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ABSTRACT
We study the problem of fair k-median where each cluster is re-

quired to have a fair representation of individuals from different

groups. In the fair representation k-median problem, we are given

a set of points X in a metric space. Each point x ∈ X belongs to one

of ℓ groups. Further, we are given fair representation parameters α j
and βj for each group j ∈ [ℓ]. We say that a k-clusteringC1, · · · ,Ck
fairly represents all groups if the number of points from group j in
clusterCi is between α j |Ci | and βj |Ci | for every j ∈ [ℓ] and i ∈ [k].
The goal is to find a set C of k centers and an assignmentϕ : X → C
such that the clustering defined by (C,ϕ) fairly represents all groups
and minimizes the ℓ1-objective

∑
x ∈X d(x ,ϕ(x)).

We present an O(logk)-approximation algorithm that runs in

time nO (ℓ). Note that the known algorithms for the problem either

(i) violate the fairness constraints by an additive term or (ii) run

in time that is exponential in both k and ℓ. We also consider an

important special case of the problem where α j = βj =
fj
f and

fj , f ∈ N for all j ∈ [ℓ]. For this special case, we present anO(logk)-

approximation algorithm that runs in (k f )O (ℓ) logn + poly(n) time.
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• Social and professional topics; • Mathematics of comput-
ing;
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1 INTRODUCTION
Algorithmic decisionmaking is widely used for high-stake decisions

like college admissions [36] and criminal justice [17, 29]. While

automated decision-making processes are often very efficient, there

are serious concerns about their fairness. Consequently, in recent
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years, there has been an extensive line of research on fairness of

algorithms and machine learning approaches [18, 28, 30].

In this paper, we study the “fair representation” clustering prob-

lem proposed in the seminal work of Chierichetti et al. [15]. The

notion, which is motivated by the concept of disparate impact [22],

requires that each protected class has an approximately equal rep-

resentation in each cluster. In many scenarios, a different set of

benefits are associated with each cluster of points output by the

algorithm. Then, it is desirable that different groups of individuals

(e.g., men or women) receive the benefits associated with each of

the clusters (e.g., mortgage options) in similar proportions. Further,

clustering is often used for feature engineering. In this case, we

need to ensure that the generated features are fair; that is, they

neither introduce new nor amplify existing biases in the data set.

Now, we formally define the notion of representation fairness for

clustering.

Definition 1.1 (fair representation clustering). Given a set of points

X that come from ℓ different groups X1, . . . ,Xℓ , a k-clustering
C1, · · · ,Ck of X is fair with respect to the fairness requirement

specified by {α j , βj }j ∈ℓ if

∀i ∈ [k], j ∈ [ℓ], α j |Ci | ≤ |Ci ∩ X j | ≤ βj |Ci | (1)

In fair k-median with fairness requirement {α j , βj }j , the goal is
to find k clustersC1, . . . ,Ck and k centers, c1, . . . , ck (one center for

each cluster) so that the clusteringC1, . . . ,Ck is fair with respect to

the fairness requirement and the ℓ1-objective
∑k
i=1

∑
x ∈Ci d(x , ci )

is minimized. We will say that points in Ci are assigned to center

ci . We let ϕ be the assignment function that maps each point u to

the center u is assigned to. To specify a solution, it is sufficient to

provide the set of centers and ϕ.

Bera et al. [8] and Bercea et al. [9] independently introduced

this notion of fairness, which generalizes the notions studied by [2,

4, 15, 39]. Bera et al. presented a constant factor approximation

algorithm for the fair representation clustering with the general

ℓp -objective. However, their algorithm returns a clustering that

satisfies the fairness requirements with some additive error. When

the maximum number of groups/classes to which a point may

belong is ∆, the additive error/violation is at most 4∆ + 3; in the

most common case of ∆ = 1, the additive violation is at most 3.

Bercea et al. also gave constant factor approximation algorithms for

a variety of clustering objective (including k-median and k-means)

that violate the fairness requirement only by a small additive value.

More recently, Bandyapadhyay et al. [5] designed algorithms that

compute a constant factor approximation for fair k-median and k-

means that run in time (k∆)O (k∆) poly(n); these algorithms do not

violate the fairness constraints. However, one of the main questions

in the area of fair clustering still remains open:
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What is the best polynomial-time approximation algo-

rithm for representation fair clustering?

We also study exact fair representation clustering, which is an

important special case of the problem.

Definition 1.2 (exact fairness). Assume that we are given a set of

points X that come from ℓ disjoint groups: X = X1 ∪ · · · ∪ Xℓ . A

k-clustering C1, · · · ,Ck of X is exactly fair if

∀i ∈ [k], j ∈ [ℓ], |Ci ∩ X j | =
|X j |

|X |
· |Ci | (2)

We define fairlet as a minimal size non-empty set of points that

is exactly fair. Note that all fairlets have the same size (when X is

fixed). Denote this size by f . Further, for every j ∈ [ℓ], let fj denote
the number of points from group j in any fairlet.

This notion was previously studied for (1) k-center [9, 38] and
(2) k-clustering with ℓp -objective on balanced instances (instances

with fj = 1 for all j and f = ℓ) [10]. In all these special cases of

exact fairness, the fair clustering problem admits a constant factor

approximation.

Other Related Work. Fair clustering is an active domain of re-

search and by now it has been studied under various standard no-

tions including both group fairness and individual fairness, e.g., [1,

8, 11, 12, 14–16, 19, 20, 23–26, 31, 32, 34, 35, 37, 41].

1.1 Our Results
In this paper, we study the fair representation k-median problem

and give a randomizedO(logk)-approximation algorithm for it that

runs in time nO (ℓ). Importantly, we get a polynomial time algo-

rithm for every fixed ℓ – this is the case in most practical settings

of interest for fairness applications. In fact, we design an algorithm

that can handle arbitrary fairness profiles (see below for the defini-

tions). Further, we design a much faster randomized algorithm for

fair k-median with exact fairness constraints and small f , where

f is the size of a fairlet. It runs in time (k f )O (ℓ) logn + poly(n).
We emphasize that even in the case ℓ = O(1), all previous results
on fair representation clustering with more than two protected

groups, notably [5, 8, 9], either violate the fairness constraints by

additive terms or run in time that is exponential in k . In this pa-

per, we present first polynomial time approximation algorithms for

fair representation with ℓ = O(1) multiple protected classes that

satisfy the fairness requirement with no additive violations (see

Theorem 1.3 and Theorem 1.6).

General Representation Fairness. Our main algorithm has three

steps: location consolidation, approximation the metric by a distribu-

tion of tree metrics, and finally solving fair clustering on a tree.

In the first step, we run an existing constant factor approximation

algorithm for k-median to find a set of k centers C = {c1, . . . , ck }.
Next, we move each point to its closest center ci in C in the con-

structed solution. In other words, we reduce the initial instance of

size n (with possibly n different locations) to an instance of size n
with exactly k locations. (i.e., we may have multiple data points

mapped/moved to each location.)

In the second step, we use the metric embedding technique

by Fakcharoenphol et al. [21] to approximate the reduced instance

by a tree metric with expected distortion O(logk). As the reduced

instance, this instance also has at most k different locations. Addi-

tionally, the metric on these locations is a tree metric.

Finally, in the third step, we use dynamic programming (DP) to

find a fair assignment of n points located at k different locations to

k centers. The DP runs in time nO (ℓ).
We note that that our first step is very similar to that used by Bera

et al. [8] and Bercea et al. [9]; they first find a not-necessarily-fair

clustering of the data points and then reassign the points so as

to ensure that the clustering is approximately fair. In the context

of k-median, the idea of approximating the input metric with a

distribution of dominating trees was introduced by Bartal [7]; this

approach was recently used by Backurs et al. [4] in their approx-

imation algorithm for a different variant of fair representation

clustering with 2 groups. Our dynamic programming algorithm is

novel and very different from DP algorithms previously used for

solving k-median on trees (see e.g., [3, 27, 40]).

Theorem 1.3. There exists a randomized O(logk)-approximation

algorithm for fair representation k-median that runs in nO (ℓ) time.

Note that in practice the number of classes is usually a small

constant. Then our algorithm runs in polynomial time. The problem

is interesting even when ℓ is a fixed single-digit number. In addition,

note that our algorithm returns a clustering that does not violate

the fairness constraints.

Remark 1.4. Our approach works in a more general setting with

a set of fair profiles F , where each profile p ∈ F is a vector of length

ℓ. A cluster C (a cluster only contains one center and a k-clustering
contains k clusters) is fair w.r.t. F if (|X1 ∩C |, . . . , |Xℓ ∩C |) ∈ F . For
example, this general notion captures the setting in which we only

need to guarantee that in each cluster, a sufficiently large fraction

of members belong to one of the disadvantaged groups specified by

D ⊆ [ℓ]; ∀C,∑i ∈D |Xi ∩C | ≥ α · |C |. Note that our algorithm works

for any given set of fair profiles F .
To the best of our knowledge, none of the previous results on fair

representation clustering implies an approximation bound for this

general “fairness profile” notion.

Given a clustering instance and set F , our algorithm finds a clus-

tering such that all clusters are fair w.r.t. F . Assuming the existence

of a membership oracle for F that runs is time tF , the running time

and the approximation factor are tF · n
O (ℓ)

and O(logk) as in The-

orem 1.3. In most natural scenarios the membership oracle can be

implemented efficiently and the asymptotic runtime of our algorithm

remains nO (ℓ). For instance, in the aforementioned fairness require-

ment which guarantees the presence of disadvantaged groups in each

cluster, tF = O(ℓ); hence, the total runtime of our algorithm in this

setting is still nO (ℓ).

Remark 1.5. We describe and analyze our algorithm for the case

when each point belongs to exactly one group Xi . However, with a

minor modification,our algorithm can also handle the case when a

point may belong to multiple groups or do not belong to any group.

We introduce a “virtual” group YG for every G ⊂ [ℓ] such that there

exists a point that belongs to groups Xi with i ∈ G and only to

them. Note that new virtual groups are disjoint and cover X . We

define the fairness constraints as follows: for every j ∈ [ℓ], αi |Ci | ≤∑
G :j ∈G |Ci ∩YG | ≤ βi |Ci |. By Remark 1.4, our algorithm can handle

these constraints; they are equivalent to the original constraints, since
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∑
G :j ∈G |Ci ∩ YG | = |Ci ∩ X j |. Note that now the algorithm runs in

time nO (ℓ
′)
where ℓ′ is the number of virtual groups (clearly ℓ′ ≤ 2

ℓ

but ℓ′ may be much smaller than 2
ℓ
).

Exact Representation Fairness. We significantly improve the run-

ning time of our algorithms when the fairness constraints are exact

(see Definition 1.2) and each point belongs to exactly one group. We

first run the algorithm by Bera et al. [8] that returns a set of centers

and an assignment of points to these centers that “nearly” satisfies

the fairness requirement. Next, we move each point to its assigned

center. We prove that there exists an O(1)-approximately optimal

fair assignment that only moves a set of O(k f 2) points S∗. Lastly,
we show that we can find such a set S of sizeO(k2 f 2) in polynomial

time. Then, loosely speaking, we run our main algorithm on the

set S . Since S has only O(k2 f 2) points, the algorithm runs in time

(k f )O (ℓ).

Theorem 1.6. There exists a randomized O(logk)-approximation

algorithm for exactly fair k-median that runs in time (k f )O (ℓ) logn+
poly(n), where f is the fairlet size.

Note that our algorithm returns a clustering that does not violate

the fairness constraints.

2 PRELIMINARIES
Embedding into a distribution of dominating trees. Given a set

M , a metric onM is a map d : M ×M −→ R+ that satisfies: for all
x ,y, z ∈ M ,

(1) d(x ,y) = 0 if and only if x = y;
(2) d(x ,y) = d(y,x);
(3) d(x , z) ≤ d(x ,y) + d(y, z),

where R+ is the set of positive real numbers. A metric space is a

pair (M,d), whereM is a set and d is a metric onM .

Let χ be a tree onM (i.e. the vertex set of χ isM). Let E denote

the edge set of χ andw : E −→ R+ be a weight function on E. For
each edge e ∈ E, we callw(e) the length of e . For u,v ∈ M , let P

χ
u,v

be the path from u to v in χ . We define the shortest-path metric

dχ : M ×M −→ R+ as dχ (u,v) =
∑
e ∈P χ

u,v
w(e). It is easy to verify

that dχ is a metric.

Assume that we are given a metric space (M,d). We will consider

trees χ on M (whose edges have positive lengths) and shortest-

path metrics dχ that they define on M . We say that (M,d) is α-
approximated by a probabilistic distribution DX of dominating

trees χ with distortion α ≥ 1 if

• Every tree metric dχ in the support X of DX dominates

metric (M,d); i.e., dχ (u,v) ≥ d(u,v) for all u,v ∈ M .

• Eχ∼DX [dχ (u,v)] ≤ α · d(u,v) for all u,v ∈ M .

A key component in our algorithms is the following result by

Fakcharoenphol et al. [21] (see also [6] by Bartal).

Theorem 2.1 (Fakcharoenphol et al. [21]). Every metric space

(M,d) can be approximated by a distribution of dominating trees

with distortion at mostO(log |M |). Moreover, we can sample from the

distribution of dominating trees in polynomial time.

3 ALGORITHMS
Nowwe present anO(logk)-approximation algorithm for fair repre-

sentation k-median that runs in time nO (ℓ), where n is the number

of points and ℓ is the number of groups.

In our algorithms, we are going to transform instances to “sim-

pler” instances by moving points to new locations. It will be helpful

to distinguish between data points and their locations. Our algo-

rithms will not change data points and their memberships in groups,

but will change their locations. Formally, we think of abstract data

points that are mapped to points/locations in a metric space; our

algorithms will modify this mapping between data points and their

locations. We call this process a reassignment. We denote the set of

data points by X and the set of locations by L. Initially L = X and

every point x ∈ X is assigned to location x , but this will change
when we transform the instance. We denote the location of point x
w.r.t. instance I by loc(x) = locI (x).

Now, if two data points at the same location belong to the same

group, then they are interchangeable for our algorithm. Thus, in-

stead of storing the actual data points, the algorithm will only store

the number of points from each group at every location.

DenoteR≥0 ≡ {0, . . . ,n}
ℓ
andR ≡ {−n, . . . ,n}ℓ . For eachq ∈ L

and j ∈ [ℓ], let vj (q) be the number of data points from group j
at location q. We call vector v(q) = (v1(q), . . . ,vℓ(q)) ∈ R≥0 the
profile of location q. We define the profile of a set of data points S
as a vector v(S) in R≥0 whose j-th coordinate equals the number

of data points from group j in the set; v(S) :=
∑
q∈Sv(q).

Consider a set of k clusters C. To describe a clustering, we in-

troduce an assignment function r : L × C → R≥0. For each center

c ∈ C, r j (q, c) (r j (q, c) is the jth entry of the vector r (q, c)) de-
notes the number of points from group j at location q that we

assign to c . Note that vector R(c) =
∑
q∈L r (q, c) ∈ R≥0 specifies

the number of points from each group that are assigned to cen-

ter c . We call R(c) the profile of center c . We require that for every

q ∈ L,
∑
c ∈C r (q, c) = v(q), meaning that each data point at location

q belongs to exactly one cluster.

The fairness constraints are defined by a set of fair profiles F ⊂
R≥0. We say that the cluster assigned to center c fairly represents

groups if R(c) ∈ F . In fair representation clustering with fairness

requirement {α j , βj }j ∈[ℓ]
R(c) ∈ F if and only ifα j ∥R(c)∥1 ≤ Rj (c) ≤ βj ∥R(c)∥1
for all j ∈ [ℓ].

We restate the objective of fair representation k-median as follows∑
c ∈C

∑
q∈L

d(q, c) · ∥r (q, c)∥1. (3)

Note that ∥r (q, c)∥1 is the total number of points at location q as-

signed to center c .

3.1 From a Clustering to a New Instance
Consider an instance J and a clustering for J (which is not nec-

essarily fair). As we discussed above, we can define the clustering

by specifying (i) a set C of k-centers and (ii) either a mapping ϕ
from the set of data points X to C or, equivalently, an assignment

function r (q, c). The cost of the clustering is

cost =
∑
x ∈X

d(locJ (x),ϕ(x)) =
∑
c ∈C

∑
q∈L

d(q, c) · ∥r (q, c)∥1.
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Let us move every data point from its original location in J to ϕ(x).
We get a new instance J ′. Note that locJ′(x) = ϕ(x) ∈ C. The
profile v ′(c) of location c ∈ C is v ′(c) = R(c) (the profile v ′(x) of
a location x < C is a zero vector). Instance J ′ has the same set of

fairness profiles F as the original instance J .

Claim 3.1. Consider a clustering (C′,ϕ ′) of X . Denote its cost
w.r.t. instances J and J ′ by costJ and costJ′ , respectively. Then
|costJ − costJ′ | ≤ cost.

Proof. Consider a data point x and the center ϕ ′(x) that it is
assigned to by clustering (C′,ϕ ′). Then, by the triangle inequality,

|d(locJ (x),ϕ
′(x)) − d(locJ′(x),ϕ

′(x))| ≤ d(locJ (x), locJ′(x)) =
d(locJ (x),ϕ(x)). Adding up this inequality over all data points x ,
we get the desired inequality |costJ − costJ′ | ≤ cost. □

3.2 Location Consolidation Step
We run a constant factor approximation algorithm for the standard

k-median problem on our set of data points; e.g., the algorithm by

Charikar et al. [13] or by Li and Svensson [33]. We get k centers

C = {c1, . . . , ck } and a Voronoi assignment ϕ of points to the

centers.

As described above, we move each data point x to center ϕ(x).
We denote the original instance by I and the obtained instance by

I ′. We will refer to I ′ as the reduced instance.

Claim 3.2. Let OPTI and OPTI′ be the costs of optimal fair

clusterings for I and I ′, respectively. Assume that we used an α-
approximation algorithm for k-median in the consolidation step.

Further assume that there is a βk -approximation algorithm for fair

representation k-median on I ′. Then, there is an (αβk + α + βk )-
approximation algorithm for fair representation k-median on I.

Proof. Observe that the cost of an optimal (not necessarily fair)

k-median clustering of I is at most the cost of an optimal fair k-
median clustering of I. Thus the cost of the clustering that we use

in the reduction is at most αOPTI .
Now consider the optimal fair clustering for I. By Claim 3.1, the

cost of this clustering as a clustering of I ′ is at most (α + 1)OPTI .
Therefore, OPTI′ ≤ (α + 1)OPTI .

Our approximation algorithm for I is very straightforward. We

simply run the βk -approximation algorithm on instance I ′ and

output the obtained clustering as a clustering of I. Now we upper

bound the cost of this clustering w.r.t. instance I ′ and then w.r.t I.

The cost w.r.t. I ′ is at most βkOPTI′ ≤ βk (α + 1)OPTI . Conse-
quently, by Claim 3.1, the cost w.r.t.I is at most (βk (α+1)+α)OPTI ,
as required. □

3.3 Embedding into Tree Metrics
Consider restriction d of metric d to C. We will reduce the problem

to the case when d is a tree metric by paying a factor ofO(logk). To

this end, we will approximate d by a distributionDχ of dominating

trees χ with distortion O(logk) and then solve the fair represen-

tation k-median for a number of trees χ randomly sampled from

Dχ .

Claim 3.3. Suppose that there exists an α-approximation algo-

rithmA for fair representation k-median on tree metrics. Then, there

is an O(α logk)-approximation algorithm for the reduced problem

I ′ that succeeds with high probability (i.e., 1 − n−c for any desired
constant c).

Proof. Let r∗ be the optimal fair assignment for I ′ and OPT

be its cost. Consider an approximation of d by a distribution DX
of dominating trees χ with distortion logk , which exists by Theo-

rem 2.1.

For a tree metric dχ , let rχ : C × C → R≥0 denote the O(α)-
approximate assignment of points to centers that algorithmA finds

on instance with metric dχ . Then,

Eχ∼DX [
∑

q,c ∈C

d(q, c) · ∥rχ (q, c)∥1]

≤ Eχ∼DX [
∑

w,c ∈C

dχ (q, c) · ∥rχ (q, c)∥1]

≤ Eχ∼DX [α ·
∑

q,c ∈C

dχ (q, c) · ∥r
∗(q, c)∥1]

= α ·
∑

q,c ∈C

Eχ∼DX [dχ (q, c)] · ∥r
∗(q, c)∥1

≤ α ·
∑

q,c ∈C

O(logk) · d(q, c) · ∥r∗(q, c)∥1

= O(α logk) · OPT.

The three inequalities above hold, since (i) d(q, c) ≤ dχ (q, c) (al-
ways); (ii) rχ is an α-approximate assignment/solution; and (iii)

Edχ (q, c) ≤ O(logk) · d(q, c) (recall that d is a restriction of d to C ;

for every u,v ∈ C,d(u,v) = d(u,v)).
By Markov’s inequality the obtained solution rχ approximates

the optimal assignment within a factor of O(α logk) with probabil-

ity at least 1/2. By running the proposed algorithm Θ(logn) times,

we get an O(α logk)-approximate solution w.h.p. □

3.4 Reduced Assignment Problem on Trees
In this section, we assume that (L,d) is a tree metric on k points

with profile vector v(u) ∈ R≥0 for every location u ∈ L. We open a

center at every location and our goal now is to find a fair assignment

of data points to centers. Recall that our notion of fairness is more

general than that in Definition 1.1 (we discussed it in Remark 1.4).

3.4.1 Conversion to Binary Tree. We choose an arbitrary root in

the tree. It is convenient now to convert the tree to a binary tree in

which every non-leaf vertex has exactly two children. We do that

by adding Steiner locations. Namely, we replace each vertex u with

k > 2 children with a path of length k − 2. The first vertex on the

path is u (we assume u0 ≡ u); other vertices u1, . . . ,uk−2 are new
Steiner locations. We keep the parent of u unchanged; we let the

parent of ui be ui−1 (for i ≥ 1). For j ∈ {2, . . . ,k − 1}, we reassign
j-th child vj of u to uj−1 and reassign k-th child vk to uk−2. We set

the length of all edges on the path u → u1 → · · · → uk−2 to 0; we

let the length of each edge (uj−1,vj ) be that of (u,vj ) in the original

tree; the length of (uk−2,vk ) to that of (u,vk ) in the original tree.

Additionally, we add a Steiner child to vertices that have exactly

one child. For a concrete example, consider a tree rooted at vertex

817



Fair Representation Clustering with Several Protected Classes FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea

1, in which 1 has four children 2, 3, 4, 5. We transform the tree by

adding Steiner nodes 6 and 7 as follows:

1

2 3 4 5

=⇒

1

2 6

3 7

4 5

Let A be the set of non-Steiner locations and B be the set of

Steiner locations. We open a center at every a ∈ A; we do not open

centers at any Steiner location b ∈ B. For b ∈ B, let v(b) = 0.

3.4.2 Dynamic Program. Now we write a dynamic program (DP).

We first recall the setup.We are given a binary treeL, which contains
Steiner and non-Steiner nodes/locations. Each non-Steiner node

contains some data points that we want to cluster and each Steiner

node contains no data points. Our goal is to move the data points

around (assign data points to the non-Steiner nodes) such that

the resulting clustering is fair. The objective is to minimize the

“assignment cost”

∑
t,c ∈A d(t , c) · ∥r (t , c)∥1, where ∥r (t , c)∥1 is the

number of data points at location t that are assigned to c .
Let Tu be the subtree of L rooted at u. Let Au and Bu be non-

Steiner and Steiner locations in Tu , respectively. For a fixed assign-

mentϕ, data points located at nodes/locations inTu can be classified

into two types: local points and out-points. A local point is assigned

to a node/location in Tu by ϕ and an out-point is assigned to a

node/location outsideTu byϕ. In addition, there are some points out-

sideTu that are assigned to nodes/locations inTu . We refer to these

points as in-points. Now we define two functions ρout : Au → R≥0
and ρin : Au → R≥0, which specify the out-points and in-points,

respectively. Namely, for each location c ∈ Au , ρout (c) is the pro-
file of out-points located at c , and ρin (c) is the profile of in-points
assigned to c . Let q :=

∑
c ∈Au ρin (c) −

∑
y∈Au ρout (y) be the “net-

imports” of Tu . Clearly, q ∈ R.
Now, we create a DP-table M[u,q] where u ∈ L and q ∈ R.

Loosely speaking,M[u,q] is the cost of the minimum cost partial

solution such that (a) clusters for all centers c ∈ Au satisfy fairness

constraints (note that each cluster consists of the points at locations

inTu assigned to c and in-points assigned to c) and (b) the difference
between the number of in-points and out-points from group j equals
qj . The cost of a partial solution comprises (i) the assignment costs

for points in Tu assigned to centers in Tu , (ii) for each out-point x
located at y ∈ Au , the portion d(y,u) of the assignment cost of x
that “lies” insideTu , and (iii) for each in-point x ′ assigned to center
c ∈ Au , the portion d(u, c) of the assignment cost of x ′ that “lies”
inside Tu .

Formally,M[u,q] is the cost of the optimal solution for the fol-

lowing problem.

Find.

• function r : Au ×Au → R≥0; map r specifies the assignment

of data points located in subtreeTu to centers inTu . Namely,

r (y, c) is the profile of the set of data points located at y that

are assigned to center c . Let Ru (c) =
∑
y∈Tu r (y, c). Note that

Ru (c) is the profile of the set of data points at locations in
Au that are assigned to center c .
• function ρout : Au → R≥0; map ρout specifies the set of
data points in subtree Tu that are not assigned to any center

in Tu ; these data points will have to be assigned to centers

outside ofTu later. Namely, ρout (y) is the profile of currently
unassigned data points at location y.
• function ρin : Au → R≥0; ρin specifies how many data

points located outside of the subtree Tu are assigned to cen-

ters in Tu . Namely, ρin (c) is the profile of data points that
lie outside of Tu but assigned to center c .

Such that.

• for every y ∈ Au ,
∑
c ∈Au r (y, c) + ρout (y) = v(y). This con-

dition says that every data point at location y is assigned to

some center c ∈ Au or is currently unassigned.

• Ru (c) + ρin (c) ∈ F for all c ∈ Au . This condition says that

the profile of the cluster centered at c is in F (that is, the

cluster satisfies the fairness constraints). Here, Ru (c) counts
data points in Tu that are assigned to c and ρin (c) counts
data points outside of Tu that are assigned to c .
•

∑
c ∈Au ρin (c) −

∑
y∈Au ρout (y) = q.

Cost. The objective is to minimize the following cost∑
y,c ∈Au

d(y, c) · ∥r (y, c)∥1 +
∑
c ∈Au

d(c,u) · ∥ρin (c)∥1

+
∑
y∈Au

d(y,u) · ∥ρout (y)∥1.

If there is no feasible solution the cost is +∞.

3.4.3 Solving the DP. We fill out the DP table starting from the

leaves and going up to the root (bottom-up).

Computing M[u,q] for leaves u is straightforward using the

definition of M[u,q]. In this case, the subtree Tu rooted at u is a

single node. Thus, for any given q, the profile at u after assignment

is

Ru (u) + ρin (u) = r (u,u) + ρin (u) = r (u,u) + ρout (u) + q = v(u) + q.

If u is not a Steiner node, then M[u,q] = 0 if v(u) + q ∈ F and

M[u,q] = ∞ if v(u) + q < F . If u is a Steiner node, thenM[u,q] = 0

if q = 0 andM[u,q] = ∞ if q , 0.

Now assume that u is not a leaf; since the tree is a binary tree,

u has two children y and z. Note that node u will send qy points

to Ty and qz points to Tz for some qy ,qz ∈ R. ThenM[u,q] is the
minimum over qy ,qz ∈ R satisfying

• if u ∈ A, then v(u)+q −qy −qz ∈ F ; that is, cluster centered
at u satisfies fairness constraints.

• if u ∈ B, then q − qy − qz = 0, since v(u) = 0 and no point

will be assigned to u.

of the following cost

M[y,qy ] +M[z,qz ] + d(u,y) · ∥qy ∥1 + d(u, z) · ∥qz ∥1 (4)

The pseudo-code of the DP algorithm is provided in Algorithm 1.

Lemma 3.4. The described dynamic programming algorithm runs

in time nO (ℓ) and finds an optimal fair assignment of the data points

X located in the set of locations L.

Proof. It is straightforward that the DP algorithm correctly

computes the DP entries. The cost of the optimal fair assignment

for our problem is given byM[root , 0] where root is root of the tree
and 0 is the all-zero vector.
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The update rule, which is specified by Eq. (4) and the constraints

on qy ,qz ,q and v(u), computes M[u,q] correctly in time nO (ℓ),
which accounts for enumerating over all possible values of qy and

qz . Since the DP tables contains k ·nO (ℓ) cells, the total time to fully

compute the table is k ·nO (ℓ) = nO (ℓ). Finally, once the whole table
is computed, we can recover the assignment itself by traversing the

table from M[root , 0] in the reverse direction, which takes nO (ℓ)

time. The total running time is nO (ℓ). □

Proof of Theorem 1.3: We first apply the consolidation step

and thus reduce the problem to the set of locations C is of size k .

Then we approximate metric on C by a distribution of dominating

tree metrics, as explained in 3.3. We obtain a logarithmic number

of instances with tree metrics. We exactly solve each of them using

the DP algorithm described above. Finally, we return the best of

the clusterings we find. It follows from Claims 3.2 and 3.3 and

Lemma 3.4, that the algorithm finds an O(logk) approximation

with high probability in time nO (ℓ). □

Algorithm 1 DP Algorithm on Trees

Require: T is a binary tree of height d , r is the root of T , and for

each i = 0, 1, . . . ,d , Ni is the set of nodes in the i-th level ofT .
1: for u ∈ Nd do
2: for q ∈ R do
3: if u is a non-Steiner node then
4: if v(u) + q ∈ F then
5: M[u,q] = 0

6: else
7: M[u,q] = ∞
8: end if
9: else
10: if q = 0 then
11: M[u,q] = 0

12: else
13: M[u,q] = ∞
14: end if
15: end if
16: end for
17: end for
18: for i = d − 1,d − 2, . . . , 0 do
19: for u ∈ Ni do
20: y, z ← children of u
21: if u is a Steiner node then
22: M[u,q] = min{M[y,qy ] +M[z,qz ] + d(u,y) · ∥qy ∥1 +

d(u, z) · ∥qz ∥1 : qy ,qz ∈ R,q = qy + qz }
23: else
24: M[u,q] = min{M[y,qy ] +M[z,qz ] + d(u,y) · ∥qy ∥1 +

d(u, z) · ∥qz ∥1 : qy ,qz ∈ R,v(u) + q − qy − qz ∈ F }
25: end if
26: end for
27: end for
28: return M[r , 0]

4 SPECIAL CASE OF EXACT FAIRNESS
In this section, we design an O(logk) approximation algorithm for

k-median with exact fairness constraints. The algorithm runs in

time (k f )O (ℓ) logn + poly(n) and succeeds with high probability.

To recall, we say that a cluster centered at c is exactly fair if

∀j ∈ [ℓ], Rj (c) = |X j |

|X | ∥R(c)∥1, where
|X j |

|X | is the proportion of data

points in X that belongs to group j. We say that a clustering is

exactly fair if all of its clusters are exactly fair. More generally, a

set of data points S with profile v(S) ∈ R≥0 is exactly fair if for all

j ∈ [ℓ], vj (S) =
|X j |

|X | ∥v(S)∥1.

Recall that we defined fairlet in Definition 1.2 as a minimal size

non-empty set that is exactly fair. Note that all fairlets have the

same size and we use f to denote their size. Further, for every

j ∈ [ℓ], we use fj to denote the number of points from group j in
any fairlet.

4.1 Reassignment Method
We start with the reduced instance I ′ on the set of locations C,

which we constructed in the location consolidation step.

Given any subset S ⊆ X with profile vector v(S), we say that

v(S) is γ -approximately fair if���vj (S) − fj

f
∥v(S)∥1

��� ≤ γ , ∀j ∈ [ℓ]. (5)

Given an assignment r , we say that r is a γ -approximately fair

assignment if R(c) is γ -approximately fair for all c ∈ C, where
R(c) =

∑
x ∈X r (x , c) ∈ R≥0 is the center profiles corresponding to

r .
We use the following result by Bera et al. [8].

Theorem 4.1. For any metric space X and a set of centers C ⊆ X ,

There exists a 3-approximately fair assignment r : X × C → R≥0
whose cost is no more than the optimal fair assignment ofX . Moreover,

there is an algorithm which finds this assignment in polynomial time.

We start by running the assignment algorithm from Theorem 4.1

on instance I ′. Let r denote this new assignment and R(c) =∑
x ∈X r (x , c) ∈ R≥0 be the center profiles corresponding to r . As

discussed in Section 3.1, every assignment defines a new instance.

Let I ′′ be the instance defined by assignment r . Now our goal is to

modify r by reassigning only a small number of points so that the

obtained assignment is fair. We describe this reassigning procedure

below.

Lemma 4.2. Assume that there is a βk -approximation algorithm

for the fair clustering problem on I ′′. Then, there is an (2βk + 1)-

approximation algorithm for I ′.

Proof. The proof is similar to that of Claim 3.2. We run the βk
approximation algorithm on instance I ′′ and output the obtained

clustering as a clustering for I ′. We now upper bound its cost.

Let OPTI′ and OPTI′′ be the costs of the optimal fair cluster-

ings/assignments for instancesI ′ andI ′′, respectively. By Claim 3.1

applied to r , OPTI′′ ≤ 2OPTI′ . Thus the cost of the clustering we

find w.r.t. I ′′ is at most 2βkOPTI′ . Now applying Claim 3.1 to this

clustering, we get that its cost w.r.t. I ′ is at most (2βk + 1)OPTI′ ,
as required. □
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Algorithm for the reassignment problem. We present an O(logk)-
approximation algorithm for the reassignment problem that runs

in time (f k)O (ℓ).
Suppose we are given an instance J with locations c1, . . . , ck ,

metricd and profile vectorsv(c1), . . . ,v(ck ), that satisfy 3-approximately

fair requirement as in Eq. (5). We will apply our reassignment al-

gorithm to J = I ′′. For every i ∈ [k], let Ci be the set of points
assigned to ci in J .

Definition 4.3. For every i ∈ [k], let Fi ⊆ Ci be a maximal

exactly fair subset ofCi . Decompose each Fi intoni = |Fi |/f fairlets

F
(i)
1
, . . . ,F

(i)
ni . Let Pi = Ci \ Fi be the set of remaining points. We

say that D = {(F
(i)
1
, . . . ,F

(i)
ni , Pi )}i ∈[ℓ] is a fairlet decomposition

for clustering C := (C1, . . . ,Ck ). We call points in Pi problematic

points.

Lemma 4.4. Consider a fairlet decomposition forC . Then for every

i ∈ [k], |Pi | < 4f .

Proof. Consider an arbitrary i ∈ [k]. We first assume thatni = 0

; in other words, Fi is empty. Let v(Ci ) be the profile vector of

Ci . Since Fi = ∅, Pi = Ci and there exits a group j ∈ [ℓ] such
that vj (Ci ) < fj . Further, Since Pi = Ci is 3-approximately fair,

|vj (Ci )−
fj · |Pi |

f | ≤ 3, which implies that

fj
f |Pi | ≤ vj (Ci )+3 < fj +3.

Dividing both sides of the above equation by fj ,
|Pi |
f < 3

fj
+ 1 ≤

3 + 1 = 4, since fj ≥ 1. Thus, |Pi | < 4f .
Now, we drop the condition ni = 0. Let v(Pi ) be the profile

vector for Pi . We show that not only v(Ci ) but also v(Pi ) satisfies
Eq. (5) with γ = 3. Indeed, for each j ∈ [ℓ], vj (Ci ) − vj (Pi ) =

ni f
fj
f = (∥v(Ci )∥1 − ∥v(Pi )∥1)

fj
f . Thus, for each j ∈ [ℓ],

���vj (Pi ) −
fj
f ∥v(Pi )∥1

��� = ���vj (Ci ) − fj
f ∥v(Ci )∥1

��� ≤ 3. Hence the same argument

as for the case ni = 0 shows that |Pi | < 4f . □

Next, we give an outline of our approach.

(1) First, we show that there exists an exactly fair assignment

r for J of cost at most 2OPTJ that only reassigns O(k f 2)
points.

(2) Next, we show that it is possible to find a subset Si ⊆ Ci for
each i ∈ [k] such that |Si | = O(k f

2) for all i ∈ [k], and there
exists a solution of cost at most 2OPTJ that only reassigns

points in S :=
⋃
i ∈[k ] Si .

(3) Finally, we apply our dynamic programming approach to

reassign points in S . Since |S | = O(k2 f 2), the DP algorithm

runs in (k f )O (ℓ) time.

To show (1), we impose an additional assumption on the structure

of the desired (re)assignment r . Let C ′
1
, . . . ,C ′k be the clustering

resulted from an exactly fair assignment of J , where C ′i is the
cluster of points at location ci after the reassignment.

Let C1, . . . ,Ck be the clustering before the (re)assignment. Now,

we construct fairlet decompositions for (C1, . . . ,Ck ) and (C
′
1
, . . . ,C ′k ).

Let E ⊆ X be the set of data points that are assigned to the same

center before and after (re)assignment r . For each i ∈ [k], let
Ei = {x ∈ E : locJ (x) = ci } be the set of data points in Ci
that are fixed by r .

For every i ∈ [k], let F ′i ⊆ Ei be a maximal exactly fair sub-

set of Ei . We decompose F ′i into n
′
i = |F

′
i |/f fairlets. We call this

decompositionDE . Now, we greedily extendDE to a fairlet decom-

position for (C1, . . . ,Ck ). Let Pi be the set of problematic points in

the obtained decomposition. Note that Lemma 4.4 applies to Pi and
therefore |Pi | < 4f .

Similarly, we greedily extend decomposition DE to a fairlet

decomposition for (C ′
1
, . . . ,C ′k ). We refer to fairlets that we add to

DE as new fairlets. Let N be the set of all new fairlets.

Definition 4.5 (restricted assignment). In the restricted assign-

ment problem, we need to find a minimum cost assignment r :

{c1, . . . , ck } × [k] → R≥0 of J such that

• r is a valid exactly fair assignment. Formally,

∀c ∈ {c1, · · · , ck },
k∑
i=1

r (c, ci ) = v(c)

∀j ∈ [ℓ], c ∈ {c1, · · · , ck }, Rj (c) =
fj

f
∥R(c)∥1

• every new fairlet F in C ′i contains at least one point from
Ci .

Lemma 4.6. Let OPT
R
J

and OPTJ denote the optimal values of

the restricted and vanilla fair assignment problems with input J

respectively. Then, OPT
R
J
≤ 2OPTJ .

Proof. Let r be an optimal fair assignment of J . LetC ′
1
, . . . ,C ′k

be the resulting clusters; the set C ′i consists of the points assigned
to ci by r . Now, suppose that there exits a new fairlet F in someC ′i
(i ∈ [k]) such that F ∩Ci = ∅. Without loss of generality, assume

that the points in F are from Cj1 ,Cj2 , . . . ,Cjm for somem ∈ [k].
Let wt := |Cjt ∩ F | for every t ∈ [m] andW =

∑m
t=1wt . Then,

the total cost of forming F is

∑m
t=1wt · d(c jt , ci ). Now, for every

s ∈ [m], compute the cost of moving all points in fairlet F to cluster

Cjs (i.e., reassign all data points in F to center c js ) and denote it as

Ms .

MS =

m∑
t=1

wtd(c jt , c js )

≤
∑

t ∈[m]\{s }

wt (d(c jt , ci ) + d(c js , ci ))

=

( ∑
t ∈[m]\{s }

wt

)
d(c js , ci ) +

∑
t ∈[m]\{s }

wtd(c jt , ci ).

Next, consider the convex combination

∑m
s=1

ws
W Ms .

m∑
s=1

ws
W

Ms

=

m∑
s=1

ws
W

m∑
t=1

wtd(c jt , c js )

≤

m∑
s=1

ws
W

( ∑
t ∈[m]\{s }

wt

)
d(c js , ci ) +

m∑
s=1

ws
W

∑
t ∈[m]\{s }

wtd(c jt , ci )

< 2

m∑
t=1

wtd(c jt , ci ).
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This implies that there exist s∗ ∈ [m] with Cjs∗ ∩ F , ∅ such that

the cost Ms∗ of reassigning F to c js∗ is at most twice the current

assignment cost of F .

We perform this fairlet reassignment procedure to all new fairlets

that do not satisfy the restricted assignment property and obtain a

new restricted assignment r ′. Our argument shows that the assign-

ment cost of r ′ is at most twice the assignment cost of r ; hence,

OPT
R
J
≤ 2OPTJ .

□

Next, we show that the optimal restricted assignment is even

more structured.

Lemma 4.7. There exists an optimal solution r ′ to the restricted
assignment of J such that

(a) for any i ∈ [k] and any new fairlet F ⊆ C ′i , there exists a
problematic point x ∈ F ∩Ci ;

(b) if r ′ moves a point x ∈ F ′ for some fairlet F ′ ⊆ Ci and
i ∈ [k], then r ′ moves all points in F ′.

Proof. Let r be the optimal solution for the restricted assign-

ment problem. We apply two transformations to it.

Transformation I: Simplifying the reassignment multigraph. For

every group j ∈ [ℓ], define the reassignment multigraph G j on

the set of centers c1, . . . , ck . There is a directed edge from ca to

cb , ca in G j for every point x that is reassigned from ca to cb by

r . We label such an edge with label x . Note that there are r j (ca , cb )
parallel edges from ca to cb in G j .

Assume that there is a vertex c that has both incoming and

outgoing edges inG j . Let (c
′, c) be an incoming edge and (c, c ′′) be

an outgoing edge (it is possible that c ′ = c ′′). Denote their labels by
x and x ′. By the definition of the graph, r reassigns point x ∈ X j
from c ′ to c and point x ′ ∈ X j from c to c ′′. We modify r as follows
(see Figure 1). We only change the assignment of points x and x ′:
we reassign x to c ′′ and x ′ to c . Denote the obtained assignment

r̃ . Since x and x ′′ belong to the same group X j , we do not change

the profiles of any clusters and thus r̃ is exactly fair. Further, if r
assigns a point y from ci to ci then so does r̃ . Therefore, r̃ is also
a solution to the restricted assignment problem. Finally, its cost is

at most that of r : indeed the assignment costs of all points other

than x and x ′ do not change; the total assignment cost of x and x ′

was equal to d(c ′, c) + d(c, c ′′) for r and is equal to d(c ′, c ′′) for r̃ ;
we have d(c ′, c) + d(c, c ′′) ≥ d(c ′, c ′′) by the triangle inequality.

original assignment r new assignment r̃
assignment c

x ′

##
c ′

x

;;

c ′′

c

x ′
ZZ

c ′
x // c ′′

cost d(c ′, c) + d(c, c ′′) d(c ′, c ′′)

Figure 1: We reassign x and x ′. When we do the reassign-
ment, we replace two edges (c ′, c) and (c, c ′′) with one edge
(c ′, c ′′) in graph G j . Note that there are no loops in G j . We
have drawn a dotted arrow from c to itself in the figure sim-
ply to indicate that r̃ does not reassign x ′.

We perform this step over and over until there are no vertices

that simultaneously have incoming and outgoing edges. (Note that

each time we perform this step, the number of edges in one of the

graphs G j decreases by 1 and does not change in all other graphs

G j′ (for every j ′ ∈ [ℓ] \ {j}). So we will necessarily stop at some

point.)

Denote the obtained assignment by r ′. It is a fair assignment and

its cost is at most that of r . Consider the reassignment multigraphs

{G ′j }j ∈[ℓ] for r
′
. Each vertex c in G ′j is either a source, sink, or

isolated vertex.

Transformation II: Specifying which points r ′ moves. We go over

all i ∈ [k] and j ∈ [ℓ] such that ci is a source-vertex in G
′
j . Assign-

ment r ′ moves M =
∑
i′,i r j (ci , ci′) points in group j from Ci to

other clusters. Since all points in Ci ∩ X j are interchangeable, we

are free to choose any subset ofM points in Ci ∩ X j to move. We

choose this set in a special way. Let F1, . . . ,Fni be fairlets in the

fairlet decomposition we constructed for Ci . We order all points

in Ci ∩ X j as follows: first points from Pi ∩ X j , then from F1 ∩ X j ,

then from F2 ∩ X j , then from F3 ∩ X j , etc (we order points inside

each of these sets arbitrarily). We choose the subset of the firstM
points w.r.t. this order and assume that r ′ moves them. Note that

r ′ moves non-problematic points from Ci ∩ X j to another cluster

only if it moves all problematic points from Ci ∩ X j .

We have defined r ′. Now we prove that it satisfies properties

(a) and (b). To this end, we consider a cluster Ci and analyze the

following two cases.

Case 1: Assignment r ′ does not move any non-problematic points

from clusterCi to other clusters. All points (if any) it moves fromCi to
other clusters are problematic. ThenCi \Pi ⊆ C ′i and thus all fairlets
present in the decomposition for Ci are also present in that for C ′i .
Hence, every non-problematic point belongs to the same fairlet in

Ci andC
′
i . In particular, only problematic points may belong to new

fairlets. On the other hand, since r ′ is a solution to the restricted

assignment problem, at least one point x in each new fairlet F in

C ′i must be from Ci . It follows that this point must be problematic.

We proved that property (a) holds in this case. Since r does not

move any points from fairlets F ′ ⊆ Ci to other clusters, property

(b) trivially holds.

Case 2: Assignment r ′ moves at least one non-problematic point

fromCi to another cluster. Let t bemaximal index such that r ′moves

points from fairlet Ft to other clusters. Since we are guaranteed

that r ′ moves at least one non-problematic point, t is well defined.
By our choice of t , r ′ does not move any points from fairlets

Ft+1, . . . ,Fni and therefore these fairlets are still present in C ′i .
Now we show that there are no other fairlets in C ′i ; in particular,

there are no new fairlets.

Consider a point x in Ft that r
′
moves to some other cluster Ci′ .

Assume that x ∈ X j . Then edge (ci , ci′) – an edge outgoing from

ci – is present in G ′j . Hence, ci cannot be a sink or isolated vertex

and must be a source-vertex inG ′j . Therefore, r
′
does not move any

point y ∈ X j from another cluster to Ci . Also, all points in Ci ∩ X j
that precede x w.r.t. the order we considered in the Transformation

II step are moved to other clusters by r ′; in particular, all points

in Pi ∩ X j ,F1 ∩ X j , . . . ,Ft−1 ∩ X j as well as x itself are moved

to other clusters by r ′. Therefore, C ′i ∩ X j consists of points from
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Ft+1 ∩X j , . . . ,Fni ∩X j and hypothetically some points from Ft ∩

X j . However, point x from Ft ∩ X j is assigned to another cluster

and thus there are not enough points from group j left in Ft to
form another fairlet. We conclude that Ft+1, . . . ,Fni are the only

fairlets in C ′i . Since C
′
i satisfies the exact fairness constraints, each

point in C ′i lies in a fairlet, that is, in one of these fairlets. Now (a)

trivially holds since there are no new fairlets inC ′; (b) holds since r ′

moves all points from fairlets F1, . . . ,Ft and no points from fairlets

Ft+1, . . . ,Fni . □

Lemma 4.7 immediately implies the following result which proves 1

and 2.

Corollary 4.8. Suppose thatJ is a 3-approximately fair instance.

There exists an assignment r ′ of cost at most 2OPTJ that only moves

O(k f 2) points. Furthermore, we can choose a subset S of data points

such that |S | = O(k2 f 2) and the solution r ′ only moves points in S .

Proof. Let r ′ be an optimal restricted assignment that satisfies

both conditions in Lemma 4.7. In the clustering defined by r ′, every
new fairlet contains a problematic point from the original cluster of

the center they are assigned to by r ′. Since by Lemma 4.4 there are

only 4k f problematic points in total, there are at most 4k f many

new fairlets. Thus, r ′ moves at most 4k f 2 many points. Moreover,

by Lemma 4.6, the cost of r ′ is at most 2OPTJ .

Since we know that r ′ moves at most 4k f 2 many points and r ′

satisfies condition (b) in Lemma 4.7, r ′ would move at most 4k f
fairlets in each cluster. Recall that eachCi contains ni fairlets. From
each cluster Ci , we pick min(ni , 4k f ) many fairlets and add them

to the set S . Then, we add all the problematic points to S . Then,
|S | ≤ 4k2 f 2+4k f and we can assume that r ′ only moves the points

in S . □

Now, we can solve the assignment problem by passing the set

S as input to our dynamic programming approach described in

Section 3.4.

Proof of Theorem 1.6. Let I be an instance of the exactly fair

k-median problem. First, we perform location consolidation on I to

obtain the instance I ′ as described in Section 3.2. Then, we run the

assignment algorithm by [8] onI ′. LetI ′′ be the resulting instance.

By Theorem 4.1, I ′′ is 3-approximately fair. By Corollary 4.8, we

can pick a subset S of data points such that |S | = O(k2 f 2) and
there exists an solution r ′ of cost at most 2OPTI′′ that only moves

points in S . Now, we apply the dynamic programming algorithm in

Theorem 1.3 on S to obtain a solution of cost at mostO(logk)OPTI′′

with high probability that runs in |S |O (ℓ) logn = (k f )O (ℓ) logn
time. Since all the previous steps take poly(n) time, the total running

time of this algorithm is poly(n) + (k f )O (ℓ) logn.
Now, by Lemma 4.2 and Claim 3.2, the total cost of our solution

is O(logk)OPTI . □

5 CONCLUSIONS
In this paper, we study the fair k-median problem. We present

an O(logk)-approximation algorithm that runs in time nO (ℓ). We

further showed that our algorithm works in a more general set-

ting where the fairness requirements are specified as an arbitrary

set of fair profiles. This notion “profile-based fairness” captures a

richer class of fairness requirements that cannot be handled by the

previously known approaches for fair representation clustering.

In addition, in the special case of exact fairness, we present

an O(logk)-approximation algorithm that runs in (k f )O (ℓ) logn +
poly(n) time, where f is the size of a fairlet.

Our paper shows that there exists approximation algorithms

for fair representation clustering with O(1) protected classes that

run in polynomial time. It remains as an exciting question whether

polynomial time O(logk)-approximation can be achieved for the

problem when ℓ = Ω(1). An approach that can be potentially help-

ful to resolve the previous question is to extend the “reassignment”

method used in Section 4 to the more general setting of representa-

tion fairness (as in Section 3). Another interesting direction is to

extend our results to k-means problem. A natural approach is to

consider the semi-metric d ′(x ,y) = d2(x ,y) and apply our DP algo-

rithm to d ′. The problem of this approach is that when we embed

the metric to a distribution of tree metrics, we need to bound Ed2χ
by (Edχ )

2
, which is not true.
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