and 3b with overlaid

relative emission spectra of 390-nm Kessil lamp and 200-W medium-pressure Hg

lamp (normalized to an emission intensity of 1 for lmax). (E) Labeling study of

trifluoroacetic acid (TFA)–promoted rearrangement of 3a.
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acidolysis, photolysate was concentrated and refluxed in H2O/MeOH (1:1).

Hg lamp yields measured by proton nuclear magnetic resonance versus

an internal standard. Ph, phenyl group; OMe, methoxy group; MTO, methyl-

trioxorhenium; BMIDA, N-methyliminodiacetyl boronate; Boc, butoxycarbonyl;
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2g, and 2i), polyhalogenation (2v, 2w, and

2x), carbamates (2y, 2z, 2aa, and 2ab), phos-

phonates (2o), sulfones (2s), and boronic esters

(2q). Notably, the scope demonstrated here

was found to be a direct consequence of the

milder light source. Of 12 quinolines exam-

ined, five gave detectable indole products at

substantially diminished yield (3 to 13%) when

a mercury lamp was used for the initial photol-

ysis, with the remaining seven giving completely

intractable mixtures. Additionally, complete

solubility in toluene was not a requirement,

with dissolution over the course of irradiation

observed for a number of substrates (e.g., 1s,

1q, 1y, 1af, and 1aj). In all cases, full conver-

sion of the startingmaterial was achievedwith

sufficient irradiation time. The most common

by-product observed was deoxygenation of the

N-oxide to afford the parent azaarene. Limi-

tations of the photolysis were principally re-

lated to the 2-substituent (hydrogen, tertiary

alkyls, and heteroatom substitution were not

tolerated; see supplementary materials for

further details). We also note that oxidatively

sensitive functionality is notmaintained in the

initial N-oxidation (e.g., sulfides are converted

to sulfones).

An interesting consequence of the switch

between electron-poor quinoline and electron-

rich indole heterocycles is the ability to inter-

face their distinct reactivities and syntheses

through carbon deletion. This is exemplified

in the first instance by the preparation of indole

2af through Minisci alkylation of the parent

quinoline at the 4-position, resulting in the net

3-alkylation of the final, nucleophilic indole

product with an nucleophilic radical—a chal-

lenging retrosynthetic strategy to realize via

known methods (31–33). Quinoline 4ag dem-

onstrates the latter interplay of the twohetero-

cyclic scaffolds, allowing the Pfitzinger quinoline

synthesis to serve additionally as an indole syn-

thesis (34). The product 2ag is related to the

anti-inflammatory medicine indomethacin (35).

Higher polyazaarenes were also found to be

productive substrates, enabling the preparation

of 7-azaindole, pyrrolopyrazole, pyrroloisoxazole,

and benzimidazole scaffolds through net carbon

deletion of the parent fused-ring azine. The 5,5-

fused systems are highly challenging to pre-

pare by traditional heterocycle syntheses and

thus showcase a distinctive advantage of our

approach. To further highlight the utility of

this method, we demonstrated its capacity to

modify complex medicinal compounds. Start-

ing from montelukast (Singulair), a widely

prescribed leukotriene inhibitor, the pendant

chloroquinoline could be transformed into the

corresponding acylindole 2al (36). Finally, the

direct scaffold hop from pitavastatin to its

indole congener 2am could be accomplished,

creating a link in chemical space to fluvastatin

via carbon deletion (37).

As noted above, linear combinations of dis-

tinct single-atom insertions and deletions offer

exciting opportunities to devise more complex

skeletal editing transformations. Figure 4 show-

cases the ways in which carbon deletion can

be leveraged as a foundation for such strate-

gies using a simplemodel system. Startingwith

quinoline 4an, carbon deletion affords the

indole 5an, with the photorearrangement scal-

able up to 1 g in flow. Subsequent application

of our previously reported C3-selective carbon

insertion reaction gives the isomeric quinoline

4ao, which has formally had its C2 and C3

substituents swapped relative to the starting

4an (38). This quinoline can again be sub-

jected to carbon deletion to afford indole 5ao.

Here, comparison to its predecessor 5an re-

veals the effective replacement of the methyl
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substituent with a phenyl. Finally, if indole

5ao is subjected to nitrogen insertion through

a precedentedN-amination and oxidative aro-

matization sequence, cinnoline 7ao can be

accessed, now the formal C-to-N exchange

product of starting quinoline 4ao (39–41).

This work offers a broadly applicable, C2-

selective, net carbon deletion of quinolines

and related azaarenes through a ring contrac-

tion of the corresponding N-oxides. Avoiding

deleterious overreaction through selective

photoexcitation renders classicalN-oxide photo-

chemistry applicable to medicinal chemistry

applications. This work further showcases the

potential for direct scaffold hopping enabled

by the carbon deletion transform, especially

when used in combination with the growing

library of single-atom skeletal edits.
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