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Abstract—Majority-SAT (a.k.a. MAJ-SAT) is the problem
of determining whether an input n-variable formula in con-
junctive normal form (CNF) has at least 2ˆ(n-1) satisfying
assignments. Majority-SAT and related problems have been
studied extensively in various AI communities interested in the
complexity of probabilistic planning and inference. Although
Majority-SAT has been known to be PP-complete for over 40
years, the complexity of a natural variant has remained open:
Majority-kSAT, where the input CNF formula is restricted to
have clause width at most k.

We prove that for every k, Majority-kSAT is in P; in fact,
the problem can be solved in linear time (whereas the previous
best-known algorithm ran in exponential time). More generally,
for any positive integer k and constant p in (0,1) with bounded
denominator, we give an algorithm that can determine whether
a given k-CNF has at least p(2ˆn) satisfying assignments, in
deterministic linear time. We find these results surprising, as
many analogous problems which are hard for CNF formulas
remain hard when restricted to 3-CNFs. Our algorithms have
interesting positive implications for counting complexity and
the complexity of inference, significantly reducing the known
complexities of related problems such as E-MAJ-kSAT and
MAJ-MAJ-kSAT. Our results immediately extend to arbitrary
Boolean CSPs with constraints of arity k. At the heart of our
approach is an efficient method for solving threshold counting
problems by extracting and analyzing various sunflowers found
in the corresponding set system of a k-CNF.

Exploring the implications of our results, we find that the
tractability of Majority-kSAT is somewhat fragile, in intriguing
ways. For the closely related GtMajority-SAT problem (where
we ask whether a given formula has greater than 2ˆ(n-1)
satisfying assignments) which is also known to be PP-complete,
we show that GtMajority-kSAT is in P for k at most 3, but
becomes NP-complete for k at least 4. We also show that
for Majority-SAT on k-CNFs with one additional clause of
arbitrary width, the problem is PP-complete for k at least 4, is
NP-hard for k=3, and remains in P for k=2. These results are
counterintuitive, because the “natural” classifications of these
problems would have been PP-completeness, and because there
is a stark difference in the complexity of GtMajority-kSAT and
Majority-kSAT for all k at least 4.

Keywords-satisfiability; majority-SAT; counting complexity;
CNF-formulas; sunflowers

I. INTRODUCTION

The complexity of #SAT, the problem of counting satis-

fying assignments to propositional formulas (a.k.a. “model

counting” in the AI and SAT literature), has been intensely

studied for decades. The pioneering work of Valiant [1]

showed that #SAT is #P-complete already for 2-CNF

formulas.

Of course, #SAT (and any other #P problem) is a func-

tion problem: up to n+1 bits need to be output on a given n-

variable formula. A natural question is: how efficiently can

output bits of the #SAT function be computed? Obvious

choices are the low-order bit, which corresponds to the

⊕P-complete PARITY-SAT problem, and the higher-order
bits. For CNF formulas, the highest-order bit of #SAT

corresponds to the case where the #SAT value is 2n, which

is trivial for CNF formulas.1 When the value is less than

2n and #SAT outputs n bits, the high-order bit corresponds

to MAJORITY-SAT, the problem of determining whether

#SAT(F ) ≥ 2n−1. It is more common to think of it

as a probability threshold problem: given a formula F ,

is Pra[F (a) = 1] ≥ 1/2? Sometimes MAJORITY-SAT

is phrased as determining whether or not Pra[F (a) =
1] > 1/2; we will call this version GtMAJORITY-SAT to

avoid confusion. Over CNF formulas (and more expressive

Boolean representations), there is no essential difference

between the two problems.2

MAJORITY-SAT (and GtMAJORITY-SAT) are the pri-

mary subjects of this paper. Gill [2] and Simon [3] in-

troduced these problems along with the class PP, which

consists of decision problems computing “high-order bits” of

a #P function. They proved that MAJORITY-SAT on CNF

formulas is PP-complete, and that #P ⊆ PPP, showing that

determining higher-order bits of a general #P function is as

hard as computing the entire function.

The known proofs of PP-hardness for MAJORITY-SAT

reduce to CNF formulas having clauses of arbitrarily large

width. This raises the very natural question of whether

MAJORITY-SAT remains hard over CNFs with fixed-width

clauses. Intuition suggests that MAJORITY-kSAT should

remain PP-hard for k ≥ 3, by analogy with the NP-hardness

of 3SAT, the PSPACE-hardness of Quantified 3SAT [4], the

⊕P-hardness of PARITY-3SAT3, the Π2P-hardness of Π2-

1The only n-variable CNFs with 2n satisfying assignments are those
with no clauses. Of course, when the formula is DNF, the high-order bit
problem is coNP-complete.

2See Section II for a discussion.
3This follows from the fact that there is a parsimonious reduction from

SAT to 3-SAT [3].
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3SAT [5], and so on. Beyond the SAT problem, it is often

true that the hardness of a problem can be preserved for

“bounded width/degree” versions of the problem: for in-

stance, the NP-hardness of 3-coloring holds even for graphs

of degree at most 4 [6], and the #P-hardness of counting

perfect matchings in graphs holds even for graphs of degree

at most 3 [7]. Indeed, the more general problem: given a 3-
CNF F and an integer k ≥ 0, determine if #SAT (F ) ≥ 2k

can readily be proved PP-complete. However, the same

argument cannot be used to show that MAJORITY-SAT is

PP-complete for 3-CNF F .4

Due to these subtleties, there has been significant confu-

sion in the literature about the complexity of MAJORITY-

kSAT, with several works asserting intractability for

MAJORITY-3SAT and its variants, while others observing

that the complexity of the problem remained open at the time

[8]–[25].5 This is a critical issue, as MAJORITY-SAT and

its variants have been at the foundation of many reductions

regarding the complexity of probabilistic planning, Bayesian

inference, and maximum a posteriori problems in restricted

settings, which are of great interest to various communities

within AI. The true complexity of MAJORITY-kSAT (and

related problems) has remained a central open question for

these communities.

A. Our Results

Somewhat surprisingly, we show that MAJORITY-SAT

over k-CNFs is in fact easy. In fact, for any constant ρ ∈
(0, 1), we can efficiently determine for a given k-CNF F
whether Pra∈{0,1}n [F (a) = 1] ≥ ρ or not. Although we

state our main results in this section, the proofs for most of

these results are not included here and can instead be found

in the full version of the paper [26].

Theorem 1.1: For every constant rational ρ ∈ (0, 1) and

every constant k ≥ 2, there is a deterministic linear-time

algorithm that given a k-CNF F determines whether or not

#SAT(F ) ≥ ρ · 2n.

Theorem 1.1 is proved in [26, Section 5]. To our knowl-

edge, the previous best-known algorithm for this problem ran

in 2n−Θ(n/k) time, by running the best-known algorithm for

#kSAT [27], [28]. Of course, Theorem 1.1 does not mean

that #P functions can be computed in polynomial time;

rather, it shows that lower-order bits of #kSAT are the more

4The proof of PP-completeness (of the more general problem) follows
from two facts: (a) the version of the problem for CNF formulas is PP-
complete, by Gill and Simon, and (b) the reduction from CNF-SAT to 3SAT
preserves the number of solutions. This proof cannot be used to show that
determining #SAT (F ) ≥ 2n−1 is PP-complete for 3-CNF F , because
the Cook-Levin reduction introduces many new variables (the variable n
increases when going from CNF-SAT to 3SAT, thereby changing the target
number of satisfying assignments).

5Even the second author is guilty of being confused: see the
first comment at https://cstheory.stackexchange.com/questions/36660/
status-of-pp-completeness-of-maj3sat.

difficult ones6 ( [26, Section 5.1] formally describes how to

use our algorithm to compute the high-order bits of #kSAT

in polynomial time). Even the lowest-order bit of #kSAT is

evidently harder: for every k ≥ 2, PARITY-kSAT is known

to be ⊕P-complete [29], so (by Toda’s theorem [30]) the

low-order bit of #kSAT cannot be computed in BPP unless

NP = RP.

Implications for Related Inference Problems: Given

that MAJORITY-kSAT turns out to be easy, it is worth

exploring whether related problems in literature are also easy

or hard. In the relevant AI literature on the complexity of

Bayesian inference and probabilistic planning, the following

two problems are prominent in proving conditional lower

bounds:

E-MAJ-SAT: Given n, n′, and a formula ϕ over
n + n′ variables, is there a setting to the first n
variables of φ such that the majority of assign-
ments to the remaining n′ variables are satisfying
assignments?
MAJ-MAJ-SAT: Given n, n′, and a formula ϕ
over n+n′ variables, do a majority of the assign-
ments to the first n variables of ϕ yield a formula
where the majority of assignments to the remaining
n′ variables are satisfying?

These problems may seem esoteric, but E-MAJ-SAT and

related problems are used extensively in the relevant areas of

AI, where an environment has inherently “random” aspects

along with variables one can control, and one wants to

“plan” the control variables to maximize the chance that

a desired property holds (e.g. [31]–[33]). E-MAJ-SAT has

also recently been used to study the complexity of verifying

differential privacy [34].

Similarly, MAJ-MAJ-SAT applies in the context when one

wants to know what is the chance that a random setting of

control variables will yield a good chance that a property

holds [35], [36]. For general CNF formulas, E-MAJ-SAT

is NPPP-complete [31], [37], [38] and MAJ-MAJ-SAT is

PPPP
-complete [37]–[39]: roughly speaking, these results

imply that both problems are essentially intractable, even

assuming oracle access to a #SAT solver. There has also

been significant confusion about whether E-MAJ-3SAT (the

version restricted to 3-CNF) is NPPP-complete or not [11],

[14], [21], [22], [24], [25]. We prove that both E-MAJ-SAT

and MAJ-MAJ-SAT dramatically decrease in complexity

over k-CNF formulas.

Theorem 1.2: E-MAJ-2SAT ∈ P, and for all k ≥ 3, E-

MAJ-kSAT is NP-complete.

Theorem 1.3: MAJ-MAJ-2SAT ∈ P.

Theorem 1.2 is proved in [26, Section 6.1] and Theo-

rem 1.3 is proved in [26, Section 6.2].

6Indeed in some sense, “middle bits” are PP-hard: Bailey, Dalmau,
and Koliatis [10], [12] showed 20 years ago that for all integers t ≥ 2,
determining whether #SAT(F ) ≥ 2n/t (for 3-CNF F ) is PP-complete.
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Even the NP-completeness of E-MAJ-3SAT is good news,

in some sense: Theorem 1.2 suggests that such counting

problems could in principle be handled by SAT solvers,

rather than needing #SAT solvers.

Greater-Than MAJORITY-SAT: The algorithms behind

Theorem 1.1 can efficiently determine if the #SAT value

of a k-CNF is at least a given fraction of the satisfying

assignments. Recall the GtMAJORITY-SAT problem is to

determine if the #SAT value is greater than a given fraction,

and that over CNFs, there is no essential difference between

the two problem variants. Another surprise is that, over k-

CNFs, there is a difference between these problems for k ≥
4: the “greater than” version becomes NP-complete!

Theorem 1.4: For k ≤ 3, GtMAJORITY-kSAT is in P.

Theorem 1.5: For k ≥ 4, GtMAJORITY-kSAT is NP-

complete.

Both Theorem 1.4 and Theorem 1.5 are proved in [26,

Section 7.2].

Adding One Long Clause Makes MAJORITY-kSAT
Hard: Given the surprisingly low complexity of these

threshold counting problems over k-CNF formulas, it is

natural to investigate what extensions of k-CNFs suffice in

order for the problems to become difficult. This direction is

also important for the considerable collection of results in AI

whose complexity hinges on the difficulty of MAJORITY-

SAT and its variants. We show that adding only one ex-

tra clause of arbitrary width is already enough to make

MAJORITY-kSAT difficult, for k ≥ 3.

Theorem 1.6: Deciding MAJORITY-SAT over k-CNFs

with one extra clause of arbitrary width is in P for k = 2,

NP-hard for k = 3, and PP-complete for k ≥ 4.

This may look preposterous: how could adding only

one long clause make MAJORITY-3SAT hard? Couldn’t

we simply try all O(n) choices for picking a literal from

the long clause, and reduce the problem to O(n) calls to

MAJORITY-3SAT with no long clauses? Apparently not!

Remember that MAJORITY-3SAT only decides whether

or not the fraction of satisfying assignments is at least

ρ ∈ (0, 1). This information does not help us determine

the number of satisfying assignments to O(n) subformulas

accurately enough to refute the hardness of MAJORITY-

3SAT with no long clauses.

B. Intuition

The ideas behind our algorithms arose from reconsid-

ering the polynomial-time Turing reduction from #SAT

to MAJORITY-SAT [2], [3], in the hopes of proving that

MAJORITY-3SAT is hard. The key is to reduce the problem

#SATD := {(F, s) | #SAT(F ) ≥ s}
to MAJORITY-SAT. From there, one can binary search with

#SATD to determine #SAT(F ). The known reductions

from #SATD to MAJORITY-SAT require that, given a

desired t ∈ [0, 2n], we can efficiently construct a formula

Gt on n variables with exactly t satisfying assignments.7

Then, introducing a new variable xn+1, the formula

H = (xn+1 ∨ F ) ∧ (¬xn+1 ∨Gt)

will have #SAT(H) = #SAT(F ) + t, out of 2n+1 possible

assignments to H . Setting t = 2n − s, it follows that

#SAT(F ) ≥ s if and only if #SAT(H) ≥ 2n, thereby

reducing from #SATD to MAJORITY-SAT. Observe we

can convert H into k-CNF, provided that both F and Gt

are (k − 1)-CNF.

However, this reduction fails miserably for k-CNF formu-

las, because for constant k and large n, there are many values

t ∈ [0, 2n] for which no k-CNF formula Gt has exactly

t satisfying assignments (observe that every k-CNF with

at least one clause has at most (1 − 1/2k) · 2n satisfying

assignments; therefore no such k-CNF formulas Gt exist,

for all t ∈ [2n−2n−k−1, 2n−1]). Moreover, every k-CNF

containing d disjoint clauses (d clauses sharing no variables)

has at most (1 − 1/2k)d · 2n satisfying assignments. But

“most” k-CNF formulas (say, from the typical random k-

SAT distributions) will have large disjoint sets of clauses

(say, of size Ω(n)). So for “most” formulas, we can quickly

determine that #SAT(F ) < ρ · 2n for constant ρ > 0, by

finding a large enough disjoint clause set.

What remains is a rather structured subset of k-CNF

formulas. If the maximum possible size of a disjoint clause

set is small, then there is a small set of variables that “hit”

all other clauses (otherwise, the set would not be maximal).

That is, there is a small set of variables that have non-empty

intersection with every clause. This kind of small hitting set

can be very algorithmically useful for solving #SAT. For

example, if k = 2, then every assignment to the variables

in a small hitting set simplifies the given formula into a 1-

CNF. In other words, when there is a small hitting set, we

can reduce the computation of #2SAT to a small number of

calls to #1SAT, each of which can be solved in polynomial

time. This is essentially how our algorithm for MAJORITY-

2SAT works.

The situation quickly becomes more technically compli-

cated, as k increases. When k = 3, setting all variables in a

small hitting set merely simplifies the formula to a 2-CNF,

but #SAT is already #P-hard for 2-CNF formulas. To get

around this issue, we consider more generally sunflowers
within the k-CNF: collections of sets which all share the

same pairwise intersection (called the core).

Sunflowers in a formula can be useful in bounding the

fraction of satisfying assignments. To give a simple example,

if the entire formula was a sunflower with a single literal � in

its core, then the fraction of satisfying assignments is at least

1/2 (because setting � true already satisfies the formula).

7A standard way to do this is to make a formula Gt which is true if
and only if its variable assignment, construed as an integer in [1, 2n], is at
most t. But constructing such a formula requires arbitrary width CNFs.
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Our algorithms seek out large sunflowers on disjoint clauses

in k-CNF formulas, to get tighter and tighter bounds on the

fraction of satisfying assignments. When a formula does not

have many such sunflowers, the formula is structured enough

that we can find a small hitting set of variables and use the

ideas discussed earlier.

Intuition for Theorem 1.1: Here we provide an intuitive

idea of how our main algorithm works to determine whether

a k-CNF has at least a ρ-fraction of satisfying assignments.

Given a Boolean formula Φ on n variables, let Pr[Φ] denote

the probability a uniform random assignment to the variables

of Φ is satisfying. For a given k-CNF ϕ, we want to decide

whether the inequality

Pr[ϕ] ≥ ρ

holds or not. We will do this by building up a special (k −
2)-CNF ψ on the same variable set, where each clause of

ψ is contained in a clause of ϕ. We split the probability

calculation into

Pr[ϕ] = Pr[ϕ ∧ ψ] + Pr[ϕ ∧ ¬ψ]
and use the fact that

Pr[ϕ ∧ ψ] ≤ Pr[ϕ] = Pr[ϕ ∧ ψ] + Pr[ϕ ∧ ¬ψ]. (1)

Intuitively, we will construct ψ in such a way that Pr[ϕ ∧
¬ψ] < ε1 for an extremely small ε1 > 0, so that it is possible

to reduce the problem of determining Pr[ϕ] ≥ ρ to the

problem of determining Pr[ϕ ∧ ψ] ≥ ρ. In other words,

we can reduce THRρ-kSAT on ϕ to THRρ-kSAT on ϕ∧ψ.

This reduction is helpful because the clauses of ψ are

subclauses appearing frequently in ϕ, so the formula ϕ∧ ψ
simplifies to a smaller formula than ϕ. Additionally, ϕ ∧ ψ
has a smaller solution space than ϕ, so intuitively it becomes

easier to check if the resulting formula has fewer than a ρ-

fraction of satisfying assignments. More precisely, it follows

from (1) that if Pr[ϕ ∧ ψ] ≥ ρ then Pr[ϕ] ≥ ρ as well. The

more surprising result is that we can construct ψ so that, if

Pr[ϕ ∧ ψ] < ρ, then we can in fact infer that Pr[ϕ ∧ ψ] <
ρ− ε2 for some ε2 > ε1. Hence by (1) we can deduce that

Pr[ϕ] < ε1 + ρ− ε2 < ρ. We construct the clauses of ψ by

taking cores of large sunflowers in ϕ. Defining what counts

as “large” depends on quite a few parameters, so the analysis

becomes rather technical.

C. Paper Organization

In Section II, we formally define the problems we are

considering, introduce notation, and discuss more related

work. In Section III we present a simple algorithm for

solving MAJORITY-2SAT in linear time, and in Section IV

we extend this algorithm to solve MAJORITY-3SAT in

linear time. Proofs of our remaining results can be found in

the full version of the paper [26]. We conclude in Section V

with a discussion of several intriguing open problems.

II. PRELIMINARIES

We assume basic familiarity with computational complex-

ity, including concepts such as PP and #P [40]. For a

formula F on n variables, let #SAT(F ) be its number of

satisfying assignments as an integer in [0, 2n].
CNF Formulas. A literal is a Boolean variable or its

negation, a clause is a disjunction of literals, and a CNF
formula is a conjunction of clauses. The width of a clause is

the number of literals it contains. Given an integer w, a w-
clause is just a clause of width w. Given a positive integer k,

we say a formula is a k-CNF if every clause in the formula

has width at most k. We stress that we allow our k-CNFs to

have clauses of length up to k: clauses of width 1, . . . , k are

allowed. An empty CNF formula evaluates to 	, meaning it

is always true. An empty clause evaluates to ⊥, meaning it

is always false. Given a CNF formula ϕ, we let |ϕ| denote

the size of the formula, which is just the sums of the widths

of all clauses in ϕ.
We remark that all of the results in this paper that hold for

k-CNF formulas also hold for Boolean constraint satisfaction

problems (CSPs), over arbitrary constraints of arity at most

k. This is because each constraint of such a CSP can be

converted into an equivalent k-CNF over the same variables.
GtMAJORITY-SAT vs MAJORITY-SAT. Here we briefly

describe how to reduce between these two problems. To re-

duce from GtMAJORITY-SAT to MAJORITY-SAT given an

n-variable formula F , introduce n new variables y1, . . . , yn
and map F to F ′ := (y1∨ · · · ∨ yn)∧F . Then #SAT(F ) ≥
2n−1+1 implies #SAT(F ′) ≥ (2n−1)(2n−1+1) = 22n−1+
2n − 2n−1 − 1 > 22n−1 and #SAT(F ) ≤ 2n−1 implies

#SAT(F ′) ≤ (2n − 1)2n−1 = 22n−1 − 2n−1 < 22n−1.
To reduce from MAJORITY-SAT to GtMAJORITY-SAT

given an n-variable F , introduce one new variable xn+1,

let G be an n-variable formula with precisely 2n − 2n−1 +
1 satisfying assignments, and set F ′ := (¬xn+1 ∨ F ) ∧
(xn+1∨G). Then #SAT(F ′) = #SAT(F )+2n−2n−1+1.

When #SAT(F ) ≥ 2n−1, we have #SAT(F ′) ≥ 2n + 1,

and when #SAT(F ) ≤ 2n−1 − 1 we have #SAT(F ′) ≤
2n. (We can increase the gap by increasing the number of

additional variables.) Both reductions need unbounded width

CNF formulas.
Threshold SAT. We have already defined the MAJORITY-

kSAT problem. To discuss problems of detecting fractions

of satisfying assignments at other thresholds besides 1/2,

we introduce the following problem.
Definition 2.1 (Threshold SAT): For any positive integer

k and threshold ρ ∈ (0, 1), the THRρ-kSAT problem is the

following task: given a k-CNF formula ϕ on n variables,

determine if the inequality #SAT(ϕ) ≥ ρ · 2n holds.
In our algorithms, we will often make use of the following

structures in CNF formulas.
Definition 2.2 (Consistent Literal Set): Given a set of lit-

erals, we say the set is consistent if the set does not

simultaneously include x and ¬x for any variable x.
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Definition 2.3 (Variable Disjoint Set): Given a set S of

clauses, we say S is a (variable) disjoint set if for every pair

C,C ′ of distinct clauses of S, C and C ′ share no variables.

We will also utilize the following simple observations

about CNFs formulas.

Proposition 2.4: Let F be a CNF formula on n variables,

construed as a set of clauses. Suppose there is a ρ ∈ (0, 1)
and a subset F ′ of the clauses of F such that F ′ contains

r ≤ n variables and #SAT (F ′) ≤ ρ·2r. Then #SAT (F ) ≤
ρ · 2n.

Proof: Note that F = F ′ ∧ G, for some formula G.

Given a fixed F ′, the number of satisfying assignments to

F is maximized when G is a tautology, having 2n satisfying

assignments. (Since F is over n variables, we can take

G = (x1 ∨ ¬x1) ∧ · · · ∧ (xn ∨ ¬xn).) Even in such a case,

#SAT(F ) ≤ #SAT(F ′) · 2n−r ≤ ρ · 2n.

Proposition 2.5: Given a 1-CNF formula F (i.e. F is a

conjunction of literals), the number of satisfying assignments

to F can be computed in linear time.

Proof: Let k be the number of 1-clauses (literals) in

F . If F contains both a variable and its negation, then F
is unsatisfiable, and the number of satisfying assignments is

0. Otherwise, the set of literals in F is consistent, and the

number of satisfying assignments is 2n−k. In either case, we

can compute the desired quantity by scanning through the

clauses in F once.

As a final pieces of notation, we write A = poly(B) to

denote that A ≤ Bc for some constant c > 0.

A. Comparison With Related Work

Several works [41]–[46] have considered the task of

approximately counting satisfying assignments to CNF for-

mulas. In particular, given a constant ε ∈ (0, 1) and CNF

formula ϕ, we seek to output an estimate that is within ε of

the true fraction of assignments of ϕ which are satisfying.8

In general, the estimates provided by such algorithms may

be strictly more or less than the true fraction of satisfying

assignments, so such approximation algorithms cannot be

used to solve problems like MAJORITY-kSAT.

However, the starting point of our work, the MAJORITY-

2SAT and MAJORITY-3SAT algorithms, uses methods very

similar to those of Trevisan [43], who showed that for any

fixed integer k one can approximately count the fraction

of satisfying assignments in a k-CNF formula efficiently,

by working with maximal disjoint sets of clauses.9 Given a

desired additive approximation error ε, Trevisan’s approach

shows that every k-CNF can be approximated by a special

kind of decision tree of f(ε, k) ≤ O(1) size and depth,

where the internal nodes are labeled by variables and the

8One can also consider multiplicative approximations to #SAT, but this
task is NP-hard. See for example [47], [48].

9In fact, the second author devised an algorithm for MAJORITY-2SAT
in 2004, inspired by Trevisan’s work, but only recently (with the help of the
first author) found a way to generalize to MAJORITY-3SAT and beyond.

leaves are labeled with 1-CNFs. Computing the exact frac-

tion of satisfying assignments for such a decision tree is

simple to do in linear time, and Trevisan uses this count to

obtain an ε-additive approximation of the true fraction of

satisfying assignments.

In our algorithms, we also implicitly (and for

MAJORITY-2SAT, E-MAJ-2SAT, and MAJ-MAJ-2SAT,

explicitly) construct such decision tree representations,

and we also use the fact that one can count satisfying

assignments exactly on such decision tree representations.

However, for MAJORITY-kSAT where k ≥ 3, our

algorithms and analysis have to dig further into the problem

and take advantage of the structure of the decision tree itself.

Informally, we show there are “gaps” in the possible #SAT

values of such representations. Very roughly speaking, these

gaps are part of what allows us to solve the exact threshold

counting problem for k-CNFs in polynomial time, “as if”

it were an additive approximation problem. Still, many

other cases arise in determining the fraction exactly that

are irrelevant in approximations.

More generally, our algorithms rely on extracting sunflow-

ers from various subformulas. Sunflower lemmas have been

used previously for obtaining additive approximations to

the fraction of satisfying assignments of disjunctive normal

form (DNF) formulas and related problems such as DNF

sparsification and compression [41], [44]–[46]. These results

focus on formulas of super-constant width, whereas our

work is specialized to CNFs of constant width. Due to our

hardness results, one cannot extend our algorithms to 3CNFs

with even one unbounded width clause, unless P = NP.

III. THRESHOLD SAT FOR 2-CNFS IN LINEAR TIME

As a warm-up, we begin with a simple linear-time algo-

rithm for MAJORITY-2SAT (even THRρ-2SAT, for every

ρ ≥ 1/poly(n)) that illustrates a few of the ideas.10

Theorem 3.1: For every rational α ∈ (0, 1), there is an m·
poly(1/α)-time algorithm that, given any 2-CNF formula F
on n variables and m clauses, decides whether #SAT(F ) ≥
α ·2n or not. Furthermore, when #SAT(F ) ≥ α ·2n is true,

the algorithm outputs #SAT(F ), along with a a decision tree

representation for F of poly(1/α) size. The internal nodes

are labeled by variables and leaves are labeled by 1-CNFs.

Proof: For each α ∈ (0, 1), define c(α) := 1 +
�log4/3(1/α)�. Note that c(α) ≤ O(log 1

α ).
Given a 2-CNF F , start by finding a maximal disjoint set

of clauses S. That is, treat the clauses as sets (ignoring literal

signs) and find a set S of clauses such that (a) every pair of

clauses in S share no variables and (b) all other clauses in

F contain at least one variable occurring in S. This can be

done by greedily choosing the set S (picking disjoint clauses

until we cannot) in time O(m · |S|). We argue that we can

stop once |S| exceeds c(α).

10The second author has known of this result since around 2004; see
Section 7 of [49].
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Case 1: Suppose |S| > c(α). Then we claim that

#SAT(F ) < α · 2n. Note that each of the clauses in S are

over disjoint variables, so each clause in S reduces the total

number of satisfying assignments by 3/4. By our choice of

c(α), we have (3/4)c(α) < α. Therefore, less than an α-

fraction of the possible assignments satisfy the subformula

S, and by Proposition 2.4, we can return NO.

Case 2: Otherwise, S is a maximal disjoint set of clauses

with |S| ≤ c(α). Since every clause in F contains at least

one variable occurring in S, it follows that, when we plug in

any assignment to the variables of S, the remaining formula

is a 1-CNF. Therefore, if we try all of the at most

3c(α) ≤ O(3(log(
1
α )/ log(4/3))) ≤ O((1/α)3.82)

satisfying assignments to the clauses of S, and solve #SAT

on the remaining 1-CNF formula in O(m) time (Propo-

sition 2.5), we can determine the number of satisfying

assignments exactly in this case.

Note that Case 1 of this algorithm only occurs when

#SAT(F ) < α · 2n. Consequently, whenever #SAT(F ) ≥
α · 2n we fall into Case 2 and our algorithm reports the

exact count of satisfying assignments. The overall run time

of this algorithm is m · poly(1/α).

It is interesting to contrast the above result with the result

of Leslie Valiant that ⊕2SAT is ⊕P complete [29]. Valiant’s

result implies that computing the low-order bit of #2SAT in

polynomial time would imply that NP ⊆ BPP. Our result

shows that computing the low-order bit of #2SAT looks

much more difficult than higher-order bits.

IV. MAJORITY SAT FOR 3-CNFS IN LINEAR TIME

Recall from Theorem 2.1 that given a positive integer k
and parameter ρ ∈ (0, 1), we define the “threshold SAT”

problem THRρ-kSAT to be the task of deciding whether

at least a ρ-fraction of assignments to a given k-CNF

are satisfying. For example, the MAJORITY-3SAT problem

discussed previously is equivalent to THR1/2-3SAT. In

Section IV-A and Section IV-B we show how to extend the

ideas from Section III with a subformula detection argument

to prove the following result.

Theorem 4.1: For every constant ρ ∈ [1/2, 1], we can

decide in polynomial time if a given 3-CNF on n variables

has at least ρ · 2n satisfying assignments.

Generalizations of this theorem, which prove analogous

results for k-CNFs, for fixed positive integers k ≥ 3,

and arbitrary rational thresholds ρ ∈ (0, 1) with constant

denominator, are proved in the full version of the paper [26,

Section 4.3 & Section 5]. This section in this paper is in-

cluded only to present arguments which are less technically

challenging than the proofs of the more general results, and

therefore hopefully more accessible, while still resolving the

complexity of MAJORITY-3SAT.

A. Thresholds Greater than One-Half

Building on the MAJORITY-2SAT algorithm of Theo-

rem 3.1, we propose the following natural generalization to

3-CNFs. In the following, a “disjoint set of clauses” refers

to a variable disjoint set (see Theorem 2.3).

Algorithm A. (With two unspecified constants c1
and c2.)
Given a 3-CNF F , find a maximal disjoint set S
of clauses of F . If |S| exceeds a certain constant

c1, then output NO.

For all 7|S| SAT assignments A to the clauses in

S, let FA be the 2-CNF induced by assignment

A, and search for a maximal disjoint set SA

of 2-clauses in FA. If |SA| exceeds a certain

constant c2, then output NO. Otherwise, try all

SAT assignments A′ to the clauses in SA. For each

1-CNF formula induced by an A′, count solutions

to the 1-CNF in polynomial time.

Return YES if and only if the total number of

solutions counted (over all assignments A) is at

least ρ · 2n.

First, we prove that Algorithm A correctly decides

#SAT(F ) ≥ ρ · 2n for all fractions ρ > 1/2.

Theorem 4.2: For every ε ∈ (0, 1/2], we can decide in

poly(1/ε, n) time if a given 3-CNF on n variables has at

least (1/2+ ε) · 2n satisfying assignments. Moreover, given

any 3-CNF with at least (1/2+ε)·2n satisfying assignments,

we can report the exact number of satisfying assignments.

The ability to report the exact number of satisfying as-

signments will (provably) no longer hold when we consider

the case of ε = 0, in the next subsection. This is the major

reason why we have treated the two cases separately.

To prove Theorem 4.2, we show that by setting c1, c2
appropriately in Algorithm A, we can decide if there are at

least ρ · 2n SAT assignments for ρ > 1/2. We first prove

a lemma regarding the sizes of maximal disjoint sets in

formulas obtained by assigning variables.

Lemma 4.3: Let ρ > 1/2, and let S be a maximal disjoint

set of k-clauses in a k-CNF F . Suppose F has at least ρ ·2n
satisfying assignments. For all possible assignments A to the

variables of S, and for every induced 2-CNF FA obtained

by assigning A to S, FA must contain a maximal disjoint

set of (k−1)-clauses of size less than 2k|S| ln(1/(ρ−1/2)).
Proof: The proof is by contrapositive. Let ε > 0 be such

that ρ := 1/2+ ε, and let S be a maximal disjoint set of k-

clauses in a given k-CNF F . Suppose there is an assignment

A to the variables of S such that FA has a maximal disjoint

set of (k − 1)-clauses of size at least K := 2k|S| ln(1/ε).
By the pigeonhole principle, there exists some literal � ∈
{x,¬x}, coming from a variable x in the maximal disjoint

set S, and a set T� of at least K/(2|S|) = 2k−1 ln(1/ε)
clauses in F of the form

(� ∨ ai,1 ∨ · · · ∨ ai,k−1)
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where the variables of ai,j are all distinct over all i =
1, . . . , |T�| and j = 1, . . . , k − 1. That is, the subformula

T� of F has in total 1 + (k − 1)r distinct variables, where

r := |T�|.
Since r ≥ 2k−1 ln(1/ε), the fraction of satisfying assign-

ments in T� is at most

2(k−1)r + (1− 1/2k−1)r · 2(k−1)r

21+(k−1)r

which simplifies to

1

2
+

1

2
· (1− 1/2k−1)r ≤ 1

2
+
ε

2
< ρ,

where the 2(k−1)r term comes from the case where � is true,

and (1−1/2k−1)r ·2(k−1)r term comes from the case where

� is false. Therefore, in such a case, F must have less than

a ρ fraction of satisfying assignments by Proposition 2.4.

We can apply Lemma 4.3 by arguing that, if any sub-

formula FA of F has a “large” maximal disjoint set of 2-

clauses, then we can output NO when ρ > 1/2. Otherwise,

every FA has a “small” maximal disjoint set of 2-clauses,

and Algorithm A works in that case.

Proof of Theorem 4.2: Let ε > 0. We consider

Algorithm A with constants c1 := 10 and c2 := 72 ln(1/ε).
If |S| > 10, then the fraction of satisfying assignments

to the subformula S is less than 1/2, therefore F has less

than a 1/2 fraction by Proposition 2.4. Therefore in step 2

of Algorithm A, we can report NO.

Otherwise, |S| ≤ 9. Suppose we try all possible satisfying

assignments to S (there are at most 3|S|) and suppose there

is some induced formula FA with a maximal disjoint set SA

of at least 72·ln(1/ε) clauses. By Lemma 4.3 we can deduce

that F has less than an ρ := 1/2 + ε fraction of satisfying

assignments, and can report NO.

In the remaining case, every induced formula FA has a

maximal disjoint set SA of less than 72 · ln(1/ε) clauses.

By trying all possible SAT assignments to each SA (there

are 3|SA| ≤ poly(1/ε) such assignments) we can count the

number of satisfying assignments for each of the remaining

1-CNF formulas in linear time, and determine the exact

number of satisfying assignments by taking the sum of all

such counts.

B. Threshold of One-Half

We now we turn to the case of solving THRρ-3SAT for

threshold value ρ = 1/2.

When ρ = 1/2, Algorithm A does not work correctly

in all cases (regardless of how its parameters are set).

Consider a 3-CNF formula F in which every clause contains

a common variable x occurring positively. This is trivially

a YES-instance for MAJORITY-3SAT. (Note we cannot

efficiently compute the number of satisfying assignments

exactly in this case, as it would solve the #2SAT problem in

polynomial time!) Running Algorithm A on F , it will find

an S with |S| = 1, since x appears in all clauses. When

we try all satisfying assignments to S, and x is set true,

the formula becomes a tautology. But when x is set false,

the formula becomes an arbitrary 2-CNF, with potentially

a very large disjoint clause set. Regardless of the size of

that clause set, the original F is still a YES instance, even

if all of the clauses in the remaining 2-CNF are disjoint.

So, an algorithm for MAJORITY-3SAT needs to be able

to account for this sort of behavior, where a single literal

appears in many clauses.

To handle this case, we introduce a check for another type

of “bad” subformula.

Lemma 4.4: Let � ∈ {x,¬x} be a literal, and let

S = {(� ∨ a1 ∨ b1), . . . , (� ∨ at ∨ bt), (u ∨ v ∨ w)}
be a set of clauses with the following properties:

• For all i, j ∈ [t], ai and bj are literals from 2t distinct

variables, all of which are different from x.

• The literal � does not appear in (u∨ v∨w). (However,

¬� may appear in (u ∨ v ∨ w).)
Then for all t ≥ 8, S has less than 2r−1 satisfying assign-

ments, where r is the total number of variables occurring in

S.

Proof: Let r be the total number of variables in S; note

that r ≥ 2t+1. When � is set to false, the t clauses (ai∨bi)
are all disjoint, so the formula S has at most (3/4)t · 2r−1

satisfying assignments over the remaining r − 1 variables.

When � is true, the clause (u ∨ v ∨ w) remains, so (over

the remaining r − 1 variables) the number of satisfying

assignments in this case is at most (7/8) ·2r−1. (Note that if

the literal ¬� appears in (u∨v∨w), then the fraction is 3/4,

which is only better for us.) For t ≥ 8, the total number of

satisfying assignments is therefore ((3/4)t + 7/8) · 2r−1 <
2r−1.

For t sufficiently large, Lemma 4.4 can be used to show

that S has less than (7/16+ ε)2r satisfying assignments for

any desired ε > 0.

MAJ3SAT in P: We are now ready to give a

polynomial-time algorithm for deciding if a 3-CNF has at

least 2n−1 satisfying assignments. For ease of reading, here

we will describe the algorithm alongside its analysis.

Given a 3-CNF F on n variables, we start by checking if

there is a common literal � appearing in every clause of F .

In this case we output YES, as any such formula is satisfied

by at least half of its assignments.

After this point, we know:

(	) For every literal � there is at least one clause

in F that does not contain �.

Next, we find a maximal disjoint set S among the 3-

clauses in F . If |S| ≥ 6 then, since (7/8)6 < 0.449 < 1/2,

we can output NO by Proposition 2.4.

Otherwise, we know that |S| ≤ 5. For each of the 7|S|

satisfying assignments A to the clauses of S, we do the

following:
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For each 2-CNF formula FA induced by an assignment

A on the variables of S in F , find a maximal disjoint set

SA over the 2-clauses in FA.

1) We claim that, if there is an assignment A such that

|SA| ≥ 48|S|+2, then F must contain less than 2n−1

satisfying assignments. Hence we can output NO in

this case.

This paragraph proves the claim. For each 2-clause

(x ∨ y) in SA, select one clause from F that (x ∨ y)
arose from: such a clause is either of the form

(�∨x∨ y) where � is a literal whose variable appears

in S, or it is simply (x ∨ y) (F may contain 2-

clauses itself). Put each such clause from F into a

new set S′A, so that |S′A| = |SA|. Suppose there are

at least three 2-clauses in S′A. Since these 2-clauses

are disjoint and appear in F , the subformula of S′A
restricted to these 2-clauses is a subformula of F and

must have at most a (3/4)3 < 0.422 < 1/2 fraction

of satisfying assignments. By Proposition 2.4, F has

less than 0.422 · 2n satisfying assignments in this

case. Otherwise, there are at most two 2-clauses in

S′A. Removing them from S′A, there are still at least

48|S| 3-clauses. As there are 3|S| distinct variables

appearing in S, and hence 6|S| literals whose variable

appears in S, there must be a literal � whose variable

appears in S such that � appears in at least 8 clauses

of S′A. By property (	) above, it follows that there is

a subformula in F satisfying Lemma 4.4. Therefore F
has less than ρ2n satisfying assignments for a constant

ρ < 1/2.

2) Otherwise, for all assignments A, we have |SA| <
48|S|. In this case, we can try all 3|SA| satisfying

assignments A′ to the 2-clauses in SA. Since SA is a

maximal disjoint set of 2-clauses in FA, every formula

obtained by plugging in A′ is a 1-CNF formula. We

solve #SAT on the resulting 1-CNF formula in linear

time, and add the number to a running sum (calculated

over all choices A and A′).
Finally, output YES if the total sum of satisfying assign-

ments exceeds 2n−1, otherwise output NO. This completes

the description of the algorithm, and its analysis.

It is interesting to observe that, no matter what 3-CNF

formula is provided, at least one of the following conditions

is true at the end of the algorithm:

(a) There are at least 2n−1 satisfying assignments (an early

YES case).

(b) There are at most ρ2n satisfying assignments, for a

constant ρ < 1/2 (an early NO case).

(c) The number of satisfying assignments is counted ex-

actly.

Therefore, for any 3-CNF formula in which the #SAT

value is strictly between ρ2n and 2n−1, the above algorithm

actually computes the #SAT value exactly.

Note that the above algorithm runs in linear time, although

the constant factor in the worst case (enumeration over

partial assignments) is at least 75 · 348·5−1 > 10118. Of

course, in order to give a succinct proof, we have been

extremely loose with the analysis; a smaller constant factor

is certainly possible.

V. CONCLUSION

There are many interesting open issues left to pursue; here

are a few.

• Determine the complexity of MAJ-MAJ-kSAT for
k ≥ 3. For any fixed integer k ≥ 3, is the MAJ-MAJ-

kSAT problem PP-complete, in PP, or somewhere in

between? We conjecture the problem is in P for all

constant k ≥ 3, but have not yet extended our methods

to prove this result.

• Parameter Dependence. Although our algorithms for

THRρ-kSAT run in linear time for fixed k and ρ,

these runtimes grow extremely quickly as a function

of ρ, even for k = 3 (as noted in the full version

[26, Proposition 4.10]). Is a better dependence on ρ
possible, or can we prove that a significantly better

dependence is unlikely to exist? Could there be a

poly(1/ρ) dependence, as in the MAJORITY-2SAT

algorithm?

• Threshold Counting Beyond Satisfiability. Are there

other natural problems where the counting problem is

known to be hard, but the threshold counting problem

turns out to admit a polynomial time algorithm? Our

results show this phenomenon holds for the counting

and threshold counting versions of kSAT for constant k,

but perhaps similar behavior occurs for other problems,

such as counting perfect matchings or counting proper

k-colorings of graphs.

• Variants of Weighted Model Counting. A natural

“weighted” extension of the MAJORITY-kSAT prob-

lem would be: given ρ ∈ (0, 1) and m degree-k poly-

nomials p1(x), . . . , pm(x) ∈ Q[x1, . . . , xn], determine

if
∑

a∈{0,1}n

m∏

j=1

pj(x) ≥ ρ · 2n.

What does the complexity of this problem look like?

In the special case solved in this paper (k-CNF), our

polynomials have the form 1−Cj where Cj is a product

of k literals (xi or 1− xi).
To specialize further (and still fall within the k-CNF

case), suppose each pi takes values in [0, 1] over all a ∈
{0, 1}n, so their product

∏
j pj(a) is always in [0, 1].

For constant ρ ∈ (0, 1), can the above sum-product

problem be solvable in polynomial time?

• Bayesian inference with k-CNFs. Given two k-CNF

formulas F and G over a common variable set, and
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given p ∈ (0, 1), the inference problem is to determine

whether

Pr
x
[F (x) = 1 | G(x) = 1] ≥ p.

By definition, this is equivalent to determining whether

Prx[(F (x) ∧G(x)) = 1]

Prx[G(x) = 1]
≥ p.

Since determining if the denominator is nonzero is

already NP-hard for k = 3, the best we can hope for

is to put this problem in NP. To sidestep the division-

by-zero issue, we can rephrase the inference problem

as determining whether

Pr
x
[(F (x) ∧G(x)) = 1] ≥ p · Pr

x
[G(x) = 1].

Already this problem is interesting for the case where

F and G are 2-CNF.

Algorithms: The results of this paper imply that the

inference problem is in polynomial time when F is

3-CNF and G is a 1-CNF. When #SAT(F ∧ G) ≥
2n/poly(n), Theorem 3.1 implies that the inference

problem is in P for 2-CNFs regardless of p (because

both sides of the inequality can be counted exactly).

Also, if #SAT(G) ≥ 2n/poly(n) and p ≥ 1/poly(n),
then we can solve the inference problem for 2-CNFs

using Theorem 3.1.

Hardness: If G is an arbitrary 3-CNF, and F is a 1-

CNF, then the inference problem is already NP-hard.

Deciding

Pr
x
[(F (x) ∧G(x)) = 1] ≥ p · Pr

x
[G(x) = 1]

lets us construct a satisfying assignment for G: try both

F = x1 and F = ¬x1 with p = 1/2. Observe that

Pr
x
[G(x) = 1] = Pr

x
[(x1∧G(x)) = 1]+Pr

x
[(¬x1∧G(x)) = 1],

so either Prx[(x1 ∧G(x)) = 1] ≥ 1/2 ·Prx[G(x) = 1]
or Prx[(¬x1 ∧ G(x)) = 1] ≥ 1/2 · Prx[G(x) = 1].
By choosing the larger of the two, we can construct a

satisfying assignment for G for each variable one at a

time.

The above discussion still does not yet settle the case

where F is a 2-CNF and G is a 2-CNF, and the fractions

involved are smaller than 1/poly(n).
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[22] İ. İ. Ceylan, A. Darwiche, and G. V. den Broeck, “Open-
world probabilistic databases,” in Principles of Knowledge
Representation and Reasoning: Proceedings of the Fifteenth
International Conference, KR 2016, Cape Town, South
Africa, April 25-29, 2016. AAAI Press, 2016, pp. 339–348.
[Online]. Available: http://www.aaai.org/ocs/index.php/KR/
KR16/paper/view/12908

[23] F. G. Cozman and D. D. Mauá, “The complexity of
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