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Covert, Low-Delay, Coded Message Passing
in Mobile (IoT) Networks

Pei Peng and Emina Soljanin , Fellow, IEEE

Abstract— We introduce a gossip-like protocol for covert mes-
sage passing between Alice and Bob as they move in an area
watched over by a warden Willie. The area hosts a multitude
of Internet of (Battlefield) Things (IoβT) objects. Alice and Bob
perform random walks on a random regular graph. The IoβT
objects reside on the vertices of this graph, and some can serve
as relays between Alice and Bob. The protocol starts with Alice
splitting her message into small chunks, which she can covertly
deposit to the relays she encounters. The protocol ends with
Bob collecting the chunks. Alice may encode her data before the
dissemination. Willie can either perform random walks as Alice
and Bob do or conduct uniform surveillance of the area. In either
case, he can only observe one relay at a time. We evaluate
the system performance by the covertness probability and the
message passing delay. In our protocol, Alice splits her mes-
sage to increase the covertness probability and adds (coded)
redundancy to reduce the transmission delay. The performance
metrics depend on the graph, communications delay, and code
parameters. We show that, in most scenarios, it is impossible
to find the design parameters that simultaneously maximize the
covertness probability and minimize the message delay.

Index Terms— Covert communications, random walks, Inter-
net of (battlefield) Things, delay reduction.

I. INTRODUCTION

H IDING various aspects of communications is often
essential. In wartime, communication between the sus-

pected parties can alert the adversary even if the message is
unknown. In everyday life, revealing the identity of commu-
nicating parties affects the increasingly important anonymity
and privacy. Several recent papers addressed covert com-
munications at the physical layer. There, two parties, Alice
and Bob, communicate while observed by the warden Willie.
An information-theoretic approach to achieving covertness,
roughly speaking, relies on camouflaging messages as noise
(see, e.g., [1]–[5] and references therein). An extension of
this model (see, e.g., [6]) involves a jammer that can help
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Alice to transmit covertly [7]. Another extension involves a
third participant Carol which acts as a cover for Bob, [8], [9]
studies the covert communication in one-way relay networks.
We here propose a covert message-passing protocol for IoT
environments. This protocol is complementary and can be
used in conjunction with the previously proposed methods for
covert transmission.

The last decade has seen a wide variety of novel commu-
nications systems. Future 5G systems are supposed to host a
hundred times more devices than current 4G environments,
and one can potentially harness the resources expected to be
brought in by smart (battlefield) devices in the future Internet
of (Battlefield) Things (IoβT) environments. By exploiting
these devices’ storage and communication ability, Alice can
covertly pass messages to Bob in a gossip-like manner as
outlined below.

Alice and Bob communicate over a wide geographic area
(e.g., battlefield or an occupied city) patrolled by a warden
Willie. The area hosts a multitude of IoT objects capable of
storing, sending, and receiving data. Alice splits her message
into small chunks, which she can inconspicuously pass, one
at a time, to IoT objects that appear in her proximity as she
randomly moves through the area. We refer to such IoT objects
as relays or helpers. Bob, who also randomly moves through
the area, can then retrieve the stored data chunks. Because the
IoT objects are distributed over a wide area, Willie can only
periodically check if any of these objects is transmitting or
receiving data.

The movements of Alice and Bob are modeled as random
walks on graphs. Information gathering and dissemination
on graphs is an interesting problem that naturally arises
and is actively researched in many different contexts. Exam-
ples include: border control using unmanned aerial vehicles
(UAVs) [10], measuring traffic, reporting road conditions and
helping with emergency response using UAVs [11], moni-
toring the ocean [12], measuring air pollution [13], multi-
agent systems [14], and more recently for timely exchange of
information updates [15]. We consider two detection patterns
of Willie: random patrolling and uniform surveillance. In the
patrolling model, Willie performs random walks on graphs
and can detect the communication when he happens to be on
at the same relay as Alice or Bob. In the surveillance model,
Willie scans graph nodes (e.g., while sitting in a control room).
He can detect communication when he observes Alice or Bob.

Having to distribute and collect many chunks, as well as
the unpredictability of mobility and availability of helpers can
cause significant delays in our mobile information transfer.
To increase the persistence of information in the unstable
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environment, the agent may make the data chunks redundant
by erasure correcting codes, requiring more data chunks to be
distributed and collected. One would expect that would further
increase the delay. However, that is not necessarily the case,
and we will see that coding and some other forms of redun-
dancy can, in fact, be used to reduce the delay, as previously
shown to be the case in data download and straggler mitigation
(see, e.g., [16]–[21] and references therein).

It may be helpful to the reader to consider our work in the
context of the literature on throughput and delay in mobile ad-
hoc communications. For example, [22] proposed a model for
studying the throughput scaling of static ad hoc networks; [23]
introduced the mobility into the communications model and
assumed the source only transfers the data packet to a nearby
relay which subsequently passes the packet to the destination.
[24] introduced a random walk model for node mobility
and analyzed the throughput and delay tradeoff, and [25]
showed how coding improves this tradeoff, and [26] studied
the throughput scaling of covert communication in ad-hoc
networks introduced in [23]. Our work is different in multiple
ways. It considers an IoβT specific system model, which
includes different communication protocols and performance
metrics. However, our approach to deriving communications
delay and the techniques for reducing it should be of interest
to the mobile ad-hoc communications community.

The contributions of this paper are summarized as follows:
1) We propose a gossip-like protocol for a covert dis-

semination/collection of message chunks in IoT envi-
ronments. We analyze the dissemination and collection
delay for two transmission time models. For both mod-
els, our theoretical and numerical results show that
introducing redundant IoT relays can reduce the dissem-
ination time, and erasure coding of messages can reduce
the collection time.

2) We extend our analysis to covert communication scenar-
ios. We introduce two warden models and derive/analyze
the covertness probability for each. The theoretical and
numerical results show that coding always reduces the
covertness probability while splitting the message into
smaller chunks may increase the covertness probability.

3) We numerically analyze delay vs. the covertness prob-
ability tradeoff. We conclude that the tradeoff is very
different for different system parameters. In some sce-
narios, there exists an optimal code rate that maximizes
the covertness probability and minimizes delay. How-
ever, in most scenarios, simultaneously maximizing the
covertness probability and minimizing the communica-
tions delay is impossible.

The paper is organized as follows: In Sec. II, we present
the message passing model and two delay models. In Sec. III,
we derive and analyze the expressions of dissemina-
tion/collection time for different delay models and numerically
analyze the message passing delays. In Sec. IV, we propose
two warden detection models and point out the tradeoff that
exists between the message passing delay and covertness
probability. In Sec. V, we derive and analyze the expres-
sions of covertness probability for different detection models.

In Sec. VI, we present some numerical results for the delay
vs. covertness probability tradeoff. Conclusions are given in
Sec. VII-.5.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first describe the communication participants, their
mobility, and message passing protocols and delay models.
We then define two message passing performance met-
rics we will be studying. This section focuses the mes-
sage passing delay. The message passing covertness and the
delay/covertness tradeoff are discussed in Sec. IV.

A. Communication Participants and Their Mobility

There are three types of participants present within a geo-
graphical area (e.g., a city or a battlefield): a mobile source
Alice, r static relays, a mobile receiver Bob. Alice’s and Bob’s
mobility is modeled as a simple random walk over a mobility
graph. (Sec. IV extends this model to include a warden Willie.)

We model the mobility graph as a random d-regular graph,
that is, a graph selected uniformly at random from the set of
all d-regular graphs on n vertices. The related literature (see,
e.g., [24], [25]) uses rectangular grid graphs over a torus to
study communications in (mobile) ad-hoc networks. We adopt
the random regular graph model for the following reasons. 1)
Since these graphs are locally trees with high probability [27],
the random walks on such graphs are reasonable mobility
models. 2) Although random regular graphs are more realistic
than the grid on torus graph for mobility modeling, random
walks on these graphs are fairly well understood. Thus, the
existing mathematical results on this topic can be used and
easily extended to our scenarios, allowing us to concentrate
on the communications and covertness problems we aim to
solve. Other mobility graphs will be used in future research,
especially irregular graphs with a few high degree hubs.

The r relays are IoT objects residing on r vertices of
the mobility graph. Alice has a message to pass to Bob.
Instead of communicating with Bob directly, Alice uses the
IoT objects (relays) to store pieces of her message, which Bob
can subsequently retrieve. Because IoT objects have limited
power, Alice and Bob can only communicate with a relay
when they reach the vertex where the relay resides.

B. Communications Protocol & the Mobility Model

Alice’s message has length m bits (symbols, packets).
Because of the relay’s storage constraints and to avoid long
transmission time at a relay, she partitions the message into
k data chunks each of length " = m/k. By using an MDS
code, she encodes the data chunks into n(≤ r) coded chunks
(also of length "). Thus, Bob needs to collect any k out
of n coded chunks to recover the message. An example of
message partitioning and encoding, together with the mobility
graph, is shown in Fig. 1. Here, Alice splits the message into
k = 2 data chunks and encodes them into n = 3 coded chunks
{M1, M2, M3}.

Message passing from Alice to Bob has two phases: the
dissemination phase and the collection phase. In the dissem-
ination phase, Alice transfers n coded chunks to the first
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Fig. 1. An example of message passing over a complete graph with
v = 7 vertices. Each vertex contains an IoT object. Four among them (yellow
triangles) are relays and three (green disks) are not. Alice and Bob can
communicate with any object but only disseminate/collect message chunks
to/from the relays.

Fig. 2. Alice needs to disseminate three coded chunks to any three out of
four relays. Every time when she meets a relay, she stores one coded chunk,
until all three coded chunks are disseminated. Each relay can only store one
coded chunk.

n relays she encounters as she randomly walks through the
graph. This model is similar to a classic predator-prey model,
e.g., as analyzed in [27]. Fig. 2 shows an example. When she
meets the first relay, she deposits the coded chunk M1 to the
relay. She then deposits M2 to the second relay, and so on.
The dissemination is complete when Alice deposits the last
chunk. Fig. 2 shows the snapshots of Alice at the three relays.
She may need to walk through several non-relay vertices to
reach all the relays. Similarly, Bob recovers the message in
the collection phase by collecting k coded chunks from the n
relays as he randomly walks through the graph.

C. Message Chunk Passing Time

The time to pass a chunk between Alice (or Bob) and a relay
has two components. The first is the time Alice (or Bob) needs
to spend randomly walking to meet a relay. The second is the
transmission time of a data chunk between Alice/Bob and a
relay. We refer to Alice’s move from a vertex to one of its
neighbors as one step. The time to take a step is, in general,
a random variable η. We consider the following two chunk
passing time models:

Model 1 (Constant Transmission Time): In this classic
model for random walks (see, e.g., [27], [28] and references
therein), the chunk passing time is measured in the number
of steps Alice/Bob needs to make to encounter a relay. It is
applicable here under the following circumstances: 1) the
time of a step η is a constant, say 1 and 2) the chunks
are sufficiently small so that their transmission time can be
neglected.

Model 2 (Random Transmission Time): In this general
model, the step times are independent and identically dis-
tributed (i.i.d.) random variables. The transmission time of a
data chunk between Alice/Bob and a relay follows a shifted
exponential distribution whose shift is proportional to the
length of a chunk " and whose tail accounts for various
disturbances (noise) in the system.

D. Covert Message Passing

The covert message passing is defined as Alice successfully
passing a message to Bob through some relays without Willie’s
detection. We consider two detection patterns of Willie: ran-
dom patrolling and uniform surveillance. In the patrolling
model, Willie performs random walks on graphs and can detect
the communication when he happens to be on at the same relay
as Alice or Bob. In the surveillance model, Willie scans graph
nodes (e.g., while sitting in a control room). He can detect
communication when he observes Alice or Bob. The details
of the detection models are given in Sec. IV.

E. Performance Metrics and Problem Formulation

Alice’s goal is to covertly and quickly pass the message to
Bob. Thus, the performance metrics of interest are covertness
probability (Pc), the expected dissemination time (E[TA]) of n
coded chunks by Alice, the expected collection time (E[TB])
of k coded chunks by Bob, and the expected message passing
delay (E[TA+B ]) (dissemination plus collection). We evaluate
the above metrics in terms of the design parameters k and n,
where k/n is the code rate. Our goal is to find the optimal
k and n that maximize Pc, and minimize E[TA], E[TB ],
and E[TA+B ]. In the following section, we will derive the
formulas for each metric and analyze the optimal k and n.
The covertness probability will be addressed in Sec. IV.

Recall that a message of length m data bits, and is split
into k data chunks. Applying an [n, k] MDS code, k data
chunks are encoded into n coded chunks. The length of each
data/coded chunk is " = m/k bits. Therefore, Alice needs to
meet n relays to deposit her coded chunks. We denote by SA
the random number of steps Alice needs to make to meet n
out of r relays. Bob needs to meet k relays with coded chunks.
We denote by SB the random number of steps Bob needs to
make to meet k out of n relays storing coded chunks.

F. Parameters and Notation
v - number vertices in the mobility graph
d - mobility graph vertex degree
r - number of relays in the system
m - message (data) length in bits
k - number of message (data) chunks
n - number of coded chunks
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k/n - code rate
" - length of a data (or coded) chunk
η - random walking time between two vertices
TA - random dissemination time of n coded chunks
TB - random collection time of k coded chunks
TA+B - random message passing time
SA - random # of Alice’s steps to meet n relays
SB - random # of Bob’s steps to meet k relays

Observe that v, d , r , m and E[η] are given system para-
meters. E[TA], E[TB], E[TA+B ], E[SA] and E[SB ] are the
performance metrics. n, k and " are the design parameters
which we can select to optimize the performances metrics.

III. MESSAGE PASSING DELAYS

A. Preliminary Reasoning

Message passing delay includes dissemination and the col-
lection time. It is the time during which Alice and Bob
communications with relays could be discovered by Willie.
Observe that the message passing delay is not the time that
the message spends in the system from the beginning of
Alice’s dissemination to the end of Bob’s collection. That
time depends on the starting times of the dissemination and
collection, and is beyond the scope of this paper.

The message passing delay depends on how many steps
Alice (Bob) needs to make to disseminate (collect) the coded
chunks.To understand the message passing delay dependencies
on the system and design parameters, we first consider a
special case when the mobility graph is a complete graph.
Here, Alice needs to disseminate n coded chunks to r relays
residing on a v-vertex complete graph. Her first chunk can
be deposited on any of the r relays. In a single step, Alice
arrives at a relay with the probability r/v, and thus she needs
to make on average v/r steps to find a relay to deposit her
first chunk. For depositing her second chunk, Alice needs to
arrive to one of the remaining r − 1 relays, which happens in
a single step with probability (r −1)/v. Thus, she has to make
another v/(r−1) steps on average to deposit her second chunk.
Therefore, to deposit her first two chunks, Alice will make
v
r + v

r−1 steps on average. Following this reasoning, we see that
for n chunks, Alice needs to makes on average v(Hr − Hr−n)
steps, where Hr = ∑r

i=1 1/ i is the r -th harmonic number.
We often use the approximation Hn = log n + γ + O(n−1),
where γ = 0.577 is Euler’s constant. Bob needs to collect k
chunks from n relays storing coded chunks. Therefore, Bob
needs to make on average v(Hn − Hn−k) steps.

The above reasoning does not extend to general graphs.
However, reference [27] provides useful results for large,
random regular graphs (which are good mobility graphs mod-
els). We adapt the findings of [27] to our setting, and get
the following results. Let S be the number of steps that the
source (or collector) needs to make to meet a relay. When we
randomly choose a graph from the set of all d-regular graphs
with v vertices, with high probability, 1) the expected number
of steps is

E[S] ∼v
θdv

r
(1)

and 2) the probability that the source meets a relay Pmeet is

Pmeet ∼v
r

θdv
. (2)

where X ∼Z Y means limZ→∞ X/Y = 1, and θd = d−1
d−2 .

We can now find the expected message passing delay.
According to the definition of TA+B , we know that its expec-
tation is E[TA+B ] = E[TA] + E[TB ]. The dissemination time
TA is the sum of n message chunk passing times (discussed in
Sec. II-C). For the constant transmission time model with the
step time η = 1, TA is equal to the random number of steps SA
that Alice needs to make to meet n out of r relays to deposit
her n coded chunks. Therefore, the expected dissemination
time is E[TA] = E[SA]. Similarly, the collection time TB is
equivalent to the total number of steps SB that Bob needs
to make to meet k out of n relays to collect k coded chunks.
Therefore, the expected dissemination time is E[TB] = E[SB ].

For the random transmission time model, the dissemination
time TA (collection time TB) is again equal to the sum of n (k)
chunk passing times. Recall that the chunk transmission time
can not be neglected in this model, and it follows a shifted
exponential distribution. Thus the calculations of E[TA] and
E[TB] are more complicated and will be discussed later.

In the following, we focus on the delay analysis of a random
regular graph. We will find the expression of message passing
delay by deriving the dissemination time and collection time
separately under two different delay models.

B. Constant Transmission Time

Under the constant transmission time model, the message
passing delay TA+B = SA + SB , where SA and SB are the
number of steps that the source and collector need to spend
to meet enough relays.

1) Dissemination Time: From the above discussion, it fol-
lows that in a d-regular graph with v vertices, the source needs
to make on average θdv

r steps to disseminate the first coded
chunk. After the first dissemination, the number of available
relays reduces to r −1, and then the source needs to spend on
average θdv

r−1 steps to disseminate the second chunk. Finally,
we can get the expected number of steps to disseminate n
coded chunks

E[SA] ∼v θdv(Hr − Hr−n).

It is obvious that E[SA] decreases with increasing r and
increases with n. Since n = ϕr for some ϕ ∈ (0, 1), it is
not hard to see O(E[SA]) = O(v).

For a scenario without redundant relays, the number of
relays r is equal to the number of coded chunks n. Thus, the
expected number of steps to disseminate n coded chunks is
E[SA] ∼v θdv Hn . Namely, we have O(E[SA]) = O(v log n).

2) Collection Time: The collector needs to collect any k
coded chunks from n relays that store the chunks. Similarly,
we can get the expected number of steps to collect any k
chunks

E[SB ] ∼v θdv(Hn − Hn−k).
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It is obvious that E[SB] decreases with increasing n and
increases with k. Since k = ξn for some ξ ∈ (0, 1), it is
not hard to see O(E[SB ]) = O(v).

For a scenario without coding, the code rate k/n = 1,
namely, k = n. Thus, the expected number of steps to
collect n data chunks is E[SB ] ∼v θdv Hn . Namely, we have
O(E[SB ]) = O(v log n).

3) Message Passing Delay: The message passing delay is
the sum of dissemination time and collection time. Since
both E[SA] and E[SB ] are positive, the following asymptotic
equivalence holds:

E[TA+B ] ∼v θdv(Hr + Hn − Hr−n − Hn−k). (3)

We know that E[TA+B ] increases with k. Namely, when the
number of coded chunks n is given, E[TA+B ] reaches mini-
mum at k = 1. However, since the IoT devices have limited
storage, we sometimes have to split the original message into
smaller chunks to store in the relays. Therefore, it is important
to study when k is given, what is the value of n can minimize
E[TA+B ]. We find some results in Theorem 1.

Theorem 1: By using the asymptotic equivalence (3), the
expected message passing delay E[TA+B ] reaches the mini-
mum at n = √

rk + k − 1 given r and k. Notice that if the
above value is not an integer, the optimal n is

⌈√
rk + k − 1

⌉

or
⌊√

rk + k − 1
⌋

.
Proof: When k and r are given, E[TA+B ] is a function

of n. Since E[TA+B ] is discrete, we can get its minimum by
find an n∗ where E[TA+B ](n = n∗) ≤ E[TA+B ](n = n∗ + 1)
and E[TA+B ](n = n∗) ≤ E[TA+B ](n = n∗ − 1). From (3),
we have E[TA+B(n = i)] ∼v θdv(Hr + Hi − Hr−i − Hi−k) and
E[TA+B (n = i + 1)] ∼v θdv(Hr + Hi+1 − Hr−i−1 − Hi+1−k).

Define An=i = E[TA+B(n = i + 1)] − E[TA+B(n = i)],
then

An=i ∼v θdv(
1

i + 1
+ 1

r − n
− 1

n + 1 − k
)

= θdv

(i + 1)(r − n)(n + 1 − k)
(n2 + 2n + 1 − rk − k)

= θdv

(i + 1)(r − n)(n + 1 − k)
[(n + 1)2 − (rk + k)].

Since θdv
(i+1)(r−n)(n+1−k) > 0, An=i ≥ 0 for n ≥ √

rk + k −
1 and An=i < 0 for n <

√
rk + k − 1. Therefore, n =√

rk + k − 1 minimizes E[TA+B ]. !
Observe that for a complete graph with v vertices, the

expression for message passing delay becomes TA+B =
v(Hr + Hn − Hr−n − Hn−k), as previously derived.

Numerical Analysis: In Fig. 3, we evaluate the expected
message passing delay E[TA+B ] vs. the number of coded
chunks n for both approximation and exact result. We consider
a regular graph with 100 vertices and the degree is 5. The
approximation is calculated from the expression of E[TA+B ]
given in (3), and the exact result is an average of 1000 sampled
delay values. Some observations are made from the figure:
when n is given, E[TA+B ] increases with k. For example,
when n = 7, the case “k = 2” gives the minimum E[TA+B ].
When n is large (e.g., n = 10), the gaps between these
three cases are small. These observations are consistent with
the theoretical analysis for k. We also observe that when k

Fig. 3. Expected message passing delay E[TA+B ] vs. the number of coded
chunks n (cf. (3)). This is a regular graph with 100 vertices and the degree is
5. The number of relays is r = 10. Introducing proper data redundancy can
reduce the message passing delay and the approximation is close to the exact
result.

is given, E[TA+B ] always reaches the minimum at n > k.
For example, when k = 4, the optimal n is 6 and the
code rate k/n = 2/3. We conclude that introducing proper
data redundancy can reduce the message passing delay. This
observation is consistent with the result in Theorem 1. Besides,
we observe that for each k, the approximation is very close
to the exact result. It confirms that (3) is good enough to
approximate the expected message passing delay.

C. Random Transmission Time

Under the random transmission time model, both the source
and collector need to spend some walking time (totally
η1 + . . . + ηS) to meet a relay, and then they need to spend
the message chunk passing time (defined as tt ) to delivery and
collect the chunk. According to Subsection II-C, tt follows a
shifted exponential distribution S-Exp((,λ), where ( = ".

1) Dissemination Time: The source needs to disseminate n
coded chunks to r (≥ n) relays. When the source randomly
walks on a d-regular graph with v vertices, the probability
that it meets a relay is r

θdv according to (2). After the source
deposits the first chunk in one of the r relays, the second
chunk can only be stored in one of the remaining r −1 relays.
The probability of meeting an unoccupied relay decreases as
the number of occupied relays grows. Therefore, in order to
get the dissemination time TA, we need to find the time Ti
for the source to disseminate the i th (i = {1, 2, . . . , n}) coded
chunk.

Lemma 1: For the random transmission time model, the
time Ti for the source to disseminate the i th coded chunk to
any one of r − i + 1 relays is

Ti = tt +
S∑

j=1

η j with probability (1 − pr−i+1)
S−1 pr−i+1.

(4)

where S is the number of steps the source spends to meet a
relay, and pr−i+1 ∼v

r−i+1
θdv is the probability that the source
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meets any one of r − i + 1 relays. Then we have

E [Ti ] = 1
λ

+ m
k

+ E [η]
pr−i+1

. (5)

Proof: Let p = pr−i+1, we get the expectation of Ti as
follows:

E [Ti ] =
∞∑

S=1

E



tt +
S∑

j=1

η j



 (1 − p)S−1 p

= pE [tt ]
∞∑

S=1

(1 − p)S−1

+ p
∞∑

S=1

E




S∑

j=1

η j



 (1 − p)S−1.

Since η1, . . . , ηS are i.i.d., E
[∑S

j=1 η j

]
= SE [η]. There-

fore, E [Ti ] = E [tt ] + E[η]
p = 1

λ + m
k + E[η]

pr−i+1
. !

Using Lemma 1, we can get the expected total dissemination
time E [TA] in the following theorem.

Theorem 2: The expected dissemination time for the source
to transmit all n coded chunks to any n out of r relays is

E [TA] ∼v
n
λ

+ nm
k

+ θdvE [η] (Hr − Hr−n). (6)

Proof: Since E [Ti ] = 1
λ + m

k + E[η]
pr−i+1

for i ∈ {1, 2, . . . , n},
where pr−i+1 ∼v

r−i+1
θdv , we have

E [TA] = E[
n∑

i=1

Ti ] = nE [tt ] +
n∑

i=1

E [η]
pr−i+1

∼v nE [tt ] +
n∑

i=1

θdvE [η]
r − i + 1

= n
λ

+ n" + θdvE [η] (Hr − Hr−n).

Since " = m
k , E [TA] ∼v

n
λ + nm

k + θdvE [η] (Hr − Hr−n).
!

Notice that η is determined by the distance between two
vertices and the speed of the source/collector. To study these
two parameters is not the purpose of this paper. Therefore,
we will directly assign a value to E[η]. Therefore, from
Theorem 2, we see that E [TA] increases with n and decreases
with increasing k. Since r = ϕn and k = ξn for some
ϕ, ξ ∈ (0, 1), it is not hard to see O(E[TA]) = O(v + n).

For a scenario without redundant relays, the number of
relays r is equal to the number of coded chunks n. Thus, the
expected dissemination time is E[TA] ∼v

n
λ + nm

k + θdv Hn.
Namely, we have O(E[TA]) = O(v log n + n).

2) Collection Time: The collector needs to collect at least
k coded chunks to recover the message. Since there are
only n(≤ r ) relays on the graph store the coded chunks,
the probability that the collector meets a relay with a coded
chunk is n

θdv . After the collector retrieves the first chunk in
one of the n relays, the second chunk can only be retrieved
in one of the remaining n − 1 relays. Therefore, similar to
the dissemination time, we find the expected collection time
E [TB] in the following corollary.

Corollary 1: The expected collection time for the collector
to retrieve any k chunks from n relays is

E [TB ] ∼v
k
λ

+ m + θdvE [η] (Hn − Hn−k).

The above result holds by applying the similar proofs of
Lemma 1 and Theorem 2.

From Corollary 1, we see that E [TB] decreases with
increasing n and increases with k. Since k = ξn for some
ϕ, ξ ∈ (0, 1), it is not hard to see O(E[TB ]) = O(v + k).

For a scenario without coding, the code rate k/n = 1,
namely, k = n. Thus, the expected collection time is E[TB] ∼v
k
λ +m +θdv Hn . Namely, we have O(E[TB]) = O(v log n+n).

3) Message Passing Delay: The message passing delay is
the sum of the dissemination time and collection time, and its
expectation is in Corollary 2.

Corollary 2: For the random transmission time model, the
expected message passing delay is:

E
[
TA+B

]
∼v

n + k
λ

+
(n

k
+ 1

)
m

+ θdvE [η] (Hr + Hn − Hr−n − Hn−k). (7)

From the conclusions of the dissemination time and the
collection time, we see that there should be an optimal n
and an optimal k which minimize the E

[
TA+B

]
. Assume k

is given, we find the optimal n in the following theorem.
Theorem 3: For the random transmission time model, when

k is given, the optimal n appear in the range [k,
√

rk + k−1].
Proof: Define An=i = E[TA+B (n = i +1)]−E[TA+B(n =

i)], we have An=i ∼v
1
λ + m

k + θdvE [η] ( 1
i+1 + 1

r−n − 1
n+1−k ).

Since λ, m, k > 0, the former terms 1
λ + m

k > 0. According to
the proof of Theorem 1, we know that the latter term is larger
than 0 when n >

√
rk + k − 1, and smaller than 0 when

n <
√

rk + k − 1. Therefore, the optimal n, as an integer,
must appear in the range [k,

√
rk + k − 1]. !

From Theorem 3, we know that when 1
λ + m * θdvE [η],

it is close to k. When θdvE [η] * 1
λ + m

k , it is close to√
rk + k − 1.
To analyze the optimal k, we assume n is given. From (7),

we see that k appears in the terms mn
k + k

λ − θdvE [η] Hn−k ,
where mn

k decreases with increasing k, and k
λ −θdvE [η] Hn−k

increases with k. Therefore, the optimal k changes with the
values of system parameters, e.g., λ, d , v, η and m.

Notice that for a complete graph with v vertices, we find
the expression of message passing delay is TA+B = n+k

λ +( n
k + 1

)
m + vE [η] (Hr + Hn − Hr−n − Hn−k). The results in

Theorem 3 still hold.
Numerical Analysis: In Fig. 4, we evaluate the expected

message passing delay E[TA+B ] vs. the number of coded
chunks n for both approximation and exact result. We consider
a regular graph with 100 vertices and the degree is 5. The
message chunk passing time tt follows S-Exp(",λ), where
" = 100/k is the length of a chunk, λ = 1 is the rate
parameter. By sampling the shifted exponential distribution,
we can get a message passing delay value. The exact result is
an average of 1000 sampled delay values. The approximation
is calculated from the expression of E[TA+B ] given in (7).
Some observations are made from the figure: when k is
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Fig. 4. Expected message passing delay E[TA+B ] vs. the number of coded
chunks n (cf. (7)). This is a regular graph with 100 vertices and the degree
is 5. The number of relays is r = 10 and the message chunk passing time
follows S-Exp(100/k, 1). Introducing proper data redundancy can reduce the
message passing delay and the approximation is close to the exact result.

given, E[TA+B ] still reaches the minimum at n > k. Which
indicates that introducing proper data redundancy can reduce
the message passing delay. However, comparing to Fig. 3, the
optimal code rate k/n in Fig. 4 is more close to 1. For example,
considering the case “k = 4”, the optimal code rates in Fig. 3
and Fig. 4 are respectively 2/3 and 4/5. This observation
validates the result in Theorem 3 that when 1

λ + m
k = 1+100/k

is close to θdv = 400/3, the optimal n appears in the range
[1,

√
11k − 1].

We also observe that when n is given, E[TA+B ] no longer
increases with k. For example, when n = 6, the case “k =
4” has a smaller delay than the case “k = 2”. Although
our theoretical analysis also shows this result, we can not
describe how the optimal k changes due to there are too many
parameters can affect the result. Besides, we observe that the
approximation is very close to the exact result. It confirms
that (7) is good enough to approximate the expected message
passing delay.

D. Comparisons and Conclusions

In Table I, we compare different scenarios with or without
redundant relays (RR) and coding. We conclude that redundant
relays can help to decrease the dissemination time and coding
can decrease the collection time. For example, considering the
constant transmission time model, with the help of redundant
relays and coding, the average dissemination and collection
time decrease from O(v log n) to O(v), respectively.

In Table II, we summarize the results of the expected
message passing delay in both constant transmission time and
random transmission time models. In the constant transmis-
sion time model, we deduce the optimal k and n from the
expression of E[TA+B ]. However, in the random transmission
time model, the exact values of optimal k and n are hard to
deduce from the expression of E[TA+B ].

E. Source and Collector’s Starting Time

In the previous subsections, we only consider the message
passing delay which defined as the sum of the dissemination

time and collection time. In practice, we should also look into
the source and collector’s dynamics on when to start each
process. Thus, the overall message passing time, defined as
the time from the beginning of the source’s dissemination
to the end of the collector’s collection, is also an important
performance metric for the message passing system.

To analyze the overall message passing time, in general, two
scenarios should be considered: 1) the collector starts collect-
ing chunks after the dissemination. Thus, the overall message
passing time is larger than the message passing delay, since
there will be some intermediate time between dissemination
and collection. Nevertheless, the previous conclusions also
hold for the overall message passing time analysis, because
the intermediate time is unrelated to the dissemination and
collection times. 2) The collector starts collecting chunks dur-
ing the dissemination. Thus, the overall message passing time
is smaller than the message passing delay and the previous
conclusions do not always hold for the overall message passing
time analysis. This is an interesting problem that needs to be
studied in the future.

F. Multiple Sources and Collectors With Network Coding for
Further Reduction of Delay

With the help of redundant relays and coding, we reduced
the dissemination and collection time for both the constant and
random transmission time models. However, the effectiveness
of redundant relays and coding is limited. For example, we can
not reduce the average dissemination time beyond O(v) under
the constant transmission time model. Nevertheless, we can
further reduce the delay by introducing multiple sources and
collectors. We outline the main ideas below and leave the
details of this problem for a follow-up study.

Based on the results of [28], we know that w random
walks on a complete graph or a d-regular graph achieve
O(w) reduction of the single walk graph cover time. (This
is true for some other graphs [29] as well.) Thus multiple
sources will reach the relays faster than a single source
but need to disseminate different message chunks to reduce
the message passing delay. Thus, each source must know
which chunks have been disseminated by the other sources.
Such assumption is impractical and inadequate for covert
communications scenarios. Without this assumption, having
multiple sources and collectors may even worsen the delay.
To see that, consider two sources that disseminate a message
of 2 data chunks to 4 relays by randomly selecting a chunk
each time they encounter a relay. If both sources disseminate
only one data chunk, the dissemination time is significantly
shorter than when one source disseminates 2 data chunks.
However, the two sources will disseminate the same chunk
with a probability 0.5. If both sources disseminate 2 data
chunks, the dissemination time is larger than the one source
scenario.

The sources can apply various strategies to ensure that
they disseminate different chunks. For example, if there are
two sources, one can disseminate the even chunks and the
other odd chunks. However, we will have higher benefits if
we do not fix the number of chunks that each source has to
disseminate as long as the sum of the disseminated chunks is n.
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TABLE I

DISSEMINATION AND COLLECTION TIMES WITH OR WITHOUT REDUNDANT RELAYS AND CODING

TABLE II

CONCLUSIONS OF IMPORTANT RESULTS IN BOTH DELAY MODELS

Moreover, the splitting strategy does not reduce the collection
delay. We may use network coding to improve the multiple
sources/collectors and reduce the collection delay. In this way,
instead of sending the data chunks to the relays, the sources
will send a random linear combination of the chunks.

For the most general scenario, the sources may not even
be able to agree or know which chunks are disseminated
before/during the dissemination. Here, using network coding is
essential. Each time a source encounters a relay, it randomly
generates a coded chunk as a linear combination of k data
chunks. Thus, the sources only need to disseminate n coded
chunks together. In the collection phase, the collectors need to
collect totally k ′ out of n chunks, where k ′ is just slightly larger
than or equal to k. Then, when the field size is sufficiently
large, the k data chunks can be decoded from k ′ coded chunks
with high probability. Using fountain codes, e.g., LT [30]
or Raptor codes [31], instead of random network codes can
simplify decoding.

IV. COVERT MESSAGE PASSING

We now consider message passing where in addition to
Alice, Bob, and relays, there is another communication partic-
ipant, Willie the warden. We are interested in the probability
that the message passing from Alice and Bob is hidden from
Willie who has certain mobility and detection capabilities.

The transmission is covert if Alice passes a message to
Bob through relays without being detected by Willie. Although
covert communication has been studied in many papers, covert
message passing in mobile networks is recently proposed.
Therefore, there are few warden detection models. In the
following, we provide two possible models.

A. Two Warden Detection Models

1) Random Patrolling Model: In this model, see
Fig. 5 (left), the warden Willie walks randomly on the
same graph with Alice and Bob. We assume that all mobile

Fig. 5. Two warden models are proposed: random walk (left) and uniform
surveillance (right). For the random walk model, Willie walks randomly on
the graph with Alice and Bob. He can only detect the communication when
he meets Alice or Bob at the relay. For the uniform surveillance model, Willie
monitors each vertex uniformly. He can only detect the communication when
he monitors the relay during Alice/Bob’s transmission.

participants are moving synchronously. To establish that
Alice and Bob are communicating, Willie has to 1) meet
one of them at a relay and 2) detect the transmission to
the relay is taking place before it was over. The more time
Willie has to observe a chunk transmission, the higher his
probability of detection will be. The detection probability is
thus an increasing function of the chunk length ". However,
decreasing the chunk length will result in having to pass more
chunks, which in turn gives Willie more (m/") opportunities
to observe a transmission.

2) Uniform Surveillance Model: In this model, we base
covertness on the assumption that the warden Willie can mon-
itor part of the vertices for some given time. A straightforward
and informal way to visualize this model is to imagine that the
warden is stationed somewhere “in the middle” of the graph,1

on top of a lighthouse, see Fig. 5 (right). This way, he can only
check the part where the lighthouse sheds its light and can not
see what is happening behind him. We can also imagine the

1This is a very informal statement. There is no need for an exact “middle”,
we just need the warden to be at a place where he can observe different parts
of the area at different times.
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warden applies a Round-Robin protocol to check each vertex
of the graph. Thus, he can monitor vertices uniformly.

To formalize this model, we assume that Alice and Bob
transmit data to relays without implementing any covertness
scheme. Therefore, if the warden happens to check a graph
vertex while the data chunk transmission is taking place,
he will detect it with probability 1. We further assume that
when Alice or Bob starts transmitting on a relay, the warden’s
time of arrival at this relay follows a uniform distribution.
Thus, if the warden monitors the relay during the transmission,
he will detect it; otherwise, he will not. This model was first
proposed in paper [32] which provided the analysis for a
complete graph.

B. Performance Metrics

1) Covertness Probability: Covertness probability is defined
as the probability that Alice transmits a message to Bob
without being detected by Willie. For example, assume that
the message has 2 data chunks, Alice needs to transmit 2 times
to 2 relays and Bob also needs 2 times to collect the chunks.
If during each time, Willie will detect the transmission with a
probability Pd , the covertness probability is Pc = (1 − Pd )4.
Notice that when Willie detects the transmission, it does not
mean he will get the content of the message. The message
may be camouflaged as noise to avoid detection. However,
this is another covert communication problem and will not be
studied in this paper.

2) Covertness vs. Delay Tradeoff: To optimize the covert-
ness probability, we consider using splitting and data redun-
dancy. From the definition of covertness probability, we know
that, although splitting increases the number of Willie’s detec-
tion chances Willie, it also decreases the detection probability
Pd for each detection opportunity. Therefore, it is hard to
tell how splitting affects the covertness probability. Mean-
while, introducing data redundancy decreases the covertness
probability. Therefore, the tradeoff between the covertness
probability and delay is apparent here.

On the one hand, if Alice delivers the data chunks without
data redundancy to relays, then the probability of detection
is small. This happens because the chance that Willie “sees”
her is inversely proportional to the number of nodes. On the
other hand, the delay is increased because Bob will have
to visit many nodes until he meets all the relays that hold
Alice’s data chunks. At the other side of the spectrum, if Alice
encodes the data chunks and delivers the coded chunks to
more relays, then it will take Bob fewer steps to retrieve it.
Thus, the message passing delay may reduce (see conclusions
in Sec. III). However, the probability that they are caught
increases significantly because of the more times that Alice
has to deliver to the relays.

C. Notation
Pd - detection probability for each transmission
Pc - covertness probability
β - the number of wardens
tt - the message chunk passing time
ta - the warden’s arrival time

The parameters β, tt and ta are the system parameters. Pd and
Pc are the performance metrics.

V. COVERTNESS PROBABILITY ANALYSIS

In Sec. IV-B.1, we introduced the covertness probability Pc
and provided an example to calculate Pc given the transmission
detection probability Pd . In practice, Pd is not always a
constant. The warden Willie will detect the transmission with
a higher probability when he “sees” the transmission for a
longer time. In another word, Pd increases with the length of
a chunk ". In this section, we provide the expression of Pd as
a function of " for two different warden models, respectively.
Meanwhile, we provide the general expression of Pc.

A. Transmission Detection Probability

1) Random Patrolling Model: In this model, β wardens,
a source, and a collector walk randomly on a regular graph.
As we introduced in Sec. IV-A, the warden firstly needs to
meet the source or collector, and then detects the transmission.
For a d-regular graph with v vertices, according to (1), the
probability that the warden meets the source/collector at a
relay is β

θdv . After meeting the source or collector, we consider
two scenarios for the warden: a) the warden will detect the
transmission immediately. Thus, the detection probability is

Pd = β

θdv
. (8)

The above formula shows that Pd only relates to the degree
of graph d and the number of wardens β, thus we consider
the detection probability as a constant.

b) The warden will fail to detect with some probability.
In practice, the warden can not always detect the transmission
successfully for some reasons, e.g., the source tries to hide the
message, the noise of the detection channel, etc. It is intuitively
to imagine that the longer time for the source or collector to
transmit the coded chunk, the higher probability the warden
detects successfully. Since the transmission time relates to
the length of the coded chunk, here, we simply assume the
detection probability is a linear function of ".

Pd (") = "β

mθdv
. (9)

Since " = m
k , we see that Pd is a function of k, and it decreases

as k increases.
2) Uniform Surveillance Model: In this model, when a

source or a collector arrives at a relay and starts transmitting
the data chunk, the warden will arrive (monitor) at this relay
following a uniform distribution U(0, W ). As we introduced
in Sec. IV-A, whether the warden will detect the transmission
successfully depends on the warden’s arrival time ta and
the source/collector’s message chunk transmission time tt .
We consider the warden’s arrival time ta follows a uniform
distribution, i.e., ta ∼ U(0, W ). And the message chunk
passing time tt follows a shifted exponential distribution i.e.,
tt ∼ S-Exp((,λ) (the tail is given as Pr{tt > x} = e−λ(tt−()

for tt > (). Where ( = " indicates the time to transmit
a chunk and the exponential tail is some inherent additive
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system randomness at each relay, which does not depend on
the chunk length ". Thus, the detection probability Pd is given
by the following theorem:

Theorem 4: For the uniform surveillance model, the prob-
ability that the warden arrives during the transmission (i.e.,
detects the transmission) is

Pd (") =






1
λW

+ "

W
− e−λ(W−")

λW
for W ≥ "

1 for W < "
(10)

Proof: Since tt ∼ S-Exp(",λ), it is obvious that tt ≥ ".
We assume the warden’s arrival time is ta ∼ U(0, W ), then
we have ta ≤ W .

If W < ", the warden will definitely arrive before the
transmission is done, the detection probability is Pd = 1.

If W > ", we calculate the detection probability as follows:

Pd (") = P(tt ≥ ta) =
∫ W

0

∫ ∞

ta
ft (tt ) fa(ta) dtt dta

=
∫ W

"

∫ ∞

ta
ft (tt ) dtt fa(ta) dta

+
∫ "

0

∫ ∞

"
ft (tt ) dtt fa(ta) dta

=
∫ W

"
e−λ(tt−") fa(ta) dta + "

W

=
∫ W

"

1
W

e−λ(tt−") dta + "

W

= 1
λW

+ "

W
− e−λ(W−")

λW
.

!

B. Covertness Probability

The communication between the source and collector stays
covert only when all the coded chunk transmissions are unde-
tected. Recall that the source needs to disseminate the n coded
chunks and the collector needs to collect k coded chunks.
Therefore, the total number of coded chunk transmissions is
n + k and the covertness probability is

Pc(k) = (1 − Pd )n+k . (11)

When k is given, since Pd and n are independent and
0 ≤ Pd ≤ 1, the covertness probability Pc decreases with
increasing n. Since Pd is a function of " and " = m

k , Pc is a
function of k. Thus, when n is given, we need further analyze
the optimal k for each detection model.

For the random patrolling model, Pd is a constant under
the worst-case (see (8)). Otherwise, Pd increases linearly with
" (see (9)). Thus, we can easily get the expression of Pc by
substituting (8) or (9) to (11). From the expressions, we find
the maximum of the covertness probability in Theorem 5.

Theorem 5: For the random patrolling model, given the
number of coded chunks n, the covertness probability Pc
changes as follows:

1) Under the worst-case, Pd = β
θdv is a constant. Thus, for

a given n, Pc decreases with increasing k, which means
Pc reaches the maximum at k = 1.

2) Otherwise, Pd (k) = β
kθd v is a function of k. Thus, Pc

increases with k, which means Pc reaches the maximum
at k = n.

Proof: For property 1), since Pd is a constant and 0 ≤
1 − Pd < 1, it is obvious that Pc decreases with k. Since
k ≥ 1 is an integer, the maximum covertness probability is at
k = 1, i.e., Pc = (1 − Pd )n+1.

For property 2), we know 1 ≤ k ≤ n is an integer. Let
a ∈ [1, n) be an integer. To prove Pc(k) increases with k,
we only need to show Pc(k = a + 1) > Pc(k = a) for all a.

According to (9) and " = m
k , we have Pd (k) = β

kθd v . Define
B = β

θdv , then Pd (k) = B
k . Therefore, we only need to show

(1 − B/(a + 1))n+a+1 > (1 − B/a)n+a .
Notice that 0 < B ≤ 1 and 1 ≤ a < n, we can transform

the inequality into a
a−B > a+1

a+1−B
n+k
√

a+1
a+1−B . Thus, we get

a(a+1−B)
(a−B)(a+1) > n+k

√
a+1

a+1−B .

For the left term, we have a(a+1−B)
(a−B)(a+1) = 1 + B

(a−B)(a+1) >

1 + B
(a−B+1)(a+n) = 1

n+a ( a+1
a+1−B + n + a − 1).

According to the arithmetic mean-geometric mean inequal-
ity, 1

n+a ( a+1
a+1−B + n + a − 1) > n+k

√
a+1

a+1−B .
Finally, for any integer 1 ≤ a < n, we have Pc(k = a+1) >

Pc(k = a). !
For the uniform surveillance model, since Pd is a function

of k, Pc is also a function of k. From Theorem 4, the term
"
W (= m

kW ) decreases as k increases, and the term − e−λ(W−")

λW (=
− e−λ(W−m/k)

λW ) increases with k. When λ is sufficiently large, the
former term is much larger than the latter term. Thus, Pd also
decreases as k increases. Since Pc decreases as k increases
when Pd is given, there exists a tradeoff for k to maximize
Pc. When λ is sufficiently small, the former term is smaller
than the latter term. Thus, Pd increases with k, which leads
to Pc reaches its maximum at k = 1.

VI. DELAY VS. COVERTNESS PROBABILITY TRADEOFFS

In the previous sections, we know that introducing data
redundancy reduces both the message passing delay and the
covertness probability. Thus, it is important to study how much
redundancy affects the delay and probability tradeoffs.

A. Constant Transmission Time vs. Random Patrolling

Since both the random patrolling model and the constant
transmission time model do not relate to the message chunk
passing time, we combine these two models to analyze
the tradeoff between the covertness probability Pc and the
expected message passing delay E[TA+B ].

In Fig. 6, we evaluate (3) and (11) to see the tradeoff
between the detection probability and the transmission delay
for the worst case warden’s detection probability Pd = β

θdv .
We consider a regular graph with v = 100 vertices and the
degree is d = 5. There are 15 relays distributed uniformly on
vertices of the graph. 10 wardens, 1 source and 1 collector
walk randomly on the graph. We evaluate Pc vs. E[TA+B ] as
the number of coded chunks n increases from 1 to 10. Each
point in the figure is a different case with different values
of (n, k). Two different strategies are considered: minimum
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Fig. 6. Covertness probability Pc (cf. (3)) vs. the expected number of steps
E[TA+B ] (cf. (11)) as n increases from 1 to 10. We consider the worst-case,
i.e., the detection probability is a constant (cf. (8)). This is a regular graph
with 100 vertices and the degree is 5. The number of wardens is β = 10 and
the number of relays is r = 15. There exists an (n, k) which simultaneously
maximizes Pc and minimizes E[TA+B ].

Fig. 7. Covertness probability Pc (cf. (3)) vs. the expected message passing
delay E[TA+B ] (cf. (11)) as n increases from 1 to 10. We consider the
detection probability is a function of " (cf. 9). This is a regular graph with
100 vertices and the degree is 5. The number of wardens is β = 10 and the
number of relays is r = 15. It is impossible to reach the maximum Pc and
the minimum E[TA+B ] simultaneously.

delay and maximum probability. For the minimum delay,
we firstly find the optimal k which minimizes E[TA+B ] given
each n. Then we calculate Pc by using the same k. For the
maximum probability, on the contrary, we firstly find the opti-
mal k for Pc given each n, and then calculate E[TA+B ]. From
Fig. 6, we observe that the results for both strategies coincide
with each other. It means that the optimal k simultaneously
maximizes Pc and minimizes E[TA+B ]. We also observe
that Pc decreases with increasing n and E[TA+B ] reaches
the minimum at n = 4. These observations are consistent
with Theorems 1 and 5. Finally, we conclude that k = 1,
i.e., no splitting, is the overall optimal strategy. Replication
(n > 1 and k = 1) can reduce the transmission delay, but it
also decreases the covertness probability.

In Fig. 7, we consider the warden’s detection probabil-
ity increases linearly with the length of data chunk ", i.e.,

Pd = "β
θdv (where " = m

k ). The same regular graph is adopted
from Fig. 6. We evaluate Pc vs. E[TA+B ] as n increases from
1 to 10. Four different strategies are considered: minimum
delay, maximum probability, “k = 2” and “k = n − 1”.
For the minimum delay, we have the same observations as
them in Fig. 6. This is because the expression of E[TA+B ] is
unchanged, and it still reaches minimum at (n, k) = (4, 1).
For the maximum probability, Pc reaches minimum at k = n,
which means splitting is optimal. It is obvious that the curves
of the minimum delay and the maximum probability are
far from each other. Therefore, we can not simultaneously
decrease the message passing delay and increase the covertness
probability. In the figure, we also see the results for “k = 2”
and “k = n−1” strategies. When we have a minimum require-
ment for Pc or E[TA+B ], then k = 2 or k = n − 1 strategies
may provide a better performance. For example, if we require
Pc > 0.8, then the case (n, k) = (4, 2) gives a relatively
smaller E[TA+B ].

B. Random Transmission Time vs. Uniform Surveillance

Since both the uniform surveillance detection model and
the random transmission time model relate to the message
chunk passing time, we combine these two models to analyze
the tradeoff between the covertness probability Pc and the
expected message passing delay E[TA+B ].

In Fig. 8, we evaluate (7), (10) and (11) to see the
tradeoff between the detection probability and the expected
message passing delay. The same regular graph is adopted
from Fig. 6. The upper subfigure has a message chunk passing
time tt ∼ S-Exp(10/k, 1) and the lower subfigure has a
message chunk passing time tt ∼ S-Exp(10/k, 0.2). The
warden’s arrival time follows U(0, 30). We evaluate Pc vs.
E[TA+B ] as n increases from 1 to 10. Each point in the figure
is a different case with a different value of (n, k). Similarly,
the minimum delay and maximum probability strategies are
considered.

The upper subfigure shows that given the number of coded
chunks n, minimum delay and maximum probability strategies
have very different optimal k values. For minimum delay, the
optimal k is small (i.e., 1 or 2); For maximum probability, the
optimal k is equal to n. Therefore, we conclude that it is impos-
sible to simultaneously increase the covertness probability and
reduce the message passing delay. In practice, the appropriate
(n, k) is also decided by the requirements for the performance
metrics, e.g., the system requires Pc > 0.7 or E[TA+B ] < 170.
The lower subfigure shows that given the number of coded
chunks n, when n is small (e.g., n < 5), minimum delay and
maximum probability strategies have very different optimal k
values; When n is large (e.g., n > 6), they have very closed
optimal k values. When n > 6, the optimal k for minimum
delay is equal to 2 and the optimal k for maximum probability
is equal to 5. Therefore, we conclude that as the variance of tt
increases (1/λ2 becomes smaller), the maximum probability
and minimum delay strategies will finally be the same. The
conclusion indicates that when λ is sufficiently small, we can
simultaneously increase the covertness probability and reduce
the message passing delay.

Authorized licensed use limited to: Rutgers University. Downloaded on January 24,2023 at 19:00:02 UTC from IEEE Xplore.  Restrictions apply. 



610 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Fig. 8. Covertness probability Pc (cf. (7)) vs. the expected message passing delay E[TA+B ] (cf. (10) and (11)) as n increases from 1 to 10. The upper
subfigure has a message chunk passing time tt ∼ S-Exp(10/k, 1) and the lower subfigure has the tt ∼ S-Exp(10/k, 0.2). This is a regular graph with
100 vertices and the degree is 5. The number of relays is r = 10. The warden’s arrival time follows U(0, 100). It is impossible to reach maximum Pc and
minimum E[TA+B ] simultaneously. Some sacrifice of covertness may result in a significant improvement in delay.

From both subfigures, we see that the minimum delay
strategy leads to similar results, but the maximum probability
strategy leads to very different results. This is because Pc is
sensitive to the value of λ, but E[TA+B ] is not. We analyzed
how Pc changes with λ in Sec. V-B. According to the
expression of E[TA+B ] given in (7), although decreasing λ
from 1 to 0.2 can increase the former term n+k

λ , the latter
term θdv(Hr + Hn − Hr−n − Hn−k) is far larger than the
former. Thus, the results will not change much with λ. Notice
that both Pc and E[TA+B ] reach the optimal values when n
and k are small. However, that may not be the case when the
message length m is sufficiently large. Recall that the detection
probability Pd = 1 (in Theorem 4) when " > W , then the
covertness probability Pc = 0. Since " = m

k , when m * W
(e.g., m = 3W ), a small (n, k) value (e.g., (4, 2)) leads to
Pc = 0. Therefore, it is necessary to study how the Pc and
E[TA+B ] trade-off changes when n and k are large in Fig. 8.

VII. CONCLUSION AND FUTURE WORK

We introduced and studied a gossip-like protocol for covert
passing messages between Alice and Bob as they move in
an area hosting a multitude of IoβT objects. Alice and Bob
perform random walks on random regular graphs. The IoβT
objects reside on the vertices of this graph, and some can serve
as relays between Alice and Bob. In our protocol, Alice splits
her message into small chunks, which she can covertly deposit
to the relays she encounters. Afterward, Bob collects the
chunks. Alice may encode her data before the dissemination.
The area where the message passing takes place is watched
over by a warden Willie. Willie can either perform random
walks as Alice and Bob do or conduct uniform surveillance
of the area. In either case, he can only observe one relay at a
time. We evaluated the system performance by the covertness
probability and the message passing delay. These performance
metrics depend on the graph, communications delay, and code
parameters. We showed that, in most scenarios, it is impossible
to choose the design parameters that maximize the covertness
probability and minimize the message delay simultaneously.

This work sets the stage for many problems of interest to
be studied in the future. We briefly describe five directions of
immediate interest.

1) Reducing Delay With Multiple Sources and Collectors:
According to Section III-F, although many random walks are
faster than one [28], simply introducing multiple sources and
collectors may not reduce the dissemination and collection
time significantly. Fountain codes need further study as a
possible way to improve the performance.

2) Computing the Overall Message Passing Time: As we
discussed in Section III-E, the overall time the message
spends in the system depends on when the collection and
dissemination start. For example, Alice and Bob can start
their walks each day at some specified time, or collecting can
start before the dissemination is over. Extending this work to
include such dynamics is thus of interest.

3) Extending Analysis to Other Detection Models and
Mobility Patterns: Some other detection models are reasonable
but have not been studied yet. For example, regarding the
warden, it is reasonable to assume that Willie needs to spend a
specific time before detecting the transmission or that he can,
over time, learn which nodes do not have relays. Regarding the
mobility patterns, random walks on irregular graphs or some
other area traversing models are of interest.

4) Computing Trade-off Between False-Alarm and Missed-
Detection: Some IoT devices may help Alice and Bob achieve
covert communication. For example, some devices can deceive
the warden into wrongly accusing Alice and Bob of the
message passing. In such scenarios, we should consider the
tradeoff between false-alarm and missed-detection. Another
scenario where false-alarm and missed-detection are of interest
is when the transmission is organized through incremental data
redundancy in a classical way (see, e.g., [33], [34]). Rather
than assuming a perfect detection of the message chunk,
we here assume that each relay sends a very noisy version
of the entire message to reduce the detection probability. The
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collector then recovers the message by, e.g., Chase combining
of the received noisy versions.

5) Studying Systems With Unreliable Relays: In the IoβT
scenarios, we expect some of the relays to be adversarial.
In general, these objects have power constraints, and we may
not rely on all of them to provide the required storage service.
Including such impairments is of interest for further study.
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