
Incentive Mechanisms for Strategic Classification and
Regression Problems

KUN JIN, University of Michigan
XUERU ZHANG, Ohio State University
MOHAMMAD MAHDI KHALILI, Yahoo! Inc.
PARINAZ NAGHIZADEH, Ohio State University
MINGYAN LIU, University of Michigan

We study the design of a class of incentive mechanisms that can effectively prevent cheating in a strategic
classification and regression problem. A conventional strategic classification or regression problem is modeled
as a Stackelberg game, or a principal-agent problem between the designer of a classifier (the principal) and
individuals subject to the classifier’s decisions (the agents), potentially from different demographic groups.
The former benefits from the accuracy of its decisions, whereas the latter may have an incentive to game the
algorithm into making favorable but erroneous decisions. While prior works tend to focus on how to design
an algorithm to be more robust to such strategic maneuvering, this study focuses on an alternative, which is to
design incentive mechanisms to shape the utilities of the agents and induce effort that genuinely improves their
skills, which in turn benefits both parties in the Stackelberg game. Specifically, the principal and the mechanism
provider (which could also be the principal itself) move together in the first stage, publishing and committing to
a classifier and an incentive mechanism. The agents are (simultaneous) second movers and best respond to the
published classifier and incentive mechanism. When an agent’s strategic action merely changes its observable
features, it hurts the performance of the algorithm. However, if the action leads to improvement in the agent’s
true label, it not only helps the agent achieve better decision outcomes, but also preserves the performance of the
algorithm. We study how a subsidy mechanism can induce improvement actions, positively impact a number of
social well-being metrics, such as the overall skill levels of the agents (efficiency) and positive or true positive
rate differences between different demographic groups (fairness).

CCS Concepts: • Theory of computation → Algorithmic game theory; Algorithmic mechanism design; •
Computing methodologies → Supervised learning by regression; Supervised learning by classification.
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1 INTRODUCTION
This paper studies the impact of adding a subsidy mechanism in strategic classification and regression
problems. Conventional strategic classification and regression model the interaction between a
decision maker (algorithm designer) and individuals who are subject to the decision outcomes. While
the former benefits from the accuracy of its decisions, the latter may have an incentive to game the
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algorithm into making favorable but erroneous decisions. Recognizing the potential for such misuse,
prior works tend to focus on designing an algorithm that is more robust to such strategic maneuvering,
see e.g., [1–5, 7, 10, 13, 14]. Equally important, however, is the possibility for a mechanism designer
to incentivize effort by the users who genuinely improve their true label; this would benefit the users
and the decision maker by preserving the algorithm performance at the same time.

Toward this end, we present a strategic learning problem augmented by a subsidy mechanism
(augmented strategic learning problem) modeled as a Stackelberg game between the decision maker,
the mechanism designer (which could be the decision maker itself or a third party) and individuals
from different demographic groups who are subject to the classifiers’ decisions (the agents). The
decision maker and the mechanism designer move in the first stage by publishing and committing
to a decision rule (a binary classifier or a regression function) and an incentive mechanism. The
published decision rule takes as input the agents’ observable features and outputs decision outcomes
that impact the agents’ utilities. The agents are (simultaneous) second movers and best respond to
the published decision rule and incentive mechanism. To capture the agent’s ability to both game the
decision rule and make real changes, we assume each agent has an endowed pre-response attribute
(endowed private information), that is causal [13] to a set of observable features as well as its true
label, also referred to as its qualification status in the context of the strategic learning problem.

An agent can exert effort to improve this causal state, thereby improving its features and its
underlying attributes, or choose to game the classifier by employing non-causal schemes to improve
only its features without changing its underlying attributes [13], or use a combination of them. Both
choices of action, referred to as improvement (or honest effort) and gaming (or cheating, or dishonest
effort), respectively, come at a cost to the agent. As pointed out in [14], gaming is much more
frequently seen and studied due to its much lower cost compared to improvement. This difference in
cost results in Goodhart’s Law (“Once a measure becomes a target, it ceases to be a good measure”
[17]), since gaming invariably degrades the performance of a classifier. The goal of this study is to
see whether, beyond preventing gaming, the incentive mechanism can elicit sufficient improvement
from the agents.

The decision maker derives its utility from the prediction accuracy, thus even a selfish decision
maker may have an incentive to motivate the agents to choose improvements over gaming. When the
decision maker is also the mechanism designer, one such incentive mechanism is for the decision
maker to subsidize the agents’ improvement costs, thereby making improvement more appealing
compared to gaming. We characterize the Stackelberg equilibrium in this setting, where the decision
maker determines the optimal decision rule as well as the incentive mechanism (a subsidy policy) in
anticipation of the agents’ best response. In addition, we also study the impact of the equilibrium
classifier and incentive mechanism on the fairness and qualification status, when agents come
from different demographic groups which differ in their pre-response attribute distribution (e.g., an
advantaged group may have higher pre-response attributes that map to higher qualification rates and
features) or action cost (e.g., an advantaged group may have lower action cost than a disadvantaged
group). Alternatively, we also study the case where the mechanism designer is a third party (e.g., a
government) with social well-being metrics as its objective. The third party designs a mechanism
that incentivizes agents’ improvement action and charges a price to the decision maker for this
improvement service to ensure budget balance, while also making sure that incentive compatibility
and individual rationality constraints are satisfied for both the agents and the decision maker. We
compare the outcomes of the augmented strategic learning in these two settings, as well as the
conventional strategic learning problem without an incentive mechanism, and investigate how the
mechanism designer’s objectives influence the fairness and qualification status.

Our work differs from previous works on incentive mechanisms in the presence of strategic agents
[6, 10, 12, 16] in the following ways. Firstly, subsidies are also used in [10] for strategic classification;



however, all actions considered in [10] are gaming and thus all subsidies go toward gaming. Both our
work and [10] show that subsidizing gaming is a strictly dominated strategy for the decision maker,
but our work further shows the potential benefit of subsidizing improvement actions. Secondly, [6, 12]
use the classifier decision rule as a proxy for designing incentives, while we take a combination of the
decision rule and an incentive mechanism choice to provide incentives; this is noteworthy because
there are cases where the decision rule alone fails to incentivize improvement, such that one can only
resort to the incentive mechanism to serve this purpose (see further discussion in Section 2). Thirdly,
the decision maker in our model is selfish (i.e. profit maximizing) and the third party optimizes social
well-being metrics (e.g., social welfare, or fairness metrics); in contrast, the decision maker is welfare
maximizing in [6], is either selfish or welfare maximizing in [16], and works toward effort profiles
with desired characteristics in [12]. Fourthly, while [16] focuses on the linear regression problem
and [6, 12] on binary classification problems, we study both types of problems and elaborate on the
similarities and differences between these setups. Our main contributions are as follows.

(1) We formulate the problem of adding a subsidy mechanism in strategic classification and
regression problems as a Stackelberg game, where the decision maker and mechanism designer
commit to a classifier and an incentive mechanism, and agents follow by choosing an action to
best respond (Section 2). This model substantially extends existing literature.

(2) We begin with the setting in which the decision maker is the mechanism designer, and study the
incentive mechanism design and the Stackelberg equilibrium of the classification and regression
models (Sections 3 and 4). We identify conditions under which the incentive mechanisms
satisfy individual rationality, incentive compatibility, and budget balance.

(3) We study the social well-being of the augmented strategic learning system, focusing on both
efficiency and fairness properties (Section 5). We also consider the case of a third party
mechanism designer, and discuss its influence on these social well-being metrics (Section 6).

(4) We illustrate our analytical findings through numerical experiments based on the FICO dataset
[8] (Section 7).

2 MODEL
We first introduce our augmented strategic learning model. In particular, we focus on a single-round,
two-stage Stackelberg game, where the decision maker and the mechanism designer move first to
design, publish, and commit to a decision rule 𝑓 combined with an incentive mechanism 𝐺 ; the
agents then best respond to both the incentive mechanism and the decision rule in the second stage.

2.1 Attributes, Features, and Labels

Fig. 1. The Augmented Strategic Classifica-
tion/Regression Problem.

An agent has an 𝑁 -dimensional pre-response
attribute𝑥𝑥𝑥 ∈ X,X ⊆ R𝑁≥0, which is its private in-
formation. Its probability density function (pdf)
is 𝑝 (𝑥𝑥𝑥), which is public information. In the re-
sponse phase, an agent takes an 𝑀-dimensional
action 𝑎𝑎𝑎 := (𝑎𝑎𝑎+,𝑎𝑎𝑎−), where 𝑎𝑎𝑎+ ∈ R𝑀+≥0 denotes
an improvement action profile while 𝑎𝑎𝑎− ∈ R𝑀−≥0
is a gaming action profile, with 𝑀+ +𝑀− = 𝑀

(with action indices ordered such that ∀𝑖 ≤ 𝑀+
is an improvement action).

The agent’s action impacts its attribute as
well as feature through a projection matrix



𝑃 = [𝑃+, 𝑃−], 𝑃 ≥ 0, where 𝑃+ ∈ R𝑁×𝑀+ (resp. 𝑃− ∈ R𝑁×𝑀−) is the improvement (resp. gam-
ing) projection in the following sense. The action results in the agent having a post-response attribute
𝑥𝑥𝑥 ′ = 𝑥𝑥𝑥 + 𝑃+𝑎𝑎𝑎+ = 𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎, where 𝑃 = [𝑃+,000] ∈ R𝑁×𝑀 , and a post-response observable feature (simply
feature for brevity) 𝑧𝑧𝑧 = 𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎 = 𝑥𝑥𝑥 + 𝑃+𝑎𝑎𝑎+ + 𝑃−𝑎𝑎𝑎−. Crucially, the post-response attribute is the agent’s
private information, whereas the post-response feature is observable by the decision maker. An
agent’s action may or may not be directly observable to the decision maker, but is anticipated given
the game setting and an equilibrium concept.

This model captures the fact that improvement actions can improve an agent’s underlying attribute
as well as observable feature, while gaming actions only affect the outward feature without changing
its underlying attribute. We can think of attributes as actual skills and features as test scores; working
hard can be a type of improvement action and cheating can be a type of gaming action.

In general, the projection matrix 𝑃 is not full rank, which means there are multiple choices of 𝑎𝑎𝑎 for
the agent to obtain the same feature 𝑧𝑧𝑧 and thus the same decision outcome (next subsection).

An agent with pre- (resp. post-)response attribute 𝑥𝑥𝑥 (resp. 𝑥𝑥𝑥 ′) has a pre- (resp. post-)response true
label 𝑦 (resp. 𝑦 ′) that indicates the quality of an agent. For strategic regression, we use the same
setting as in [16]:

𝑦 = 𝑞(𝑥𝑥𝑥) := 𝜃𝜃𝜃𝑇𝑥𝑥𝑥 + 𝜂, 𝑦 ′ = 𝑞(𝑥𝑥𝑥 ′) = 𝜃𝜃𝜃𝑇𝑥𝑥𝑥 ′ + 𝜂, (1)

where 𝜃𝜃𝜃 ≥ 0 is the quality coefficient vector, and 𝜂 is a subgaussian noise with 0 mean and variance
𝜎 . For strategic classification, 𝑦,𝑦 ′ ∈ {0, 1}, and we use a similar setting as in [10]:

𝑃𝑟 (𝑦 = 1) = 𝑙 (𝜃𝜃𝜃𝑇𝑥𝑥𝑥), 𝑃𝑟 (𝑦 ′ = 1) = 𝑙 (𝜃𝜃𝜃𝑇𝑥𝑥𝑥 ′), 𝑦 ′ ≥ 𝑦, (2)

where we can interpret 𝑙 : R ↦→ [0, 1] as a likelihood function that is weakly increasing (𝑙 is a
step-function in [10]). We assume that 𝑦 ′ ≥ 𝑦 holds for every agent, with improvement actions
weakly improving the agent’s true label, and gaming actions leaving it unchanged.

REMARK 1. The projection matrix 𝑃 , the available action dimensions, and the quality coefficients
𝜃𝜃𝜃 are assumed to be public information for the remainder of the paper. We discuss in the appendix
when these parameters are initially unknown for the decision maker. Parameter acquisition requires
multi-round online learning [9, 16], which is different from the model setting in this paper. However,
we show that our incentive mechanisms can aid parameter learning in the multi-round online
strategic learning models.

2.2 The Decision Rule
The decision rule 𝑓 : R𝑁 ↦→ R takes as input an agent’s feature 𝑧𝑧𝑧 and returns a decision outcome
𝑓 (𝑧𝑧𝑧). For regression, 𝑓 (𝑧𝑧𝑧) =𝑤𝑤𝑤𝑇𝑧𝑧𝑧; for classification, 𝑓 (𝑧𝑧𝑧) = 111{𝑤𝑤𝑤𝑇𝑧𝑧𝑧 ≥ 𝜏}, for some𝑤𝑤𝑤 ∈ R𝑁≥0 (since
the true labels are weakly increasing in every attribute).

2.3 Three Learning/Game Problems
We will consider three different strategic learning systems/game settings:

(1) The conventional strategic (CS) problem where the agents and the decision maker play the
standard Stackelberg game without any added incentive mechanism, both being fully strategic.

(2) The limited strategic (LS) problem where the agents are fully strategic and expect the decision
maker to be strategic, but the latter does not anticipate the agents’ strategic behavior and
applies the optimal non-strategic decision rule, e.g., 𝑓 (𝑧𝑧𝑧) = 𝜃𝜃𝜃𝑇𝑧𝑧𝑧 in regression, as a sub-optimal
option.1

1The agents in LS behave the same as in CS problems. One reason to consider LS is because the CS problem is in general
NP-hard for the decision maker [12].



(3) The augmented strategic (AS) problem, where the agents and the decision maker play the
Stackelberg game with a subsidy mechanism.

We use the CS and LS problems as benchmarks to show how subsidy mechanisms influence the
equilibrium system outcome. We next detail the utility functions and the incentive mechanism.

2.4 Utilities and Optimal Strategies in Conventional & Limited Strategic Learning
In a conventional strategic learning problem, it is assumed that an agent has the following utility
function 𝑢𝐶 (𝑥𝑥𝑥,𝑎𝑎𝑎) = 𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎) − ℎ(𝑎𝑎𝑎), where the agent benefits from the decision outcome 𝑓 (𝑧𝑧𝑧) and
incurs a cost of ℎ(𝑎𝑎𝑎) := 𝑐𝑐𝑐𝑇𝑎𝑎𝑎.

Denote by 𝑎𝑎𝑎∗
𝐶
(𝑥𝑥𝑥) := argmax𝑎𝑎𝑎 𝑢𝐶 (𝑥𝑥𝑥,𝑎𝑎𝑎) the agent’s conventional best response or CS best response,

with ties broken in favor of its qualification status 𝜃𝜃𝜃𝑇𝑥𝑥𝑥 ′. In the same problem, denote 𝑦 ′
𝐶

as the CS
post-response label. The decision maker’s utility is

𝑈
(𝑐𝑙𝑠)
𝐶
(𝑓 ) =

∫
X
𝑃𝑟

(
𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐶 (𝑥𝑥𝑥)) = 𝑦 ′𝐶

)
𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 ;

𝑈
(𝑟𝑒𝑔)
𝐶
(𝑓 ) =

∫
X
E𝜂

[
−
(
𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐶 (𝑥𝑥𝑥)) − 𝑦 ′𝐶

)2]
𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 (3)

for strategic classification and regression, respectively. Here the decision maker aims to maximize
the classification accuracy and minimize the mean squared error in regression, respectively. We will
use 𝑓 ∗

𝐶
:= argmax𝑓 𝑈𝐶 (𝑓 ) to denote the decision maker’s optimal conventional strategic decision

rule, where the type of problem (cls vs. reg) will be clear from context. In the limited strategic (LS)
problem, the agents’ utilities and best responses are the same as the CS problem, but the decision
maker instead maximizes, respectively:

𝑈
(𝑐𝑙𝑠)
𝐿
(𝑓 ) =

∫
X
𝑃𝑟

(
𝑓 (𝑥𝑥𝑥) = 𝑦

)
𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 ;

𝑈
(𝑟𝑒𝑔)
𝐿
(𝑓 ) =

∫
X
E𝜂

[
−
(
𝑓 (𝑥𝑥𝑥) − 𝑦

)2]
𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 . (4)

REMARK 2. Our findings generalize to other cost functions such as L2 cost ℎ(𝑎𝑎𝑎) =
√
𝑎𝑎𝑎𝑇𝐶𝑎𝑎𝑎 or

quadratic cost ℎ(𝑎𝑎𝑎) = 1
2 | |𝑎𝑎𝑎 | |

2
2. More details are provided in the appendix.

2.5 Incentive Mechanisms and Utilities in Augmented Strategic Learning
Different from previous works, we focus on how an incentive mechanism can influence the strategic
interaction between the decision maker and the agents. We consider two types of mechanism
providers. We will start with the setting where the mechanism provider is the decision maker itself.
Our analysis and results are then extended in Section 6 to a second setting where the mechanism is
provided or implemented by a third-party organization, e.g., the government.

We focus on discount mechanisms that are based on providing a discount on actions, where the
mechanism provider has the ability to lower the cost of agents’ actions, e.g., making the cost of
getting tutoring or exam preparation cheaper during the school admission process.2 We use 𝐺 to
denote the discount mechanism where the designer chooses a rate discount value on each action
dimension △𝑐𝑐𝑐 = (△𝑐𝑖 )𝑀𝑖=1, △𝑐𝑖 < 𝑐𝑖 , and set a discount amount range [𝑐, 𝑐]. Then with 𝐺 , the agent’s
utility function in the augmented strategic learning problem becomes

𝑢𝐴 (𝑥𝑥𝑥,𝑎𝑎𝑎) = 𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎) − ℎ𝐴 (𝑎𝑎𝑎), where ℎ𝐴 (𝑎𝑎𝑎) = ℎ(𝑎𝑎𝑎) − △𝑐𝑐𝑐𝑇𝑎𝑎𝑎 · 111{△𝑐𝑐𝑐𝑇𝑎𝑎𝑎 ∈ [𝑐, 𝑐]}. (5)

2In the appendix, we discuss an alternative mechanism where the designer cannot change the action cost, and show that the
resulting mechanism design problem is computationally intractable.



With 𝐺 , 𝑎𝑎𝑎∗
𝐴
(𝑥𝑥𝑥) := argmax𝑎𝑎𝑎 𝑢𝐴 (𝑥𝑥𝑥,𝑎𝑎𝑎) denotes the agent’s augmented best response or AS best

response, with ties broken in favor of maximizing 𝜃𝜃𝜃𝑇𝑥𝑥𝑥 ′ unless otherwise suggested by the mechanism
designer. The designer incurs a subsidy cost

𝐻 (𝐺) =
∫
X
△𝑐𝑐𝑐𝑇𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥) · 111{△𝑐𝑐𝑐𝑇𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥) ∈ [𝑐, 𝑐]}𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 . (6)

Denote by 𝑦 ′
𝐴

the AS post-response label. The augmented utility of the decision maker is then:

𝑈
(𝑐𝑙𝑠)
𝐴
(𝑓 ) =

∫
X
𝑃𝑟

(
𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥)) = 𝑦 ′𝐴

)
𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 − 𝐻 (𝐺);

𝑈
(𝑟𝑒𝑔)
𝐴
(𝑓 ) =

∫
X
E𝜂

[
−
(
𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥)) − 𝑦 ′𝐴

)2]
𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 − 𝐻 (𝐺), (7)

for the classification and regression problems, respectively. In designing 𝐺 , we will consider three
commonly studied properties in the mechanism design literature:

(1) Individual rationality (IR): The agents are better off participating in the mechanism than not.
(2) Incentive compatibility (IC): The agents act in self-interest.
(3) Budget balance (BB): This only applies to the third party mechanism; see Section 6.

3 AUGMENTED STRATEGIC CLASSIFICATION
In this and the next section, we consider agents from a single demographic group. Throughout our
analysis, we will provide pictorial interpretations of our results, using an example with 2 action
dimensions: 𝑎1 is an improvement action and 𝑎2 is a gaming action.

We begin with some preliminaries. The next two lemmas characterize the magnitude and direction
of the agents’ best responses 𝑎𝑎𝑎∗𝑡 (𝑥𝑥𝑥) (𝑡 ∈ {𝐶,𝐴}) in the conventional and augmented strategic games.

LEMMA 3.1. For CS and AS classification,𝑤𝑤𝑤𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝑡 (𝑥𝑥𝑥)) = 𝜏 ⇔ 𝑎𝑎𝑎∗𝑡 (𝑥𝑥𝑥) ≠ 000,∀𝑡 .

PROOF. For ∀𝑎𝑎𝑎 such that 𝑤𝑤𝑤𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎) < 𝜏 , 𝑓 (𝑧𝑧𝑧) = 0; thus it is dominated by 000 due to ℎ(𝑎𝑎𝑎) ≥
ℎ(000) = 0 and ℎ𝐴 (𝑎𝑎𝑎) ≥ ℎ𝐴 (000) = 0. On the other hand, for ∀𝑎𝑎𝑎 such that𝑤𝑤𝑤𝑇 (𝑥𝑥𝑥 +𝑎𝑎𝑎∗) > 𝜏 , there exists an
𝛼 ∈ (0, 1) such that𝑤𝑤𝑤𝑇 (𝑥𝑥𝑥 + 𝛼𝑃𝑎𝑎𝑎) = 𝜏 . Both 𝑎𝑎𝑎 and 𝛼𝑎𝑎𝑎 guarantee 𝑓 (𝑧𝑧𝑧) = 1, and thus 𝑎𝑎𝑎 is dominated by
𝛼𝑎𝑎𝑎 due to ℎ(𝑎𝑎𝑎) > ℎ(𝛼𝑎𝑎𝑎) and ℎ𝐴 (𝑎𝑎𝑎) > ℎ𝐴 (𝛼𝑎𝑎𝑎) if 𝑎𝑎𝑎 ≠ 000. □

Lemma 3.1 describes the magnitude of the best response in CS and AS classification: it is such
that the feature 𝑧𝑧𝑧 reaches the decision boundary but not beyond, as going beyond the boundary only
increases the cost without affecting the decision. This is illustrated by the red arrow in Figure 2a.

LEMMA 3.2. For CS and AS classification,

(𝑎𝑎𝑎∗𝐶 (𝑥𝑥𝑥))𝑖 ≥ 0, if 𝑖 ∈ {argmax
𝑗

(𝑃𝑇𝑤𝑤𝑤) 𝑗/𝑐 𝑗 }; (𝑎𝑎𝑎∗𝑡 (𝑥𝑥𝑥))𝑖 = 0, o.w., ∀𝑥𝑥𝑥 .

(𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥))𝑖 ≥ 0, if 𝑖 ∈ {argmax
𝑗

(𝑃𝑇𝑤𝑤𝑤) 𝑗/(𝑐 𝑗 − △𝑐 𝑗 )}; (𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥))𝑖 = 0, o.w., ∀𝑥𝑥𝑥 . (8)

PROOF. Assume by contradiction 𝑎∗𝑗 > 0, 𝑗 ≠ 𝑖𝐶 = argmax𝑘
(𝑃𝑇𝑤𝑤𝑤)𝑘

𝑐𝑘
. By Lemma 3.1, as 𝑎𝑎𝑎∗ ≠ 000

we have 𝑤𝑤𝑤𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗) = 𝜏 . Denote �̃�𝑎𝑎 = 𝑎𝑎𝑎∗ − 𝑎∗𝑗𝑒𝑒𝑒 𝑗 +
𝑎∗𝑗 (𝑃𝑇𝑤𝑤𝑤) 𝑗
(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

𝑒𝑒𝑒𝑖𝐶 , where 𝑒𝑒𝑒𝑖 is the 𝑖-th orthonormal

base vector of R𝑀 . It is easy to see that 𝑤𝑤𝑤𝑇 (𝑥𝑥𝑥 + 𝑃�̃�𝑎𝑎) = 𝜏 and thus 𝑓 (𝑧𝑧𝑧) = 1, while ℎ(�̃�𝑎𝑎) < ℎ(𝑎𝑎𝑎∗),
indicating that �̃�𝑎𝑎 achieves a higher utility than 𝑎𝑎𝑎∗, contradicting the optimality of 𝑎𝑎𝑎∗. The proof for
AS classification is similar. □

Lemma 3.2 describes the directional properties of the best response: the agent will invest in
the action dimension(s) with the highest return on investment (𝑃𝑇𝑤𝑤𝑤) 𝑗/𝑐 𝑗 (in CS) or (𝑃𝑇𝑤𝑤𝑤) 𝑗/(𝑐 𝑗 −



(a) CS Best Response (b) Tie Breaking

Fig. 2. An illustration of a CS best response in classification,
where 𝑃 = [1, 1], 𝑤 = 1, 𝑃𝑇𝑤 = (1, 1). The solid blue line is the
decision boundary. In (a), the blue dashed line is an equal cost
contour; 𝑐2 < 𝑐1, thus gaming is cheaper than improving leading
to the best response shown in red. (b) illustrates tie breaking
in best responses, where 𝑐1 = 𝑐2, with the equal cost contour
shown with the yellow dashed line.

Fig. 3. An illustration of the
manipulation margin in classi-
fication, given by the shaded
region; every agent inside can
reach the boundary with an ac-
tion cost no more than 1.

△𝑐 𝑗 ) (in AS). Without loss of generality, we assume that the optimal CS action dimension 𝑖𝐶 :=
argmax𝑗 (𝑃𝑇𝑤𝑤𝑤) 𝑗/𝑐 𝑗 is unique. This property is also shown in Figure 2a, where 𝑖𝐶 = 2 is the action
with the highest return on investment.

We note that there may be multiple actions that are tied in their return on investment. In such cases,
we assume the agent follows the algorithm designer’s recommendation if any, and otherwise chooses
the one that leads to the maximum improvement (i.e., the one maximizing 𝜃𝜃𝜃𝑇𝑃𝑎𝑎𝑎). Figure 2b explains
this tie breaking: here 𝑐1 = 𝑐2 and every point on the yellow contour has equal cost and benefit to the
agent, making the agent indifferent between 𝑎𝑎𝑎 (1) ,𝑎𝑎𝑎 (2) ,𝑎𝑎𝑎 (3) . We take 𝑎𝑎𝑎 (3) , the largest improvement, to
be the agent’s choice.

Using Lemmas 3.1 and 3.2, we have

𝑎𝑎𝑎∗𝐶 (𝑥𝑥𝑥) =
𝜏 −𝑤𝑤𝑤𝑇𝑥𝑥𝑥

(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶
𝑒𝑒𝑒𝑖𝐶 , if 𝑥𝑥𝑥 ∈ M(𝑓 ); 𝑎𝑎𝑎∗𝐶 (𝑥𝑥𝑥) = 000, o.w., (9)

whereM(𝑓 ) :=
{
𝑥𝑥𝑥

���� (𝜏−𝑤𝑤𝑤𝑇𝑥𝑥𝑥)𝑐𝑖𝐶
(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

∈ (0, 1]
}

denotes the manipulation margin of 𝑓 : every agent in the

manipulation margin has non-zero best response to improve their decision outcome to 1. This is
illustrated in Figure 3.

In classification, if 𝑖𝐶 ≤ 𝑀+, we say the decision rule incentivizes improvement, otherwise we
say the decision rule incentivizes gaming. The theorem below shows conditions under which it is
impossible for the decision maker to have a decision rule that incentivizes improvement; the proof is
given in Appendix B.2.

THEOREM 3.3. Let 𝜅𝑖 denote the substitutability of action dimension 𝑖 [11, 12]. Formally,

𝜅𝑖 := min
𝑎𝑎𝑎∈R𝑀 ,𝑎𝑎𝑎≥0

𝑐𝑐𝑐𝑇𝑎𝑎𝑎

𝑐𝑖
, s.t. 𝑃𝑎𝑎𝑎 − 𝑝𝑝𝑝𝑖 ≥ 0, (10)

where 𝑝𝑝𝑝𝑖 is the 𝑖-th column of 𝑃 . If 𝜅𝑖 = 1, then there exists a𝑤𝑤𝑤 that can incentivize action dimension
𝑖, and the 𝑤𝑤𝑤 can be found in polynomial time. On the other hand, if 𝜅𝑖 < 1,∀𝑖 ≤ 𝑀+, then there
always exist linear combinations of gaming actions that weakly dominate every improvement action,
in which case there is no 𝑓 that can incentivize improvement, and the decision maker’s CS optimal
strategy 𝑓 ∗

𝐶
satisfies𝑤𝑤𝑤 = 𝜃𝜃𝜃 .



We next consider designing an incentive mechanism, with the decision rule 𝑓 treated as given.

LEMMA 3.4. To induce an agent to take an AS best response with non-zero investment in action
dimension 𝑗 ≤ 𝑀+, i.e., [𝑎𝑎𝑎∗

𝐴
(𝑥𝑥𝑥)] 𝑗 > 0, the discount value △𝑐 𝑗 should satisfy (𝑃𝑇𝑤𝑤𝑤) 𝑗/(𝑐 𝑗 − △𝑐 𝑗 ) ≥

(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶 /(𝑐𝑖𝐶 ), i.e., △𝑐 𝑗 ≥ 𝑐 𝑗 −
(𝑃𝑇𝑤𝑤𝑤) 𝑗
(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

𝑐𝑖𝐶 .

Based on Lemma 3.4, we denote the minimum effective discount value as

△𝑐∗𝑗 := 𝑐 𝑗 −
(𝑃𝑇𝑤𝑤𝑤) 𝑗
(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

𝑐𝑖𝐶 . (11)

Intuitively, Lemma 3.4 states that to induce a best response in action 𝑗 , the discount has to make 𝑗 the
action with the highest (potentially tied) return on investment. Figure 4a illustrates an example of how
the discount mechanism with minimum effective discount value works. By choosing △𝑐1 = △𝑐∗1, the
two actions have the same return on investment; the agents choose𝑎𝑎𝑎∗

𝐴
(𝑥𝑥𝑥), the maximum improvement

action, in this case. In contrast, the CS action 𝑎𝑎𝑎∗
𝐶
(𝑥𝑥𝑥) is a gaming action.

Before we move on to the optimal mechanism design, we define the subsidy surplus.

DEFINITION 1. In classification the subsidy surplus is

𝑆 (𝑓 ,𝐺) =
∫
X

[
𝑃𝑟 (𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥)) = 𝑦 ′𝐴) − 𝑃𝑟 (𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐶 (𝑥𝑥𝑥)) = 𝑦 ′𝐶 )

]
𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 − 𝐻 (𝐺), (12)

where 𝑦 ′𝑡 denotes the post-response label such that 𝑃𝑟 (𝑦 ′𝑡 = 1) = 𝑙 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝑡 (𝑥𝑥𝑥)),∀𝑡 ∈ {𝐶,𝐴}.

ALGORITHM 1: Find a 𝐺 ≠ 0
that is IC, IR and 𝑆 (𝑓 ,𝐺) > 0 for
Classification
𝑥𝑥𝑥1 ← argmin𝑥𝑥𝑥 :𝑤𝑤𝑤𝑇𝑥𝑥𝑥=𝜏 𝜃𝜃𝜃

𝑇𝑥𝑥𝑥 ;
𝑖𝐶 ← argmax𝑗 (𝑃𝑇𝑤𝑤𝑤) 𝑗/𝑐 𝑗 ;
for 𝑗 = 1 : 𝑀+ do
△𝑐𝑐𝑐 ← 000; 𝑐 ← 0; 𝑙+ ← 0;

△𝑐 𝑗 ← 𝑐 𝑗 −
(𝑃𝑇𝑤𝑤𝑤) 𝑗
(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

𝑐𝑖𝐶 ;
Define function
𝑎𝑎𝑎(𝛿) := 𝛿𝑒𝑒𝑒 𝑗 − 𝛿

(𝑃𝑇𝑤𝑤𝑤) 𝑗
(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

𝑒𝑒𝑒𝑖𝐶 ;

𝑙+ (𝛿) := 𝑙 (𝜃𝜃𝜃𝑇𝑥𝑥𝑥1)−𝑙 (𝜃𝜃𝜃𝑇𝑥𝑥𝑥1−𝑎𝑎𝑎(𝛿));

𝛿∗ ← argmax𝛿 𝑠 .𝑡 . 𝑙+ (𝛿) ≥
𝛿△𝑐 𝑗 ;

if 𝛿∗ = 0 then
Go back to for loop

end
𝑐 ← min{𝛿∗, 1/(𝑐 𝑗 −△𝑐 𝑗 )} · △𝑐 𝑗 ;
Return (△𝑐𝑐𝑐, 0, 𝑐)

end
Return (000, 0, 0)

The integral part in 𝑆 (𝑓 ,𝐺) is the benefit gain of the
decision maker and the value in the square bracket is
the individual subsidy benefit. The decision maker’s
problem is equivalent to maximizing 𝑆 (𝑓 ,𝐺) under IC
and IR.

THEOREM 3.5. For general 𝑓 (𝑧𝑧𝑧) = 111{𝑤𝑤𝑤𝑇𝑧𝑧𝑧 ≥ 𝜏}, 𝑝,
and 𝑙 functions, finding the optimal IC and IR discount
mechanism requires solving non-convex optimization
problems and thus is NP-hard.

While finding the optimal mechanism under IC and
IR constraints is NP-hard, we can develop an efficient
algorithm (Algorithm 1) for a special case when the
likelihood function 𝑙 is convex.

THEOREM 3.6. Algorithm 1 runs in polynomial
time, and if 𝑙 is convex on [0,max𝑥𝑥𝑥 :𝑤𝑤𝑤𝑇𝑥𝑥𝑥=𝜏 𝑙 (𝑥𝑥𝑥)], then
any 𝐺 ≠ 0 returned by Algorithm 1 is IC, IR, and
satisfies 𝑆 (𝑓 ,𝐺) ≥ 0.

From Algorithm 1 we see that the decision maker
prefers subsidizing agents that are “closer” to the
boundary when 𝑙 is convex on [0,max𝑥𝑥𝑥 :𝑤𝑤𝑤𝑇𝑥𝑥𝑥=𝜏 𝑙 (𝑥𝑥𝑥)].
This is because when 𝑙 is convex, the subsidy bene-
fit becomes concave while the subsidy cost is linear
in the “distance to the boundary”; thus the agents close enough to the boundary can have positive
individual subsidy surplus; Figure 5 provides an illustration of this.



The convexity requirement of 𝑙 on a low range is satisfied in real-world datasets such as the FICO
credit score dataset, in which the likelihood function 𝑙 frequently has an S-shape (see Section 7). We
discuss the case of other likelihood function types (including concave) in the appendix. Also note
that in Algorithm 1 the mechanism designer places discount on only one dimension. This is because
even though it technically can set the discount △𝑐𝑖 > 0 for multiple improvement actions, ultimately
the agent either finds the dimension with the highest return on investment or breaks ties in favor of
the largest improvement.3

ALGORITHM 2: A 𝐺 that is IC,
IR and 𝑆 (𝑓 ,𝐺) ≥ 0 for Classifica-
tion when𝑤𝑤𝑤 = 𝜃𝜃𝜃

𝑖𝐴 ← argmax𝑗≤𝑀+ (𝑃
𝑇𝜃𝜃𝜃 ) 𝑗/𝑐 𝑗 ;

△𝑐𝑐𝑐 ← 000; △𝑐𝑖𝐴 ← 𝑐𝑖𝐴 −
(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐴
(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐶

𝑐𝑖𝐶 ;
Define functions
𝑠1 (𝑟 ) := 𝑙 (𝜏) − 𝑙 (𝑟 ) − (𝜏−𝑟 ) △𝑐𝑖𝐴(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐴

;

𝑠2 (𝑟 ) := 𝑙 (𝜏) + 𝑙 (𝑟 ) − 1 − (𝜏−𝑟 ) △𝑐𝑖𝐴(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐴
;

𝑟 ← argmin𝑟 𝑠 .𝑡 . 𝑠1 (𝑟 ) ≥ 0;
if 𝑙 (𝑟 ) < 0.5 then

𝑟 ← argmin𝑟 𝑠 .𝑡 . 𝑠2 (𝑟 ) ≥ 0;
end
𝑐 = (𝜏 − 𝑟 )△𝑐𝑖𝐴/(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐴 ;
Return (△𝑐𝑐𝑐, 0, 𝑐).

The optimal mechanism can be found more ef-
ficiently for the special case when𝑤𝑤𝑤 = 𝜃𝜃𝜃 in 𝑓 (this
happens, e.g., in the optimal LS strategy as shown
in Lemma B.1 in the appendix, or in the optimal
CS strategy when 𝜅𝑖 < 1,∀𝑖 ≤ 𝑀+ in Theorem 3.3).
This can be done in a fixed number of steps (faster
than polynomial) using Algorithm 2.

THEOREM 3.7. If 𝑤𝑤𝑤 = 𝜃𝜃𝜃 in 𝑓 , 𝑓 incentivizes
gaming, and 𝑙 is convex on [0, 𝜏], then Algorithm 2
finds a𝐺 that is IC, IR, and satisfies 𝑆 (𝑓 ,𝐺) ≥ 0. In
addition, algorithm 2 finds the optimal 𝐺 if 𝑙 (𝜏) −
𝑙 (𝑟

𝑓
) ≤

(𝜏−𝑟 𝑓 ) △𝑐∗𝑖𝐴
(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐴

, where 𝑟
𝑓
= min𝑥𝑥𝑥 ∈M(𝑓 ) 𝜃𝜃𝜃𝑇𝑥𝑥𝑥 .

Intuitively, the condition 𝑙 (𝜏) − 𝑙 (𝑟
𝑓
) ≤

(𝜏−𝑟 𝑓 ) △𝑐∗𝑖𝐴
(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐴

indicates the subsidy cost is larger than the subsidy gain for an agent on the “far side”
boundary ofM(𝑓 ) in (9). This holds when improvement costs are much larger than gaming costs, so
that the discount payment is higher than the resulting benefit from the agent’s improvement. Such a
condition is needed to enable the efficient calculation of the optimal mechanism for the following
reason. If the condition does not hold, the mechanism can further increase the cost discount rate on
the actions and let agents with a pre-response attribute such that 𝜃𝜃𝜃𝑇𝑥𝑥𝑥 < 𝑟

𝑓
to also take improvement

actions. However, this would again make the problem hard for the decision maker, since it has to
jointly optimize △𝑐 𝑗 and 𝑐, and such optimization is non-convex.

We note that the 𝑠1 and 𝑠2 functions in Algorithm 2 capture the following properties of individual
subsidy surplus: for agents in M(𝑓 ), these agents’ qualification status improvement equals the
individual subsidy benefit 𝑙 (𝜃𝜃𝜃𝑇𝑥𝑥𝑥 ′

𝐴
) − 𝑙 (𝜃𝜃𝜃𝑇𝑥𝑥𝑥 ′

𝐶
), but for agents not inM(𝑓 ), the individual subsidy

benefit is not the qualification status improvement, but instead 𝑙 (𝜃𝜃𝜃𝑇𝑥𝑥𝑥 ′
𝐴
) − [1 − 𝑙 (𝜃𝜃𝜃𝑇𝑥𝑥𝑥 ′

𝐶
)] since these

agents are supposed to receive 0 decision outcomes (rejections) in the CS problem. The green curve
in Figure 5 also illustrates the above.

3When placing discounts on multiple actions, finding the optimal tie-breaking rule is a non-convex problem.



(a) Discount Mechanism (b) Designer’s Suggestion

Fig. 4. An illustration of the discount mechanism in classifica-
tion, 𝑃 = [1, 1],𝑤 = 1, 𝑃𝑇𝑤 = (1, 1), 𝑐2 < 𝑐1, the red dashed line
is the discounted equal cost contour with a minimum effective
discount. In Figure 4b, the 𝑐 is of a smaller value, and the equal
cost contour has a different shape. The decision maker sug-
gests the agents choose 𝑎𝑎𝑎∗

𝐶
(𝑥𝑥𝑥) instead of 𝑎𝑎𝑎 (3) in tie breaking in

Algorithm 1 and 2 when 𝑙 is convex.

Fig. 5. A simplified illustration of
the individual subsidy benefit and
cost in the mechanism. Region 1
(resp. 2) corresponds to agents with
subsidy surplus (resp. deficit). The
third party (Section 6) incentivizes
region 2 agents for social well-being
objectives. 𝑟 𝑓 represents the lower
boundary ofM(𝑓 ).

4 AUGMENTED STRATEGIC REGRESSION
We now turn to the strategic regression problem. For CS and AS regression, the best response
directions are the same as CS and AS classification, as given in Lemma 3.2.

However, different from the strategic classification problem, the agents can have best responses
with infinite magnitude. For example, if (𝑃𝑇𝑤𝑤𝑤)𝑖𝐶 ≥ 𝑐𝑖𝐶 , the agent will invest an infinite amount in
action 𝑖𝐶 . To handle this issue, we assume that the agents’ actions are bounded by an action budget
ℎ(𝑎𝑎𝑎) ≤ 𝐵 in CS (and LS) regression, and ℎ𝐴 (𝑎𝑎𝑎) ≤ 𝐵 in AS regression.4

Given these bounds on the agents’ budgets, the agents’ best responses can be characterized
as follows: if (𝑃𝑇𝑤𝑤𝑤)𝑖𝐶 ≥ 𝑐𝑖𝐶 , then 𝑎𝑎𝑎∗

𝐶
(𝑥𝑥𝑥) = 𝐵

𝑐𝑖𝐶
𝑒𝑒𝑒𝑖𝐶 ; otherwise 𝑎𝑎𝑎∗

𝐶
(𝑥𝑥𝑥) = 000. Similarly, let 𝑖𝐴 =

argmax𝑗 (𝑃𝑇𝑤𝑤𝑤) 𝑗/(𝑐 𝑗 − △𝑐 𝑗 ), if (𝑃𝑇𝑤𝑤𝑤)𝑖𝐴 ≥ 𝑐𝑖𝐴 − △𝑐𝑖𝐴 . Then, the AS-discount best response is
𝑎𝑎𝑎∗
𝐴
(𝑥𝑥𝑥) = 𝐵

𝑐𝑖𝐴−△𝑐𝑖𝐴
𝑒𝑒𝑒𝑖𝐴 ; otherwise 𝑎𝑎𝑎∗

𝐴
(𝑥𝑥𝑥) = 000.

An interesting difference to highlight is that the agents’ best responses in strategic classification
depend on both the pre-response attributes of the agents and the decision rule, whereas in strategic
regression, the best responses are the same for all agents and only depend on the decision rule.

In this strategic regression setting, we will say 𝑓 incentivizes 0 responses if 𝑎𝑎𝑎∗
𝐶
(𝑥𝑥𝑥) = 000. Otherwise,

if 𝑖𝐶 ≤ 𝑀+ (resp. 𝑖𝐶 > 𝑀+), we say 𝑓 incentivizes improvement (resp. gaming).
If 𝑓 incentivizes non-zero responses (improvement or gaming), the cost discount rates will again

follow Lemma 3.4, with the minimum effective discount rate still the same as in (11); otherwise,
the minimum effective cost discount rate on action 𝑗 will be such that (𝑃𝑇𝑤𝑤𝑤) 𝑗 = (𝑐 𝑗 − △𝑐 𝑗 ),
△𝑐∗𝑗 = max{𝑐 𝑗 − 𝑐𝑖𝐶 (𝑃𝑇𝑤𝑤𝑤) 𝑗/(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶 , 𝑐 𝑗 − (𝑃𝑇𝑤𝑤𝑤) 𝑗 }.

Using this, the error incurred by the designer on an agent with pre-response attributes 𝑥𝑥𝑥 will consist
of two parts, an equilibrium coefficient error and an inevitable error due to noises,

E(𝑓 ,𝑎𝑎𝑎,𝑥𝑥𝑥) = [𝑤𝑤𝑤𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎) − 𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎)]2 + 𝑒𝑟𝑟 (𝜂). (13)

Note that although the agents’ best responses are independent of 𝑥𝑥𝑥 , the equilibrium individual errors
depend on 𝑥𝑥𝑥 for any𝑤𝑤𝑤 ≠ 𝜃𝜃𝜃 .

We next consider the problem of designing an incentive (discount) mechanism.

4Such bound was not needed in the classification setting, as the fact that 𝑓 (𝑧𝑧𝑧) ≤ 1 naturally provided this.



THEOREM 4.1. For general 𝑓 (𝑧𝑧𝑧) = 𝑤𝑤𝑤𝑇𝑧𝑧𝑧 and 𝑝 (𝑥𝑥𝑥), finding the optimal IC, IR, and discount
mechanism requires solving non-convex optimization problems and thus is NP-hard.

(a) CS Best Response (b) Discount Mechanism

Fig. 6. An illustration of the CS best response and the
discount mechanism in regression, where the green
dashed lines are equal decision outcome contours, 𝑃 =

[1, 1],𝑤 = 1, 𝑃𝑇𝑤 = (1, 1), 𝑐2 < 𝑐1, the red dashed line
is the discounted equal cost contour with a minimum
effective discount.

The difficulty of designing incentive
mechanisms for strategic regression prob-
lems stems from the fact that the equilib-
rium individual errors depend on𝑥𝑥𝑥 and thus
the overall prediction error depends largely
on 𝑝 (𝑥𝑥𝑥). Moreover, the individual equilib-
rium error is not monotone in any action
dimension for a general 𝑤𝑤𝑤 ≠ 𝜃𝜃𝜃 . As a re-
sult, we can not follow the same methods
used in the strategic classification setting
to find sufficient conditions that simplify
the search for the optimal mechanism.

However, the mechanism designer can
now leverage the fact that the agents have
identical best responses to facilitate the
search for IC and IR discount mechanisms
that satisfy 𝑆 (𝑓 ,𝐺) ≥ 0, as shown in the following theorem.

THEOREM 4.2. Suppose the computation of integration
∫
X E(𝑓 ,𝑎𝑎𝑎,𝑥𝑥𝑥)𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥,∀𝑎𝑎𝑎 can be done in

finite time. Then, Algorithm 3 runs in polynomial time and any 𝐺 ≠ 0 it returns is IC, IR and satisfies
𝑆 (𝑓 ,𝐺) > 0.

The finite computation time assumption is met, for example, when the distribution X is discrete or
when 𝑝 (𝑥𝑥𝑥) is uniform.

If 𝑓 incentivizes non-zero responses, then Algorithm 3 sets △𝑐 𝑗 at the minimum effective discount
value, and sets no discount on other actions. Then, it chooses 𝑐 = 0, 𝑐 = 𝛼𝐵△𝑐 𝑗

𝑐 𝑗−△𝑐 𝑗 so that it incentivizes

all agents to take an AS best response 𝑎𝑎𝑎∗
𝐴
(𝑥𝑥𝑥) = 𝛼 𝐵

𝑐 𝑗−△𝑐 𝑗 𝑒𝑒𝑒 𝑗 + (1 − 𝛼) 𝐵
𝑐𝑖𝐶

𝑒𝑒𝑒𝑖𝐶 .5 If 𝑓 incentivizes 0

responses, then the decision maker can choose △𝑐 𝑗 = 𝑐 𝑗 − (𝑃𝑇𝑤𝑤𝑤) 𝑗 and set 𝑐 = 𝛼𝐵 in Algorithm 3 so
that 𝑎𝑎𝑎∗

𝐴
(𝑥𝑥𝑥) = 𝛼𝑒𝑒𝑒 𝑗 .

Below, we also discuss the cases when 𝑤𝑤𝑤 = 𝜃𝜃𝜃 , e.g., the decision maker’s optimal LS strategy
𝑓 ∗
𝐿
(𝑧𝑧𝑧) = 𝜃𝜃𝜃𝑇𝑧𝑧𝑧.6

LEMMA 4.3. If𝑤𝑤𝑤 = 𝜃𝜃𝜃 in 𝑓 and 𝑓 incentivizes 0 responses or improvement, then the optimal IC
and IR discount mechanism is 𝐺 = 0.

This is straightforward since the decision maker cannot further lower the error from 𝑒𝑟𝑟 (𝜂) and
thus does not want to pay the agents.

If 𝑓 incentivizes gaming, then the equilibrium individual error becomes, E(𝑓 ,𝑎𝑎𝑎𝐶 ,𝑥𝑥𝑥) = [𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 +
𝑃𝑎𝑎𝑎∗

𝐶
) − 𝜃𝜃𝜃𝑇𝑥𝑥𝑥]2 + 𝑒𝑟𝑟 (𝜂) = (𝜃𝜃𝜃𝑇𝑃𝑎𝑎𝑎∗

𝐶
)2 + 𝑒𝑟𝑟 (𝜂), which is independent of the pre-response attribute 𝑥𝑥𝑥 .

THEOREM 4.4. If𝑤𝑤𝑤 = 𝜃𝜃𝜃 in 𝑓 , and 𝑓 incentivizes gaming, then the optimal IC, IR, and BB 𝐺 ≠ 0
can be found as follows:

Choose 𝑖𝐴 = argmax𝑗≤𝑀+ (𝑃
𝑇𝜃𝜃𝜃 ) 𝑗/𝑐 𝑗 as the target dimension, and set △𝑐𝑖𝐴 = △𝑐∗𝑖𝐴 .

5Similar to the classification setting, we let the algorithm put discount on one action dimension. Any 𝑐 ≤ 𝑐 is equivalent to
both the agents and the designer here since the agent will by default use the discount amount 𝑐 for the maximum improvement.
The algorithm can return on condition 𝑆 > 0 as well.
6The optimal CS strategy in regression does not guarantee 𝑤𝑤𝑤 = 𝜃𝜃𝜃 when incentivizing improvement is impossible.



Then, derive the alternative form of individual subsidy surplus as 𝑠 (𝛼) = (2𝛼 − 𝛼2) (𝜃𝜃𝜃𝑇𝑃𝑎𝑎𝑎∗
𝐶
)2 −

𝛼𝐵△𝑐𝑖𝐴 (𝑐𝑖𝐴 − △𝑐𝑖𝐴 )−1 and get 𝛼∗ = argmax𝛼≤1 𝑠 (𝛼) = 1 − 𝐵△𝑐𝑖𝐴 (𝑐𝑖𝐴−△𝑐𝑖𝐴 )
−1

2(𝜃𝜃𝜃𝑇 𝑃𝑎𝑎𝑎∗
𝐶
)2 . Then find the optimal 𝑐

by 𝑐 = 𝛼∗𝐵△𝑐𝑖𝐴 (𝑐𝑖𝐴 − △𝑐𝑖𝐴 )−1.

ALGORITHM 3: Grid Search an
IC, IR and 𝑆 (𝑓 ,𝐺) > 0 Mechanism
for Regression

Choose 𝜖 > 0;
𝑎𝑎𝑎𝐶 ← 𝐵

𝑐𝑖𝐶
𝑒𝑒𝑒𝑖𝐶 ; 𝑆𝑚𝑎𝑥 ← 0;

𝑎𝑛𝑠 ← (000, [0, 0]);
𝐸𝐶 ←

∫
X E(𝑓 ,𝑎𝑎𝑎𝐶 ,𝑥𝑥𝑥)𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 ;

for 𝑗 = 1 : 𝑀+ do
△𝑐𝑐𝑐 ← 000; 𝑆 ← 0; 𝛼 ← 𝜖;

△𝑐 𝑗 ← 𝑐 𝑗 −
(𝑃𝑇𝑤𝑤𝑤) 𝑗
(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

𝑐𝑖𝐶 ;

while 𝑆 ≥ 0 do
𝛼 ← 𝛼 + 𝜖; 𝑐 =

𝛼𝐵△𝑐 𝑗
𝑐 𝑗−△𝑐 𝑗 ;

𝑎𝑎𝑎𝐴 =

𝛼 𝐵
𝑐 𝑗−△𝑐 𝑗 𝑒𝑒𝑒 𝑗 + (1 − 𝛼)

𝐵
𝑐𝑖𝐶

𝑒𝑒𝑒𝑖𝐶 ;

𝐸𝐴 ←
∫
X E(𝑓 ,𝑎𝑎𝑎𝐴,𝑥𝑥𝑥)𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 ;

𝑆 ← 𝐸𝐶 − 𝐸𝐴 − 𝑐;
end
if 𝑆 > 𝑆𝑚𝑎𝑥 then

𝑆𝑚𝑎𝑥 ← 𝑆;
𝑎𝑛𝑠 ← (△𝑐𝑐𝑐, [0, 𝑐]);

end
end
Return 𝑎𝑛𝑠.

An interesting observation is that the decision
maker does not try to completely remove gaming with
the discount mechanism. This is because when the
error drops to a sufficiently low level, the marginal
subsidy benefit becomes lower than the marginal sub-
sidy cost, which is a constant.

5 DEMOGRAPHIC GROUPS AND SOCIAL
WELL-BEING
Consider now the case where agents come from two
demographic groups distinguished by a sensitive at-
tribute 𝑑 ∈ {1, 2} (e.g., gender, race), which is not a
part of the 𝑁 skill-related attributes (not in 𝑥𝑥𝑥) and is
never influenced by an agent’s action 𝑎𝑎𝑎. Suppose the
decision rule is not allowed to use the sensitive at-
tribute as input but that it can be used to design group
specific subsidies, so that different groups are subject
to different incentive mechanisms provided the group
identities are truthfully revealed.

We are particularly interested in how the subsidy
mechanisms and their corresponding AS outcomes
influence the fairness of the system. Below we intro-
duce a number of commonly used definitions on group
differences and social well-being measures related to
fairness. Here, the term well-being is used to refer to a
broader set of metrics defined below whereas welfare
is used in the narrower sense of sum utility.

5.1 Group Differences
Without loss of generality, we will refer to group 1 as the advantaged group and 2 as the disadvantaged
group.7 We consider the following set of definitions; the first is new to the best of our knowledge and
the other two were introduced in [14].

DEFINITION 2 (GROUP DISADVANTAGES). We say group 2 is

(1) disadvantaged in attributes in classification if 𝐹 (2) (𝑙) > 𝐹 (1) (𝑙) for 𝑙 ∈ (0, 1), where 𝐹 (𝑑)

is the cumulative density function (cdf) of the conditional pre-response qualification status
conditioned on 𝑑 ∈ {1, 2}; the same in regression if 𝐹 (2) (𝑦) > 𝐹 (1) (𝑦) for 𝑦 ∈ (0,max𝑥𝑥𝑥 𝑞(𝑥𝑥𝑥)).

(2) disadvantaged in positive individuals (in classification) if 𝐹 (2)+ (𝑙) > 𝐹
(1)
+ (𝑙), where 𝐹

(𝑑)
+ is the

cdf of conditional pre-response qualification status (𝑙 (𝑥𝑥𝑥) |𝑌 = 1, 𝐷 = 𝑑), 𝑑 ∈ {1, 2}.
(3) disadvantaged in action cost if ℎ (2) (𝑎𝑎𝑎) > ℎ (1) (𝑎𝑎𝑎),∀𝑎𝑎𝑎 ≠ 000, where ℎ (𝑑) denotes the action cost

functions with sensitive attribute 𝑑 ∈ {1, 2}. Moreover, the minimum effective discount values
satisfy (△𝑐 (1) )∗𝑖 ≤ (△𝑐 (2) )∗𝑖 ,∀𝑖.

7The group index shows up in superscripts.



5.2 Social Well-being Metrics
We will use the equilibrium qualification status E[𝑦 ′𝑡 ], 𝑡 ∈ {𝐶,𝐴} as an efficiency oriented social
well-being metric. We also introduce fairness oriented well-being metrics.

DEFINITION 3 (QUALITY GAIN). Quality gain measures the increase in agents’ expected qualifi-
cation status (positive rate in classification) in the response phase:

△𝑄𝑡 := E[𝑌 ′𝑡 ] − E[𝑌𝑡 ]; △𝑄𝑑
𝑡 := E[𝑌 ′𝑡 |𝐷 = 𝑑] − E[𝑌 |𝐷 = 𝑑]; ∀𝑑 ∈ {1, 2},∀𝑡 ∈ {𝐴,𝐶}. (14)

𝛾
𝑄
𝑡 (𝑓 ,𝐺) := △𝑄

(1)
𝑡 − △𝑄

(2)
𝑡 further measures the group difference in this gain under game type 𝑡 .

Clearly, if 𝑓 incentivizes improvement, then △𝑄𝐶 > 0; if 𝐺 ≠ 0 incentivizes improvement, then
△𝑄𝐴 > 0. What’s more interesting is to compare the quality gains across different groups and under
different game types.

DEFINITION 4 (CLASSIFICATION FAIRNESS). Considering two commonly used fairness criteria
in classification, Equal Opportunity (EO) (equalized true positive rates) [8] and Demographic Parity
(DP) (equalized positive decision rates), and define their respective group differences:

𝛾𝐸𝑂𝑡 (𝑓 ,𝐺) := 𝑃𝑟 (𝑓 (𝑧𝑧𝑧𝑡 ) = 1|𝑌 ′𝑡 = 1, 𝐷 = 1) − 𝑃𝑟 (𝑓 (𝑧𝑧𝑧𝑡 ) = 1|𝑌 ′𝑡 = 1, 𝐷 = 2), 𝑡 ∈ {𝐴,𝐶}; (15)

𝛾𝐷𝑃
𝑡 (𝑓 ,𝐺) := 𝑃𝑟 (𝑓 (𝑧𝑧𝑧𝑡 ) = 1|𝐷 = 1) − 𝑃𝑟 (𝑓 (𝑧𝑧𝑧𝑡 ) = 1|𝐷 = 2). (16)

5.3 Fairness Issues in the CS/LS Equilibrium
We start with a number of fairness limitations of the CS equilibria in classification and regression;
the same results apply to LS.

THEOREM 5.1. In the equilibrium CS outcome of classification where two groups have the same
action cost, then (i) if group 2 is disadvantaged in attributes, then there is a DP gap no matter if 𝑓
incentivizes improvement or gaming; and (ii) if group 2 is disadvantaged in positive individuals, then
there is an EO gap if 𝑓 incentivizes gaming but not necessarily if 𝑓 incentivizes improvement.

Part (1) is a direct result of 1 − 𝐹 (1) (𝑙) > 1 − 𝐹 (2) (𝑙), and the two groups have the same implicit
threshold, which is the lower side boundary of their manipulation margins (since every agent above
it will manipulate to get a positive decision outcome), andM (1) (𝑓 ) =M (2) (𝑓 ) since the two groups
have the same action cost. For part (2), whether there is a quality gain gap entirely depends on
whether 𝑓 incentivizes improvement and the distribution of each group in its manipulation margin
M (𝑑) (𝑓 ). For example, we can have 𝑃𝑟 (𝑥𝑥𝑥 ∈ M (2) (𝑓 ) |𝐷 = 2) > 𝑃𝑟 (𝑥𝑥𝑥 ∈ M (1) (𝑓 ) |𝐷 = 1) and thus
group 2 have more agents to improve and may have an inverse quality gain gap.

THEOREM 5.2. In the equilibrium CS outcome of classification and regression, if group 2 is
disadvantaged in action cost but has the same pre-response attribute distribution as group 1 (for
positive individuals as well), then there is (i) a quality gain gap only if 𝑓 incentivizes improvement;
(ii) an EO gap no matter if 𝑓 incentivizes improvement or gaming; and (ii) a DP gap no matter if 𝑓
incentivizes improvement or gaming.

To understand the above result, we note that if group 2 is disadvantaged in cost, we haveM (1) (𝑓 ) ⊇
M (2) (𝑓 ), so even when group 2 has the same pre-response attribute distribution, a larger portion of
group 1 are accepted in the equilibrium, causing the DP gap. This is similar to the reason of an EO
gap when 𝑓 incentivizes gaming. If 𝑓 incentivizes improvement, then a larger portion of group 1 will
improve and be accepted in the equilibrium, causing a quality gain gap and an EO gap simultaneously.



5.4 Influence of the Discount Mechanism on Fairness
Here we analyze how the discount mechanism 𝐺 alone may influence the fairness.

THEOREM 5.3. If group 2 is disadvantaged in cost but has the same pre-response attribute
distribution, then a rational decision maker will choose a 𝐺 that widens the quality gain gap in both
classification and regression.

Theorem 5.3 means that a rational mechanism for the decision maker is always making the system
more unfair when the quality gain gap is the metric. The rational mechanism influences the DP and
EO gap but does not always make them worse.

6 THIRD PARTY MECHANISMS
We next discuss an alternative system where the discount mechanism is implemented by a third
party, who subsidizes the agents’ improvement actions in the same way as described in Section 2 and
charges the decision maker a tax T (𝐺) for improved decision performance. The decision maker’s
AS utility in this alternative system is

𝑈
(𝑐𝑙𝑠)
𝐴
(𝑓 ) =

∫
X
𝑃𝑟

(
𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥)) = 𝑦 ′𝐴

)
𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 − T (𝐺),

𝑈
(𝑟𝑒𝑔)
𝐴
(𝑓 ) =

∫
X
E𝜎

[
−
(
𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥)) − 𝑦 ′𝐴

)2]
𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 − T (𝐺) .

The IR condition for the decision maker is 𝑈 (𝑐𝑙𝑠)
𝐴
(𝑓 ) ≥ 𝑈

(𝑐𝑙𝑠)
𝐶
(𝑓 ) or 𝑈 (𝑟𝑒𝑔)

𝐴
(𝑓 ) ≥ 𝑈

(𝑟𝑒𝑔)
𝐶
(𝑓 ). In

addition, we also consider the common mechanism criterion of budget balance: if the charged price
is no less than the subsidy cost of the third party, then the mechanism is (weakly) budget balanced:

DEFINITION 5 (BUDGET BALANCE). The third party is considered (weakly) budget balanced if
T (𝐺) ≥ 𝐻 (𝐺).

Fig. 7. An illustration of the alternative three-party
augmented strategic learning system.

The mechanism designer can induce truthful
revelation of the sensitive attribute by the agents
as follows: (1) Let 𝐺 consist of two group-
specific mechanisms 𝐺 (1) and 𝐺 (2) ; agents who
do not reveal their 𝑑 participate in 𝐺 (1) ; (2) En-
sure that △𝑐 (1)

𝑖
≤ △𝑐 (2)

𝑖
,∀𝑖 and (△𝑐𝑐𝑐 (1) )𝑇𝑎𝑎𝑎 ∈

[𝑐 (1) , 𝑐 (1) ] ⇒ (△𝑐𝑐𝑐 (2) )𝑇𝑎𝑎𝑎 ∈ [𝑐 (2) , 𝑐 (2) ]. Then,
group 1 agents are indifferent about revealing
𝑑 while revealing 𝑑 is the dominant strategy for
group 2 agents. Figure 7 illustrates the three-
party AS learning system.

6.1 Objectives of the Third Party
We introduce two types of third party mechanism designers, efficiency oriented and fairness oriented.
An efficiency oriented third party tries to maximize the equilibrium social qualification status
𝑊
(𝑐𝑙𝑠)
𝑒 𝑓 𝑓
(𝑓 ,𝐺) := 𝑃𝑟 (𝑦 ′

𝐴
= 1), 𝑊 (𝑟𝑒𝑔)

𝑒 𝑓 𝑓
(𝑓 ,𝐺) := E[𝑦 ′

𝐴
]; we call the corresponding equilibrium AS

outcome the efficient AS outcome or AS-eff in short. On the other hand, a fairness oriented third
party aims to minimize a non-negative and non-zero linear combination of the fairness gaps, or
equivalently, maximizing

𝑊
(𝑐𝑙𝑠)
𝑓 𝑎𝑖𝑟
(𝑓 ,𝐺) := −𝛽𝑄𝛾𝑄

𝐴
(𝑓 ,𝐺) − 𝛽𝐷𝑃𝛾𝐷𝑃

𝐴 (𝑓 ,𝐺) − 𝛽
𝐸𝑂𝛾𝐸𝑂𝐴 (𝑓 ,𝐺); 𝑊

(𝑟𝑒𝑔)
𝑓 𝑎𝑖𝑟
(𝑓 ,𝐺) := −𝛾𝑄

𝐴
(𝑓 ,𝐺),



for some 𝛽𝑄 , 𝛽𝐸𝑂 , 𝛽𝐷𝑃 ≥ 0, 𝛽𝑄 + 𝛽𝐸𝑂 + 𝛽𝐷𝑃 > 0. We call the corresponding equilibrium AS outcome
the fair AS outcome or AS-fair in short.

For conciseness, we use AS-dm to denote the decision maker’s equilibrium AS outcome.

THEOREM 6.1. If there is a mechanism that is IC and IR and satisfies 𝑆 (𝑓 ,𝐺) > 0, then a
mechanism that satisfies IC, IR, and BB criteria exists and weakly improves the third party’s social
well-being objective (either efficiency or fairness oriented) compared to the original AS equilibrium.

6.2 Influence of Mechanism Designers’ Objectives
Finally, we discuss how the objective of the mechanism designer and the corresponding incentive
mechanisms influence the equilibrium efficiency and fairness oriented social well-being metrics. We
compare the different AS, CS, and LS equilibrium outcomes where they have the same decision rule
𝑓 and focus on how the incentive mechanisms for different objectives affect the outcome.

DEFINITION 6. We say a mechanism 𝐺 (𝑑) ≠ 0 is an ideal mechanism if it is IC and IR for group 𝑑
agents and achieves 𝑆 (𝑓 ,𝐺 (𝑑) ) > 0 on group 𝑑 , ∀𝑑 ∈ {1, 2}.

THEOREM 6.2. If group 2 is disadvantaged in action cost but has the same pre-response attribute
distribution as group 1 (for positive individuals as well), then in the equilibrium,

(1) the DP gap in weak ascending order is: AS-fair, CS(LS), AS-dm, AS-eff;
(2) the EO gap (or quality gain gap) in weak ascending order is: AS-fair, CS(LS), AS-dm, AS-eff;
(3) The social quality improvement in weak descending order is: AS-eff, AS-dm, CS(LS).

If there is an ideal mechanism for group 1, then AS-fair is strictly the lowest in DP gap; the orders in
EO gap (or quality gain gap) and quality improvement becomes strict for CS(LS), AS-dm and AS-eff.
Moreover, if there is an ideal mechanism for group 2, AS-fair is strictly the lowest in EO gap (or
quality gain gap).

Below we provide some explanations of the statements in Theorem 6.2. For an efficiency oriented
third party, the set of agents it incentivizes is a superset of the agents incentivized by the decision
maker, making AS-eff the best in part (3). This is because subsidizing the agents with a positive
individual subsidy surplus not only helps the third party improve the objective but also raises the
budget to subsidize agents with a negative individual subsidy surplus (individual subsidy deficit).
Moreover, the efficiency oriented third party tries to incentivize more agents from group 1 since they
are “cheaper” to incentivize and thus exacerbates the fairness issues in parts (1) and (2).

For a fairness oriented third party, it can also incentivize a superset of agents incentivized by the
decision maker, but that means incentivizing some group 1 agents, which results in two conflicting
effects: it helps the third party gather more “funding” to subsidize group 2 agents, but at the same
time makes the fairness issue worse. As a result, the social quality improvement in AS-fair is better
than CS (LS) and worse than AS-eff, but how it compares to AS-dm depends on the specific game
parameters and thus is not discussed in part (3). When there is an ideal mechanism for group 2, the
third party can ignore the dilemma of subsidizing group 1 agents and focus on subsidizing only group
2 agents to improve fairness in parts (1) and (2).

The ideal mechanisms in Theorem 6.2 makes the comparison strict. The existence of an ideal 𝐺 (2)

is a sufficient condition to the existence of an ideal 𝐺 (1) when group 2 is disadvantaged in cost but
has the same distribution. This is because 𝐺 (2) itself is ideal for group 1.

THEOREM 6.3. In both classification and regression problems, if group 2 is disadvantaged in
attributes (resp. positive individuals) but has the same action cost as group 1 then

(1) the DP (resp. EO) gap in AS-fair outcome is weakly the lowest, and is strictly the lowest if there
is an ideal mechanism for group 2;



(a) Entire Group (b) Positive Individuals

Fig. 9. The Likelihood CDF

(a) CS/AS Utilities (b) △𝑄 and 𝑆 (𝑓 ,𝐺)

Fig. 10. Single Group (Caucasian) Results

(2) the social quality improvement in AS-eff outcome is weakly the highest, and is strictly the
highest if there is an ideal mechanism for either group.

When group 2 has the same cost, then an ideal 𝐺 (2) is no longer sufficient or necessary for an
ideal 𝐺 (1) to exist for general classification problems, and that’s why the condition in part (2) looks
different from Theorem 6.3. But the existence of an ideal 𝐺 (2) is sufficient and necessary for the
existence of an ideal 𝐺 (1) in regression, as well as in a special class of classification problems where
𝑤𝑤𝑤 = 𝜃𝜃𝜃 in 𝑓 and 𝑙 is convex on [0, 𝜏].8 From Theorem 5.1, we know that DP and EO gap always exist
in the CS (LS) problem, but if there is an ideal 𝐺 (2) , the fairness oriented third party can further
incentivize group 2 agents to reduce the gap in part (1) (those not inM (2) (𝑓 ) to reduce the DP gap).

THEOREM 6.4. Suppose group 2 is disadvantaged in cost but has the same pre-response dis-
tribution (for positive individuals as well). Denote 𝑝 (𝑑) := 𝑃𝑟 (𝐷 = 𝑑), then an IC, IR, and BB
mechanism 𝐺 ≠ 0 that satisfies 𝛾𝑄

𝐴
= 𝛾𝐸𝑂

𝐴
= 𝛾𝐷𝑃

𝐴
= 0 exists if 𝑆 (𝑓 ,𝐺 (1) ) + (1 − 𝑝 (1) )𝐻 (𝐺 (1) ) ≥

𝑝 (2)𝐻 (𝐺 (2) ), s.t. ℎ (1)
𝐴
(𝑎𝑎𝑎) = ℎ

(2)
𝐴
(𝑎𝑎𝑎),∀𝑎𝑎𝑎.

In general, this condition can hold if 𝑝 (1) is much larger than 𝑝 (2) , i.e., the disadvantaged group is
also the minority group in the population or 𝑆 (𝑓 ,𝐺 (1) ) is very high.

REMARK 3. Our results generalize to multiple groups when the definitions of group disadvantages
and fairness metrics are consistent.

7 NUMERICAL RESULTS

Fig. 8. Repay Rate 𝑙 (𝑥)

This section presents numerical results obtained using the FICO score
[15] dataset preprocessed in [8]. The credit card holders are considered
as agents and they have repayment rates that can map to the likelihood
function 𝑙 in our model. The decision maker uses binary classification to
predict whether the agents will default. We assume that 𝜃 = 1, 𝑃 = [1, 1],
and the agent can either choose 𝑎1 to improve or 𝑎2 to game the classifier
𝑓 (𝑧) = 111(𝑧 ≥ 𝜏), i.e., 𝑥 is the pre-response normalized FICO score
as well as the attribute, 𝑥 ′ = 𝑥 + 𝑎1 is the post-response attribute, and
𝑧 = 𝑥 + 𝑎1 + 𝑎2 is the post-response normalized FICO score. Figure 8
shows how the repayment rate 𝑙 (𝑥) changes with 𝑥 ; it has an S-shape, with
𝑙 (𝑥) = 0.5 approximately corresponding to 𝑥 = 0.3 and 𝑙 (𝑥) (nearly) convex on [0, 0.3]. We assume
that the decision maker chooses 𝑤 = 1, which aligns with the LS and CS optimal solution from
Section 3 when 𝑐2 < 𝑐1.

8We are excluding extreme distributions in the “iff” claim, e.g., 𝑃𝑟 (𝑥𝑥𝑥 ∈ M(𝑓 )) = 0.



We start with the properties of the discount mechanism and show how the decision maker’s CS
and AS utility changes with different choices of threshold 𝜏 . We then show the impact the incentive
mechanisms have on social well-being metrics.

Throughout this section, we use a quadratic outcome likelihood cost function and assume that
𝑐
(1)
1 = 𝑐1 = 8 and 𝑐

(1)
2 = 𝑐2 = 4 (for the advantaged group if there are action cost differences). For

the multiple group case, we make the following two sets of comparisons. (1) Groups with different
distributions: the Hispanic group is disadvantaged in features and in positive individuals compared
to the Caucasian group (see Figure 9). (2) Groups with different costs: we will assume there are
two subgroups (A and B) in the Caucasian group, and group 2 has higher action costs 𝑐 (2)1 = 10 and
𝑐
(2)
2 = 5. We set 𝑝 (1) = 0.8, 𝑝 (2) = 0.2 as the population proportions.

As a result, we show the AS-fair equilibrium outcome is the best well-rounded system design for
the augmented strategic learning problems.

The decision maker’s AS and CS utility. Using only the Caucasian data, the set of results in
Figure 10 show how the AS/CS decision maker utilities, subsidy surplus and qualification status
improvement change with the threshold 𝜏 .

We can see that the AS utility is always higher than the CS utility (Fig. 10). This is because their
difference is the subsidy surplus, which is non-negative for a rational decision maker. We note that
the CS utility should always be single-peaked but the AS utility may have multiple local maxima
since the value of subsidy surplus is not monotone in 𝜏 and depends on 𝑝 (𝑥). For other choices
of 𝑐1, 𝑐2 values, we find that the larger the difference 𝑐1 − 𝑐2, the smaller the utility difference and
the closer the optimal thresholds are (|𝜏∗

𝐴𝑆
− 𝜏∗

𝐶𝑆
| lower). Both the subsidy surplus in (12) and the

qualification status improvement in (14) are positive, indicating the decision maker’s selfish strategy
is also benefiting the efficiency oriented social well-being. The improvement and subsidy surplus are
also highly positively correlated with a correlation coefficient of 0.92.

Social well-being of the strategic incentive mechanism. Figure 11 (resp. Figure 12) shows
the quality improvement, PR and TPR, (and thus we can see the DP, and EO gap from the curve
differences) when the Hispanic group (resp. Caucasian subgroup 2) is disadvantaged in features and
positive individuals (resp. costs) compared to the Caucasian group (resp. Caucasian subgroup 1) in
the CS(LS) and AS-dm equilibrium. The decision maker does not incentivize agents outside of the
manipulation margin and thus the CS and AS PR curves are the same.

We can see from Figure 11a that when 𝜏 is in the lower score ranges, the Hispanic group has a
slightly higher qualification status improvement compared to the Caucasian group, whereas if 𝜏 is
in the higher score ranges, the Caucasian group has a much higher improvement. Intuitively, this
is because the Hispanic (resp. Caucasian) group has a higher probability mass in the lower (resp.
higher) score ranges and a low (resp. high) 𝜏 incentivizes a higher proportion of agents to improve
in the Hispanic (resp. Caucasian) group. Figure 11b shows that the PR is 1 when 𝜏 < 0.25; this is
because all agents can manipulate to get 𝑓 (𝑧) = 1. When 𝜏 > 0.25, the PR is strictly decreasing in 𝜏

for both groups and the Caucasian group always has a higher PR, i.e., the Hispanic group will suffer
from a DP gap in both CS and AS-dm equilibrium. This is because the lower side boundary of the
manipulation margin becomes an implicit threshold, where all agents above the implicit threshold can
manipulate (no matter improvement or gaming) to get accepted. The implicit threshold is the same
for both groups since they have the same action cost, and the DP gap is caused by the disadvantage in
pre-response attribute distribution (Theorem 5.1 part (1)). For similar reasons, Figure 11c shows that
the CS and AS TPR is 1 when 𝜏 < 0.3. Therefore, we can see that the AS TPR is always higher than
the CS TPR for either group, because now some agents improved their qualification status and get
accepted at the same time, making the numerator and denominator of the TPR formula increase by



the same amount and thus increase the TPR. On the other hand, the Hispanic group suffers from an
EO gap in both the CS and the AS-dm equilibrium, as previously discussed in Theorem 5.1 part (2).

(a) Improvement (b) PR (c) AS/CS TPR

Fig. 11. Disadvantaged in features

(a) Improvement (b) PR (c) TPR

Fig. 12. Disadvantaged in costs

Figure 12a and 12c sup-
port our claims in Theorem
5.3 part (3), where the in-
centive mechanism widens
the quality gain gap and the
EO gap. Figure 12b shows
PR curves and the DP gap
between the two subgroups,
which is determined by the
pre-response attribute prob-
ability mass within [𝜏 −
1/𝑐 (1)2 , 𝜏 − 1/𝑐 (2)2 ] (the dif-
ference between the manip-
ulation margins in the two
groups). Figure 12c shows
the CS and AS TPR curves
and the EO gaps; the im-
plicit threshold creates the
CS EO gap, and the fact that
group 1 agents are cheaper
to incentivize jointly cre-
ates the AS EO gap.

Social Well-being metrics with the third party incentive. Social well-being results under
the third party model are shown in Figure 13 where groups have attribute distribution differences
(Caucasian and Hispanic group), and in Figure 14 where groups have cost differences (Caucasian
subgroups).

We can see in both sets of results that the AS-fair equilibrium outcome significantly reduces and
even removes the fairness issues in the system, whereas the AS-eff equilibrium outcome has the worst
fairness metrics. On the other hand, the AS-eff equilibrium achieves the highest social qualification
status improvement. We note that the chosen AS-fair outcomes used mechanisms that incentivized a
superset of agents compared to those that are incentivized by the decision maker, and thus it achieves
a higher social qualification status improvement than AS-dm as well.

8 CONCLUSION
We formulated Stackelberg game models to study the strategic classification and regression problem,
where the decision maker’s strategy combines a decision rule and an incentive mechanism. Our
model provides an extension of the previously studied strategic learning problems. We showed
how the decision maker can design discount-based incentives mechanisms to use in conjunction
with its decision rule, by providing conditions on when this problem is computationally intractable,
discussing when and how approximate algorithms can find reasonable mechanisms in polynomial
time, and when the optimal mechanism can be found in closed-form. We then discussed the efficiency
and fairness oriented social well-being properties of the augmented strategic learning system when
multiple demographic groups co-exist. We also examined an alternative model where the incentive
mechanism is provided by a third party, whose objective is optimizing some of the social well-being



(a) DP gap (b) EO gap (c) Quality gain gap (d) Improvement

Fig. 13. Third Party Outcomes with Attribute Distribution Differences

(a) DP gap (b) EO gap (c) Quality gain gap (d) Improvement

Fig. 14. Third Party Outcomes with Cost Differences

metrics with an IC, IR, and BB mechanism, and showed how an efficiency-oriented and fairness-
oriented third party can influence the equilibrium social well-being metrics. We conducted numerical
experiments on the FICO dataset to demonstrate the impact of the incentive mechanism on the
system. Our findings established that a fairness-oriented third party can provide the best well-rounded
equilibrium outcomes compared to a selfish decision maker, an efficiency-oriented third party, or a
system without an incentive mechanism.
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A SUPPLEMENTARY MATERIAL FOR SECTION 2
A.1 Discussion on Remark 1
In this part, we discuss the case where game parameters like 𝜃𝜃𝜃 and 𝑃 are unknown and the decision
maker need to be learn them. Unlike the single round, two stage game in the main article, the learning
process requires online learning with multiple rounds, each containing two stages.

We note that the quality coefficients 𝜃𝜃𝜃 can be learned in one round by setting 𝑓 = 0 and then we
have (𝑧𝑧𝑧,𝑦 ′) = (𝑥𝑥𝑥,𝑦), and running any suitable learning algorithm can get an estimate of 𝜃𝜃𝜃 .

However, 𝑃 can not always be learned in the conventional learning problem. We can use an
example can from the impossibility conditions in Theorem 3.3, given those conditions, only the
columns whose index has substitutability 1 can be learned, the other columns are always unknown.
Below we show how the discount mechanism help with learning the the projection matrix 𝑃 .

In the regression problem with L1 cost, we can use the following procedures to learn the projection
matrices,

• Choose 𝑓 such that 𝑤𝑤𝑤 > 0 (without loss of generality, assume that 𝑤𝑤𝑤 > 0 ⇒ 𝑃𝑇𝑤𝑤𝑤 > 0,
otherwise some action dimensions are meaningless)
• For each time step 𝑡 = 1, . . . , 𝑀 , get a sufficiently large sample of agents with their observable

features 𝑧𝑧𝑧
• At 𝑡 = 0, 𝐺𝑑 = 0, let 𝑧𝑧𝑧0 = E[𝑧𝑧𝑧]
• At 𝑡 = 1, . . . , 𝑀 , let 𝐺𝑑 induce the best response along action dimension 𝑡 by lowering the cost

to 𝑐𝑡 , and let 𝑧𝑧𝑧𝑡 = E[𝑧𝑧𝑧]
• Compute 𝜈𝜈𝜈𝑡 = (𝑧𝑧𝑧𝑡 − 𝑧𝑧𝑧0)𝑐𝑡/𝐵, which is an estimate of 𝑃𝑒𝑒𝑒𝑡 = 𝑝𝑝𝑝𝑡 , i.e., the 𝑡-th column of 𝑃 .

Discount mechanisms can enable best responses to in action dimensions that are impossible to be
incentivized with the decision rule itself, and this is true for both classification and regression, both
L1 cost and other types of costs like L2 or squared.

A.2 Discussion on Remark 2

Fig. 15. An illustration of a CS best
response in classification with L2
cost, where the blue dashed curve
(quarter circle) is an equal cost con-
tour, 𝑃 = [1, 1], 𝑤𝑤𝑤 = (1, 1), 𝑎1 is im-
provement and 𝑎2 is gaming.

We will use the L2 cost ℎ(𝑎𝑎𝑎) = | |𝑎𝑎𝑎 | |2 for demonstration purpose,
and we note that higher orders of cost functions ℎ(𝑎𝑎𝑎) = 1

2 | |𝑎𝑎𝑎 | |
2
2

are very similar in classification but different in regression.
In regression, higher order costs are convex and the marginal
cost grows, and thus there is no need to be a budget constraint
𝐵 ≥ ℎ(𝑎𝑎𝑎), other than that, ℎ(𝑎𝑎𝑎) = | |𝑎𝑎𝑎 | |2 is very representative.

For all other cost functions, we can equivalently have a set
of “equal cost contour” i.e., {𝑎𝑎𝑎 |ℎ(𝑎𝑎𝑎) = 𝐶} for some constant 𝐶
is a contour. Most cost functions used in economic and com-
puter science literature have contours with different sizes but
a constant “shape” (the surface of norm balls, since the cost
functions are norm based), like the L1 cost, L2 cost, tilted
L2 cost ℎ(𝑎𝑎𝑎) =

√
𝑎𝑎𝑎𝑇𝐶𝑎𝑎𝑎 and squared cost ℎ(𝑎𝑎𝑎) = 1

2 | |𝑎𝑎𝑎 | |
2
2. The

constant shape of contours made it possible to have a concise
(closed-form in most cases) representation of the best responses’
directional and magnitude properties.

For example, when ℎ(𝑎𝑎𝑎) = | |𝑎𝑎𝑎 | |2, the best responses satisfy

𝜌 (𝑎𝑎𝑎∗𝑡 , 𝑃𝑇𝑤𝑤𝑤) = 1 where 𝜌 (𝑣𝑣𝑣1, 𝑣𝑣𝑣2) =
𝑣𝑣𝑣𝑇1 𝑣𝑣𝑣2

| |𝑣𝑣𝑣1 | |2 | |𝑣2𝑣2𝑣2 | |2 is the cosine
similarity. We still have properties in Lemma 3.1 and in classification and regression, the best



responses are

𝑎𝑎𝑎∗𝐶 (𝑥𝑥𝑥) =
𝜏 −𝑤𝑤𝑤𝑇𝑥𝑥𝑥

| |𝑃𝑇𝑤𝑤𝑤 | |22
𝑃𝑇𝑤𝑤𝑤, 𝑎𝑎𝑎∗𝐶 (𝑥𝑥𝑥) =

𝐵

| |𝑃𝑇𝑤𝑤𝑤 | |2
𝑃𝑇𝑤𝑤𝑤,

and we can similarly write out the expressions of the AS best responses for other cost functions.
For L2 cost ℎ(𝑎𝑎𝑎) = | |𝑎𝑎𝑎 | |2, we can think of discounts with minimum effective discount value as

giving certain action directions a fixed discount rate or incentivizing agents to play a different action
and pay the cost differences.

Therefore, the implementer will try to incentivize some of the agents to take an AS best response
that also reach the boundary, this can be done by making the discount amount equal the cost
difference between the AS and the CS/LS best response. The implementer wants to maximize the
subsidy surplus on a given agent, which is the quality gain 𝑙 (𝑎𝑎𝑎) − 𝑙 (𝑎𝑎𝑎∗

𝐶
(𝑥𝑥𝑥)) minus the subsidy cost

| |𝑎𝑎𝑎 | |2 − ||𝑎𝑎𝑎∗𝐶 (𝑥𝑥𝑥) | |2 and thus 𝑎𝑎𝑎∗
𝐴
(𝑥𝑥𝑥) is the solution to the optimization problem

minimize𝑎𝑎𝑎 | |𝑎𝑎𝑎 | |2 − 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎)) (17)

subject to 𝑤𝑤𝑤𝑇𝑃𝑎𝑎𝑎 = 𝜏 −𝑤𝑤𝑤𝑇𝑥𝑥𝑥

However, the above problem is in general not convex and can be NP hard to find the optimal solution.
But the below assumption guarantees a solution.

ASSUMPTION 1. 𝑤𝑤𝑤 = 𝜃𝜃𝜃 , and the implementer limit the AS best response to be gaming free, i.e.,
[𝑎𝑎𝑎∗

𝐴
(𝑥𝑥𝑥)] 𝑗 = 111{ 𝑗 ≤ 𝑀𝑖 } ⇔ 𝑃𝑎𝑎𝑎∗

𝐴
(𝑥𝑥𝑥) = 𝑃𝑎𝑎𝑎∗

𝐴
(𝑥𝑥𝑥),

Under Assumption 1, the problem becomes convex since 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎)) = 𝑙 (𝜏) is constant

minimize𝑎𝑎𝑎 | |𝑎𝑎𝑎 | |2 (18)

subject to 𝜃𝜃𝜃𝑇𝑃𝑎𝑎𝑎 = 𝜏 − 𝜃𝜃𝜃𝑇𝑥𝑥𝑥

and the solution (AS best response to incentivize) is

𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥) = (𝜏 − 𝜃𝜃𝜃𝑇𝑥𝑥𝑥)
𝑃𝑇𝜃𝜃𝜃

| |𝑃𝑇𝜃𝜃𝜃 | |22
(19)

We can then similarly define the individual subsidy surplus in the L2 case and find sufficient
conditions that guarantees an IC, IR and BB mechanism 𝐺 ≠ 0 or even find the optimal solutions
with the same assumptions made in the Theorems 3.6 and 3.7.

One interesting difference in the L2 cost case is that the decision rule can incentivize partial
improvement, which can also be called partial gaming, which means 𝜃𝜃𝜃𝑇𝑃𝑎𝑎𝑎 > 𝜃𝜃𝜃𝑇𝑃𝑎𝑎𝑎 > 0, and the
corresponding theorems in L1 case still applies when 𝑓 incentivizes pure gaming 𝜃𝜃𝜃𝑇𝑃𝑎𝑎𝑎 > 𝜃𝜃𝜃𝑇𝑃𝑎𝑎𝑎 = 0.
An example of pure gaming happens when for every improvement action 𝑗 , there is a corresponding
gaming action 𝑘 with the an exaggerated effect 𝑝𝑝𝑝𝑘 = 𝛼 𝑗𝑝𝑝𝑝 𝑗 , 𝛼 𝑗 > 1, which can model problems like
multi-subject exams where an agent has an improvement and gaming action for each of the subject
and cheating is always more cost efficient than working hard without an incentivize mechanism.

A.3 An Alternative Incentive Mechanism
An alternative mechanism to consider, the transfer mechanisms is based on monetary transfer, where
the mechanism designer provides reimbursement or bonus payment when the agent meets certain
feature criteria, e.g., rewards for high scores. We use 𝐺𝑡 to denote the transfer mechanism, where the
designer chooses a bonus amount 𝑏 (𝑧𝑧𝑧), 𝑏 : R𝑁 ↦→ R, effectively revising the agent’s utility to

𝑢𝐴 (𝑥𝑥𝑥,𝑎𝑎𝑎) = 𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎) − ℎ(𝑎𝑎𝑎) + 𝑏 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎). (20)



In transfer mechanisms, knowing the actual 𝑥𝑥𝑥 seems to help the designer reduce the subsidy cost
on agents with high endowment and low improvement, but we will show below that this extended
version with bonus amount 𝑏 (𝑥𝑥𝑥,𝑧𝑧𝑧) is equivalent as the bonus 𝑏 (𝑧𝑧𝑧) that only uses features as input,
where 𝑥 is the reported pre-response attribute. This is because 𝑏 (𝑥𝑥𝑥,𝑧𝑧𝑧) either can not incentivize agents
to truthfully report 𝑥𝑥𝑥 = 𝑥𝑥𝑥 , or it can not generate more benefit for the mechanism designer.

With the alternative version of the monetary transfer mechanism, the agent’s utility now becomes

�̃�𝐴 (𝑥𝑥𝑥,𝑎𝑎𝑎,𝐺𝑡 ) = 𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎) − ℎ(𝑎𝑎𝑎) +max
�̃�𝑥𝑥

𝑏 (𝑥𝑥𝑥,𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎),

and we can find the corresponding 𝑎𝑎𝑎∗
𝐴
(𝑥𝑥𝑥), and only if

𝑥𝑥𝑥 ∈ argmax
�̃�𝑥𝑥

𝑏 (𝑥𝑥𝑥,𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥)),

truth-reporting is incentivized. If truth reporting is not incentivized, 𝑏 (𝑥𝑥𝑥,𝑧𝑧𝑧) and 𝑏 (𝑧𝑧𝑧) = max�̃�𝑥𝑥 𝑏 (𝑥𝑥𝑥,𝑧𝑧𝑧)
are equivalent for both the agents and the mechanism designer. Meanwhile, for ∀𝑥𝑥𝑥1 ≠ 𝑥𝑥𝑥2, truth telling
requires either

𝑥𝑥𝑥1 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥1) ≠ 𝑥𝑥𝑥2 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥2),
indicating that backward induction from 𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗

𝐴
(𝑥𝑥𝑥) to 𝑥𝑥𝑥 is achievable, or

𝑥𝑥𝑥1 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥1) = 𝑥𝑥𝑥2 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥2), and 𝑥𝑥𝑥1,𝑥𝑥𝑥2 ∈ argmax
�̃�𝑥𝑥

𝑏 (𝑥𝑥𝑥,𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥)).

In either case, 𝑏 (𝑧𝑧𝑧) is sufficient.
However, the computational complexity is very high in the backward induction step for a general

𝑏 (𝑧𝑧𝑧) bonus function. Recall that the AS utility of an agent is

𝑢𝐴 (𝑥𝑥𝑥,𝑎𝑎𝑎) = 𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎) − ℎ(𝑎𝑎𝑎) + 𝑏 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎),
and thus computing 𝑎𝑎𝑎∗

𝐴
(𝑥𝑥𝑥) = argmax𝑎𝑎𝑎 𝑢𝐴 (𝑥𝑥𝑥,𝑎𝑎𝑎) is non-convex for a non-concave 𝑏 (𝑟 ) bonus function.

On one hand, we can’t guarantee concave 𝑏 (𝑟 ) is the optimal solution. On the other hand, for a
concave 𝑏 (𝑧𝑧𝑧), the computation of 𝑎𝑎𝑎∗

𝐴
(𝑥𝑥𝑥) = argmax𝑎𝑎𝑎 𝑢𝐴 (𝑥𝑥𝑥,𝑎𝑎𝑎) is convex and but the individual subsidy

surplus
𝑠 (𝑥𝑥𝑥, 𝑓 ,𝐺𝑡 ) = 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥))) − 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐶 (𝑥𝑥𝑥))) − 𝑏 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥))

on the agents are not concave unless 𝑙 is convex (we are supposing 𝑥𝑥𝑥 ∈ M(𝑓 ) here, otherwise more
non-convexity is introduced). Moreover, the overall objective depends on the integration on a subset
of X̂ ⊆ X

𝑆 (𝑓 ,𝐺𝑡 ) =
∫
X̂
𝑠 (𝑥𝑥𝑥, 𝑓 ,𝐺𝑡 )𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥,

and a general probability density function 𝑝, and the convexity of set X̂ can make the mechanism
designer’s objective non-convex even if 𝑙 is convex.

We also note that when changing the value 𝑏 (𝑧𝑧𝑧) for a certain 𝑧𝑧𝑧, the AS best response for all agents
with pre-response attribute 𝑥𝑥𝑥 in the cone 𝑥𝑥𝑥 − 𝑧𝑧𝑧 ≤ 0 (element wise non-positive) might change, and
this also makes the analysis hard.

B SUPPLEMENTARY MATERIAL FOR SECTION 3
B.1 Characterization of the optimal LS decision rule

LEMMA B.1. The LS optimal decision rule is 𝑓 ∗
𝐿
(𝑧𝑧𝑧) = 111{𝜃𝜃𝜃𝑇𝑧𝑧𝑧 ≥ 𝜏𝐿}, 𝜏𝐿 = argmin𝜏 𝑙 (𝜏) ≥ 0.5.

PROOF. This is because it is optimal for the decision maker to accept every agent with 𝑙 (𝜃𝜃𝜃𝑇𝑥𝑥𝑥) ≥
0.5, since rejecting this agent results in a decrease in the expected individual prediction outcome
1−𝑙 (𝜃𝜃𝜃𝑇𝑥𝑥𝑥) ≤ 𝑙 (𝜃𝜃𝜃𝑇𝑥𝑥𝑥). Similarly, the decision maker wants to reject every agent with 𝑙 (𝜃𝜃𝜃𝑇𝑥𝑥𝑥) < 0.5. □



B.2 Proof of Theorem 3.3
PROOF. The proofs of the claims
(1) If 𝜅 𝑗 = 1, then there exists a𝑤𝑤𝑤 in 𝑓 that can incentivize action dimension 𝑗 , and the𝑤𝑤𝑤 can be

found in polynomial time;
(2) if 𝜅 𝑗 < 1, meaning there always are linear combinations of gaming actions weakly dominate

every action 𝑗 , then there is no 𝑓 that can incentivize best response on action 𝑗 .
are covered in [11, 12]. Intuitively, if 𝜅 𝑗 < 1,∀𝑗 ≤ 𝑀+, the corresponding 𝑎𝑎𝑎 is the combination that
strictly dominates 𝑒𝑒𝑒 𝑗 for any 𝑓 and thus there is no 𝑓 that can incentivize improvement.

We will proceed to show the decision maker’s CS optimal strategy satisfy𝑤𝑤𝑤 = 𝜃𝜃𝜃 . The main idea is
that when 𝑓 always incentivizes gaming, then the CS decision outcomes with 𝑓𝐶 (𝑧𝑧𝑧) = 111{𝑤𝑤𝑤𝑇

𝐶
𝑧𝑧𝑧 ≥ 𝜏𝐶 }

always have an equivalent LS decision outcomes with 𝑓𝐿 (𝑧𝑧𝑧) = 111{𝑤𝑤𝑤𝑇
𝐿
𝑧𝑧𝑧 ≥ 𝜏𝐿}, where the𝑤𝑤𝑤𝐶 = 𝑤𝑤𝑤𝐿,

and 𝜏𝐶 , 𝜏𝐿 satisfy

𝜏𝐿 = min
{
0, 𝜏𝐶 −

(𝑃𝑇𝑤𝑤𝑤)𝑘
𝑐𝑘

}
.

In other words, we can show that ∀𝑥𝑥𝑥, 𝑓𝐿 (𝑥𝑥𝑥) = 𝑓𝐶 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗), and thus is equivalent for the decision
maker to find an optimal 𝑓𝐿 which guarantees𝑤𝑤𝑤𝐿 = 𝜃𝜃𝜃 as the Lemma B.1 suggests. □

B.3 Proof of Theorem 3.5
PROOF. We will first show the problem is non-convex when discount is placed on multiple actions,

then show even the discount is only on one action, the problem is still non-convex.
When the discount is on multiple actions, providing the optimal tie breaking strategy for an agent

with 𝑥𝑥𝑥 requires solving
maximize𝑎𝑎𝑎 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎)) − △𝑐𝑐𝑐𝑇𝑎𝑎𝑎,

which is non-convex for a general 𝑙 function. This is for individual subsidy surplus for a fixed △𝑐𝑐𝑐,
and it has to be integrated over X to compute the overall subsidy surplus 𝑆 (𝑓 ,𝐺). So finding the
optimal mechanism will only have higher computational complexity when the decision maker has to
optimize over △𝑐𝑐𝑐, 𝑐, 𝑐, and take into account the influence of 𝑝 (𝑥𝑥𝑥).

When the discount is only on one action, from Lemma 3.4, the mechanism designer need to choose
△𝑐𝑐𝑐 such that

△𝑐𝑐𝑐 𝑗 ≥ △𝑐∗𝑗 = 𝑐 𝑗 −
(𝑃𝑇𝑤𝑤𝑤) 𝑗
(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

𝑐𝑖𝐶 ,

for some improvement action dimension 𝑗 ≤ 𝑀+ that it wants to incentivize the agents.
Then for the decision maker, maximizing its AS utility is equivalent as maximizing the subsidy

surplus, so the decision maker solves

maximize𝑗,△𝑐𝑐𝑐 𝑗 ,𝑐,𝑐

∫
X
[𝑃𝑟 (𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥)) = 𝑦 ′𝐴) − 111{△𝑐𝑐𝑐𝑇𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥) ∈ [𝑐, 𝑐]}]𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥

subject to △𝑐𝑐𝑐 ∈ [△𝑐𝑐𝑐∗, 𝑐 𝑗 ), 𝑗 ≤ 𝑀+

where the problem can be non-convex and not monotone for general 𝑝 and 𝑙 . Specifically, when 𝑗

has the highest return of investment after the discount, the backward induction that anticipates the
agent’s AS best response is,

𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥) =


𝜏−𝑤𝑤𝑤𝑇𝑥𝑥𝑥
(𝑃𝑇𝑤𝑤𝑤) 𝑗 𝑒

𝑒𝑒 𝑗 , if △𝑐 𝑗 (𝜏−𝑤𝑤𝑤
𝑇𝑥𝑥𝑥)

(𝑃𝑇𝑤𝑤𝑤) 𝑗 ∈ [𝑐, 𝑐],
𝜏−𝑤𝑤𝑤𝑇𝑥𝑥𝑥
(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

𝑒𝑒𝑒𝑖𝐶 , o.w.

This indicates that agents with 𝑥𝑥𝑥 in a belt shape subset of X will be incentivized to improve, but the
overall subsidy surplus is in general not convex, not concave and not monotone in either the upper



bound (determined by 𝑓 and 𝑐) or the lower bound (determined by 𝑓 and 𝑐) of the belt even when
the other is fixed. Moreover, the minimum effective discount value △𝑐∗𝑗 is not always the optimal
solution, adding more complexity to the problem. This is because sometimes the decision maker
wants to put more discount on the action dimension and incentivize some agents outside of the
manipulation margin to improve and accept them rather than reject them. For example, if 80 percent
agent has attribute that makes their likelihood 0.49, the minimum effective discount value still makes
them rejected and take 0 AS best response, but a slightly higher discount can incentivize them all to
improve to the threshold value, say 0.7, the 0.7 − (1 − 0.49) · 0.8 = 0.152 amount of improvement
may largely outweigh the extra subsidy cost.

Overall speaking, the difference between𝑤𝑤𝑤 and 𝜃𝜃𝜃 in 𝑓 , the global properties of 𝑝, 𝑙 and their local
properties influenced by 𝜏 all makes the problem hard to solve. □

B.4 Proof of Theorem 3.6
PROOF. We will show that any 𝐺 ≠ 0 returned by Algorithm 1 is IC, IR and satisfies 𝑆 (𝑓 ,𝐺) ≥ 0.
The IC part follows that the participants act in self-interest. Also, as previously discussed, the

minimum effective discounted value △𝑐 𝑗 = △𝑐∗𝑗 = 𝑐 𝑗 −
(𝑃𝑇𝑤𝑤𝑤) 𝑗
(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

𝑐𝑖𝐶 makes sure the agents are weakly
better off in the AS game than the CS game (given the same 𝑓 ).

We note that for all 𝑓 that incentivizes gaming, the decision maker would prefer𝑤𝑤𝑤 = 𝜃𝜃𝜃 and we can
use Theorem 3.7 to find 𝐺 , so below we have 𝑖𝐶 ≤ 𝑀+.

The basic logic of ensuring 𝑆 (𝑓 ,𝐺) ≥ 0 is that the algorithm finds a specific agent that is
incentivized, and if this specific agent has a non-negative individual subsidy surplus, it is sufficient
that all the other incentivized agents also have non-negative individual subsidy surplus and thus
𝑆 (𝑓 ,𝐺) ≥ 0.

In Algorithm 1, the designer finds (a convex problem and easy to solve)

𝑥𝑥𝑥 = argmin
𝑥𝑥𝑥 :𝑤𝑤𝑤𝑇𝑥𝑥𝑥=𝜏−𝛿 𝑗 (𝑃𝑇𝑤𝑤𝑤) 𝑗

𝜃𝜃𝜃𝑇𝑥𝑥𝑥,

which is the attribute of the specific agent. From the upper bound set on 𝛿 𝑗 in the algorithm, we
assume the specific agent is inM(𝑓 ), and then uses

𝑠 = 𝑙+ − 𝛿 𝑗△𝑐 𝑗 = 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝛿 𝑗𝑃𝑒𝑒𝑒 𝑗 )) − 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝛿𝑖𝐶𝑃𝑒𝑒𝑒𝑖𝐶 )) − 𝛿 𝑗△𝑐 𝑗 ,

as a benchmark, where 𝛿 𝑗 is the 𝛿 in the algorithm and 𝛿𝑖𝐶 =
(𝑃𝑇𝑤𝑤𝑤) 𝑗
(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

𝛿 𝑗 . 𝛿 𝑗𝑒𝑒𝑒 𝑗 and 𝛿𝑖𝐶𝑒𝑒𝑒𝑖𝑐 help the

agent achieve the same𝑤𝑤𝑤𝑇𝑧𝑧𝑧, 𝑐 = 0, 𝑐 = 𝛿 𝑗△𝑐 𝑗 here.
Then 𝑠 is the specific agent’s individual subsidy surplus, i.e.,

𝑠 (𝑥𝑥𝑥, 𝑓 ,𝐺) = 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥))) − 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐶 (𝑥𝑥𝑥))) − 111{△𝑐𝑐𝑐𝑇𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥) ∈ [𝑐, 𝑐]} = 𝑠 .

We start with agents with CS best response 𝑎𝑎𝑎∗
𝐶
(𝑥𝑥𝑥) = 𝛿𝑖𝐶𝑒𝑒𝑒𝑖𝐶 , i.e.,𝑤𝑤𝑤𝑇𝑥𝑥𝑥 = 𝑤𝑤𝑤𝑇𝑥𝑥𝑥 . For them, the AS

best response is 𝑎𝑎𝑎∗
𝐴
(𝑥𝑥𝑥) = 𝛿 𝑗𝑒𝑒𝑒 𝑗 , the individual subsidy surplus is then

𝑠 (𝑥𝑥𝑥, 𝑓 ,𝐺) = 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝛿 𝑗𝑃𝑒𝑒𝑒 𝑗 )) − 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝛿𝑖𝐶𝑃𝑒𝑒𝑒𝑖𝐶 )) − 𝛿 𝑗△𝑐 𝑗 ,

since (1) 𝜃𝜃𝜃𝑇𝑃 (𝛿 𝑗𝑒𝑒𝑒 𝑗 − 𝛿𝑖𝐶𝑒𝑒𝑒𝑖𝐶 ) is constant, (2) 𝜃𝜃𝜃𝑇𝑥𝑥𝑥 ≥ 𝜃𝜃𝜃𝑇𝑥𝑥𝑥 and (3) 𝑙 is convex on this range, we have
𝑠 (𝑥𝑥𝑥, 𝑓 ,𝐺) ≥ 𝑠 ≥ 0.

For agents with “higher endowment” 𝑤𝑤𝑤𝑇𝑥𝑥𝑥 > 𝑤𝑤𝑤𝑇𝑥𝑥𝑥 , i.e., with CS best response 𝑎𝑎𝑎∗
𝐶
(𝑥𝑥𝑥) = 𝛼𝑖𝐶𝑒𝑒𝑒𝑖𝐶 ,

𝛼𝑖𝐶 < 𝛿𝑖𝐶 , we denote 𝛼 𝑗 = 𝛼𝑖𝐶 (𝑃𝑇𝑤𝑤𝑤)𝑖𝐶 /(𝑃𝑇𝑤𝑤𝑤) 𝑗 , then the (sub-optimal) AS best response is 𝑎𝑎𝑎∗
𝐴
(𝑥𝑥𝑥) =



𝛼 𝑗𝑒𝑒𝑒 𝑗 , and the individual subsidy surplus is

𝑠 (𝑥𝑥𝑥, 𝑓 ,𝐺) = 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝛼 𝑗𝑃𝑒𝑒𝑒 𝑗 )) − 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝛼𝑖𝐶𝑃𝑒𝑒𝑒𝑖𝐶 )) − 𝛼𝑖𝐶𝑐/𝛿𝑖𝐶
≥

𝛼𝑖𝐶

𝛿𝑖𝐶
[𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝛿 𝑗𝑃𝑒𝑒𝑒 𝑗 )) − 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝛿𝑖𝐶𝑃𝑒𝑒𝑒𝑖𝐶 )) − 𝑐]

≥
𝛼𝑖𝐶

𝛿𝑖𝐶
𝑠 ≥ 0,

where the second inequality comes from the convexity of 𝑙 .
For agents with “lower endowment” i.e., with CS best response 𝑎𝑎𝑎∗

𝐶
(𝑥𝑥𝑥) = 𝛽𝑖𝐶𝑒𝑒𝑒𝑖𝐶 , 𝛽𝑖𝐶 < 𝛿𝑖𝐶 , the

mechanism designer suggest that they break tie choosing 𝑎𝑎𝑎∗
𝐴
(𝑥𝑥𝑥) = 𝛽𝑖𝐶𝑒𝑒𝑒𝑖𝐶 as the AS best response and

thus the individual subsidy surplus is 0. For 𝛽 𝑗 = 𝛽𝑖𝐶 (𝑃𝑇𝑤𝑤𝑤)𝑖𝐶 /(𝑃𝑇𝑤𝑤𝑤) 𝑗 , we note that 𝑎𝑎𝑎∗
𝐴
(𝑥𝑥𝑥) = 𝛽 𝑗𝑒𝑒𝑒 𝑗 is

a dominated strategy since △𝑐𝑐𝑐𝑇𝑎𝑎𝑎∗
𝐴
(𝑥𝑥𝑥) > 𝑐.

□

ALGORITHM 4: Extended Grid Search
an IC, IR and BB Discount Mechanism for
Classification
Choose 𝜖 > 0, set 𝑐𝑚𝑎𝑥 ← 0, 𝑎𝑛𝑠 ← (000, 0);
Define 𝑎(𝑟, 𝑗) = (𝜏 − 𝑟 )𝑒𝑒𝑒 𝑗/(𝑃𝑇𝑤𝑤𝑤) 𝑗 ;
Define 𝑟 (𝑥𝑥𝑥) =𝑤𝑤𝑤𝑇𝑥𝑥𝑥 ;
Define 𝑠 (𝑥𝑥𝑥, 𝑗, △𝑐𝑐𝑐) = 𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝑃𝑎(𝑟, 𝑗))) −
𝑙 (𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝑃𝑎(𝑟, 𝑖𝐶 ))) − (𝜏 − 𝑟 )△𝑐 𝑗/(𝑃𝑇𝑤𝑤𝑤) 𝑗 ;

for 𝑗 = 1 : 𝑀+ do
△𝑐𝑐𝑐 ← 000; 𝑐 ← 0;
𝑆 ← 0;

△𝑐 𝑗 ← 𝑐 𝑗 −
(𝑃𝑇𝑤𝑤𝑤) 𝑗
(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

𝑐𝑖𝐶 ;

while 𝑆 ≥ 0 and 𝛿 𝑗 ≤ 𝑥𝑥𝑥 𝑗
do

𝑐 ← 𝑐 + 𝜖;
𝑟 ← 𝜏 − 𝛿 𝑗 (𝑃𝑇𝑤𝑤𝑤) 𝑗 ;
𝑆 ←∫
{𝑥𝑥𝑥 :𝑟 (𝑥𝑥𝑥) ∈[𝑟,𝜏 ] } 𝑠 (𝑥𝑥𝑥, 𝑗, △𝑐𝑐𝑐)𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 ;

if 𝑆 > 𝑆𝑚𝑎𝑥 then
𝑆𝑚𝑎𝑥 ← 𝑆; 𝑎𝑛𝑠 ← (△𝑐𝑐𝑐, 𝑐);

end
end

end
Return 𝑎𝑛𝑠.

We see from the proof that when 𝑙 is convex,
agents with “high endowment” will have “high
return on investment” for the mechanism de-
signer when utilizing the discount. On the other
hand, if 𝑙 is concave on [0,max𝑥𝑥𝑥 :𝑤𝑤𝑤𝑇𝑥𝑥𝑥=𝜏 𝑙 (𝑥𝑥𝑥)], we
can infer that the agents with “low endowment”
will have “high return on investment” when uti-
lizing the discount. So then finding a suitable
𝑐 becomes important, finding the approximate
optimal mechanism can follow similar steps in
Algorithm 4.

In general, real world data like FICO shows
that the likelihood function has an S-shape and
is concave on higher score range, and choosing
a threshold too high hurts the decision maker.

We also note that the minimum effective dis-
count value is used because it is also “sufficient”.
For convex 𝑙 , if an agent cannot guarantee a non-
negative individual subsidy surplus under the
minimum effective discount value, it can not
have a non-negative individual subsidy surplus
for any other effective discount value. Not only
because the individual subsidy cost goes up, but
also because the marginal quality improvement
is lower for agents farther away from the bound-
ary while the marginal cost is constant.

B.5 Proof of Theorem 3.7
PROOF. When 𝑤𝑤𝑤 = 𝜃𝜃𝜃 , the mechanism de-

signer is indifferent about AS best responses along any improvement action dimension.
The mechanism designer find the “cheapest to incentivize” target action dimension

𝑖𝐴 = argmax
𝑗≤𝑀+

(𝑃𝑇𝜃𝜃𝜃 ) 𝑗/𝑐 𝑗 ⇔ 𝑖𝐴 = argmin
△𝑐∗𝑗 (𝜏 − 𝜃𝜃𝜃𝑇𝑥𝑥𝑥)
(𝑃𝑇𝜃𝜃𝜃 ) 𝑗



and set △𝑐𝑐𝑐 so that △𝑐𝑖𝐴 ≥ △𝑐∗𝑖𝐴 = 𝑐𝑖𝐴 −
(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐴
(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐶

𝑐𝑖𝐶 .
The choice of 𝑐 depends on the individual subsidy surplus, which is the quality improvement of an

incentivized agent minus the subsidy cost, denote 𝑟𝑥𝑥𝑥 = 𝜃𝜃𝜃𝑇𝑥𝑥𝑥 , then 9

𝑠 (𝑟𝑥𝑥𝑥 , 𝑓 ,𝐺𝑑 ) := 𝑙 (𝜏) − 𝑙 (𝑟𝑥𝑥𝑥 )111{𝑥𝑥𝑥 ∈ M(𝑓 )} − [1 − 𝑙 (𝑟𝑥𝑥𝑥 )]111{𝑥𝑥𝑥 ∉M(𝑓 )} −
(𝜏 − 𝑟𝑥𝑥𝑥 )△𝑐∗𝑖𝐴
(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐴

, (21)

which is because when agents break tie choosing the action with the largest improvement, we have

𝜃𝜃𝜃 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥)) = 𝜏 .

When the minimum effective discount value is chosen, and the condition

𝑙 (𝜏) − 𝑙 (𝑟
𝑓
) ≤
(𝜏 − 𝑟

𝑓
)△𝑐∗𝑖𝐴

(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐴
= (𝜏 − 𝑟

𝑓
)
[

𝑐𝑖𝐴

(𝑃𝑇𝑤𝑤𝑤)𝑖𝐴
−

𝑐𝑖𝐶

(𝑃𝑇𝑤𝑤𝑤)𝑖𝐶

]
(22)

holds, all incentivized agents satisfy 𝑥𝑥𝑥 ∈ M(𝑓 ) and 𝑠 (𝑟𝑥𝑥𝑥 , 𝑓 ,𝐺𝑑 ) = 𝑙 (𝜏) − 𝑙 (𝑟𝑥𝑥𝑥 ) −
(𝜏−𝑟𝑥𝑥𝑥 ) △𝑐∗𝑖𝐴
(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐴

, which
is concave in 𝑟,∀𝑟 ≤ 𝜏 since 𝑙 is convex on [0, 𝜏]. A rational decision maker will make sure that an
agent with 𝑟𝑥𝑥𝑥 ≥ 0.5 is inM(𝑓 ), and 𝑟𝑥𝑥𝑥 < 0.5 is not. And similar to the case in Theorem 3.6, agents
that fully spends 𝑐 but still need (𝑎𝑎𝑎𝐴)𝑖𝐶 > 0 are suggested to stick with their CS best responses.

The decision maker chooses 𝑐 by

𝑐 = (𝜏 − 𝑟 )△𝑐∗𝑖𝐴/(𝑃
𝑇𝜃𝜃𝜃 )𝑖𝐴 , where 𝑟 = argmin

𝑟

𝑠 .𝑡 . 𝑠 (𝑟, 𝑓 ,𝐺) ≥ 0,

intuitively, it incentivizes every agent with non-negative individual subsidy surplus.
Here we highlight some of the key reasons why the mechanism is still IC, IR and satisfies 𝑆 (𝑓 ,𝐺)

if the condition in (22) does not hold.
In fact, when𝑤𝑤𝑤 = 𝜃𝜃𝜃 in 𝑓 , we can assume that a rational decision maker makes sure if 𝑥𝑥𝑥 ∉M(𝑓 ),

then 𝑙 (𝑟𝑥𝑥𝑥 ) < 0.5⇔ 1 − 𝑙 (𝑟𝑥𝑥𝑥 ) > 𝑙 (𝑟𝑥𝑥𝑥 ). As a result, we know that

𝑠 (𝑟, 𝑓 ,𝐺) = 𝑙 (𝜏) − 𝑙 (𝑟 ) −
(𝜏 − 𝑟 )△𝑐𝑖𝐴
(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐴

≥ 𝑠 (𝑟, 𝑓 ,𝐺),

is concave in 𝑟 and

𝑠 (𝑟, 𝑓 ,𝐺) = 𝑙 (𝜏) + 𝑙 (𝑟 ) − 1 −
(𝜏 − 𝑟 )△𝑐𝑖𝐴
(𝑃𝑇𝜃𝜃𝜃 )𝑖𝐴

≤ 𝑠 (𝑟, 𝑓 ,𝐺),

is increasing in 𝑟,∀𝑟 𝑠.𝑡 . 𝑙 (𝑟 ) < 0.5. Therefore, if the condition in (22) does not hold, we have
𝑙 (𝑟 ) < 0.5, where 𝑟 = argmin𝑟 𝑠 .𝑡 . 𝑠 (𝑟, 𝑓 ,𝐺) ≥ 0 we can also conclude that 𝑟𝑥𝑥𝑥𝑖𝑛[𝑟, 𝜏] satisfies
𝑠 (𝑟𝑥𝑥𝑥 , 𝑓 ,𝐺) ≥ 0, i.e., every agent incentivized has non-negative individual subsidy surplus. □

When (22) does not hold or 𝑓 incentivizes improvement, the mechanism designer can approximate
the optimal △𝑐𝑖𝐴 by doing a grid search on the value of 1/(𝑐𝑖𝐴 − △𝑐𝑖𝐴 ) with step size 𝜖 to find the
corresponding △𝑐𝑖𝐴 and the related optimal 𝑐 like in Theorem 3.7, which guarantees max𝐺 𝑆 (𝑓 ,𝐺) −
max 𝑆𝑔𝑟𝑖𝑑 (𝑓 ,𝐺𝑔𝑟𝑖𝑑 ) is 𝑂 (𝜖) if max𝑣

∫ 𝑣+𝜖
𝑣

𝑝𝑅 (𝑟 )𝑑𝑟 is 𝑂 (𝜖).
This is because if the optimal discounted value is ˜△𝑐𝑖𝐴 , there is one scanned value 1/(𝑐𝑖𝐴 − △𝑐𝑖𝐴 )

that is at most 𝜖/2 away from 1/(𝑐𝑖𝐴 − ˜△𝑐𝑖𝐴 ), meaning that
(1) the optimal scanned value at worst failed to incentivize 𝑂 (𝜖) of agents to improve with a

highest subsidy benefit of 𝑂 (𝜖) and possibly an infinitesimal extra amount of subsidy cost;
9If 𝑥𝑥𝑥 ∈ M(𝑓 ) , incentivizing this agent will result in the same decision outcome and an improvement equilibrium qualification
status and thus the subsidy benefit is 𝑙 (𝜏) − 𝑙 (𝑟𝑥𝑥𝑥 ); if 𝑥𝑥𝑥 ∉ M(𝑓 ) , subsidizing this agent will change the decision outcome
from 0 to 1, and the subsidy benefit is 𝑙 (𝜏) − [1 − 𝑙 (𝑟𝑥𝑥𝑥 ) ]. When applying the minimum effective discount value, the agent’s
equilibrium action cost is the same in AS and CS outcomes, and thus 𝑥𝑥𝑥 ∈ M(𝑓 ) are incentivized to improve.



(2) the optimal scanned value at worst paid an extra subsidy cost of 𝑂 (𝜖) (𝑂 (𝜖) probability mass
of agents with individual payment no more than 1) and has no improved a highest subsidy
benefit.

C SUPPLEMENTARY MATERIAL FOR SECTION 4
C.1 Proof of Theorem 4.1

PROOF. Recall that the AS utility of the decision maker is

𝑈
(𝑟𝑒𝑔)
𝐴
(𝑓 ) =

∫
X
E𝜎

[
−
(
𝑓 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎∗𝐴 (𝑥𝑥𝑥)) − 𝑦 ′𝐴

)2]
𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 − 𝐻 (𝐺),

which if we rewrite the equilibrium individual error as

E(𝑓 ,𝑎𝑎𝑎,𝑥𝑥𝑥) = [𝑤𝑤𝑤𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎) − 𝜃𝜃𝜃𝑇 (𝑥𝑥𝑥 + 𝑃𝑎𝑎𝑎)]2 + 𝑒𝑟𝑟 (𝜎),

the objective becomes

𝑈
(𝑟𝑒𝑔)
𝐴
(𝑓 ) =

∫
X
−E(𝑓 ,𝑎𝑎𝑎,𝑥𝑥𝑥)𝑝 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 − 𝐻 (𝐺).

The integral part is non-concave for general 𝑝 (𝑥𝑥𝑥).
On the other hand, for a target AS best response where 𝛼 < 1, 𝑎𝑎𝑎𝐴 = 𝛼 𝐵

𝑐 𝑗−△𝑐∗𝑗
𝑒𝑒𝑒 𝑗 + (1 − 𝛼) 𝐵

𝑐𝑖𝐶
𝑒𝑒𝑒𝑖𝐶 ,

we have 𝐻 (𝐺) = 𝑐 =
𝛼𝐵△𝑐∗𝑗
𝑐 𝑗−△𝑐∗𝑗

, and the where 𝐻 (𝐺) is linear in 𝑎𝑎𝑎. for a target AS best response where

𝛼 > 1, 𝑎𝑎𝑎𝐴 = 𝛼 𝐵
𝑐 𝑗−△𝑐∗𝑗

𝑒𝑒𝑒 𝑗 , we have

𝛼

𝑐 𝑗 − △𝑐∗𝑗
=

1
𝑐 𝑗 − △𝑐 𝑗

⇔ △𝑐 𝑗 =
(𝛼 − 1)𝑐 𝑗 + △𝑐∗𝑗

𝛼
,

and

𝐻 (𝐺) =
𝐵△𝑐 𝑗

𝑐 𝑗 − △𝑐 𝑗
=
𝐵((𝛼 − 1)𝑐 𝑗 + △𝑐∗𝑗 )

𝑐 𝑗 − △𝑐∗𝑗
.

We can similarly show that 𝐻 (𝐺) is piece-wise affine in𝑎𝑎𝑎 and thus the entire objective is non-concave
and the problem is non-convex. □

C.2 Proof of Theorem 4.2
PROOF. This algorithm has two loops, making it finish in polynomial time.
The outer loop enumerates through all improvement action dimensions and chooses the minimum

effective discount amount to incentivize the agents to take an AS best response 𝑎𝑎𝑎𝐴 = 𝛼 𝐵
𝑐 𝑗−△𝑐∗𝑗

𝑒𝑒𝑒 𝑗 +
(1 − 𝛼) 𝐵

𝑐𝑖𝐶
𝑒𝑒𝑒𝑖𝐶 , where 𝛼 < 1. The inner loop grid searches the 𝛼 values for each 𝑗 to see if an IC and

IR and 𝑆 (𝑓 ,𝐺) > 0, computes the corresponding 𝑐 and keeps track of the 𝐺 that generates the largest
𝑆 (𝑓 ,𝐺). □

C.3 Proof of Theorem 4.4
PROOF. In the special case, if improvement is incentivized by the mechanism, it is the dominant

strategy to use the minimum effective discount amount, since a higher discount achieves the same
error reduction but a higher subsidy cost.

For an AS best response 𝑎𝑎𝑎𝐴 = 𝛼 𝐵
𝑐 𝑗−△𝑐∗𝑗

𝑒𝑒𝑒 𝑗 + (1 − 𝛼) 𝐵
𝑐𝑖𝐶

𝑒𝑒𝑒𝑖𝐶 , where 𝛼 < 1, the alternative form of
individual subsidy benefit is the reduction in the expected prediction error

(𝜃𝜃𝜃𝑇𝑃𝑎𝑎𝑎∗𝐶 )2 − (1 − 𝛼)2 (𝜃𝜃𝜃𝑇𝑃𝑎𝑎𝑎∗𝐶 )2,



Fig. 16. An illustration of the CS DP gap when group 2 is disadvantaged in attributes.

the subsidy cost is 𝐻 (𝐺) = 𝑐 =
𝛼𝐵△𝑐∗𝑗
𝑐 𝑗−△𝑐∗𝑗

, and thus we have the alternative individual subsidy urplus

𝑠 (𝛼) = (2𝛼 − 𝛼2) (𝜃𝜃𝜃𝑇𝑃𝑎𝑎𝑎∗𝐶 )2 − 𝛼𝐵△𝑐𝑖𝐴 (𝑐𝑖𝐴 − △𝑐𝑖𝐴 )−1.

□

D SUPPLEMENTARY MATERIAL FOR SECTION 5
D.1 Proof of Theorem 5.1

PROOF. The DP gap is only related to 𝑓 (𝑧𝑧𝑧) but not 𝑦 or 𝑦 ′, when the two groups have the
same action cost but group 2 is disadvantaged in attribute, the implicit threshold (the lower side
boundary ofM𝑑 (𝑓 ), 𝜏𝐿) is the same for both groups and from the definition of attribute disadvantage,
𝑃𝑅 (1) = 1 − 𝐹 (1) (𝜏𝐿) > 1 − 𝐹 (2) (𝜏𝐿) = 𝑃𝑅 (2) , and we know that the DP gap exists.

When 𝑓 incentivizes gaming, the reason of an EO gap is similar as above 𝑇𝑃𝑅 (1) = 1 − 𝐹 (1)+ (𝜏𝐿) >
1 − 𝐹 (2)+ (𝜏𝐿) = 𝑇𝑃𝑅 (2) . If 𝑓 incentivizes improvement, then the EO gap depends on both the CS TPR
in both groups, the CS PR in both groups, and the AS quality improvement in both groups. For
example, if 𝐺 only not incentivize agents in the manipulation margins, then

𝑇𝑃𝑅𝐴 = 1 − 𝐹𝑁𝑅𝐴 = 1 − 𝐹𝑁𝑅𝐶 ·
𝑃𝑅𝐶

𝑃𝑅𝐴
= 1 − (1 −𝑇𝑃𝑅𝐶 ) · 𝑃𝑅𝐶△𝑄𝐴 + 𝑃𝑅𝐶

,

and we know that the AS EO gap depends on △𝑄 (1)
𝐴

, △𝑄 (2)
𝐴

which is based on 𝑝 (1) (𝑥𝑥𝑥) and 𝑝 (2) (𝑥𝑥𝑥)
and we can not easily conclude the EO gap changes. □

D.2 Proof of Theorem 5.2
PROOF. Part (1) is obvious since gaming results in no quality gain, andM (1) (𝑓 ) ⊇ M (2) (𝑓 )

results in the quality gain gap if 𝑓 incentivizes improvement and the DP gap no matter 𝑓 incentivizes
gaming or improvement.

If 𝑓 incentivizes gaming, the reason of the EO gap is similar to that of the DP gap.
If 𝑓 incentivizes improvement, again we can look at the formula for AS TPR

𝑇𝑃𝑅𝐴 = 1 − 𝐹𝑁𝑅𝐴 = 1 − 𝐹𝑁𝑅𝐶 ·
𝑃𝑅𝐶

𝑃𝑅𝐴
= 1 − (1 −𝑇𝑃𝑅𝐶 ) · 𝑃𝑅𝐶△𝑄𝐴 + 𝑃𝑅𝐶

,

group 1 has a higher 𝑇𝑃𝑅𝐶 , and a higher △𝑄𝐴/𝑃𝑅𝐶 , and thus a higher 𝑇𝑃𝑅𝐴 and the EO gap always
exists. □



Fig. 17. An illustration of the CS DP gap when group 2 is disadvantaged in cost.

D.3 Proof and Discussion on Theorem 5.3
PROOF. If group 2 is disadvantaged in cost, then it is cheaper to incentivize a group 1 agent

than a group 2 agent to get the same qualification status improvement, and thus the decision maker
subsidizes more group 1 agents and creates a quality gain gap. □

For DP gap, if 𝐺 only incentivizes agents in the manipulation margins, the agents’ CS or AS
equilibrium decision remains the same.

For EO gap, we note that with𝐺 , the AS true positive increases in both groups and how the EO gap
in classification changes depends on both the CS positive decision rate and the qualification status
improvement and we do not have certain conclusions. For example, if 𝐺 only not incentivize agents
in the manipulation margins, then

𝑇𝑃𝑅𝐴 = 1 − 𝐹𝑁𝑅𝐴 = 1 − 𝐹𝑁𝑅𝐶 ·
𝑃𝑅𝐶

𝑃𝑅𝐴
= 1 − (1 −𝑇𝑃𝑅𝐶 ) · 𝑃𝑅𝐶△𝑄𝐴 + 𝑃𝑅𝐶

,

we have 𝑃𝑅
(1)
𝐶

> 𝑃𝑅
(2)
𝐶

, △𝑄 (1)
𝐴

> △𝑄 (2)
𝐴

and we can not easily conclude the EO gap changes.
𝐹𝑁𝑅𝐴 = 1 − 𝐹𝑁𝑅𝐶 · 𝑃𝑅𝐶𝑃𝑅𝐴

because all false negative agents in CS remain to be false negatives in AS
(the positive individuals with lower attribute than the lower side boundary of manipulation margins).

E SUPPLEMENTARY MATERIAL FOR SECTION 6
E.1 Proof of Theorem 6.1

PROOF. We still need 𝐺 to be IR for the decision maker, where the maximum tax a rational
decision maker accepts is the subsidy benefit T (𝐺) ≤ 𝑆 (𝑓 ,𝐺) +𝐻 (𝐺), and the BB condition requires
𝑆 (𝑓 ,𝐺) + 𝐻 (𝐺) ≥ T (𝐺) ≥ 𝐻 (𝐺). So, as long as 𝑆 (𝑓 ,𝐺) ≥ 0, there is an IC, IR, and BB third party
mechanism. Therefore, finding the optimal IC, IR, and BB third party mechanism is the same as

maximize𝐺 𝑊 (𝑓 ,𝐺), subject to 𝑆 (𝑓 ,𝐺) ≥ 0,

and if 𝑆 (𝑓 ,𝐺) > 0 the mechanism can further improve its objective by setting the surplus at 0. □

E.2 Proof of Theorem 6.3
PROOF. For Part (1), the fairness oriented third party can implement the ideal mechanism on

group 2 and even further subsidize other group 2 agents to reduce the gap while avoiding subsidizing
more group 1 agents to enlarge the fairness gaps.

For Part (2), any ideal mechanism makes sure the efficiency oriented third party has “remaining
budget” to incentivize more agents to improve compared to AS-dm outcome and thus has the strictly
highest equilibrium social quality improvement. □



E.3 Proof of Theorem 6.4
PROOF. If ℎ (1)

𝐴
(𝑎𝑎𝑎) = ℎ

(2)
𝐴
(𝑎𝑎𝑎),∀𝑎𝑎𝑎, then the equilibrium feature and attribute distribution are the

same for both groups, and thus there is no fairness gap. Meanwhile, the subsidy benefit are the
same in both groups, so the overall benefit is 𝑆 (𝑓 ,𝐺 (1) ) + 𝐻 (𝐺 (1) ), and the overall subsidy cost is
𝑝 (1)𝐻 (𝐺 (1) ) + 𝑝 (2)𝐻 (𝐺 (2) ). □
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