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Most metallic and ceramic materials are comprised of a space-filling collection of crystalline grains
separated by grain boundaries. While this grain structure has been studied for more than a century,
there few rigorous results regarding its global properties available in the literature. We present a
new, rigorous result for three-dimensional grain structures that relates the integral of the Gaussian
curvature over the grain boundaries to the numbers of grains and quadruple junctions. The result
is numerically verified for a grain structure consisting of periodic truncated octahedra.

The grain structure of polycrystalline materials is de-
ceptively simple, and for that reason has been the sub-
ject of intense and ongoing study. For specificity, con-
sider a model system where the grain boundary energy
and mobility are constants, i.e., do not depend on grain
misorientation or the boundary plane normal. The phe-
nomenological Turnbull equation [1] relates the normal
velocity of a grain boundary in such a system to the driv-
ing pressure, and along with the Young–Laplace equation
[2] suggests that the normal velocity is directly propor-
tional to the mean curvature of the grain boundary. The
migration of individual boundaries induces the evolution
of the grain structure, a process known as grain growth,
where the total area of grain boundaries and the number
of grains decrease with time.

There are surprisingly few rigorous results known
about grain structures, even for the two-dimensional ver-
sion of this system. Energy considerations require that
grain boundaries only meet at triple junctions with in-
ternal angles of 2π/3 [3, 4]. A consequence of this
and curvature-driven grain growth is that a grain’s area
changes at a rate that depends only on the number of
bounding vertices [5, 6]. Globally, topological arguments
require that the average number of such bounding ver-
tices be precisely six [7]. There are natural analogues
to several, but not all, of these results in three dimen-
sions. Grain boundaries only meet at triple junction
lines with dihedral angles of 2π/3, and triple junction
lines only meet at quadruple junction points with angles
of cos−1(−1/3) [3, 4]. The rate of volume change of a
grain depends not only on the total length of the bound-
ing triple lines, but on a measure of the linear dimension
known as the mean width [8, 9]. For both the two- and
three-dimensional systems, the hypothesis that the struc-
ture reaches a statistically self-similar state implies that
that the average grain diameter increases as the square-
root of time [10, 11]. This is the effective extent of current
knowledge.

There have been a variety of inexact relationships pro-
posed as well, usually for grain structures in the con-
jectured self-similar state [12]. Ones that relate to the
global properties of the three-dimensional system in-
clude proposed distributions for the effective radius of

a grain [13–15] and the number of faces bounding a grain
[15]. Recent advances in several microscopy techniques
promise to make three-dimensional grain structure data
more readily available, possibly allowing such relation-
ships to be further refined. Three-dimensional electron
backscatter diffraction [16, 17] destructively images the
grain structure by a serial sectioning process, whereas
three-dimensional X-ray diffraction microscopy [18, 19]
is non-destructive but generally offers poorer spatial res-
olution. Given this situation, additional rigorous results
for the global properties of the grain structure of the
model three-dimensional system would be valuable, both
to measure deviations of the experimental systems from
the model one, and to verify the accuracy of grain struc-
tures generated by computational means. This article
proves one such result, relating the integral of the Gaus-
sian curvature over the grain boundaries to the numbers
of grains and quadruple junction points, and thereby to
the numbers of grain boundaries and triple junction lines.
Let Ω be a space-filling grain structure composed of

grains that meet in twos on grain boundaries, grain
boundaries that meet in threes at triple junction lines,
and triple junction lines that meet in fours at quadru-
ple junction points, as in Fig. 1. Further suppose that

FIG. 1. A grain structure in a cubic volume, with several
grains removed to reveal the interior. Color indicates the in-
dividual grains, internal curved surfaces are grain boundaries,
internal black lines are triple junction lines, and four triple
junction lines intersect at quadruple junction points.
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Ω satisfies Plateau’s laws (i.e., grain boundaries meet at
dihedral angles of 2π/3 and triple junction lines meet at
angles of cos−1(−1/3)), and that Ω is defined in a three-
dimensional region with periodic boundary conditions. If
G is a grain in Ω, then our main result is that the ex-
pectation value of the Gaussian curvature K integrated
over the interiors of the grain boundaries of G and the
expectation value of the number of quadruple junction
points f0(G) of G are related by:⟨︃∫︂

∂G

K dA

⟩︃
= 4π − α⟨f0(G)⟩. (1)

The angle brackets indicate an average performed over
all grains in Ω, ∂G indicates the interiors of the grain
boundaries of G, and α = 2π − 3 cos−1(−1/3) is the an-
gular defect at a quadruple junction point. This result is
exact (given a few technical assumptions that are usually
satisfied and are discussed in the supplemental material
[20]), and to our knowledge does not appear in the litera-
ture; a related result by Kusner [21] requires that all the
grain boundaries be minimal surfaces, and one by Glicks-
man [22] applies only to unconstructable grain structures
of average n-polyhedra.

The Gaussian curvature of a surface is defined as the
product of the principal curvatures at any point. The
appearance of this quantity in Eq. 1 could be surprising,
since the mean curvature (the sum of the principal curva-
tures) is the one that controls the dynamics of the grain
boundary network [1, 2]. That said, the Gaussian cur-
vature is in some ways the more fundamental of the two
quantities, being an intrinsic property of the surface that
does not depend on the way the surface is embedded in
Euclidean space. For example, the Gaussian curvature of
a sheet of paper is zero at every point whether the sheet
is laid flat or rolled up, though the same is not true for
the mean curvature. This invariance to the embedding is
reflected in the celebrated Gauss–Bonnet theorem:

∫︂
∂G

K dA+

f2(G)∑︂
i=1

∫︂
∂Fi

κg ds+

f0(G)∑︂
i=1

αi = 2πχ(∂G).

While this version specifically applies to the surface of a
grain, all versions relate the integrated Gaussian curva-
ture of a surface to its Euler characteristic χ(∂G) (equal
to two when the surface can be smoothly deformed into a
sphere without cutting or gluing). The terms on the left
include the integrated Gaussian curvature over the grain
boundary interiors, the sum of the integrated geodesic
curvature κg over the interiors of the bounding triple
junction lines ∂Fi of all grain boundaries Fi, and the
sum of the angular defects αi of the quadruple junction
points of G.

If G can be smoothly deformed into a sphere and be-
longs to a grain structure Ω that obeys Plateau’s rules,

FIG. 2. Grain boundaries Fi and Fj meet at the triple junc-
tion line in bold, and v bisects the dihedral angle between
Fi and Fj . Arrows indicate the tangent direction, and the
second Frenet vector e2 points along the triple junction line’s
normal direction.

then this can be simplified to:

∫︂
∂G

K dA+

f1(G)∑︂
i=1

∫︂
Ei

κe2 · v ds+ αf0(G) = 4π

where the most significant change is to the middle term
on the left; this is now the sum of the integrated cur-
vature of the triple junction lines of G, weighted by the
dot product of the second Frenet vector e2 of the curve
and a unit vector v that bisects the dihedral angle be-
tween the adjoining grain boundaries; see Fig. 2. Sum-
ming this equation over all grains in Ω results in a re-
markable cancellation (previously noted by DeHoff [23])
where the contribution of the second term on the left van-
ishes. Specifically, every triple junction line is integrated
over three times, once for each adjoining grain. κe2 is an
inherent quantity of the triple junction line that is the
same for all three integrals, but the three v are all unit
vectors in a plane with mutual angles of 2π/3. That is,
the sum of the three v vanishes identically for each triple
junction line, leaving an alternative version of the main
result:

f2(Ω)∑︂
i=1

∫︂
Fi

K dA = 2πf3(Ω)− 2αf0(Ω) (2)

where Fi is the ith grain boundary of Ω and f0(Ω), f2(Ω)
and f3(Ω) are the numbers of quadruple junction points,
grain boundaries, and grains of Ω. Dividing through by
f3(Ω) and multiplying by a constant gives Eq. 1. More
detailed derivations of both Eqs. 1 and 2 are provided in
the supplemental material [20].
Although Eq. 1 appears to be simpler, there are at least

two observations that are more clearly made by means of
Eq. 2. The first is that the integral of K over the grain
boundaries of Ω depends only on the numbers of grains
and quadruple junction points of Ω, and not on the geom-
etry of the grain structure. That is, the left-hand side of
Eq. 2 is invariant to any deformation of Ω that preserves
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FIG. 3. An infinite periodic grain structure that satisfies
Plateau’s laws can be constructed by repeating a relaxed trun-
cated octahedron (left). This grain was found by starting
with a periodic unit of a grain structure consisting of unre-
laxed truncated octahedra, fixing the location of the interior
quadruple junction points, and minimizing the grain bound-
ary area (right).

the numbers of grains and quadruple junction points.
The second is that a sufficiently accurate measurement of
the integral of K over the grain boundaries of Ω in prin-
ciple specifies the numbers of all components of Ω. Ob-
serve that since there is no rational number that relates
the coefficients of f3(Ω) and f0(Ω) in Eq. 2, the num-
bers of grains and quadruple junctions can be inferred if
the left-hand side is known sufficiently accurately. The
number of triple junction lines can then be found from
2f1(Ω) = 4f0(Ω) by a counting argument, and the num-
ber of grains from 0 = f0(Ω) − f1(Ω) + f2(Ω) − f3(Ω)
which follows from the domain of Ω being a three-torus
with χ(Ω) = 0. The necessary modifications to Eqs. 1
and 2 for grain structures in other domains (e.g., ones
with free boundaries) are discussed in the supplemental
material [20].

As numerical confirmation of Eq. 1, consider a grain
structure consisting of periodic truncated octahedra, re-
laxed under the action of surface tension to satisfy
Plateau’s laws; one such grain is shown on the left of Fig.
3. The shape of this grain was found by starting with a
grain structure consisting of unrelaxed truncated octahe-
dra and identifying the periodic unit shown on the right
of Fig. 3, with a single grain at the center and corners
at the centers of the neighboring grains. The periodic
unit was computationally represented by a volumetric fi-
nite element mesh with linear elements, with the average
number of triangles per hexagonal face nt depending on
a characteristic length and the details of the mesh adap-
tation algorithm. The locations of the interior quadruple
junction points were fixed, and the structure was relaxed
by allowing the vertices on grain surfaces to move accord-
ing to equations of motion known to reproduce curvature-
driven grain growth [24] until the magnitude of the ver-
tex forces fell below a threshold. The grain structure did

not reach a steady-state configuration when the locations
of the interior quadruple junction points were not fixed,
owing to a known instability of this grain structure to
volumetric perturbations [25]. While quadratic elements
would allow the steady-state geometry to be more ac-
curately represented, a convergence analysis with an in-
creasing number of linear elements is sufficient for the
present purpose.
The simulations were performed with a modified ver-

sion of a recently-developed microstructure evolution
code [27] that usually uses SCOREC [28] for mesh man-
agement and maintenance, but the mesh adaptation op-
erations were found to interfere with the convergence of
the grain geometry. Instead, artificial vertex forces de-
fined by Kuprat [29] were used to maintain the mesh el-
ement quality during the structure relaxation. Since the
artificial forces only acted on vertices on the grain inte-
riors, it is expected that they did not substantially affect
the grain geometry. The boundary conditions were de-
fined to make the simulation cell behave as a periodic unit
in a grain structure consisting of periodic truncated octa-
hedra. Whereas the grain boundaries on the simulation
cell interior had a constant nonzero energy per unit area,
the external surfaces of the simulation cell were assigned
zero energy per unit area; this is consistent with viewing
them as the result of intersecting grains in the under-
lying grain structure with the boundary of the periodic
unit. Vertices on the external surfaces were constrained
to remain on the external surfaces during relaxation by
projecting away any displacement in the normal direc-
tion, effectively imposing a Neumann boundary condi-
tion. The integrated Gaussian curvature was calculated
as the sum of the angular defects at the vertices on the
grain boundary interiors, where the angular defect is de-
fined as 2π minus the sum of the interior angles of the
grain boundary triangles meeting at the vertex.
Table I shows the results of this analysis for increasing

refinement of the mesh, i.e., as a function of nt. The ge-
ometric accuracy of the representation can be evaluated
by means of the percent reduction in grain boundary area
∆A of the relaxed truncated octahedron relative to the
unrelaxed one. A detailed analysis [26] suggests a value
of 0.159% for the continuous system; that ∆A does not
converge to this value is likely due to the irregularity of
the mesh. As for the integrated Gaussian curvature, the
average quantities in Eq. 1 are equivalent to those for a
single grain by periodicity. This implies that the integral
of the Gaussian curvature over the interiors of the grain
boundaries should be:∫︂

∂G

K dA = 4π − 24α ≈ −0.664484.

A conjugate gradient minimization algorithm and boot-
strapping were used to fit the model

∫︁
KdA = a + bnc

t

to the data in Table I, giving a = −0.661 ± 0.022,
b = 2.08 ± 0.51, and c = −0.378 ± 0.060 (reported as
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TABLE I. The percent grain boundary area change of the relaxed truncated octahedron relative to the unrelaxed one and the
integrated Gaussian curvature of the relaxed truncated octahedron as functions of nt.

nt 61 129 477 665 1885 2610 3250 4314 5322 6532 7649 8906

∆A(%) 0.0863 0.129 0.135 0.136 0.136 0.137 0.136 0.136 0.136 0.136 0.136 0.136∫︁
K dA -0.219 -0.349 -0.461 -0.477 -0.544 -0.554 -0.563 -0.568 -0.578 -0.588 -0.593 -0.597

FIG. 4. The lines defined by Eq. 2 for the data in Table I in the feasible region 3 ≤ f3(Ω) ≤ 5 and 20 ≤ f0(Ω) ≤ 28. The lines
are colored from red to blue with decreasing error and the black line passing through (24, 4) corresponds to the exact solution.
The closest integer lattice point to the line is (24, 4) for nt ≥ 477.

the medians and half the interquartile range). This im-
plies that the integrated Gaussian curvature would be
−0.661 ± 0.022 in the nt → ∞ limit, and is interpreted
as numerically confirming Eq. 1 given the degree of ap-
proximation of the grain geometry. That the integrated
Gaussian curvature converges to the expected value even
though the percent area reduction does not confirms the
assertion that Eqs. 1 and 2 are invariant to geometric
perturbations of the structure, provided the numbers of
grains and quadruple junction points remain the same
and Plateau’s laws are satisfied.

Alternatively, one could consider the feasibility of in-
ferring f3(Ω) and f0(Ω) by means of a sufficiently ac-
curate measurement of the integral of K over the grain
boundaries of Ω in Eq. 2. This can be done by a graph-
ical construction in the plane with f3(Ω) and f0(Ω) on
the vertical and horizontal axes. Given the integral of
the Gaussian curvature over the grain boundaries of Ω,
Eq. 2 defines a line in this plane with an irrational slope.
Since the actual values of f3(Ω) and f0(Ω) are necessar-
ily positive integers, this line passes through exactly one
point on the integer lattice in the positive quadrant. In
practice, any error in the measurement of the integrated
Gaussian curvature would change the intercept with the
vertical axis and shift the line off of the lattice point;
whether this is an issue or not depends on the magni-
tude of the error and any a priori bounds that can be
placed on f3(Ω) and f0(Ω). For example, Fig. 4 shows
this construction for the data in Table I with the con-
straints 3 ≤ f3(Ω) ≤ 5 and 20 ≤ f0(Ω) ≤ 28. Since the
magnitude of the error is assumed to be unknown, it is
reasonable to suppose that the correct values of f3(Ω)

and f0(Ω) correspond to the integer lattice point clos-
est to the line within the feasible region. This procedure
correctly identifies the relevant integer lattice point as
(24, 4) for nt ≥ 477; in general, the effect of integrated
Gaussian curvature error is reduced as the area of the
feasible region decreases.
Apart from advancing our fundamental understand-

ing of grain structures, there remains the question of the
practical utility of Eqs. 1 and 2 (and the analogues in
the supplemental material [20]). This question is made
more pressing by there being few experimental systems
that actually evolve by the relevant ideal grain growth
process. The authors propose two possible applications
based on the differences of the left and right sides of Eqs.
1 and 2:

e1 =

⟨︃∫︂
∂G

K dA

⟩︃
− 4π + α⟨f0(G)⟩

e2 =

f2(Ω)∑︂
i=1

∫︂
Fi

K dA− 2πf3(Ω) + 2αf0(Ω)

First, e1 and e2 could be used as rough measures of the
deviation of a physical system from an ideal one, along
with other quantities like the grain growth exponent and
the grain size distribution. Second, e1 and e2 could be
used to evaluate the accuracy of the geometric represen-
tation of a grain structure in a microstructure evolution
code; the derivation above suggests that these quantities
should be particularly sensitive to the geometry around
triple junction lines and quadruple junction points. Since
the angle conditions around triple junction lines are di-
rectly implicated in the rates of area and volume change
of two-dimensional [5, 6] and three-dimensional [8, 9]
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grains, any deviations from Eqs. 1 and 2 could function
as bounds on the maximum achievable accuracy of sim-
ulations of mean-curvature driven grain growth.
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Supplementary information:
A constant of motion for ideal grain growth in three dimensions

DERIVATION OF EQS. 1 AND 2

Suppose that Ω is a grain structure in a domain with periodic boundary conditions, that Ω satisfies Plateau’s laws
(i.e., grain boundaries meet at dihedral angles of 2π/3 and triple junction lines meet at angles of cos−1(−1/3)), and
that in Ω every triple junction line is bounded by two distinct quadruple junction points, every grain boundary is
homeomorphic to a disk and bounded by two or more distinct triple junction lines, and every grain is homeomorphic
to a ball and bounded by three or more distinct grain boundaries.

The initial objective is to establish the following version of the Gauss–Bonnet theorem for a grain G belonging to
Ω: ∫︂

∂G

K dA+

f2(G)∑︂
i=1

∫︂
∂Fi

κg ds+

f0(G)∑︂
i=1

αi = 2πχ(∂G) (1)

where K is the Gaussian curvature of a grain boundary, ∂G indicates the grain boundary interiors, κg is the geodesic
curvature of a triple junction line, ∂Fi indicates the interiors of the triple junction lines bounding the ith grain
boundary, f2(G) is the number of grain boundaries of G, αi is the angular defect at the ith quadruple junction point,
f0(G) is the number of quadruple junction points of G, and χ(∂G) is the Euler characteristic of the boundary of G.
The standard version of the Gauss–Bonnet theorem applies to an oriented surface Fi [1]:∫︂

Fi

K dA+

∫︂
∂Fi

κg ds+

f0(Fi)∑︂
j=1

(π − γj) = 2πχ(Fi) (2)

where γj is the interior angle at the jth corner along ∂Fi. As suggested by the notation, let Fi be the ith grain
boundary of G. Since every grain boundary is homeomorphic to a disk, χ(Fi) = 1 and summing Eq. 2 over the grain
boundaries of G gives: ∫︂

∂G

K dA+

f2(G)∑︂
i=1

∫︂
∂Fi

κg ds−
f2(G)∑︂
i=1

f0(Fi)∑︂
j=1

γj = 2πf2(G)− πf0,2(G)

where f0,2(G) is the number of distinct pairs of adjacent quadruple junction points and grain boundaries. Adding
2πf0(G) to each side of the above equation, using the identity f0,2(G) = f1,2(G) = 2f1(G), and applying the definition
χ(∂G) = f0(G)− f1(G) + f2(G) for the Euler characteristic of a surface gives∫︂

∂G

K dA+

f2(G)∑︂
i=1

∫︂
∂Fi

κg ds+

(︃
2πf0(G)−

f2(G)∑︂
i=1

f0(Fi)∑︂
j=1

γj

)︃
= 2πχ(∂G).

Since 2π minus the internal angles around the ith quadruple junction point of G is the angular defect αi at that point,
this reduces to Eq. 1 above.
The next objective is to simplify Eq. 1 by means of the initial assumptions. Initially observe that χ(∂G) = 2 since

G is homeomorphic to a ball, and that the angular defect at every quadruple junction point is α = 2π−3 cos−1(−1/3);
this allows Eq. 1 to be reduced to:∫︂

∂G

K dA+

f2(G)∑︂
i=1

f1(Fi)∑︂
j=1

∫︂
Ej

κg ds+ αf0(G) = 4π

FIG. S1. The respective arrangement of the curve ck(s), the unit vectors ui, uj , and v, and the angle β at a point along Ek.
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where Ej is the jth triple junction line and f1(Fi) is the number of triple junction lines of Fi. Now consider the
summation of the integrals of the geodesic curvature over the triple junction lines of G. Every triple junction line is
integrated over twice, once for each of the adjoining grain boundaries. Suppose that all of the grain boundaries have
outward-pointing unit normal vector fields, that the grain boundaries Fi and Fj intersect on the kth triple junction
line Ek of G, and that ck(s) is the curve parameterized by arc length that travels along Ek in the positive orientation
on Fi and the negative orientation on Fj . Let νi(s) and νj(s) be the restrictions of the unit normal vector fields of
Fi and Fj to points on ck(s), and ui(s) = νi(s)× c′k(s) and uj(s) = νj(s)× c′k(s) be the tangent normals of ck(s) on
Fi and Fj as indicated in Fig. S1, where the prime indicates differentiation with respect to arclength. Finally, write
the geodesic curvatures κg of ck(s) on Fi and Fj as c′′k(s) · ui(s) and c′′k(s) · uj(s). This allows the middle term on
the left of the above equation to be written as:

f2(G)∑︂
i=1

f1(Fi)∑︂
j=1

∫︂
Ej

κg ds =

f1(G)∑︂
k=1

[︃ ∫︂ sk

0

c′′k(s) · ui(s) ds−
∫︂ sk

0

c′′k(s) · uj(s) ds

]︃

=

f1(G)∑︂
k=1

∫︂ sk

0

κe2 · (ui(s)− uj(s)) ds

where s ∈ [0, sk] and c′′k(s) = κe2, or the product of the curvature κ and the second Frenet vector e2 of ck(s). Since
ui(s) and uj(s) are unit vectors, ui(s)−uj(s) can be written as 2 sin(β/2)v(s) where ui(s) ·uj(s) = cosβ and v(s) is
the unit vector pointing along ui(s)−uj(s) as in Fig. S1. Since β = π/3, this simplifies further to ui(s)−uj(s) = v(s)
and Eq. 1 reduces to: ∫︂

∂G

K dA+

f1(G)∑︂
i=1

∫︂
Ei

κe2 · v ds+ αf0(G) = 4π. (3)

This is perhaps the extent of simplification that is possible for a single grain.
Equations 1 and 2 in the main text are found by summing Eq. 3 over all the grains in Ω. As described in the main

text, the contribution of the second term on the left vanishes since every triple junction line is integrated over three
times, once for each adjoining grain. κe2 is an inherent quantity of the triple junction line that is the same for all
three integrals, but the three v are all unit vectors in a plane with mutual angles of 2π/3. This causes the sum of the
three v to vanish identically for each triple junction line, leaving:

f3(Ω)∑︂
i=1

∫︂
∂Gi

K dA+

f3(Ω)∑︂
i=1

αf0(Gi) = 4πf3(Ω)

where f3(Ω) is the number of grains of Ω. Dividing through by f3(Ω) gives Eq. 1 of the main text. Alternatively,
observing that every grain boundary is included two times in the first sum, that every quadruple junction point is
included four times in the second sum, and dividing through by two gives Eq. 2 of the main text.

OTHER BOUNDARY CONDITIONS

If the grain structure Ω exists in a domain without periodic boundary conditions, then the elements of Ω intersecting
the external surfaces need to be handled differently. The derivation of the counterparts of Eqs. 1 and 2 of the main
text proceeds as above, starting with Eq. 1 for a grain G:

f2(G)∑︂
i=1

∫︂
F i

K dA+

f2(G)∑︂
i=1

f1(F i)∑︂
j=1

∫︂
Ej

κg ds+

f2(G)∑︂
i=1

f1(Fi)∑︂
j=1

∫︂
Ej

κg ds+

f0(G)∑︂
i=1

αi

+

f2(G)∑︂
i=1

∫︂
Fi

K dA+

f2(G)∑︂
i=1

f1(Fi)∑︂
j=1

∫︂
Ej

κg ds+

f0(G)∑︂
i=1

αi = 2πχ(∂G)

where quantities relating to grain structure elements on external surfaces are indicated by overlines (e.g., the second
term on the left concerns triple junction lines on the external surface that bound grain boundaries on the external
surface, whereas the third term on the left concerns triple junction lines on the external surface that bound internal



3

grain boundaries). Using that χ(∂G) = 2 and that the angular defect at every internal quadruple junction point is α,
repeating the steps involving integrals over triple junction lines, and summing over all the grains of Ω gives:

f3(Ω)∑︂
i=1

f2(Gi)∑︂
j=1

∫︂
F j

K dA+

f3(Ω)∑︂
i=1

f1(Gi)∑︂
j=1

∫︂
Ej

κe2 · [2 cos(λ/2)v] ds+
f3(Ω)∑︂
i=1

f0(Gi)∑︂
j=1

αj

+

f3(Ω)∑︂
i=1

f2(Gi)∑︂
j=1

∫︂
Fj

K dA+ α

f3(Ω)∑︂
i=1

f0(Gi) = 4πf3(Ω) (4)

where cos(λ/2) = sin(β/2) and λ is the interior angle along the triple junction line.
Dividing through by f3(Ω) gives:

⟨︃ f2(G)∑︂
i=1

∫︂
F i

K dA+

f1(G)∑︂
i=1

∫︂
Ei

κe2 · [2 cos(λ/2)v] ds+
f0(G)∑︂
i=1

αi

⟩︃
+

⟨︃∫︂
∂G

K dA

⟩︃
+ α⟨f0(G)⟩ = 4π

which is the counterpart to Eq. 1 of the main text and emphasizes the properties of individual grains. This version
groups the contributions of grain structure elements on external surfaces in the first average over all grains of Ω. Since
f3(Ω) should increase as the volume whereas the number of terms in the average should increase as the surface area,
the influence of the first average should decrease with decreasing surface area to volume ratio of Ω. Alternatively,
starting with Eq. 4 and observing that every internal grain boundary is included two times in the fourth term, that
every quadruple junction point is included four times in the fifth term, and dividing through by two gives:

1

2

{︃ f2(Ω)∑︂
i=1

∫︂
F i

K dA+

f1(Ω)∑︂
i=1

∫︂
Ei

κe2 ·
[︃
2

f1,3(Ei)∑︂
j=1

cos(λj/2)vj

]︃
ds+

f0(Ω)∑︂
i=1

f0,3(V i)∑︂
j=1

αj

}︃

+

f2(Ω)∑︂
i=1

∫︂
Fi

K dA+ 2αf0(Ω) = 2πf3(Ω)

where f1,3(Ei) is the number of grains adjacent to the ith triple junction line Ei on the external surface and f0,3(V i) is
the number of grains adjacent to the ith quadruple junction point V i on the external surface. This is the counterpart
to Eq. 2 of the main text. This is as far as the equations can be developed without specifying the shape of the domain
of Ω and the nature of the boundary conditions.
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