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ABSTRACT

We study the problem of fair k-median where each cluster is re-
quired to have a fair representation of individuals from different
groups. In the fair representation k-median problem, we are given
a set of points X in a metric space. Each point x € X belongs to one
of £ groups. Further, we are given fair representation parameters «;
and f; for each group j € [£]. We say that a k-clustering Cy, - - -, Cg
fairly represents all groups if the number of points from group j in
cluster C; is between «;|C;| and f;|C;| for every j € [(] and i € [k].
The goal is to find a set C of k centers and an assignment ¢ : X — C
such that the clustering defined by (C, ¢) fairly represents all groups
and minimizes the {1-objective ), cx d(x, ¢(x)).

We present an O(log k)-approximation algorithm that runs in
time n9(¥)_ Note that the known algorithms for the problem either
(i) violate the fairness constraints by an additive term or (ii) run
in time that is exponential in both k and £. We also consider an
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f
fj> f € Nforall j € [£]. For this special case, we present an O(log k)-

important special case of the problem where o; = ; = % and

approximation algorithm that runs in (k f o) log n + poly(n) time.
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1 INTRODUCTION

Algorithmic decision making is widely used for high-stake decisions
like college admissions [36] and criminal justice [17, 29]. While
automated decision-making processes are often very efficient, there
are serious concerns about their fairness. Consequently, in recent
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years, there has been an extensive line of research on fairness of
algorithms and machine learning approaches [18, 28, 30].

In this paper, we study the “fair representation” clustering prob-
lem proposed in the seminal work of Chierichetti et al. [15]. The
notion, which is motivated by the concept of disparate impact [22],
requires that each protected class has an approximately equal rep-
resentation in each cluster. In many scenarios, a different set of
benefits are associated with each cluster of points output by the
algorithm. Then, it is desirable that different groups of individuals
(e.g., men or women) receive the benefits associated with each of
the clusters (e.g., mortgage options) in similar proportions. Further,
clustering is often used for feature engineering. In this case, we
need to ensure that the generated features are fair; that is, they
neither introduce new nor amplify existing biases in the data set.
Now, we formally define the notion of representation fairness for
clustering.

Definition 1.1 (fair representation clustering). Given a set of points

X that come from ¢ different groups Xi,...,Xp, a k-clustering

C1,- -+ ,Cy of X is fair with respect to the fairness requirement

specified by {a;j, Bj}jee if

Vielkl.jelll, G| <ICinX;| < BICi (1)

In fair k-median with fairness requirement {a;, f;};, the goal is

to find k clusters Cy, . . ., Cy and k centers, ¢y, . . ., ci (one center for

each cluster) so that the clustering Cy, . . ., Cy is fair with respect to

the fairness requirement and the £;-objective Zlle Yxec; dx, ci)

is minimized. We will say that points in C; are assigned to center

ci. We let ¢ be the assignment function that maps each point u to

the center u is assigned to. To specify a solution, it is sufficient to
provide the set of centers and ¢.

Bera et al. [8] and Bercea et al. [9] independently introduced
this notion of fairness, which generalizes the notions studied by [2,
4, 15, 39]. Bera et al. presented a constant factor approximation
algorithm for the fair representation clustering with the general
{p-objective. However, their algorithm returns a clustering that
satisfies the fairness requirements with some additive error. When
the maximum number of groups/classes to which a point may
belong is A, the additive error/violation is at most 4A + 3; in the
most common case of A = 1, the additive violation is at most 3.
Bercea et al. also gave constant factor approximation algorithms for
a variety of clustering objective (including k-median and k-means)
that violate the fairness requirement only by a small additive value.
More recently, Bandyapadhyay et al. [5] designed algorithms that
compute a constant factor approximation for fair k-median and k-
means that run in time (kA)O(kA) poly(n); these algorithms do not
violate the fairness constraints. However, one of the main questions
in the area of fair clustering still remains open:
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What is the best polynomial-time approximation algo-
rithm for representation fair clustering?
We also study exact fair representation clustering, which is an
important special case of the problem.

Definition 1.2 (exact fairness). Assume that we are given a set of
points X that come from ¢ disjoint groups: X = X; U--- U Xp. A
k-clustering Cy, - - - , Cy of X is exactly fair if
|CiﬂX‘|=ﬁ'|Ci| )]

X
We define fairlet as a minimal size non-empty set of points that
is exactly fair. Note that all fairlets have the same size (when X is
fixed). Denote this size by f. Further, for every j € [£], let f; denote
the number of points from group j in any fairlet.

Vi € [k],j € [£],

This notion was previously studied for (1) k-center [9, 38] and
(2) k-clustering with {p-objective on balanced instances (instances
with f; = 1 for all jand f = ¢) [10]. In all these special cases of
exact fairness, the fair clustering problem admits a constant factor
approximation.

Other Related Work. Fair clustering is an active domain of re-
search and by now it has been studied under various standard no-
tions including both group fairness and individual fairness, e.g., [1,
8, 11, 12, 14-16, 19, 20, 23-26, 31, 32, 34, 35, 37, 41].

1.1 Our Results

In this paper, we study the fair representation k-median problem
and give a randomized O(log k)-approximation algorithm for it that
runs in time n©(). Importantly, we get a polynomial time algo-
rithm for every fixed ¢ — this is the case in most practical settings
of interest for fairness applications. In fact, we design an algorithm
that can handle arbitrary fairness profiles (see below for the defini-
tions). Further, we design a much faster randomized algorithm for
fair k-median with exact fairness constraints and small f, where
f is the size of a fairlet. It runs in time (kf)O(f) logn + poly(n).
We emphasize that even in the case £ = O(1), all previous results
on fair representation clustering with more than two protected
groups, notably [5, 8, 9], either violate the fairness constraints by
additive terms or run in time that is exponential in k. In this pa-
per, we present first polynomial time approximation algorithms for
fair representation with ¢ = O(1) multiple protected classes that
satisfy the fairness requirement with no additive violations (see
Theorem 1.3 and Theorem 1.6).

General Representation Fairness. Our main algorithm has three
steps: location consolidation, approximation the metric by a distribu-
tion of tree metrics, and finally solving fair clustering on a tree.

In the first step, we run an existing constant factor approximation
algorithm for k-median to find a set of k centers C = {c1, ..., ¢t}
Next, we move each point to its closest center c; in C in the con-
structed solution. In other words, we reduce the initial instance of
size n (with possibly n different locations) to an instance of size n
with exactly k locations. (i.e., we may have multiple data points
mapped/moved to each location.)

In the second step, we use the metric embedding technique
by Fakcharoenphol et al. [21] to approximate the reduced instance
by a tree metric with expected distortion O(log k). As the reduced
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instance, this instance also has at most k different locations. Addi-
tionally, the metric on these locations is a tree metric.

Finally, in the third step, we use dynamic programming (DP) to
find a fair assignment of n points located at k different locations to
k centers. The DP runs in time n©(©),

We note that that our first step is very similar to that used by Bera
et al. [8] and Bercea et al. [9]; they first find a not-necessarily-fair
clustering of the data points and then reassign the points so as
to ensure that the clustering is approximately fair. In the context
of k-median, the idea of approximating the input metric with a
distribution of dominating trees was introduced by Bartal [7]; this
approach was recently used by Backurs et al. [4] in their approx-
imation algorithm for a different variant of fair representation
clustering with 2 groups. Our dynamic programming algorithm is
novel and very different from DP algorithms previously used for
solving k-median on trees (see e.g., [3, 27, 40]).

THEOREM 1.3. There exists a randomized O(log k)-approximation
algorithm for fair representation k-median that runs in nOO time.

Note that in practice the number of classes is usually a small
constant. Then our algorithm runs in polynomial time. The problem
is interesting even when ¢ is a fixed single-digit number. In addition,
note that our algorithm returns a clustering that does not violate
the fairness constraints.

REMARK 1.4. Our approach works in a more general setting with
a set of fair profiles F, where each profile p € F is a vector of length
{. A cluster C (a cluster only contains one center and a k-clustering
contains k clusters) is fair wr.t. F if IX1 N C|,...,|X,NC|) € F. For
example, this general notion captures the setting in which we only
need to guarantee that in each cluster, a sufficiently large fraction
of members belong to one of the disadvantaged groups specified by
D C [£);VYC, Y;ep |Xi NC| = a - |C|. Note that our algorithm works
for any given set of fair profiles F.

To the best of our knowledge, none of the previous results on fair
representation clustering implies an approximation bound for this
general “fairness profile” notion.

Given a clustering instance and set F, our algorithm finds a clus-
tering such that all clusters are fair w.r.t. F. Assuming the existence
of a membership oracle for F that runs is time tp, the running time
and the approximation factor are tf - n0 and O(logk) as in The-
orem 1.3. In most natural scenarios the membership oracle can be
implemented efficiently and the asymptotic runtime of our algorithm
remains n°)_ For instance, in the aforementioned fairness require-
ment which guarantees the presence of disadvantaged groups in each
cluster, tp = O({); hence, the total runtime of our algorithm in this
setting is still nO),

REMARK 1.5. We describe and analyze our algorithm for the case
when each point belongs to exactly one group X;. However, with a
minor modification,our algorithm can also handle the case when a
point may belong to multiple groups or do not belong to any group.
We introduce a “virtual” group Y for every G C [{] such that there
exists a point that belongs to groups X; with i € G and only to
them. Note that new virtual groups are disjoint and cover X. We
define the fairness constraints as follows: for every j € [{], a;|C;i| <
2G:jec |CiNYg| < BilCil|. By Remark 1.4, our algorithm can handle
these constraints; they are equivalent to the original constraints, since
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2G:jec |Ci N Y| = |Ci N Xj|. Note that now the algorithm runs in
time nO) where ¢’ is the number of virtual groups (clearly ¢’ < 2¢
but ¢’ may be much smaller than 2°).

Exact Representation Fairness. We significantly improve the run-
ning time of our algorithms when the fairness constraints are exact
(see Definition 1.2) and each point belongs to exactly one group. We
first run the algorithm by Bera et al. [8] that returns a set of centers
and an assignment of points to these centers that “nearly” satisfies
the fairness requirement. Next, we move each point to its assigned
center. We prove that there exists an O(1)-approximately optimal
fair assignment that only moves a set of O(k f?) points S*. Lastly,
we show that we can find such a set S of size O(k? 2) in polynomial
time. Then, loosely speaking, we run our main algorithm on the
set S. Since S has only O(k? f2) points, the algorithm runs in time
()OO,

THEOREM 1.6. There exists a randomized O(log k)-approximation
algorithm for exactly fair k-median that runs in time (kf)o(f) logn+
poly(n), where f is the fairlet size.

Note that our algorithm returns a clustering that does not violate
the fairness constraints.

2 PRELIMINARIES

Embedding into a distribution of dominating trees. Given a set
M, a metric on M is a map d : M X M —> R* that satisfies: for all
x, Y,z €M,

(1) d(x,y) = 0 ifand only if x = y;
(2) d(x,y) = d(y, x);
(3) d(x,2) < d(x,y) +d(y, 2),

where R* is the set of positive real numbers. A metric space is a
pair (M, d), where M is a set and d is a metric on M.

Let y be a tree on M (i.e. the vertex set of y is M). Let E denote
the edge set of y and w : E — R* be a weight function on E. For
each edge e € E, we call w(e) the length of e. For u,v € M, let P,{v
be the path from u to v in y. We define the shortest-path metric
dy :MxM— R asd,(u,0) = ZeEPff,u w(e). It is easy to verify
that dy is a metric.

Assume that we are given a metric space (M, d). We will consider
trees y on M (whose edges have positive lengths) and shortest-
path metrics d that they define on M. We say that (M, d) is a-
approximated by a probabilistic distribution Dx of dominating
trees y with distortion a > 1if

e Every tree metric d) in the support X of Dy dominates
metric (M, d); i.e., dy(u,v) > d(u,v) for all u,v € M.
* By pyldy(w,v)] < a-du,v)forallu,o e M.

A key component in our algorithms is the following result by
Fakcharoenphol et al. [21] (see also [6] by Bartal).

THEOREM 2.1 (FAKCHAROENPHOL ET AL. [21]). Every metric space
(M, d) can be approximated by a distribution of dominating trees
with distortion at most O(log |M|). Moreover, we can sample from the
distribution of dominating trees in polynomial time.
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3 ALGORITHMS

Now we present an O(log k)-approximation algorithm for fair repre-
sentation k-median that runs in time n°(), where n is the number
of points and ¢ is the number of groups.

In our algorithms, we are going to transform instances to “sim-
pler” instances by moving points to new locations. It will be helpful
to distinguish between data points and their locations. Our algo-
rithms will not change data points and their memberships in groups,
but will change their locations. Formally, we think of abstract data
points that are mapped to points/locations in a metric space; our
algorithms will modify this mapping between data points and their
locations. We call this process a reassignment. We denote the set of
data points by X and the set of locations by L. Initially L = X and
every point x € X is assigned to location x, but this will change
when we transform the instance. We denote the location of point x
w.r.t. instance 7 by loc(x) = loc 7 (x).

Now, if two data points at the same location belong to the same
group, then they are interchangeable for our algorithm. Thus, in-
stead of storing the actual data points, the algorithm will only store
the number of points from each group at every location.

Denote Rsg = {0,...,n}f and R = {-n,...,n}’.For eachge L
and j € [£], let vj(q) be the number of data points from group j
at location q. We call vector v(q) = (v1(q), .. .,ve(q)) € R>o the
profile of location g. We define the profile of a set of data points S
as a vector v(S) in R>¢ whose j-th coordinate equals the number
of data points from group j in the set; v(S) := qus v(q).

Consider a set of k clusters C. To describe a clustering, we in-
troduce an assignment function r : L X C — Rx¢. For each center
c € C,rj(g.c) (rj(g,c) is the jth entry of the vector r(q,c)) de-
notes the number of points from group j at location q that we
assign to c. Note that vector R(c) = Xger (g, ¢) € Rxo specifies
the number of points from each group that are assigned to cen-
ter c. We call R(c) the profile of center c. We require that for every
q €LY cccr(q, c) = v(q), meaning that each data point at location
q belongs to exactly one cluster.

The fairness constraints are defined by a set of fair profiles F C
R>0. We say that the cluster assigned to center c fairly represents
groups if R(c) € F. In fair representation clustering with fairness
requirement {aj, Bj}je[¢]

R(c) € Fifandonlyif a; ||R(c)|l; < Rj(c) < Bj IR(o)ll;
for all j € [£].
We restate the objective of fair representation k-median as follows
D> d(g.0)- g0l 3)
ceCqeL

Note that ||r(g, ¢)||1 is the total number of points at location q as-
signed to center c.

3.1 From a Clustering to a New Instance

Consider an instance J and a clustering for J (which is not nec-
essarily fair). As we discussed above, we can define the clustering
by specifying (i) a set C of k-centers and (ii) either a mapping ¢
from the set of data points X to C or, equivalently, an assignment
function r(q, c¢). The cost of the clustering is

cost= ) dlloc(x).4() = 3 ) d(g.)- lIr(g.)l.

xeX ceCqel
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Let us move every data point from its original location in I to ¢(x).
We get a new instance J”. Note that loc 47(x) = ¢(x) € C. The
profile v’(c) of location ¢ € C is v’(c) = R(c) (the profile v’(x) of
a location x ¢ C is a zero vector). Instance [’ has the same set of
fairness profiles F as the original instance 7.

Cramm 3.1. Consider a clustering (C’, ¢") of X. Denote its cost
w.r.t. instances J and J' by cost q and cost g, respectively. Then
|cost  — cost 7| < cost.

Proor. Consider a data point x and the center ¢’(x) that it is
assigned to by clustering (C’, ¢). Then, by the triangle inequality,
ld(loc 5(x). ¢'(x)) ~ dloc g (x). ¢/ ()| < d(loc 7(x). loc p(x)) =
d(loc 7(x), #(x)). Adding up this inequality over all data points x,
we get the desired inequality |cost 7 — cost 47| < cost. O

3.2 Location Consolidation Step

We run a constant factor approximation algorithm for the standard
k-median problem on our set of data points; e.g., the algorithm by
Charikar et al. [13] or by Li and Svensson [33]. We get k centers
C = {¢1,....¢;} and a Voronoi assignment ¢ of points to the
centers.

As described above, we move each data point x to center ¢(x).
We denote the original instance by 7 and the obtained instance by
I’. We will refer to I’ as the reduced instance.

Cramv 3.2. Let OPTy and OPTy: be the costs of optimal fair
clusterings for I and I, respectively. Assume that we used an a-
approximation algorithm for k-median in the consolidation step.
Further assume that there is a B -approximation algorithm for fair
representation k-median on I’. Then, there is an (af; + a + Bi)-
approximation algorithm for fair representation k-median on I .

Proor. Observe that the cost of an optimal (not necessarily fair)
k-median clustering of 7 is at most the cost of an optimal fair k-
median clustering of 7. Thus the cost of the clustering that we use
in the reduction is at most aOPT y.

Now consider the optimal fair clustering for 7. By Claim 3.1, the
cost of this clustering as a clustering of 7’ is at most (« + 1) OPT .
Therefore, OPT 7/ < (a + 1) OPTy .

Our approximation algorithm for 7 is very straightforward. We
simply run the fi-approximation algorithm on instance 7’ and
output the obtained clustering as a clustering of 7. Now we upper
bound the cost of this clustering w.r.t. instance 7’ and then w.r.t 7.
The cost w.r.t. 7’ is at most fOPT ;+ < fi(a + 1) OPT ;. Conse-
quently, by Claim 3.1, the cost w.r.t. 7 is at most (S (a+1)+a) OPT ,
as required. O

3.3 Embedding into Tree Metrics

Consider restriction d of metric d to C. We will reduce the problem
to the case when d is a tree metric by paying a factor of O(log k). To
this end, we will approximate d by a distribution D of dominating
trees y with distortion O(log k) and then solve the fair represen-
tation k-median for a number of trees y randomly sampled from
Dy

CLAIM 3.3. Suppose that there exists an a-approximation algo-
rithm A for fair representation k-median on tree metrics. Then, there
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is an O(a log k)-approximation algorithm for the reduced problem
I’ that succeeds with high probability (i.e., 1 — n™° for any desired
constant c).

Proor. Let r* be the optimal fair assignment for 7’ and OPT
be its cost. Consider an approximation of d by a distribution Dy
of dominating trees y with distortion log k, which exists by Theo-
rem 2.1.

For a tree metric dy,, let ry : C x C — R denote the O(x)-
approximate assignment of points to centers that algorithm ‘A finds
on instance with metric d e Then,

Ey-oxl D dq.0)-llry(gc)lh]

q,CEE
<Epnyl Y dy(@0)- lIry(g.olh]
w,cEE
<Eypyla- Y dy(g.0- I (@.oll]
q,cEE
=a- Z Ey~pyldy(g. 0 lIr*(g.0)lh
q,c€6
<a- Y Ollogh)-dg.)- (g0l
q,CEE

= O(alogk) - OPT.

The three inequalities above hold, since (i) d(q,c) < dy(g,c) (al-
ways); (ii) ry is an a-approximate assignment/solution; and (iii)
Ed, (g,c) < O(logk) - d(g, c) (recall that d is a restriction of d to C;
for every u,v € C, d(u,v) = d(u, v)).

By Markov’s inequality the obtained solution r, approximates
the optimal assignment within a factor of O(« log k) with probabil-
ity at least 1/2. By running the proposed algorithm ©(log n) times,
we get an O(a log k)-approximate solution w.h.p. O

3.4 Reduced Assignment Problem on Trees

In this section, we assume that (L, d) is a tree metric on k points
with profile vector v(u) € R for every location u € L. We open a
center at every location and our goal now is to find a fair assignment
of data points to centers. Recall that our notion of fairness is more
general than that in Definition 1.1 (we discussed it in Remark 1.4).

3.4.1 Conversion to Binary Tree. We choose an arbitrary root in
the tree. It is convenient now to convert the tree to a binary tree in
which every non-leaf vertex has exactly two children. We do that
by adding Steiner locations. Namely, we replace each vertex u with
k > 2 children with a path of length k — 2. The first vertex on the
path is u (we assume ug = u); other vertices uy, ..., u;_» are new
Steiner locations. We keep the parent of u unchanged; we let the
parent of u; be u;—; (fori > 1). For j € {2,...,k — 1}, we reassign
Jj-th child v; of u to uj—1 and reassign k-th child vy to ug_,. We set
the length of all edges on the pathu — u; — -+ — up_, to 0; we
let the length of each edge (uj-1,v;) be that of (1, v;) in the original
tree; the length of (ug_j, v) to that of (u, vg) in the original tree.
Additionally, we add a Steiner child to vertices that have exactly
one child. For a concrete example, consider a tree rooted at vertex
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1, in which 1 has four children 2, 3, 4, 5. We transform the tree by
adding Steiner nodes 6 and 7 as follows:

Let A be the set of non-Steiner locations and B be the set of
Steiner locations. We open a center at every a € A; we do not open
centers at any Steiner location b € B. For b € B, let v(b) = 0.

3.4.2 Dynamic Program. Now we write a dynamic program (DP).
We first recall the setup. We are given a binary tree L, which contains
Steiner and non-Steiner nodes/locations. Each non-Steiner node
contains some data points that we want to cluster and each Steiner
node contains no data points. Our goal is to move the data points
around (assign data points to the non-Steiner nodes) such that
the resulting clustering is fair. The objective is to minimize the
“assignment cost” 3; .4 d(t,c) - ||7(t, ¢)ll1, where ||r(t, ¢)|l; is the
number of data points at location ¢ that are assigned to c.

Let T, be the subtree of L rooted at u. Let A, and B, be non-
Steiner and Steiner locations in Ty, respectively. For a fixed assign-
ment ¢, data points located at nodes/locations in Ty, can be classified
into two types: local points and out-points. A local point is assigned
to a node/location in T, by ¢ and an out-point is assigned to a
node/location outside T, by ¢. In addition, there are some points out-
side Ty, that are assigned to nodes/locations in T;,. We refer to these
points as in-points. Now we define two functions poys : Ay — R0
and pin : Ay — R0, which specify the out-points and in-points,
respectively. Namely, for each location ¢ € Ay, poy:(c) is the pro-
file of out-points located at ¢, and p;p(c) is the profile of in-points
assigned to c. Let q := Ycca, pin(c) — Xyea, Pour(y) be the “net-
imports” of T, Clearly, g € R.

Now, we create a DP-table M[u, q] where u € L and q € R.
Loosely speaking, M[u, q] is the cost of the minimum cost partial
solution such that (a) clusters for all centers ¢ € A, satisfy fairness
constraints (note that each cluster consists of the points at locations
in T, assigned to ¢ and in-points assigned to c) and (b) the difference
between the number of in-points and out-points from group j equals
gqj. The cost of a partial solution comprises (i) the assignment costs
for points in T,, assigned to centers in Ty, (ii) for each out-point x
located at y € Ay, the portion d(y, u) of the assignment cost of x
that “lies” inside Ty, and (iii) for each in-point x” assigned to center
¢ € Ay, the portion d(u, ¢) of the assignment cost of x” that “lies”
inside Ty,.

Formally, M[u, q] is the cost of the optimal solution for the fol-
lowing problem.

Find.

e functionr : Ay XAy, — R>0; map r specifies the assignment
of data points located in subtree Ty, to centers in Ty,. Namely,
r(y, c) is the profile of the set of data points located at y that
are assigned to center c. Let Ry, (c) = ZyETu r(y, ¢). Note that
Ry (c) is the profile of the set of data points at locations in
Ay that are assigned to center c.

e function poy; : Ay — Rx0; map poy: specifies the set of
data points in subtree T;, that are not assigned to any center

818

FAccT 22, June 21-24, 2022, Seoul, Republic of Korea

in Ty,; these data points will have to be assigned to centers
outside of Ty, later. Namely, poy(y) is the profile of currently
unassigned data points at location y.

o function pin : Ay — Rs0; pin specifies how many data
points located outside of the subtree T;, are assigned to cen-
ters in Ty,. Namely, pin(c) is the profile of data points that
lie outside of Ty, but assigned to center c.

Such that.

o foreveryy € Ay, Ycea, 7, ¢) + pour(y) = v(y). This con-
dition says that every data point at location y is assigned to
some center ¢ € A, or is currently unassigned.

e Ry(c) + pin(c) € F for all ¢ € A,. This condition says that
the profile of the cluster centered at ¢ is in F (that is, the
cluster satisfies the fairness constraints). Here, R, (c) counts
data points in T;, that are assigned to ¢ and p;,(c) counts
data points outside of T, that are assigned to c.

* Ycea, Pinlc) — ZyeAu Pout(y) = q.

Cost. The objective is to minimize the following cost

> Ay, lr@ ol + ) dle,w) - llpin(@)ll

Y,CEA, ceA,

+ Z d(y, w) - lpout W)l

YEAy

If there is no feasible solution the cost is +o0.

3.4.3 Solving the DP. We fill out the DP table starting from the
leaves and going up to the root (bottom-up).

Computing M[u, q] for leaves u is straightforward using the
definition of M[u, q]. In this case, the subtree T, rooted at u is a
single node. Thus, for any given g, the profile at u after assignment
is
Ru(u) + pin(u) = r(u,u) + pin(u) = r(u, u) + pour(w) + g = v(u) +q.
If u is not a Steiner node, then M[u,q] = 0 if v(u) + ¢ € F and
Mlu, q] = o if v(u) + q ¢ F.If u is a Steiner node, then M[u,q] = 0
if g = 0and M[u, q] = 0 if g # 0.

Now assume that u is not a leaf; since the tree is a binary tree,
u has two children y and z. Note that node u will send g points
to T and g, points to T, for some gy, q; € R. Then M[u, q] is the
minimum over gy, g, € R satisfying

o ifu € A then v(u) + q—qy — q; € F; that is, cluster centered
at u satisfies fairness constraints.

e ifu € B, then g — gy — q; = 0, since v(u) = 0 and no point
will be assigned to u.

of the following cost

My, qy] + Mz, qz] + d(w,y) - llgylls + d(w.2) - llgzll (4
The pseudo-code of the DP algorithm is provided in Algorithm 1.

LEMMA 3.4. The described dynamic programming algorithm runs
in time n®(") and finds an optimal fair assignment of the data points
X located in the set of locations L.

Proor. It is straightforward that the DP algorithm correctly
computes the DP entries. The cost of the optimal fair assignment
for our problem is given by M[root, 0] where root is root of the tree
and 0 is the all-zero vector.
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The update rule, which is specified by Eq. (4) and the constraints
on qy,qz,q and v(u), computes M[u, q] correctly in time nO0),
which accounts for enumerating over all possible values of g, and
q. Since the DP tables contains k - no@) cells, the total time to fully
compute the table is k - nO) = O Finally, once the whole table
is computed, we can recover the assignment itself by traversing the
table from M|root, 0] in the reverse direction, which takes no)
time. The total running time is nO0), O

Proor oF THEOREM 1.3: We first apply the consolidation step
and thus reduce the problem to the set of locations C is of size k.
Then we approximate metric on c by a distribution of dominating
tree metrics, as explained in 3.3. We obtain a logarithmic number
of instances with tree metrics. We exactly solve each of them using
the DP algorithm described above. Finally, we return the best of
the clusterings we find. It follows from Claims 3.2 and 3.3 and
Lemma 3.4, that the algorithm finds an O(log k) approximation
with high probability in time nO0), O

Algorithm 1 DP Algorithm on Trees

Require: T is a binary tree of height d, r is the root of T, and for
eachi=0,1,...,d, N;is the set of nodes in the i-th level of T.
1: foru € N; do

22 forgeRdo

3 if u is a non-Steiner node then

4 if v(u) + q € F then

5 Mlu,q] =0

6 else

7 Mlu,q] = o

8 end if

9 else

10: if g = 0 then

11 Mlu,q] =0

12: else

13: Mlu,q] = o

14: end if

15: end if

16:  end for

17: end for

18 fori=d-1,d-2,...,0do

19:0 foru € Nj do

20: Y,z < children of u

21: if u is a Steiner node then

22: Mlu, q] = min{Mly, qy] + M|z, q.] + d(u, y) - ligyll +
d(w,z) - lgzlli : qy. 9z € R.q = qy + gz}

23: else

2 Mlu, q] = min{Mly, qy] + M|z, q.] + d(u, y) - ligyllL +
d(,z) - llgzll : gy, 9z € R,v(w) + q—qy — gz € F}

25: end if

26:  end for

27: end for

28: return M][r,0]
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4 SPECIAL CASE OF EXACT FAIRNESS

In this section, we design an O(log k) approximation algorithm for

k-median with exact fairness constraints. The algorithm runs in

time (k £)©() log n + poly(n) and succeeds with high probability.
To recall, we say that a cluster centered at ¢ is exactly fair if

Vj €[], Ri(e) = IR, where 121
points in X that belongs to group j. We say that a clustering is
exactly fair if all of its clusters are exactly fair. More generally, a

set of data points S with profile v(S) € R is exactly fair if for all

J €161, 05(8) = o).

Recall that we defined fairlet in Definition 1.2 as a minimal size
non-empty set that is exactly fair. Note that all fairlets have the
same size and we use f to denote their size. Further, for every
J € [£], we use f; to denote the number of points from group j in

any fairlet.

is the proportion of data

4.1 Reassignment Method

We start with the reduced instance 7’ on the set of locations E
which we constructed in the location consolidation step.

Given any subset S € X with profile vector v(S), we say that
v(S) is y-approximately fair if

fi :
vj(S) - 7||v(5)||1 <y. Vielt]. ®)

Given an assignment r, we say that r is a y-approximately fair
assignment if R(c) is y-approximately fair for all ¢ € C, where
R(c) = Yxex r(x,c) € R is the center profiles corresponding to
r.

We use the following result by Bera et al. [8].

THEOREM 4.1. For any metric space X and a set of centers C C X,
There exists a 3-approximately fair assignmentr : X X C — Rxo
whose cost is no more than the optimal fair assignment of X. Moreover,
there is an algorithm which finds this assignment in polynomial time.

We start by running the assignment algorithm from Theorem 4.1
on instance I’. Let r denote this new assignment and R(c) =
Dxex r'(x,c) € Rsp be the center profiles corresponding to r. As
discussed in Section 3.1, every assignment defines a new instance.
Let 7' be the instance defined by assignment r. Now our goal is to
modify r by reassigning only a small number of points so that the
obtained assignment is fair. We describe this reassigning procedure
below.

LEMMA 4.2. Assume that there is a fy.-approximation algorithm
for the fair clustering problem on I"'. Then, there is an (2f + 1)-
approximation algorithm for I”’.

Proor. The proof is similar to that of Claim 3.2. We run the S
approximation algorithm on instance 7'’ and output the obtained
clustering as a clustering for /. We now upper bound its cost.

Let OPT 7/ and OPT y~ be the costs of the optimal fair cluster-
ings/assignments for instances 7" and 7"/, respectively. By Claim 3.1
applied to r, OPT y» < 20PT z.. Thus the cost of the clustering we
find w.r.t. 7' is at most 28, OPT z,. Now applying Claim 3.1 to this
clustering, we get that its cost w.r.t. 7/ is at most (2f; + 1)OPT 7,
as required. O
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Algorithm for the reassignment problem. We present an O(log k)- decomposition Dg. Now, we greedily extend Dg to a fairlet decom-
approximation algorithm for the reassignment problem that runs position for (Cy, . .., Cy). Let P; be the set of problematic points in
in time (f k)00, the obtained decomposition. Note that Lemma 4.4 applies to P; and

Suppose we are given an instance J with locations cy, . . ., cg, therefore |P;| < 4f.
metric d and profile vectors v(cy), . . . , v(ck ), that satisfy 3-approximately ~ Similarly, we greedily extend decomposition D to a fairlet
fair requirement as in Eq. (5). We will apply our reassignment al- decomposition for (C7,..., C; ). We refer to fairlets that we add to
gorithm to J = I'”’. For every i € [k], let C; be the set of points Dg as new fairlets. Let N be the set of all new fairlets.

assigned to ¢; in J.
& ! Definition 4.5 (restricted assignment). In the restricted assign-

Definition 4.3. For every i € [k], let F; € C; be a maximal ment problem, we need to find a minimum cost assignment r :
exactly fair subset of C;. Decompose each F; into n; = |F;|/ f fairlets {c1,...,cx} x [k] = Rsg of J such that
7"1(1), e, Trf:) Let P; = C; \ F; be the set of remaining points. We

! ’ e ris a valid exactly fair assignment. Formally,
say that D = {(7"1(1), e, 7‘_"(;), Pi)}ie[e) is a fairlet decomposition

: . . . k
for' clustering C := (Cy, .. ., Cy). We call points in P; problematic Ve e {en- - op)s Z re,ci) = v(c)
points. i=1
LEmMMA 4.4. Consider a fairlet decomposition for C. Then for every , i
c [k]: |Pl| < 4f- VJ € [f],c € {Ch e ,Ck}, R](C) = ?”R(C)Hl
Proor. Consider an arbitrary i € [k]. We first assume thatn; = 0 e every new fairlet ¥ in le contains at least one point from

; in other words, F; is empty. Let v(C;) be the profile vector of Ci.
C;. Since F; = 0, P; = C; and there exits a group j € [£] such
that v;(C;) < fj. Further, Since P; = C; is 3-approximately fair,

|vj(c-)-M| <3, whichimpliesthatﬁ|P,-| < 0j(Ci)+3 < fj+3.

LEMMA 4.6. Let OPI’} and OPT g denote the optimal values of

the restricted and vanilla fair assignment problems with input J

Pl respectively. Then, OPTRj < 20PTgq.

Dividing both sides of the above equation by f] Ll % +1<
J

3+ 1 =4,since f; > 1. Thus, |P;| < 4f. PrOOF. Let r be an optimal fair assignment of . Let Cy, ..., C
Now, we drop the condition n; = 0. Let v(P;) be the profile be the resulting clusters; the set C; consists of the points assigned
vector for P;. We show that not only v(C;) but also v(P;) satisfies to ¢; by . Now, suppose that there exits a new fairlet # in some C;
Eq. (5) with y = 3. Indeed, for each j € [{], vj(C;) — vj(P;) = (i € [k]) such that ¥ N C; = 0. Without loss of generality, assume
nlf]% = (Jlo(Clh - ||v(pi)||1)fi Thus, for each j € [£], ‘vj(Pi) _ that the points in # are from Cj,,Cj,, ..., Cj,, for some m € [k].
5 Let w; := |Cj, N F| for every t € [m] and W = }J1 | w;. Then,
7 ||U(Pi)||1‘ ‘U] (Ci)- ||v(C,)||1 < 3. Hence the same argument the total cost of forming ¥ is 2.} | w; - d(cj,, c;). Now, for every
as for the case n; = 0 shows that |P;| < 4f. ] s € [m], compute the cost of moving all points in fairlet 7 to cluster
Cj, (i.e., reassign all data points in # to center c;,) and denote it as

Next, we give an outline of our approach. M.
(1) First, we show that there exists an exactly fair assignment ° .
r f9r J of cost at most 20PT g that only reassigns O(k f?) M Z wed(cj,.c;,)
points. —
(2) Next, we show that it is possible to find a subset S; € C; for
each i € [k] such that |S;| = O(kf?) for all i € [k], and there Z we(d(cj, ¢i) + d(cj ci))
exists a solution of cost at most 20PT g that only reassigns te[m]\{s}
points in S := ;e[ Si
(3) Finally, we apply E)dr dynamic programming approach to ( Z Wi )d(cjs’ ¢i) + Z wed(cj,, ¢i).
reassign points in S. Since |S| = O(k? f2), the DP algorithm re[m\{s} telm]\{s}
runs in (kf )0 time.
To show (1), we impose an additional assumption on the structure
of the desired (re)assignment r. Let Cy, ..., C; be the clustering

IA

Next, consider the convex combination Y™ =1 W S Ms.

resulted from an exactly fair assignment of J, where le is the ponr w Ms
cluster of points at location c; after the reassignment. m m
Let Cy, . .., Cy be the clustering before the (re)assignment. Now, = Z Ws Z wed(cj,, cj,)
we construct fairlet decompositions for (Cy, . . ., Cx) and (Cy, . . ., Cl’c)‘ =1 w =
Let E C X be the set of data points that are assigned to the same mo
center before and after (re)assignment r. For each i € [k], let < Z Ws( wt)d(c]s,cl) + Z Z wed(cj,, ci)
Ei = {x € E : locq(x) = c;} be the set of data points in C; s=1 m\{s} s=1 te[m]\{s}
that are fixed by r. m
For every i € [k], let F/ C E; be a maximal exactly fair sub- <2 Z wed(cj,, ci).
set of E;. We decompose F; into n] = |F/|/f fairlets. We call this t=1

820
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This implies that there exist s* € [m] with Cj_, N ¥ # 0 such that
the cost M+ of reassigning ¥ to c;_. is at most twice the current
assignment cost of F.

We perform this fairlet reassignment procedure to all new fairlets
that do not satisfy the restricted assignment property and obtain a
new restricted assignment r’. Our argument shows that the assign-
ment cost of r’ is at most twice the assignment cost of r; hence,

orTR

K3 < ZOPTJ.

O

Next, we show that the optimal restricted assignment is even
more structured.

LEMMA 4.7. There exists an optimal solution r’ to the restricted
assignment of J such that

(a) for any i € k] and any new fairlet ¥ C Cj, there exists a
problematic point x € ¥ N Cy;

(b) if ' moves a point x € F' for some fairlet ¥/ C C; and
i € [k], thenr’ moves all points in F”.

Proor. Let r be the optimal solution for the restricted assign-
ment problem. We apply two transformations to it.

Transformation I: Simplifying the reassignment multigraph. For
every group j € [{], define the reassignment multigraph G; on
the set of centers ci, ..., cg. There is a directed edge from c, to
cp # ¢q in Gj for every point x that is reassigned from ¢, to ¢; by
r. We label such an edge with label x. Note that there are rj(cq, cp)
parallel edges from c, to ¢ in G;.

Assume that there is a vertex c that has both incoming and
outgoing edges in G;. Let (¢’, ¢) be an incoming edge and (c, ¢”’) be
an outgoing edge (it is possible that ¢/ = ¢’). Denote their labels by
x and x”. By the definition of the graph, r reassigns point x € X
from ¢’ to ¢ and point x” € X; from ¢ to ¢’’. We modify r as follows
(see Figure 1). We only change the assignment of points x and x’:
we reassign x to ¢’ and x’ to ¢. Denote the obtained assignment
7. Since x and x”’ belong to the same group X;, we do not change
the profiles of any clusters and thus 7 is exactly fair. Further, if r
assigns a point y from ¢; to ¢; then so does 7. Therefore, 7 is also
a solution to the restricted assignment problem. Finally, its cost is
at most that of r: indeed the assignment costs of all points other
than x and x” do not change; the total assignment cost of x and x’
was equal to d(¢’, ¢) + d(c, ¢”’) for r and is equal to d(c¢’, ¢”") for 7;
we have d(c’,¢) + d(c,c”’) = d(c’,c”’) by the triangle inequality.

‘ original assignment r new assignment 7
assignment c c

cost d(c’,c)+d(c,c”) d(c’,c")

Figure 1: We reassign x and x’. When we do the reassign-
ment, we replace two edges (¢’,c) and (c,¢”’) with one edge
(¢’,c”) in graph G;. Note that there are no loops in G;. We
have drawn a dotted arrow from c to itself in the figure sim-

ply to indicate that 7 does not reassign x’.
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We perform this step over and over until there are no vertices
that simultaneously have incoming and outgoing edges. (Note that
each time we perform this step, the number of edges in one of the
graphs G; decreases by 1 and does not change in all other graphs
Gj (for every j’ € [£] \ {j}). So we will necessarily stop at some
point.)

Denote the obtained assignment by r’. It is a fair assignment and
its cost is at most that of r. Consider the reassignment multigraphs
{G},'}je[t’] for r’. Each vertex c¢ in GJ’. is either a source, sink, or
isolated vertex.

Transformation II: Specifying which points r’ moves. We go over
all i € [k] and j € [£] such that ¢; is a source-vertex in GJ’.. Assign-
ment r’ moves M = 3,4, rj(ci, ¢i7) points in group j from C; to
other clusters. Since all points in C; N X are interchangeable, we
are free to choose any subset of M points in C; N X to move. We
choose this set in a special way. Let 71, . .., ¥y, be fairlets in the
fairlet decomposition we constructed for C;. We order all points
in C; N Xj as follows: first points from P; N X, then from %1 N X,
then from %2 N Xj, then from 3 N Xj, etc (we order points inside
each of these sets arbitrarily). We choose the subset of the first M
points w.r.t. this order and assume that r’ moves them. Note that
r’ moves non-problematic points from C; N Xj to another cluster
only if it moves all problematic points from C; N Xj.

We have defined r’. Now we prove that it satisfies properties
(a) and (b). To this end, we consider a cluster C; and analyze the
following two cases.

Case 1: Assignment r’ does not move any non-problematic points
from cluster C; to other clusters. All points (if any) it moves from C; to
other clusters are problematic. Then C; \P; C C : and thus all fairlets
present in the decomposition for C; are also present in that for C;.
Hence, every non-problematic point belongs to the same fairlet in
Ci and C!. In particular, only problematic points may belong to new
fairlets. On the other hand, since r’ is a solution to the restricted
assignment problem, at least one point x in each new fairlet ¥ in
C; must be from C;. It follows that this point must be problematic.
We proved that property (a) holds in this case. Since r does not
move any points from fairlets ¥/ C C; to other clusters, property

(b) trivially holds.

Case 2: Assignment r’ moves at least one non-problematic point
from C; to another cluster. Let t be maximal index such that r’ moves
points from fairlet #; to other clusters. Since we are guaranteed
that r’ moves at least one non-problematic point, ¢ is well defined.

By our choice of ¢, r’ does not move any points from fairlets
Ft+15. .., Fn, and therefore these fairlets are still present in C;.
Now we show that there are no other fairlets in C l’ ; in particular,
there are no new fairlets.

Consider a point x in ¥; that r’ moves to some other cluster C;.
Assume that x € X;. Then edge (c;, ci) - an edge outgoing from
¢; — is present in G}f. Hence, ¢; cannot be a sink or isolated vertex
and must be a source-vertex in G]'.. Therefore, r’ does not move any
point y € X; from another cluster to C;. Also, all points in C; N X
that precede x w.r.t. the order we considered in the Transformation
1I step are moved to other clusters by r’; in particular, all points
inP; NX;,F1 NXj,...,F-1 N Xj as well as x itself are moved
to other clusters by r’. Therefore, le N X consists of points from
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Ft+1 N Xj, ..., Fn; N X; and hypothetically some points from #; N
Xj. However, point x from #; N X is assigned to another cluster
and thus there are not enough points from group j left in #; to
form another fairlet. We conclude that %341, ..., Fn, are the only
fairlets in le . Since le satisfies the exact fairness constraints, each
point in C l’ lies in a fairlet, that is, in one of these fairlets. Now (a)
trivially holds since there are no new fairlets in C’; (b) holds since r’
moves all points from fairlets 77, . . ., ; and no points from fairlets

Frets- - Fn;- O

Lemma 4.7 immediately implies the following result which proves 1
and 2.

COROLLARY 4.8. Suppose that J is a 3-approximately fair instance.
There exists an assignment r’ of cost at most 20PT q that only moves
O(kf?) points. Furthermore, we can choose a subset S of data points
such that |S| = O(k? f2) and the solution r’ only moves points in S.

ProoF. Let r’ be an optimal restricted assignment that satisfies
both conditions in Lemma 4.7. In the clustering defined by r/, every
new fairlet contains a problematic point from the original cluster of
the center they are assigned to by r’. Since by Lemma 4.4 there are
only 4k f problematic points in total, there are at most 4k f many
new fairlets. Thus, ' moves at most 4k f? many points. Moreover,
by Lemma 4.6, the cost of r’ is at most 20PT q.

Since we know that r’ moves at most 4k f? many points and r’
satisfies condition (b) in Lemma 4.7, r’ would move at most 4k f
fairlets in each cluster. Recall that each C; contains n; fairlets. From
each cluster C;, we pick min(n;, 4k f) many fairlets and add them
to the set S. Then, we add all the problematic points to S. Then,
S| < 4k%f2 + 4k f and we can assume that r’ only moves the points
in S. O

Now, we can solve the assignment problem by passing the set
S as input to our dynamic programming approach described in
Section 3.4.

ProoF oF THEOREM 1.6. Let 7 be an instance of the exactly fair
k-median problem. First, we perform location consolidation on 7 to
obtain the instance 7’ as described in Section 3.2. Then, we run the
assignment algorithm by [8] on 7. Let 7"/ be the resulting instance.
By Theorem 4.1, " is 3-approximately fair. By Corollary 4.8, we
can pick a subset S of data points such that |S| = O(k?f?) and
there exists an solution r” of cost at most 20PT 7~ that only moves
points in S. Now, we apply the dynamic programming algorithm in
Theorem 1.3 on S to obtain a solution of cost at most O(log k)OPT 7~
with high probability that runs in 15]100) logn = (kf)o(f) logn
time. Since all the previous steps take poly(n) time, the total running
time of this algorithm is poly(n) + (k £)°©) log n.

Now, by Lemma 4.2 and Claim 3.2, the total cost of our solution
is O(log k)OPT 7. O

5 CONCLUSIONS

In this paper, we study the fair k-median problem. We present
an O(log k)-approximation algorithm that runs in time n9(). We
further showed that our algorithm works in a more general set-
ting where the fairness requirements are specified as an arbitrary
set of fair profiles. This notion “profile-based fairness” captures a
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richer class of fairness requirements that cannot be handled by the
previously known approaches for fair representation clustering.

In addition, in the special case of exact fairness, we present
an O(log k)-approximation algorithm that runs in (k f YO() logn +
poly(n) time, where f is the size of a fairlet.

Our paper shows that there exists approximation algorithms
for fair representation clustering with O(1) protected classes that
run in polynomial time. It remains as an exciting question whether
polynomial time O(log k)-approximation can be achieved for the
problem when ¢ = Q(1). An approach that can be potentially help-
ful to resolve the previous question is to extend the “reassignment”
method used in Section 4 to the more general setting of representa-
tion fairness (as in Section 3). Another interesting direction is to
extend our results to k-means problem. A natural approach is to
consider the semi-metric d’(x,y) = d?(x, y) and apply our DP algo-
rithm to d’. The problem of this approach is that when we embed
the metric to a distribution of tree metrics, we need to bound Edi

by (Ed, )2, which is not true.
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