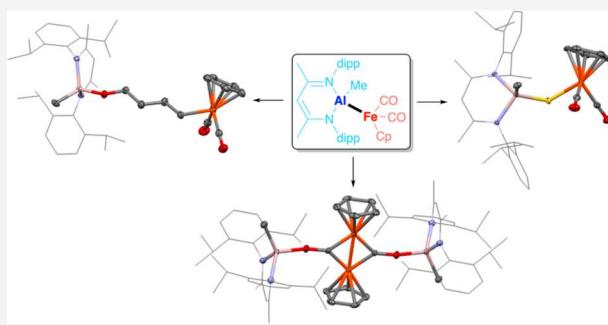


Diverse Thermal and Photochemical Reactivity of an Al–Fe Bonded Heterobimetallic Complex

Soumen Sinhababu and Neal P. Mankad*

Cite This: *Organometallics* 2022, 41, 1917–1921

Read Online


ACCESS |

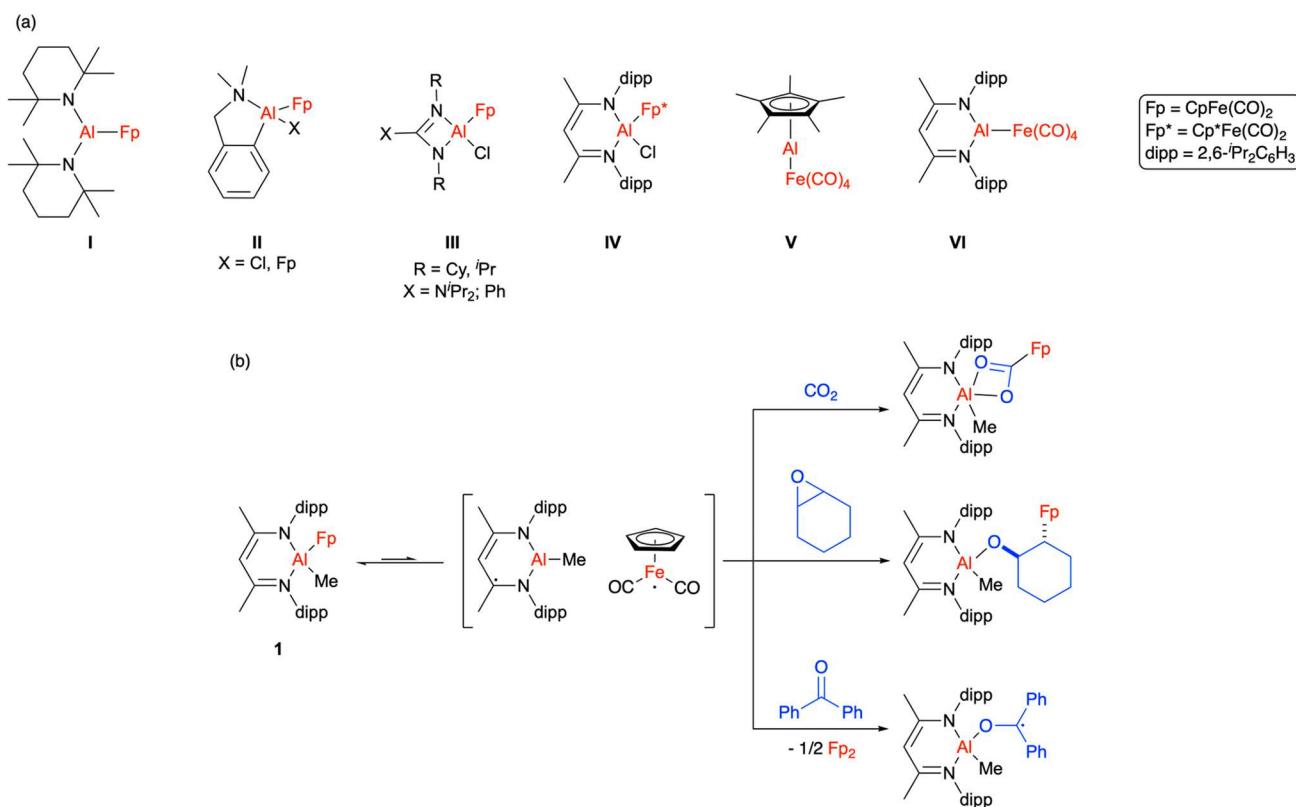
Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: A heterobimetallic Al–Fe complex, $\text{LAl}(\text{Me})\text{Fp}$ ($\text{Fp} = \text{FeCp}(\text{CO})_2$, L is a β -diketiminate), was found to have diverse reaction chemistry including cooperative ring-opening of tetrahydrofuran to form $\text{LAl}(\text{Me})\text{O}(\text{CH}_2)_4\text{Fp}$, atom transfer with propylene sulfide and elemental sulfur to form $\text{LAl}(\text{Me})(\mu\text{-S})\text{Fp}$, and group transfer with trimethylsilyl azide to form $\text{LAl}(\text{Me})\text{N}_3$. Photodecarbonylation formed $[\text{LAl}(\text{Me})_2(\text{CpFe}=\text{FeCp})(\mu_3\text{-}\eta^2\text{-CO})_2]$, which features the $\text{Fe}=\text{Fe}$ bonded $[\text{CpFe}(\text{CO})_2]_2$ unit that is the unsaturated analogue of well-known Fp_2 . Despite Al and Fe being the two most earth-abundant metals, this report represents one of the only surveys of the reactivity behavior of an Al/Fe heterobinuclear complex.

Heterobimetallic complexes can involve any two metals from the periodic table, and significant efforts have been spent to determine combinations in which there are potentially beneficial differences between the two metal centers.^{1,2} As the field continues to expand, many applications of heterobimetallic complexes have been discovered in bond activation and catalysis.^{3–8} The two most abundant metals on earth are aluminum (7.4%) and iron (5%), and so it is surprising that the reaction chemistry of Al/Fe heterobimetallic complexes is underdeveloped in this context. The groups of Nöth, Braunschweig, Aldridge, Crimmin, and Fischer synthesized different Al–Fe bonded heterobimetallic complexes during 1996–2021 (I–VI; Figure 1a), but in none of these cases were reactivity studies reported.^{9–13} Very recently we synthesized the heterobimetallic Al–Fe complex 1 and studied its reactivity with CO_2 , cyclohexene oxide, and benzophenone (Figure 1b).¹⁴ Our study revealed unique reaction mechanisms in which the Al–Fe bond in 1 dissociates homolytically to in situ generate two radical intermediates, which then cooperatively activate substrates upon their O -coordination to Al. Subsequently, Crimmin's group reported detailed mechanistic investigation of pyridine $\text{C}(\text{sp}^2)\text{-H}$ activation by an Al/Fe heterobinuclear system.¹⁵ While our study focused on activation of specific $\text{C}\text{-O/C=O}$ bonds and Crimmin's focused specifically on pyridine *ortho*-metalation, there has not yet been a wide-ranging reactivity survey of any Al/Fe system. Here, we report further reactivity studies of complex 1 that showcase the diverse range of transformations accessible to this system.


We previously observed cooperative ring-opening of cyclohexene oxide by 1 (Figure 1b).¹⁴ Given that epoxides possess significant ring strain on the order of 26 kcal/mol,¹⁶ we wondered whether complex 1 would be sufficiently reactive to

open a less strained cyclic ether. To probe this question, we chose to examine tetrahydrofuran (THF), whose ring strain energy is only 5.4 kcal/mol.¹⁶ Stoichiometric reaction of 1 with THF (1 equiv) in toluene at room temperature for 24 h resulted in clean formation of ring-opened complex $\text{LAl}(\text{Me})(\mu\text{-OC}_4\text{H}_8)\text{Fp}$ (2) (61%; Scheme 1). Yellow crystals of 2 suitable for X-ray crystallography were obtained from pentane at -25°C after a week. The molecular structure confirmed that the THF ring had been opened: $[\text{LAl}(\text{Me})\text{O}]$ and $[\text{Fp}]$ moieties were found to be connected by a linear four-carbon chain. The Al–O and Fe–C_{alkyl} bond lengths [1.714(1) and 2.065(2) Å, respectively] are similar to those in the cyclohexene oxide ring-opened product, $\text{LAl}(\text{Me})(\mu\text{-OC}_6\text{H}_{10})\text{Fp}$.¹⁴ The solid-state IR spectrum of 2 shows intense ν_{CO} bands at 1939 and 1996 cm^{-1} , which also are quite close to those in the cyclohexene oxide ring-opened complex. Ring opening reactions of THF by both Al^{17–19} and Fe^{20,21} compounds have been observed previously but, invariably, involve cationic mechanisms. Given that generation of cationic intermediates can be ruled out in this case,¹⁴ the observed reaction is a novel example of THF opening by a radical pathway. There are only a few previous reports of crystallographically characterized compounds showing ring-opened THF captured between two metal centers,^{22–25} none of which resulted from reactions of THF with well-defined

Received: June 7, 2022

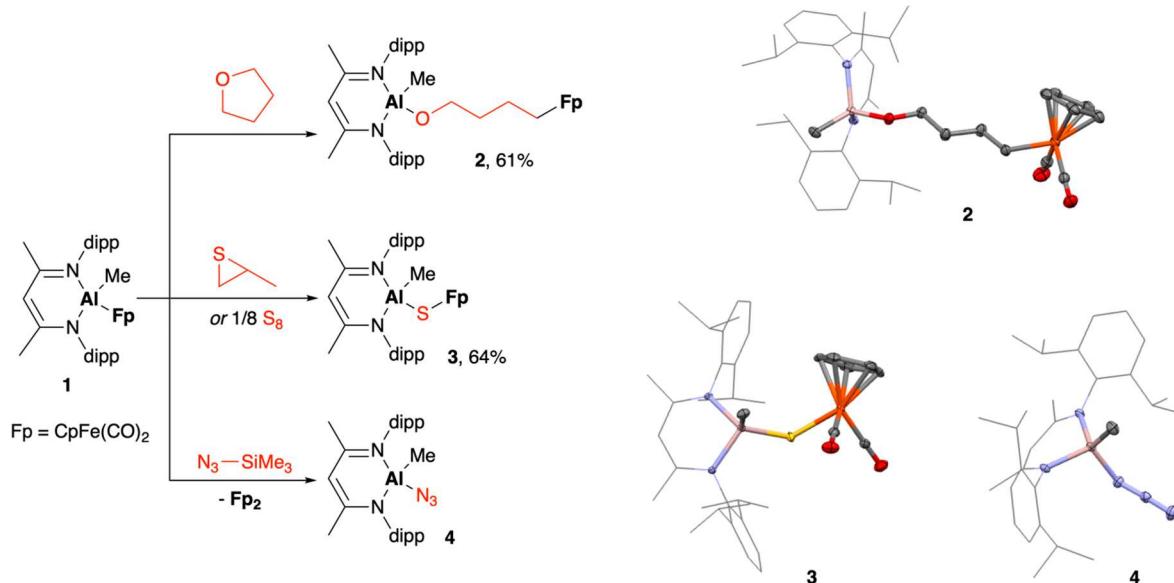
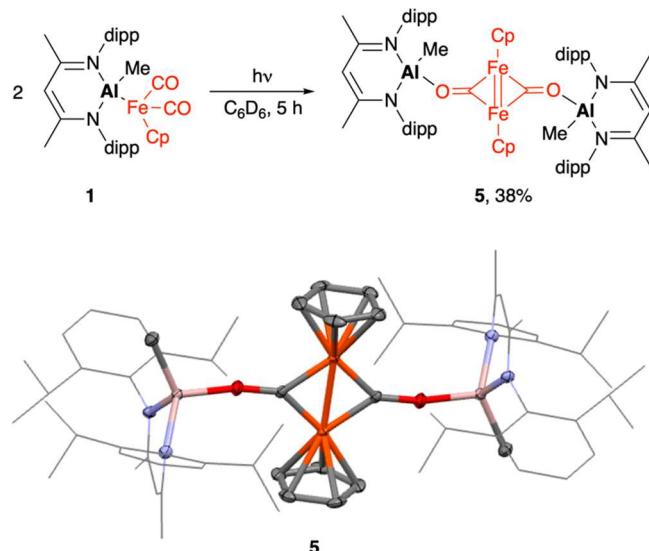

Published: July 8, 2022

Figure 1. (a) Previously synthesized complexes with Al–Fe bonds. (b) Preliminary reactivity studies of Al–Fe bonded complex 1.

Scheme 1. Diverse Reaction Chemistry of Heterobimetallic Al–Fe Complex 1^a

binuclear complexes. In this case, our results show that C–O activation chemistry of **1** is not restricted only to weak C–O bonds. This behavior complements behavior of other bimetallic systems toward THF^{26–28} and expands the diversity of outcomes available from binuclear mechanisms.


We also sought to explore the reactivity of **1** toward an episulfide. Rather than forming a ring-opened product, the reaction of **1** with propylene sulfide resulted in sulfur atom insertion into the Al–Fe bond with extrusion of propylene. The resulting complex, AlAl(Me)(μ -S)Fp (**3**), was isolated in 68% yield (Scheme 1). Yellow crystals of **3** suitable for X-ray

crystallography were obtained from a mixture of toluene and pentane at -25°C . The molecular structure of **3** features a four-coordinate aluminum center with distorted tetrahedral geometry. As expected, the Al-S bond [2.2005(7) Å] is longer than the Al=S bond [2.104(1) Å] in LAl=S(NHC) ($\text{NHC} = \{(\text{CH}_2\text{CN}(\text{Pr})_2\text{C}_2\text{H}_5)\}$)²⁹ but is close to Al-S single bond lengths in $[\text{LAl}(\mu\text{-S})_2\text{TiCp}_2]$ [2.208(1) and 2.197(1) Å].³⁰ The Fe-S bond distance in **3** [2.3161(8) Å] is in the range of those reported in related Fp-SR complexes (2.26–2.35 Å).³¹ The same product **3** was isolated from the reaction of **1** with elemental sulfur in 64% yield (Scheme 1).

Given that **1** is known to react as a biradical toward various substrates, one might expect it to do group abstraction from reactants with homolytically weak bonds. Accordingly, reaction of **1** with Me_3SiN_3 produced $1/2 \text{ Fp}_2$, which is indicative of Fp -dimerization (as seen previously with benzophenone, Figure 1b), along with a new LAl(Me)X product. Single crystals of this product were grown from a mixture of toluene and pentane at -25°C , allowing us to identify it as the monoazide derivative, LAl(Me)N_3 (**4**; Scheme 1). Unfortunately, we have been unable to obtain pure samples of **4**, and so the only available spectroscopic data involves characterization of the crude reaction mixture with an internal ^1H NMR integration standard.

After successfully carrying out various thermal reactions, we were also interested in photochemical reactivity of **1**. Complex **1** is stable thermally (up to 80°C) in C_6D_6 for at least 12 h but was found to react further upon irradiation with UV light. Irradiation of a C_6D_6 solution of **1** for 5 h at room temperature resulted in precipitation of yellow crystals of a new complex (**5**) in low yield (Scheme 2). The solid-state IR spectrum of **5** does not show any intense bands in the 2100–1800 cm^{-1} region characteristic of terminal carbonyl groups, but a new band indicative of bridging carbonyl groups was observed at

Scheme 2. Decarbonylative Dimerization of **1 to Produce Tetrametallic **5** upon Irradiation with UV Light^a**

^adipp = 2,6-di-isopropylphenyl. The molecular structure of **5** determined by X-ray crystallography is shown as 50% probability ellipsoids except for β -diketiminate carbons, which are shown as wire frames; hydrogen atoms, cocrystallized solvent molecules, and a second molecule of **5** from the asymmetric unit are omitted for clarity.

1524 cm^{-1} . This frequency value is unusually low even for classical $\mu_3\text{-CO}$ ligands but is in range for previous cases in which $\mu_3\text{-}\eta^2\text{-CO}$ ligands were C-bound to two transition metals and O-bound to a Lewis acid (1351–1650 cm^{-1}).^{32–34} Complex **5** was found to be insoluble in benzene, chloroform, and dichloromethane. The ^1H NMR spectrum of **5** was recorded in $\text{THF}-d_8$, although gradual decomposition was observed in that solvent. The identity of the product was determined by X-ray crystallography and elemental analysis. The tetrametallic structure consists of two $[\text{LAl}(\text{Me})]$ units bridged by one $[(\text{CpFeCO})_2]$ unit, with the carbonyl groups acting as $\mu_3\text{-}\eta^2\text{-CO}$ ligands that are C-bound to Fe and O-bound to Al. It is noteworthy that the $[(\text{CpFeCO})_2]$ motif has never been structurally characterized in any complex to date, despite the long history of $[\text{CpFe}(\text{CO})_2]_2$ chemistry.³⁵ The diiron distance in **5** is 2.3543(5) Å, which is significantly shorter than the Fe–Fe single bond of the classical $[\text{Fe}_2(\text{CO})_9]$ [2.523(1) Å] or in $[\text{CpFe}(\text{CO})_2]_2$ [2.5389(3) Å].^{36,37} Thus, complex **5** can be formulated as having a $\text{Fe}=\text{Fe}$ double bond. The C–O bond length in **5** [1.292(3) Å] is longer than the terminal C–O bonds [1.157(4) Å] present in **1** and falls between the typical C–O single and double bond ranges. The Al–O bond lengths in **5** [1.739(2) and 1.743(2) Å] are shorter than the corresponding bonds [1.980(1) and 1.897(1) Å] present in $\text{LAl}(\text{Me})(\mu\text{-}\kappa^2\text{-O}_2\text{C})\text{Fp}$ ¹⁴ but comparable to the Al–O bond [1.714(1) Å] present in complex **2**. Thus, the lengthening of C–O bonds and correspondingly low ν_{CO} value are attributed to strong Al–O interactions.

In conclusion, a series of reactivity studies were carried out on heterobimetallic Al–Fe complex **1**, with all resulting products being successfully characterized crystallographically. Uncovered reaction profiles include cooperative ring opening of THF, sulfur atom transfer from propylene sulfide and S_8 , radical azide abstraction from N_3SiMe_3 , and decarbonylative dimerization to produce an unusual $[(\text{CpFeCO})_2]$ moiety stabilized by Al coordination. Collectively, these observations expand upon previously reported reactivity studies and showcase the diverse range of transformations available to **1**, the first Al–Fe heterobimetallic complex whose reaction chemistry has been extensively mapped.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.organomet.2c00280>.

Experimental procedures and characterization data (PDF)

Accession Codes

CCDC 2100521–2100522, 2100524, and 2166714 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Neal P. Mankad — Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States;
 • orcid.org/0000-0001-6923-5164; Email: npm@uic.edu

Author

Soumen Sinhababu — Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States;
ORCID: [0000-0003-2149-7450](https://orcid.org/0000-0003-2149-7450)

Complete contact information is available at:
<https://pubs.acs.org/10.1021/acs.organomet.2c00280>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), under Award Number DE-SC0021055. The structure of complex **2** was obtained using NSF's ChemMatCARS Sector 15 supported by the Divisions of Chemistry (CHE) and Materials Research (DMR), National Science Foundation, under Grant Number NSF/CHE-1834750. Use of the Advanced Photon Source, an Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

REFERENCES

- (1) Charles, R. M.; Brewster, T. P. H₂ and Carbon-Heteroatom Bond Activation Mediated by Polarized Heterobimetallic Complexes. *Coord. Chem. Rev.* **2021**, *433*, 213765.
- (2) Campos, J. Bimetallic Cooperation across the Periodic Table. *Nat. Rev. Chem.* **2020**, *4*, 696–702.
- (3) Chipman, J. A.; Berry, J. F. Paramagnetic Metal-Metal Bonded Heterometallic Complexes. *Chem. Rev.* **2020**, *120*, 2409–2447.
- (4) Powers, I. G.; Uyeda, C. Metal-Metal Bonds in Catalysis. *ACS Catal.* **2017**, *7*, 936–958.
- (5) Cammarota, R. C.; Clouston, L. J.; Lu, C. C. Leveraging Molecular Metal–Support Interactions for H₂ and N₂ Activation. *Coord. Chem. Rev.* **2017**, *334*, 100–111.
- (6) Cooper, B. G.; Napoline, J. W.; Thomas, C. M. Catalytic Applications of Early/Late Heterobimetallic Complexes. *Catal. Rev.* **2012**, *54*, 1–40.
- (7) Yu, H.-C.; Mankad, N. P. Catalytic Reactions by Heterobimetallic Carbonyl Complexes with Polar Metal–Metal Interactions. *Synthesis* **2021**, *53*, 1409–1422.
- (8) Sinhababu, S.; Lakliang, Y.; Mankad, N. P. Recent Advances in Cooperative Activation of CO₂ and N₂O by Bimetallic Coordination Complexes or Binuclear Reaction Pathways. *Dalton Trans.* **2022**, *51*, 6129–6147.
- (9) Anand, B. N.; Krossing, I.; Nöth, H. Synthesis and X-Ray Crystal Structure of (Tmp)2Al-Fe(Cp)(CO)₂: An Alanyl-Containing Iron Complex with a Tricoordinated Aluminum Atom. *Inorg. Chem.* **1997**, *36*, 1979–1981.
- (10) Braunschweig, H.; Müller, J.; Ganter, B. Molecular Structure of [CpFe(CO)₂]AlAr (Ar = 2-[(Dimethylamino)Methyl]Phenyl): An Alanediyli Complex with Two Fe - Al Bonds. *Inorg. Chem.* **1996**, *35*, 7443–7444.
- (11) Riddlestone, I. M.; Urbano, J.; Phillips, N.; Kelly, M. J.; Vidovic, D.; Bates, J. I.; Taylor, R.; Aldridge, S. Salt Metathesis for the Synthesis of M-Al and M-H-Al Bonds. *Dalton Trans.* **2013**, *42*, 249–258.
- (12) Kong, R. Y.; Crimmin, M. R. 1Strow Transition Metal Aluminylene Complexes: Preparation, Properties and Bonding Analysis. *Dalton Trans.* **2021**, *50*, 7810–7817.
- (13) Weiss, J.; Stetzkamp, D.; Nuber, B.; Fischer, R. A.; Boehme, C.; Frenking, G. [(H₅-CSMe₅)AlFe(CO)₄]—Synthesis, Structure, and Bonding. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 70–72.
- (14) Sinhababu, S.; Radzhabov, M. R.; Telser, J.; Mankad, N. P. Cooperative Activation of CO₂ and Epoxide by a Heterobinuclear Al–Fe Complex via Radical Pair Mechanisms. *J. Am. Chem. Soc.* **2022**, *144*, 3210–3221.
- (15) Gorgas, N.; White, A. J. P.; Crimmin, M. R. Cooperative C–H Bond Activation by a Low-Spin D₆ Iron–Aluminum Complex. *J. Am. Chem. Soc.* **2022**, *144*, 8770–8777.
- (16) Dudev, T.; Lim, C. Ring Strain Energies from Ab Initio Calculations. *J. Am. Chem. Soc.* **1998**, *120*, 4450–4458.
- (17) Campbell, J. P.; Gladfelter, W. L. Synthesis and Structure of Alkoxy- and (Aryloxy)Alanes. Observation of a Ring-Opening Reaction Involving Tetrahydrofuran. *Inorg. Chem.* **1997**, *36*, 4094–4098.
- (18) Akhrem, I. S.; Avetisyan, D. v.; Vitt, S. v.; Petrovskii, P. v. One-Step Tetrahydrofuran Ring Opening by Saturated Hydrocarbons and CO. *Mendeleev Commun.* **2005**, *15*, 185–187.
- (19) Olah, G. A.; Farooq, O.; Li, C. X.; Farnia, M. A. M. F.; Aklonis, J. J. Cationic Ring-Opening Polymerization of Tetrahydrofuran with Boron, Aluminum, and Gallium Trifluoride. *J. Appl. Polym. Sci.* **1992**, *45*, 1355–1360.
- (20) Yang, H. J.; Yoon, S. W.; Park, H. S.; Lee, K. H.; Hur, N. H. Highly Efficient Ring-opening Polymerization of Tetrahydrofuran by Anhydrous Ferric Chloride. *J. Appl. Polym. Sci.* **2019**, *136*, 47999.
- (21) Moreira, R. F.; Tshuva, E. Y.; Lippard, S. J. Catalytic Oxidative Ring Opening of THF Promoted by a Carboxylate-Bridged D₄Iron Complex, Triarylphosphines, and Dioxygen. *Inorg. Chem.* **2004**, *43*, 4427–4434.
- (22) Schnitter, C.; Roesky, H. W.; Ropken, C.; Herbst-Irmer, R.; Schmidt, H.-G.; Noltemeyer, M. Aluminum (i) Compound with s-Bound Alkyl Groups and a Tetrahedral Structure. *Angew. Chem., Int. Ed.* **1998**, *37*, 1952–1955.
- (23) Sanden, T.; Gamer, M. T.; Fagin, A. A.; Chudakova, V. A.; Konchenko, S. N.; Fedushkin, I. L.; Roesky, P. W. Synthesis of Unsupported Ln–Ga Bonds by Salt Metathesis and Ga–Ga Bond Reduction. *Organometallics* **2012**, *31*, 4331–4339.
- (24) Covert, K. J.; Mayol, A.-R.; Wolczanski, P. T. Carbon–Oxygen and Related R–X Bond Cleavages Mediated by (Silox)₃Ti and Other Group 4 Derivatives (Silox = TBu₃SiO). *Inorg. Chim. Acta* **1997**, *263*, 263–278.
- (25) Jones, C.; Schulten, C.; Nembenna, S.; Stasch, A. Synthesis and Crystal Structures of Bulky Guanidinato Zirconium(IV) and Hafnium(IV) Chloride Complexes. *J. Chem. Crystallogr.* **2012**, *42*, 866–870.
- (26) Kennedy, A. R.; Klett, J.; Mulvey, R. E.; Wright, D. S. Synergic Sedation of Sensitive Anions: Alkali-Mediated Zincation of Cyclic Ethers and Ethene. *Science* **2009**, *326*, 706–708.
- (27) Mulvey, R. E.; Blair, V. L.; Clegg, W.; Kennedy, A. R.; Klett, J.; Russo, L. Cleave and Capture Chemistry Illustrated through Bimetallic-Induced Fragmentation of Tetrahydrofuran. *Nat. Chem.* **2010**, *2*, 588–591.
- (28) Lassalle, S.; Petit, J.; Falconer, R. L.; Héroult, V.; Jeanneau, E.; Thieuleux, C.; Camp, C. Reactivity of Tantalum/Iridium and Hafnium/Iridium Alkyl Hydrides with Alkyl Lithium Reagents: Nucleophilic Addition, Alpha-H Abstraction, or Hydride Deprotonation? *Organometallics* **2022**, DOI: [10.1021/acs.organomet.2c00158](https://doi.org/10.1021/acs.organomet.2c00158).
- (29) Chu, T.; Vyboishchikov, S. F.; Gabidullin, B.; Nikonorov, G. I. Oxidative Cleavage of C = S and P = S Bonds at an AlICenter: Preparation of Terminally Bound Aluminum Sulfides. *Angew. Chem., Int. Ed.* **2016**, *55*, 13306–13311.
- (30) Jancik, V.; Roesky, H. W.; Nuclei, D.; Nuclei, A. M.; Herbst-Irmer, R. Preparation of [LAI-(μ -S)2MCp₂] (M = Ti, Zr) from the Structurally Characterized Lithium Complexes [{LAI(SH)[SLi(THF)₂]₂}₂] and [{LAI(SLi)₂(THF)₃} · 2THF]. *Angew. Chem., Int. Ed.* **2004**, *43* (45), 6192–6196.
- (31) Ramalakshmi, R.; Maheswari, K.; Sharmila, D.; Paul, A.; Roisnel, T.; Halet, J. F.; Ghosh, S. Reactivity of Cyclopentadienyl Transition Metal(II) Complexes with Borate Ligands: Structural Characterization of the Toluene-Activated Molybdenum Complex [Cp^{*}Mo(CO)₂(H₃-CH₂C₆H₅)]. *Dalton Trans.* **2016**, *45*, 16317–16324.

(32) Neumüller, B.; Petz, W. Reaction of $\text{Fe}_2(\text{CO})_9$ with Lithium: Preparation and Structures of Compounds with Strong Ion Pairing. *Organometallics* **2001**, *20*, 163–170.

(33) de Boer, E. J. M.; de With, J.; Orpen, A. G. $[(\text{Q5-CSMe}_5)_2\text{Ti}]_2(\text{p-OC})_2[\text{CpM}(\text{C}_0)_2]$ ($\text{Cp} = \text{Q5-CSHS}$): A Compound with Linear Co-ordination of Titanium to a Bridging Carbonyl and a D6-D6 $[\text{CpMo}(\text{CO})_6]$ Fragment. *J. Chem. Soc., Chem. Commun.* **1985**, 1666–1667.

(34) Boncella, J. M.; Andersen, R. A. Preparation of $[\{\text{Yb}(\text{CSMe}_5)_2\}_2\{\text{Co}_3(\text{CSH}_4\text{R})_2(\text{C}_1\text{C}_3'\text{C}_0)_4\}]$ ($\text{R} = \text{H, Me, SiMe}_3$; an Example of a 47-Electron Transition Metal Fragment Containing a Cobalt Atom with Hexagonal Planar Co-ordination. *J. Chem. Soc. Chem. Commun.* **1984**, 809–810.

(35) Bitterwolf, T. E. Photochemistry and Reaction Intermediates of the Bimetallic Group VIII Cyclopentadienyl Metal Carbonyl Compounds, $(\text{H}_5\text{-CSHS})_2\text{M}_2(\text{CO})_4$ and Their Derivatives. *Coord. Chem. Rev.* **2000**, *206–207*, 419–450.

(36) Mitschler, A.; Rees, B.; Lehmann, M. S. Electron Density in Bis(Dicarbonyl- π -Cyclopentadienyliron) at Liquid Nitrogen Temperature by X-Ray and Neutron Diffraction. *J. Am. Chem. Soc.* **1978**, *100*, 3390–3397.

(37) Cotton, F. A.; Troup, J. M. Accurate Determination of a Classic Structure in the Metal Carbonyl Field: Nonacarbonyldi-Iron. *J. Chem. Soc., Dalton Trans.* **1974**, 800.

□ Recommended by ACS

Synthesis and Dynamics of Ferrous Polychalcogenides $[\text{Fe}(\text{E}_x)(\text{CN})_2(\text{CO})_2]^{2-}$ ($\text{E} = \text{S, Se, or Te}$)

Yu Zhang, Thomas B. Rauchfuss, *et al.*

MAY 13, 2022

INORGANIC CHEMISTRY

READ

Synthesis and Reactivity of a Dimeric Ni(I) Methyl Complex

Ryan J. Witzke and T. Don Tilley

JUNE 14, 2022

ORGANOMETALLICS

READ

Beyond $\text{Ni}[\text{N}(\text{SiMe}_3)_2]_2$: Synthesis of a Stable Solvated Sodium Tris-Amido Nickelate

Andrij M. Borys and Eva Hevia

JANUARY 17, 2021

ORGANOMETALLICS

READ

Extreme g-Tensor Anisotropy and Its Insensitivity to Structural Distortions in a Family of Linear Two-Coordinate Ni(I) Bis-N-heterocyclic Carbene Complexes

William J. M. Blackaby, Michael K. Whittlesey, *et al.*

JANUARY 10, 2022

INORGANIC CHEMISTRY

READ

Get More Suggestions >