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A B S T R A C T   

Maternal exposure to stressors during lactation has previously been demonstrated to impact various aspects of 
milk synthesis and to have long-term physiological effects on offspring. Much of the current literature investi
gating the effects of stress during lactation has used acute stressors, and the studies investigating the effects of 
chronic stressors largely focus on neurological changes. Further, temporal variation in glucocorticoids across 
lactation in response to stressors has rarely been assessed. The present work uses a novel male intruder paradigm 
to model the effects of chronic stress on maternal fecal corticosterone metabolites (FCMs) in Sprague-Dawley rats 
across lactation. FCM levels were elevated in chronically-stressed mothers relative to the control group. Further, 
FCMs in the stress group were time-dependent either due to repeated exposure to the stressor or lactation stage. 
Together, this work demonstrates the efficacy of this established paradigm in increasing circulating glucocor
ticoids in lactating rats. These results highlight the need for repeated temporal sampling, as glucocorticoid levels 
in response to a chronic stressor may change across lactation.   

1. Introduction 

Milk synthesis is an adaptive feature of mammals and is accompa
nied by extensive changes to maternal physiology and morphology 
(Collier et al., 1984; Power and Schulkin, 2016). Of particular impor
tance during lactation is the hypothalamic-pituitaryadrenal (HPA) axis, 
which controls circulating glucocorticoids that play a key regulatory 
role in metabolic homeostasis and the coordination of the vertebrate 
stress response (Sapolsky et al., 2000). During lactation, the HPA axis 
undergoes several changes to meet the increased metabolic demands 
placed on the mother. For example, basal HPA axis activity is increased 
due to suckling (Brunton et al., 2008) and the diurnal rhythm of 
glucocorticoid secretion is flattened such that there is a rise in the 
troughs accompanied by decreased peaks (Windle et al., 2013). Addi
tionally, lactation has long been established as a hyporesponsive period 
marked by the attenuation of the HPA response to stressors (Brunton 
et al., 2008; Stern et al., 1973; Windle et al., 2013). Such changes may be 
adaptive and function to provide a more consistent level of glucocorti
coids, thereby limiting downstream catabolic effects that accompany 
surges and allowing mothers to produce a more steady energy supply for 
their offspring (Windle et al., 2013). Further, as glucocorticoids have 
been known to freely enter milk, dampening these surges may serve to 

limit glucocorticoid exposure to neonates, which has been shown to 
have long-term effects on offspring physiology and behavior (Carini and 
Nephew, 2013; Casolini et al., 1997; Champagne and Meaney, 2006; 
Cottrell and Seckl, 2009; Hinde et al., 2015; Meaney, 2001; Murgatroyd 
and Nephew, 2013; Seckl and Meaney, 1993). 

Given the importance of glucocorticoids during lactation, and the 
potential sequelae for offspring, numerous studies have focused on the 
impacts of stress during lactation on various aspects of physiology. It is 
well-established that stress suppresses lactation, though many of the 
studies using animal models have primarily used acute stressors to 
investigate this relationship (Lau and Simpson, 2004). More recently, 
emphasis has been placed on the development of ethologically-relevant 
stressors in rodent models so that the effects of chronic stress can be 
investigated (Carini et al., 2013; Carini and Nephew, 2013; Lau and 
Simpson, 2004). Such studies have found that chronic social stress de
creases milk yield, impairs both dam and offspring growth, alters 
maternal behavior by attenuating maternal care, has transgenerational 
effects on maternal behavior of female offspring, and alters maternal 
neuroendocrinology (Carini and Nephew, 2013; Lau and Simpson, 2004; 
Murgatroyd and Nephew, 2013; Nephew and Bridges, 2011). This body 
of work, however, has not addressed the peripheral changes in levels of 
corticosterone, the primary glucocorticoid found in rodents (Piazza 
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et al., 1993). 
The analysis of fecal corticosterone metabolites (FCMs) offers a non- 

invasive technique to assess the physiological state of the individual 
while limiting the methodological concerns present when taking plasma 
corticosterone measurements (Touma et al., 2004). The reproductive 
status of a female significantly influences concentrations of circulating 
glucocorticoids, and in turn, concentrations of fecal glucocorticoid me
tabolites (Touma and Palme, 2005). Changes in fecal glucocorticoid 
metabolites during phases of female reproduction have been docu
mented in many species including North American red squirrels (Dant
zer et al., 2010), giant anteaters (Knott et al., 2013), snow leopards 
(Kinoshita et al., 2011), deer mice (Veitch et al., 2021), and laboratory 
rats (Cavigelli et al., 2005). However, much of the current literature 
comprises studies assessing changes in glucocorticoids during the 
estrous cycle or pregnancy with relatively little attention on lactation. 
Published studies where fecal glucocorticoid metabolites were measured 
during lactation (Gale et al., 2018), while informative, have not assessed 
changes across lactation stages (but see Dantzer et al., 2010), despite the 
fluctuating hormonal milieu during lactation (Canul-Medina and 
Fernandez-Mejia, 2019; Forsyth, 1983). 

Here, we aimed to characterize FCMs in chronically-stressed and 
control rats during different stages of lactation (i.e., early, mid, and late 
lactation). We predicted that chronic stress would elevate FCMs and that 
this impact would change over the course of lactation. Given that the 
metabolic demands of milk synthesis increase towards peak lactation 
(Gittleman and Thompson, 1988), approximately 15 days after partu
rition in laboratory rats (Barber et al., 1997), we predicted that FCMs 
between chronically-stressed and control rats would be particularly 
divergent at this time. 

2. Materials and methods 

2.1. Animals and experimental design 

Fifty-six nulliparous adult female Sprague-Dawley rats (Envigo, 
Indianapolis, IN) aged 12–17 weeks on arrival were housed from July to 
September 2020 at the University of Idaho’s Lab Animal Research Fa
cility under the approval of the University of Idaho’s IACUC (PRN 
#2020-39). Sprague-Dawley rats are an excellent strain of Rattus nor
vegicus to study mechanisms underlying the impact of stress during 
lactation because they are a widely used research model and have pre
viously been used in protocols to model chronic stress during this period. 
Females were time-mated, arrived between days 14–16 of gestation, and 
were acclimated approximately 7 days prior to the start of the experi
ment. All females and their offspring were housed individually in stan
dard polypropylene rodent boxes (~29.2×19.0×12.7 cm3) and given ad 
libitum access to water and standard rodent chow (Teklad Global Rodent 
Diet, Envigo, Indianapolis, IN). The rats were maintained on a 12:12 
light:dark cycle beginning at 0600 at approximately 24 ◦C. Cages were 
regularly monitored for the presence of new pups around the expected 
parturition date. Date of parturition was designated as post-natal day 
(PND) 1. Litters were culled to 8 pups on PND2; in 7 cases, mothers 
cannibalized their offspring before the start of the experiment, resulting 
in litters of 6 or 7 pups (control = 4, stress = 3 cases of reduced litter 
sizes). 

Female rats were randomly assigned to either the chronic stress (n =
28) or control (n = 28) treatment group. Stress was induced using a 
novel male intruder paradigm following methods detailed in Carini and 
Nephew, 2013, Lau and Simpson, 2004, Murgatroyd and Nephew, 2013, 
and Nephew and Bridges, 2011. Every day, on PND 4 through PND14, 
females and their offspring were placed in a clean cage and were allowed 
to acclimate for 15 min before a novel male rat intruder was placed in 
the cage for one hour. Females and their offspring were separated from 
the males using a mesh barrier in order to prevent infanticide and in
juries. Control females were similarly placed with their offspring in a 
clean cage with a clean mesh barrier for the same amount of time. 

Fourteen adult male rats were used in this experiment and were pair- 
housed in a separate room from the females. Females did not interact 
with the same intruder more than one time during the study, though the 
same males were used for multiple females. After the intruder challenge, 
females and their offspring remained in the cage for 15 min before they 
were placed in their home cages. Interactions occurred at random times 
during the light cycle in order for the stressor to be unpredictable. 

2.2. Fecal steroid extraction and analysis 

Feces from the mothers were collected into clean tubes while the 
mother was weighed on PNDs 4, 9, and 14 (representing early, mid, and 
late lactation, respectively). Feces visibly contaminated with urine or 
bedding were not collected. These data were collected from 56 in
dividuals (control = 28, stress = 28). Most females were sampled only at 
one time point (control = 15, stress = 17), though some females were 
sampled at two (control = 11, stress = 8) or all three (control = 2, stress 
= 3) time points. All samples were collected between 11:00–16:00. 
Samples were initially stored at room temperature for up to one month 
before they were refrigerated at 4 ◦C. To measure the concentration of 
fecal corticosterone metabolites (FCMs), we used the DetectX ELISA kit 
from Arbor Assays (#K014, Ann Arbor, Michigan, USA) following the 
manufacturer’s instructions. 

Steroids were first extracted following the protocol for solid steroid 
extraction provided by the kit manufacturer. Briefly, pellets were dried 
at 37 ◦C before being homogenized. The dried, homogenized samples 
were resuspended in ethanol at a final concentration of 0.1 g feces/1mL 
ethanol and the mixture was shaken at room temperature for 1 h. The 
mixture was then centrifuged at 5000 rpm for 15 min at 4 ◦C before the 
supernatant was extracted. The ethanol was then evaporated and the 
remaining sample was reconstituted with assay buffer and briefly stored 
at −20 ◦C for later analysis. All samples were run in duplicate, and intra- 
plate coefficient of variation was <15% for all samples. Extraction ef
ficiency was 93.2%. Inter-plate reliability was 91.3%. Concentrations of 
FCMs are given relative to grams of dried feces used in the analyses (ng 
of FCM/g dried feces). 

2.3. Statistical analysis 

Data were analyzed using R Studio version 1.2 (Team R.C., 2013). 
FCM levels were first analyzed using a linear mixed effects model with 
treatment, post-natal day, and their interaction as fixed effects and 
maternal ID as a random effect. Maternal ID accounted for a small 
proportion (0.5%) of the variance, as only 5 individuals were sampled 
on all three occasions. Thus, a two-way ANOVA was used to model the 
data instead. Differences between groups were determined using 
Tukey’s HSD. Unless otherwise noted, data are presented as mean ±

standard error. 

3. Results 

Maternal body mass did not differ between groups at any of the time 
points measured (Supplemental Table 1). FCM levels were significantly 
impacted by treatment (F1,82 = 33.41, p < 0.0001), post-natal day (F2,82 
= 9.71, p = 0.0002), and their interaction (F2,82 = 13.07, p < 0.0001) 
(Fig. 1, Table 1). Within the control group, FCM concentration was 
similar across lactation. However, within the stress group, FCM levels 
were increased at the late lactation time point compared to the two 
earlier time points. There were no significant differences in FCM levels 
between the two treatment groups during early lactation, though 
chronically-stressed mothers had higher FCM levels compared to the 
control group during mid and late lactation. 

4. Discussion and conclusion 

Our primary goal was to characterize FCMs in chronically-stressed 
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and control rats across lactation (i.e., early, mid, and late lactation). 
Consistent with our hypothesis, our results demonstrate that chronic 
stress during lactation impacts FCM levels in a time and treatment- 
dependent manner, potentially due to physiological changes across 
lactation and/or repeated exposure to the same stressor. Specifically, 
FCM levels increased towards late lactation in chronically-stressed 
mothers and were higher in stressed mothers relative to those in the 
control group. 

We chose the novel male intruder paradigm to model chronic social 
stress, as this stimulus represents an ethologically-relevant stressor for 
the mother and because a considerable body of literature indicates this 
stimulus is a potent stressor in rats (Carini and Nephew, 2013; Lau and 
Simpson, 2004; Murgatroyd and Nephew, 2013; Nephew and Bridges, 

2011). This past work has revealed neuroendocrinological and behav
ioral differences between control and stressed mothers. Specifically, 
exposure to chronic stress has been found to decrease both maternal and 
offspring growth, increase maternal self-grooming and aggressive be
haviors, and decrease maternal milk release (Carini et al., 2013; Lau and 
Simpson, 2004; Nephew and Bridges, 2011). Further, chronic stress has 
long-term impacts on maternal behavior and neuroendocrinology of 
maternal care (i.e., prolactin and oxytocin release during lactation) in 
female offspring of chronically-stressed mothers (Carini and Nephew, 
2013; Murgatroyd and Nephew, 2013; Nephew and Bridges, 2011). For 
offspring, stress encountered during critical windows of development 
during the early life period has the potential to program HPA activity 
during adulthood (Maniam et al., 2014; Meaney et al., 1996; Murga
troyd and Spengler, 2011; Schmidt et al., 2014; Zimmer and Spencer, 
2014). 

Lactation is a period of substantial metabolic demand that requires 
tissue remodeling and numerous physiological adaptations coordinated 
across tissues (Canul-Medina and Fernandez-Mejia, 2019; Forsyth, 
1983; Hammond and Diamond, 1997), many of which have an endo
crinological basis (Collier et al., 1984). The HPA axis plays a role in 
determining both basal levels of glucocorticoids that are associated with 
metabolic regulation (i.e., energy acquisition, deposition, and mobili
zation) as well as the vertebrate stress response that results in acute 
surges of glucocorticoids that ultimately lead to the termination of the 
stress response (Sapolsky et al., 2000). Stress responses in lactating 
mammals are attenuated, which is thought to serve an adaptive role as 
chronic exposure to high levels of glucocorticoids is damaging, partic
ularly for developing offspring (Brunton et al., 2008). Limiting fluctu
ations in these hormones may contribute to the conservation of maternal 
energy stores (Douglas, 2005). For these reasons, basal levels of gluco
corticoids were not expected to change over the course of lactation in 
absence of a stressor, which is consistent with our finding that FCMs in 
our control group did not change over time. These results contrast those 
found by Dantzer and colleagues (2010), who reported a decrease in 
FCMs across lactation in free-ranging red squirrels. The difference in 
results may be due to a number of factors, such as species differences, 
artificial selection, or captivity. 

To our knowledge, the peripheral glucocorticoid response in mothers 
exposed to chronic stressors during lactation has not been measured 
outside of the present work. Further, much of the work assessing phys
iological changes associated with stress during lactation relies on sam
ples collected at one time point (but see Dantzer et al., 2010), thereby 
making the implicit assumption that lactation is a monolithic state. On 
the contrary, lactation is a dynamic process associated with physiolog
ical and behavioral changes across lactation (Canul-Medina and 
Fernandez-Mejia, 2019; Fleming and Rosenblatt, 1974; Forsyth, 1983); 
as such, temporal sampling is needed and may yield different results 
than cross-sectional sampling (Josefson et al., 2020). 

In our study, FCMs were elevated in stressed individuals during mid 
and late lactation, in contrast with previous work in rats that reported 
greater adrenocorticotropic hormone (ACTH) levels in response to an 
acute stressor during early lactation compared to late lactation 
(Deschamps et al., 2003; Walker et al., 1995). Despite these differences 
in ACTH responses, no difference in basal nor stress-induced plasma 
corticosterone was reported between the control and stress treatment 
groups during either early or late lactation (Deschamps et al., 2003). It is 
possible that the discrepancy between the findings from this work and 
ours is due to our use of a chronic stressor. The differential effects in 
response to acute and chronic stressors have long been noted in the 
context of many aspects of physiology, though the exact mechanisms 
and scope of the response are not yet known (Wada, 2019), especially 
during lactation. Stress responsiveness during lactation is also depen
dent on the specific type of stressor to which lactating mothers are 
exposed (Maestripieri et al., 2008; Ralph and Tilbrook, 2016). For 
example, the presence of pups during exposure to a stressor has been 
found to mediate the maternal stress response (Deschamps et al., 2003). 

Fig. 1. Fecal corticosterone metabolites (FCMs) across lactation in feces of 
control and chronically-stressed rats. FCM levels were measured at three 
time points, post-natal day (PND) 4, 9, and 14, representing early, mid, and late 
lactation, respectively. The chronically-stressed group was subject to daily 
introduction of a novel male intruder between PND 4–14. Data were analyzed 
by ANOVA. FCM concentration varied by treatment (F1,82 = 33.41, P <

0.0001), post-natal day (F2,82 = 9.71, P = 0.0002), and a treatment × day 
interaction (F2,82 = 13.07, P < 0.0001). Asterisks indicate significant differ
ences between groups (PND 9, P = 0.0026; PND 14, P < 0.0001). Within the 
chronically-stressed group, FCM was significantly different between PND 4 and 
14 (P < 0.0001) and PND 9 and 14 (P = 0.0014), indicating an effect of time. 

Table 1 
Fecal corticosterone metabolites (FCMs) across lactation in control and 
chronically-stressed rats. Results from post-hoc analyses (Tukey’s HSD). FCMs 
were extracted and analyzed using feces from control and chronically-stressed 
females during lactation. The chronically-stressed group was subject to daily 
introduction to a novel male intruder between PND 4–14. Feces were collected 
from individuals in both groups on PND 4, 9, and 14. Sample sizes for each time 
point are given in parentheses. Significance (P ≤ 0.05) is indicated in boldface.   

Mean FCM [ng/g dried feces] ± SE Comparisons 

Control Stress Control v. Stress 

PND 4 198.68 ± 14.19 (15) 190.04 ± 14.48 (14) P = 0.9949 
PND 9 165.34 ± 6.65 (15) 228. 07 ± 7.90 (15) P ¼ 0.0026 
PND 14 185.19 ± 11.65 (14) 293.80 ± 12.17 (15) P < 0.0001  

Within-group comparisons 
PND 4 v. 9 P = 0.31 P = 0.20  
PND 4 v. 14 P = 0.96 P < 0.0001  
PND 9 v. 14 P = 0.83 P ¼ 0.0014   
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Our finding that FCMs increased across lactation in chronically- 
stressed mothers may be due to several non-mutually exclusive biolog
ical mechanisms. Lactation is a hyporesponsive period during which 
maternal responses to stressors are attenuated (Brunton et al., 2008; 
Stern et al., 1973; Windle et al., 2013). As mothers approach weaning, 
the hyporesponsive effects are dampened, and mothers may be more 
able to respond to stressors. Additionally, this increase in FCMs may be 
due to hormonal shifts associated with mammary involution towards the 
end of lactation. The increase in FCMs over the course of lactation may 
also be due to a greater number of exposures to the chronic stressor 
challenge, as it is not known whether exposures to a novel intruder is 
cumulative. The cumulative effects of stress are not fully understood and 
are often investigated within the context of exposure to multiple, con
current stressors or of repeated acute surges of glucocorticoids (Barnum 
et al., 2007; Busch et al., 2008; McCormick et al., 2015; Ottenweller 
et al., 1992). 

Stressed and control groups differed in FCM levels at mid and late 
lactation, but not early lactation (PND 4), indicating that both our 
control and stress groups had similar FCM levels initially. No effects of 
treatment were expected at this timepoint, as our chronic stress para
digm began just a few hours before feces were collected from both 
groups on PND 4. Previous work testing the gut passage time in labo
ratory rats after individuals were given intravenous radiolabeled corti
costerone reports that for females, radiolabeled FCMs began to appear at 
about 6 h and peaked at about 15 h after administration (Lepschy et al., 
2007). Similarly, when these rats were given an ACTH challenge, FCM 
levels rose 4–12 h later and remained elevated for 4–10 h (Lepschy et al., 
2007). 

Traditionally, glucocorticoid concentration is determined from 
blood samples, which is likely to be artificially high as blood sample 
collection is itself an acute stressor. Measuring FCMs is becoming an 
increasingly popular non-invasive alternative to blood samples because 
this technique is more integrated and less prone to acute changes in 
response to stressors (Palme, 2019; Touma and Palme, 2005). As with 
any technique, pitfalls of using FCMs (e.g., the influence of diet and 
other environmental effects) have been pointed out in several reviews 
(Goymann, 2012; Palme, 2019), though they are expected to be mini
mized when the experiment is conducted in a controlled laboratory 
setting as in our study. It is possible that the differences in FCMs that we 
observed may be due to individual differences in metabolism and/or 
stress reactivity among females that impact the excretion of FCMs and/ 
or defecation frequency. However, we do not expect this to be the case 
due to similar litter sizes, parity, and body mass between treatment 
groups. 

This study demonstrates that chronic social stress during lactation 
impacts FCM concentrations in a time and treatment-dependent manner 
such that FCM concentrations were highest in late lactation compared to 
earlier time points. These changes were not seen in the control group 
who were not subjected to a stressor. This change in FCM concentrations 
may be due to the stage of lactation that the chronically-stressed 
mothers are in or may be due to cumulative effects of repeated expo
sure to the same stressor. More research is required in order to parse out 
the nature of these time-dependent changes in FCMs. These results 
highlight the need for repeated sampling within the same reproductive 
period (i.e., lactation) rather than sampling at one point in order to gain 
a more holistic perspective on the impacts of stress. 
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