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ABSTRACT: A heterobimetallic Al−Fe complex, LAl(Me)Fp (Fp =
FeCp(CO)2, L is a β-diketiminate), was found to have diverse reaction
chemistry including cooperative ring-opening of tetrahydrofuran to
form LAl(Me)O(CH2)4Fp, atom transfer with propylene sulfide and
elemental sulfur to form LAl(Me)(μ-S)Fp, and group transfer with
trimethylsilyl azide to form LAl(Me)N3. Photodecarbonylation
formed [LAl(Me)]2(CpFe�FeCp)(μ3:η

2-CO)2, which features the
Fe�Fe bonded [CpFe(CO)]2 unit that is the unsaturated analogue of
well-known Fp2. Despite Al and Fe being the two most earth-abundant
metals, this report represents one of the only surveys of the reactivity
behavior of an Al/Fe heterobinuclear complex.

H eterobimetallic complexes can involve any two metals
from the periodic table, and significant efforts have been

spent to determine combinations in which there are potentially
beneficial differences between the two metal centers.1,2 As the
field continues to expand, many applications of heterobime-
tallic complexes have been discovered in bond activation and
catalysis.3−8 The two most abundant metals on earth are
aluminum (7.4%) and iron (5%), and so it is surprising that
the reaction chemistry of Al/Fe heterobimetallic complexes is
underdeveloped in this context. The groups of Nöth,
Braunschweig, Aldridge, Crimmin, and Fischer synthesized
different Al−Fe bonded heterobimetallic complexes during
1996−2021 (I-VI; Figure 1a), but in none of these cases were
reactivity studies reported.9−13 Very recently we synthesized
the heterobimetallic Al−Fe complex 1 and studied its reactivity
with CO2, cyclohexene oxide, and benzophenone (Figure
1b).14 Our study revealed unique reaction mechanisms in
which the Al−Fe bond in 1 dissociates homolytically to in situ
generate two radical intermediates, which then cooperatively
activate substrates upon their O-coordination to Al. Sub-
sequently, Crimmin’s group reported detailed mechanistic
investigation of pyridine C(sp2)−H activation by an Al/Fe
heterobinuclear system.15 While our study focused on
activation of specific C�O/C�O bonds and Crimmin’s
focused specifically on pyridine ortho-metalation, there has not
yet been a wide-ranging reactivity survey of any Al/Fe system.
Here, we report further reactivity studies of complex 1 that
showcase the diverse range of transformations accessible to this
system.
We previously observed cooperative ring-opening of cyclo-

hexene oxide by 1 (Figure 1b).14 Given that epoxides possess
significant ring strain on the order of 26 kcal/mol,16 we
wondered whether complex 1 would be sufficiently reactive to

open a less strained cyclic ether. To probe this question, we
chose to examine tetrahydrofuran (THF), whose ring strain
energy is only 5.4 kcal/mol.16 Stoichiometric reaction of 1 with
THF (1 equiv) in toluene at room temperature for 24 h
resulted in clean formation of ring-opened complex LAl(Me)-
(μ-OC4H8)Fp (2) (61%; Scheme 1). Yellow crystals of 2
suitable for X-ray crystallography were obtained from pentane
at −25 °C after a week. The molecular structure confirmed
that the THF ring had been opened: [LAl(Me)O] and [Fp]
moieties were found to be connected by a linear four-carbon
chain. The Al−O and Fe−Calkyl bond lengths [1.714(1) and
2.065(2) Å, respectively] are similar to those in the
cyclohexene oxide ring-opened product, LAl(Me)(μ-OC6H10)-
Fp.14 The solid-state IR spectrum of 2 shows intense νCO

bands at 1939 and 1996 cm−1, which also are quite close to
those in the cyclohexene oxide ring-opened complex. Ring
opening reactions of THF by both Al17−19 and Fe20,21

compounds have been observed previously but, invariably,
involve cationic mechanisms. Given that generation of cationic
intermediates can be ruled out in this case,14 the observed
reaction is a novel example of THF opening by a radical
pathway. There are only a few previous reports of crystallo-
graphically characterized compounds showing ring-opened
THF captured between two metal centers,22−25 none of
which resulted from reactions of THF with well-defined
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binuclear complexes. In this case, our results show that C−O

activation chemistry of 1 is not restricted only to weak C−O

bonds. This behavior complements behavior of other

bimetallic systems toward THF26−28 and expands the diversity

of outcomes available from binuclear mechanisms.

We also sought to explore the reactivity of 1 toward an
episulfide. Rather than forming a ring-opened product, the
reaction of 1 with propylene sulfide resulted in sulfur atom
insertion into the Al−Fe bond with extrusion of propylene.
The resulting complex, LAl(Me)(μ-S)Fp (3), was isolated in
68% yield (Scheme 1). Yellow crystals of 3 suitable for X-ray

Figure 1. (a) Previously synthesized complexes with Al−Fe bonds. (b) Preliminary reactivity studies of Al−Fe bonded complex 1.

Scheme 1. Diverse Reaction Chemistry of Heterobimetallic Al−Fe Complex 1a

aFp = CpFe(CO)2, dipp = 2,6-di-isopropylphenyl, isolated yields shown. Formation of 2−3 was performed in toluene solution at room
temperature, and formation of 4 was performed in benzene-d6 solution at room temperature. Molecular structures of 2−4 determined by X-ray
crystallography are shown as 50% probability ellipsoids except for β-diketiminate carbons, which are shown as wire frames; hydrogen atoms are
omitted for clarity.
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crystallography were obtained from a mixture of toluene and
pentane at −25 °C. The molecular structure of 3 features a
four-coordinate aluminum center with distorted tetrahedral
geometry. As expected, the Al−S bond [2.2005(7) Å] is longer
than the Al�S bond [2.104(1) Å] in LAl�S(NHC) (NHC =
[{(CH2)CN(iPr)}2C:]))

29 but is close to Al−S single bond
lengths in [LAl(μ-S)2TiCp2] [2.208(1) and 2.197(1) Å].30

The Fe−S bond distance in 3 [2.3161(8) Å] is in the range of
those reported in related Fp-SR complexes (2.26−2.35 Å).31

The same product 3 was isolated from the reaction of 1 with
elemental sulfur in 64% yield (Scheme 1).
Given that 1 is known to react as a biradical toward various

substrates, one might expect it to do group abstraction from
reactants with homolytically weak bonds. Accordingly, reaction
of 1 with Me3SiN3 produced 1/2 Fp2, which is indicative of Fp·

dimerization (as seen previously with benzophenone, Figure
1b), along with a new LAl(Me)X product. Single crystals of
this product were grown from a mixture of toluene and
pentane at −25 °C, allowing us to identify it as the monoazide
derivative, LAl(Me)N3 (4; Scheme 1). Unfortunately, we have
been unable to obtain pure samples of 4, and so the only
available spectroscopic data involves characterization of the
crude reaction mixture with an internal 1H NMR integration
standard.
After successfully carrying out various thermal reactions, we

were also interested in photochemical reactivity of 1. Complex
1 is stable thermally (up to 80 °C) in C6D6 for at least 12 h but
was found to react further upon irradiation with UV light.
Irradiation of a C6D6 solution of 1 for 5 h at room temperature
resulted in precipitation of yellow crystals of a new complex
(5) in low yield (Scheme 2). The solid-state IR spectrum of 5
does not show any intense bands in the 2100−1800 cm−1

region characteristic of terminal carbonyl groups, but a new
band indicative of bridging carbonyl groups was observed at

1524 cm−1. This frequency value is unusually low even for
classical μ3-CO ligands but is in range for previous cases in
which μ3:η

2-CO ligands were C-bound to two transition metals
and O-bound to a Lewis acid (1351−1650 cm−1).32−34

Complex 5 was found to be insoluble in benzene, chloroform,
and dichloromethane. The 1H NMR spectrum of 5 was
recorded in THF-d8, although gradual decomposition was
observed in that solvent. The identity of the product was
determined by X-ray crystallography and elemental analysis.
The tetrametallic structure consists of two [LAl(Me)] units
bridged by one [(CpFeCO)2] unit, with the carbonyl groups
acting as μ3:η

2-CO ligands that are C-bound to Fe and O-
bound to Al. It is noteworthy that the [(CpFeCO)2] motif has
never been structurally characterized in any complex to date,
despite the long history of [CpFe(CO)2]2 chemistry.35 The
diiron distance in 5 is 2.3543(5) Å, which is significantly
shorter than the Fe−Fe single bond of the classical
[Fe2(CO)9] [2.523(1) Å] or in [CpFe(CO)2]2 [2.5389(3)
Å].36,37 Thus, complex 5 can be formulated as having a Fe�Fe
double bond. The C−O bond length in 5 [1.292(3) Å] is
longer than the terminal C−O bonds [1.157(4) Å] present in
1 and falls between the typical C−O single and double bond
ranges. The Al−O bond lengths in 5 [1.739(2) and 1.743(2)
Å] are shorter than the corresponding bonds [1.980(1) and
1.897(1) Å] present in LAl(Me)(μ:κ2-O2C)Fp

14 but com-
parable to the Al−O bond [1.714(1) Å] present in complex 2.
Thus, the lengthening of C−O bonds and correspondingly low
υCO value are attributed to strong Al−O interactions.
In conclusion, a series of reactivity studies were carried out

on heterobimetallic Al−Fe complex 1, with all resulting
products being successfully characterized crystallographically.
Uncovered reaction profiles include cooperative ring opening
of THF, sulfur atom transfer from propylene sulfide and S8,
radical azide abstraction from N3SiMe3, and decarbonylative
dimerization to produce an unusual [(CpFeCO)2] moiety
stabilized by Al coordination. Collectively, these observations
expand upon previously reported reactivity studies and
showcase the diverse range of transformations available to 1,
the first Al−Fe heterobimetallic complex whose reaction
chemistry has been extensively mapped.
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