2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS) | 978-1-6654-2055-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/F0CS52979.2021.00103

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)

MAJORITY-3SAT (and Related Problems) in Polynomial Time

Shyan Akmal
MIT CSAIL & EECS
Cambridge, MA, USA

naysh@mit.edu

Abstract—Majority-SAT (a.k.a. MAJ-SAT) is the problem
of determining whether an input n-variable formula in con-
junctive normal form (CNF) has at least 2"°(n-1) satisfying
assignments. Majority-SAT and related problems have been
studied extensively in various AI communities interested in the
complexity of probabilistic planning and inference. Although
Majority-SAT has been known to be PP-complete for over 40
years, the complexity of a natural variant has remained open:
Majority-kSAT, where the input CNF formula is restricted to
have clause width at most k.

We prove that for every k, Majority-kSAT is in P; in fact,
the problem can be solved in linear time (whereas the previous
best-known algorithm ran in exponential time). More generally,
for any positive integer k and constant p in (0,1) with bounded
denominator, we give an algorithm that can determine whether
a given k-CNF has at least p(2°'n) satisfying assignments, in
deterministic linear time. We find these results surprising, as
many analogous problems which are hard for CNF formulas
remain hard when restricted to 3-CNFs. Our algorithms have
interesting positive implications for counting complexity and
the complexity of inference, significantly reducing the known
complexities of related problems such as E-MAJ-KSAT and
MAJ-MAJ-KSAT. Our results immediately extend to arbitrary
Boolean CSPs with constraints of arity k. At the heart of our
approach is an efficient method for solving threshold counting
problems by extracting and analyzing various sunflowers found
in the corresponding set system of a k-CNF.

Exploring the implications of our results, we find that the
tractability of Majority-kSAT is somewhat fragile, in intriguing
ways. For the closely related GtMajority-SAT problem (where
we ask whether a given formula has greater than 2"(n-1)
satisfying assignments) which is also known to be PP-complete,
we show that GtMajority-kSAT is in P for k at most 3, but
becomes NP-complete for k at least 4. We also show that
for Majority-SAT on k-CNFs with one additional clause of
arbitrary width, the problem is PP-complete for k at least 4, is
NP-hard for k=3, and remains in P for k=2. These results are
counterintuitive, because the ‘“natural” classifications of these
problems would have been PP-completeness, and because there
is a stark difference in the complexity of GtMajority-kSAT and
Majority-kSAT for all k at least 4.

Keywords-satisfiability; majority-SAT; counting complexity;
CNF-formulas; sunflowers

I. INTRODUCTION

The complexity of #SAT, the problem of counting satis-
fying assignments to propositional formulas (a.k.a. “model
counting” in the AI and SAT literature), has been intensely
studied for decades. The pioneering work of Valiant [1]

1033

Ryan Williams
MIT CSAIL & EECS
Cambridge, MA, USA

rrw @mit.edu

showed that #SAT is #P-complete already for 2-CNF
formulas.

Of course, #SAT (and any other #P problem) is a func-
tion problem: up to n+1 bits need to be output on a given n-
variable formula. A natural question is: how efficiently can
output bits of the #SAT function be computed? Obvious
choices are the low-order bit, which corresponds to the
@P-complete PARITY-SAT problem, and the higher-order
bits. For CNF formulas, the highest-order bit of #SAT
corresponds to the case where the #SAT value is 2", which
is trivial for CNF formulas." When the value is less than
2™ and #SAT outputs n bits, the high-order bit corresponds
to MAJORITY-SAT, the problem of determining whether
#SAT(F) > 271 It is more common to think of it
as a probability threshold problem: given a formula F,
is Pry[F(a) = 1] > 1/2? Sometimes MAJORITY-SAT
is phrased as determining whether or not Pr,[F(a) =
1] > 1/2; we will call this version GtMAJORITY-SAT to
avoid confusion. Over CNF formulas (and more expressive
Boolean representations), there is no essential difference
between the two problems.’

MAJORITY-SAT (and GtMAJORITY-SAT) are the pri-
mary subjects of this paper. Gill [2] and Simon [3] in-
troduced these problems along with the class PP, which
consists of decision problems computing “high-order bits” of
a #P function. They proved that MAJORITY-SAT on CNF
formulas is PP-complete, and that #P C pPP. showing that
determining higher-order bits of a general #P function is as
hard as computing the entire function.

The known proofs of PP-hardness for MAJORITY-SAT
reduce to CNF formulas having clauses of arbitrarily large
width. This raises the very natural question of whether
MAJORITY-SAT remains hard over CNFs with fixed-width
clauses. Intuition suggests that MAJORITY-ASAT should
remain PP-hard for k& > 3, by analogy with the NP-hardness
of 3SAT, the PSPACE-hardness of Quantified 3SAT [4], the
@®P-hardness of PARITY-3SAT?, the II;P-hardness of II5-

'The only n-variable CNFs with 2" satisfying assignments are those
with no clauses. Of course, when the formula is DNF, the high-order bit
problem is coNP-complete.

2See Section 1I for a discussion.

3This follows from the fact that there is a parsimonious reduction from
SAT to 3-SAT [3].

2575-8454/21/$31.00 ©2021 IEEE
DOI 10.1109/FOCS52979.2021.00103

Authorized licensed use limited to: MIT Libraries. Downloaded on January 10,2023 at 20:13:09 UTC from IEEE Xplore. Restrictions apply.

3SAT [5], and so on. Beyond the SAT problem, it is often
true that the hardness of a problem can be preserved for
“bounded width/degree” versions of the problem: for in-
stance, the NP-hardness of 3-coloring holds even for graphs
of degree at most 4 [6], and the #P-hardness of counting
perfect matchings in graphs holds even for graphs of degree
at most 3 [7]. Indeed, the more general problem: given a 3-
CNF F and an integer k > 0, determine if #SAT(F) > ok
can readily be proved PP-complete. However, the same
argument cannot be used to show that MAJORITY-SAT is
PP-complete for 3-CNF F.*

Due to these subtleties, there has been significant confu-
sion in the literature about the complexity of MAJORITY-
kSAT, with several works asserting intractability for
MAJORITY-3SAT and its variants, while others observing
that the complexity of the problem remained open at the time
[8]-[25].° This is a critical issue, as MAJORITY-SAT and
its variants have been at the foundation of many reductions
regarding the complexity of probabilistic planning, Bayesian
inference, and maximum a posteriori problems in restricted
settings, which are of great interest to various communities
within Al. The true complexity of MAJORITY-ASAT (and
related problems) has remained a central open question for
these communities.

A. Our Results

Somewhat surprisingly, we show that MAJORITY-SAT
over k-CNFs is in fact easy. In fact, for any constant p €
(0,1), we can efficiently determine for a given k-CNF F
whether Procgo,13»[F(a) = 1] > p or not. Although we
state our main results in this section, the proofs for most of
these results are not included here and can instead be found
in the full version of the paper [26].

Theorem 1.1: For every constant rational p € (0,1) and
every constant k£ > 2, there is a deterministic linear-time
algorithm that given a k-CNF F' determines whether or not
#SAT(F) > p- 2™

Theorem 1.1 is proved in [26, Section 5]. To our knowl-
edge, the previous best-known algorithm for this problem ran
in 27~©("/k) time, by running the best-known algorithm for
#kSAT [27], [28]. Of course, Theorem 1.1 does not mean
that #P functions can be computed in polynomial time;
rather, it shows that lower-order bits of #kSAT are the more

4The proof of PP-completeness (of the more general problem) follows
from two facts: (a) the version of the problem for CNF formulas is PP-
complete, by Gill and Simon, and (b) the reduction from CNF-SAT to 3SAT
preserves the number of solutions. This proof cannot be used to show that
determining #SAT(F) > 2"~ is PP-complete for 3-CNF F, because
the Cook-Levin reduction introduces many new variables (the variable n
increases when going from CNF-SAT to 3SAT, thereby changing the target
number of satisfying assignments).

SEven the second author is guilty of being confused: see the
first comment at https://cstheory.stackexchange.com/questions/36660/
status-of-pp-completeness-of-maj3sat.

1034

difficult ones® ([26, Section 5.1] formally describes how to
use our algorithm to compute the high-order bits of #kSAT
in polynomial time). Even the lowest-order bit of #kSAT is
evidently harder: for every k > 2, PARITY-ASAT is known
to be GP-complete [29], so (by Toda’s theorem [30]) the
low-order bit of #kSAT cannot be computed in BPP unless
NP = RP.

Implications for Related Inference Problems: Given
that MAJORITY-ESAT turns out to be easy, it is worth
exploring whether related problems in literature are also easy
or hard. In the relevant Al literature on the complexity of
Bayesian inference and probabilistic planning, the following
two problems are prominent in proving conditional lower
bounds:

E-MAJ-SAT: Given n, n/, and a formula © over
n + n' variables, is there a setting to the first n
variables of ¢ such that the majority of assign-
ments to the remaining n' variables are satisfying
assignments?

MAIJ-MAIJ-SAT: Given n, n/, and a formula ¢
over n+n’ variables, do a majority of the assign-
ments to the first n variables of ¢ yield a formula
where the majority of assignments to the remaining
n' variables are satisfying?

These problems may seem esoteric, but E-MAJ-SAT and
related problems are used extensively in the relevant areas of
Al, where an environment has inherently “random” aspects
along with variables one can control, and one wants to
“plan” the control variables to maximize the chance that
a desired property holds (e.g. [31]-[33]). E-MAJ-SAT has
also recently been used to study the complexity of verifying
differential privacy [34].

Similarly, MAJ-MAJ-SAT applies in the context when one
wants to know what is the chance that a random setting of
control variables will yield a good chance that a property
holds [35], [36]. For general CNF formulas, E-MAJ-SAT
is NPPP-complete [31], [37], [38] and MAJ-MAJ-SAT is
PPPP-complete [371-[39]: roughly speaking, these results
imply that both problems are essentially intractable, even
assuming oracle access to a #SAT solver. There has also
been significant confusion about whether E-MAJ-3SAT (the
version restricted to 3-CNF) is NPPP-complete or not [11],
[14], [21], [22], [24], [25]. We prove that both E-MAJ-SAT
and MAJ-MAJ-SAT dramatically decrease in complexity
over k-CNF formulas.

Theorem 1.2: E-MAJ-2SAT € P, and for all £ > 3, E-
MAIJ-ESAT is NP-complete.

Theorem 1.3: MAJ-MAJ-2SAT € P.

Theorem 1.2 is proved in [26, Section 6.1] and Theo-
rem 1.3 is proved in [26, Section 6.2].

Indeed in some sense, “middle bits” are PP-hard: Bailey, Dalmau,
and Koliatis [10], [12] showed 20 years ago that for all integers ¢ > 2,
determining whether #SAT(F') > 21/t (for 3-CNF F) is PP-complete.

Authorized licensed use limited to: MIT Libraries. Downloaded on January 10,2023 at 20:13:09 UTC from IEEE Xplore. Restrictions apply.

Even the NP-completeness of E-MAJ-3SAT is good news,
in some sense: Theorem 1.2 suggests that such counting
problems could in principle be handled by SAT solvers,
rather than needing #SAT solvers.

Greater-Than MAJORITY-SAT: The algorithms behind
Theorem 1.1 can efficiently determine if the #SAT value
of a k-CNF is at least a given fraction of the satisfying
assignments. Recall the GtMAJORITY-SAT problem is to
determine if the #SAT value is greater than a given fraction,
and that over CNFs, there is no essential difference between
the two problem variants. Another surprise is that, over k-
CNFs, there is a difference between these problems for &£ >
4: the “greater than” version becomes NP-complete!

Theorem 1.4: For k < 3, GEIMAJORITY-kKSAT is in P.

Theorem 1.5: For k > 4, GtMAJORITY-kKSAT is NP-
complete.

Both Theorem 1.4 and Theorem 1.5 are proved in [26,
Section 7.2].

Adding One Long Clause Makes MAJORITY-kSAT
Hard: Given the surprisingly low complexity of these
threshold counting problems over k-CNF formulas, it is
natural to investigate what extensions of k-CNFs suffice in
order for the problems to become difficult. This direction is
also important for the considerable collection of results in Al
whose complexity hinges on the difficulty of MAJORITY-
SAT and its variants. We show that adding only one ex-
tra clause of arbitrary width is already enough to make
MAIJORITY-ESAT difficult, for & > 3.

Theorem 1.6: Deciding MAJORITY-SAT over k-CNFs
with one extra clause of arbitrary width is in P for k = 2,
NP-hard for & = 3, and PP-complete for & > 4.

This may look preposterous: how could adding only
one long clause make MAJORITY-3SAT hard? Couldn’t
we simply try all O(n) choices for picking a literal from
the long clause, and reduce the problem to O(n) calls to
MAIJORITY-3SAT with no long clauses? Apparently not!
Remember that MAJORITY-3SAT only decides whether
or not the fraction of satisfying assignments is at least
p € (0,1). This information does not help us determine
the number of satisfying assignments to O(n) subformulas
accurately enough to refute the hardness of MAJORITY-
3SAT with no long clauses.

B. Intuition

The ideas behind our algorithms arose from reconsid-
ering the polynomial-time Turing reduction from #SAT
to MAJORITY-SAT [2], [3], in the hopes of proving that
MAJORITY-3SAT is hard. The key is to reduce the problem

#SATD := {(F,s) | #SAT(F) > s}

to MAJORITY-SAT. From there, one can binary search with
#SATD to determine #SAT(F'). The known reductions
from #SATD to MAJORITY-SAT require that, given a
desired t € [0,2"], we can efficiently construct a formula

1035

Gy on n variables with exactly ¢ satisfying assignments.’
Then, introducing a new variable x,, 1, the formula

H = (In+1 \ F) A\ (_'l'n+1 \Y Gt)

will have #SAT(H) = #SAT(F) +t, out of 2"*! possible
assignments to H. Setting t = 2" — s, it follows that
#SAT(F) > s if and only if #SAT(H) > 2", thereby
reducing from #SATD to MAJORITY-SAT. Observe we
can convert H into k-CNF, provided that both F' and Gy
are (k — 1)-CNF.

However, this reduction fails miserably for k-CNF formu-
las, because for constant % and large n, there are many values
t € [0,2"] for which no k-CNF formula G; has exactly
t satisfying assignments (observe that every k-CNF with
at least one clause has at most (1 — 1/2F) - 2" satisfying
assignments; therefore no such k-CNF formulas G; exist,
for all t € [2" —2"~% —1,2" — 1]). Moreover, every k-CNF
containing d disjoint clauses (d clauses sharing no variables)
has at most (1 — 1/2%)® . 2" satisfying assignments. But
“most” k-CNF formulas (say, from the typical random k-
SAT distributions) will have large disjoint sets of clauses
(say, of size Q(n)). So for “most” formulas, we can quickly
determine that #SAT(F') < p - 2™ for constant p > 0, by
finding a large enough disjoint clause set.

What remains is a rather structured subset of k-CNF
formulas. If the maximum possible size of a disjoint clause
set is small, then there is a small set of variables that “hit”
all other clauses (otherwise, the set would not be maximal).
That is, there is a small set of variables that have non-empty
intersection with every clause. This kind of small hitting set
can be very algorithmically useful for solving #SAT. For
example, if £ = 2, then every assignment to the variables
in a small hitting set simplifies the given formula into a 1-
CNF. In other words, when there is a small hitting set, we
can reduce the computation of #2SAT to a small number of
calls to #1SAT, each of which can be solved in polynomial
time. This is essentially how our algorithm for MAJORITY-
2SAT works.

The situation quickly becomes more technically compli-
cated, as k increases. When k = 3, setting all variables in a
small hitting set merely simplifies the formula to a 2-CNF,
but #SAT is already #P-hard for 2-CNF formulas. To get
around this issue, we consider more generally sunflowers
within the k-CNF: collections of sets which all share the
same pairwise intersection (called the core).

Sunflowers in a formula can be useful in bounding the
fraction of satisfying assignments. To give a simple example,
if the entire formula was a sunflower with a single literal £ in
its core, then the fraction of satisfying assignments is at least
1/2 (because setting ¢ true already satisfies the formula).

7A standard way to do this is to make a formula G which is true if
and only if its variable assignment, construed as an integer in [1,2"], is at
most ¢. But constructing such a formula requires arbitrary width CNFs.

Authorized licensed use limited to: MIT Libraries. Downloaded on January 10,2023 at 20:13:09 UTC from IEEE Xplore. Restrictions apply.

Our algorithms seek out large sunflowers on disjoint clauses
in k-CNF formulas, to get tighter and tighter bounds on the
fraction of satisfying assignments. When a formula does not
have many such sunflowers, the formula is structured enough
that we can find a small hitting set of variables and use the
ideas discussed earlier.

Intuition for Theorem 1.1: Here we provide an intuitive
idea of how our main algorithm works to determine whether
a k-CNF has at least a p-fraction of satisfying assignments.
Given a Boolean formula ® on n variables, let Pr[®] denote
the probability a uniform random assignment to the variables
of @ is satisfying. For a given k-CNF ¢, we want to decide
whether the inequality

Prlp] > p

holds or not. We will do this by building up a special (k —
2)-CNF 1 on the same variable set, where each clause of
1 is contained in a clause of ¢. We split the probability
calculation into

Prlg] = Prlp A 4] + Prlip A)]
and use the fact that

Prlp A 9] < Prlp] = Prlp AY] +Prip A =9 (1)

Intuitively, we will construct ¢ in such a way that Pr{p A
—1)] < €7 for an extremely small €1 > 0, so that it is possible
to reduce the problem of determining Pr[p] > p to the
problem of determining Pr[p A)] > p. In other words,
we can reduce THR,-kSAT on ¢ to THR,-kSAT on ¢ A).

This reduction is helpful because the clauses of 1) are
subclauses appearing frequently in ¢, so the formula ¢ A)
simplifies to a smaller formula than ¢. Additionally, ¢ A
has a smaller solution space than ¢, so intuitively it becomes
easier to check if the resulting formula has fewer than a p-
fraction of satisfying assignments. More precisely, it follows
from (1) that if Pr[p A 9] > p then Pr[y] > p as well. The
more surprising result is that we can construct v so that, if
Pr[e A1) < p, then we can in fact infer that Pr[p A ¢] <
p — o for some €5 > 1. Hence by (1) we can deduce that
Pr[¢] < e1 4 p— 2 < p. We construct the clauses of ¢ by
taking cores of large sunflowers in (. Defining what counts
as “large” depends on quite a few parameters, so the analysis
becomes rather technical.

C. Paper Organization

In Section II, we formally define the problems we are
considering, introduce notation, and discuss more related
work. In Section III we present a simple algorithm for
solving MAJORITY-2SAT in linear time, and in Section IV
we extend this algorithm to solve MAJORITY-3SAT in
linear time. Proofs of our remaining results can be found in
the full version of the paper [26]. We conclude in Section V
with a discussion of several intriguing open problems.

II. PRELIMINARIES

We assume basic familiarity with computational complex-

ity, including concepts such as PP and #P [40]. For a
formula F on n variables, let #SAT(F) be its number of
satisfying assignments as an integer in [0, 2"].
CNF Formulas. A literal is a Boolean variable or its
negation, a clause is a disjunction of literals, and a CNF
formula is a conjunction of clauses. The width of a clause is
the number of literals it contains. Given an integer w, a w-
clause is just a clause of width w. Given a positive integer k,
we say a formula is a k-CNF if every clause in the formula
has width at most k. We stress that we allow our k-CNFs to
have clauses of length up to k: clauses of width 1,... & are
allowed. An empty CNF formula evaluates to T, meaning it
is always true. An empty clause evaluates to |, meaning it
is always false. Given a CNF formula ¢, we let || denote
the size of the formula, which is just the sums of the widths
of all clauses in (.

We remark that all of the results in this paper that hold for
k-CNF formulas also hold for Boolean constraint satisfaction
problems (CSPs), over arbitrary constraints of arity at most
k. This is because each constraint of such a CSP can be
converted into an equivalent k-CNF over the same variables.
GtMAJORITY-SAT vs MAJORITY-SAT. Here we briefly
describe how to reduce between these two problems. To re-
duce from GtMAJORITY-SAT to MAJORITY-SAT given an
n-variable formula F', introduce n new variables yi,...,yn
and map F' to F' := (y1 V---Vy,) A F. Then #SAT(F) >
27141 implies #SAT(F') > (2" —1)(2"~141) = 22"~ 1 ¢
2 —on=l 1 > 22771 and #SAT(F) < 2"~! implies
#SAT(F/) < (2n _ 1)27171 — 2277,71 _ 2n71 < 22n71.

To reduce from MAJORITY-SAT to GEIMAJORITY-SAT

given an n-variable F', introduce one new variable x,.1,
let G be an n-variable formula with precisely 2" — 2"~ ! 4
1 satisfying assignments, and set F’' := (—zpy1 V F) A
(Tny1V G). Then #SAT(F') = #SAT(F)+2" —2" 1 +1.
When #SAT(F) > 271, we have #SAT(F') > 2™ + 1,
and when #SAT(F) < 277! — 1 we have #SAT(F') <
2™. (We can increase the gap by increasing the number of
additional variables.) Both reductions need unbounded width
CNF formulas.
Threshold SAT. We have already defined the MAJORITY-
kSAT problem. To discuss problems of detecting fractions
of satisfying assignments at other thresholds besides 1/2,
we introduce the following problem.

Definition 2.1 (Threshold SAT): For any positive integer
k and threshold p € (0, 1), the THR,-kSAT problem is the
following task: given a k-CNF formula ¢ on n variables,
determine if the inequality #SAT(¢) > p - 2™ holds.

In our algorithms, we will often make use of the following
structures in CNF formulas.

Definition 2.2 (Consistent Literal Set): Given a set of lit-
erals, we say the set is consistent if the set does not
simultaneously include x and —x for any variable x.

1036

Authorized licensed use limited to: MIT Libraries. Downloaded on January 10,2023 at 20:13:09 UTC from IEEE Xplore. Restrictions apply.

Definition 2.3 (Variable Disjoint Set): Given a set S of
clauses, we say S is a (variable) disjoint set if for every pair
C, C' of distinct clauses of S, C and C’ share no variables.

We will also utilize the following simple observations
about CNFs formulas.

Proposition 2.4: Let F' be a CNF formula on n variables,
construed as a set of clauses. Suppose there is a p € (0,1)
and a subset F’ of the clauses of F' such that F’ contains
r < n variables and #SAT(F") < p-2". Then #SAT(F) <
p-2m.

Proof: Note that FF = F’ A G, for some formula G.
Given a fixed F’, the number of satisfying assignments to
F is maximized when G is a tautology, having 2" satisfying
assignments. (Since F' is over n variables, we can take
G = (z1V—-x1) A+ A(zy V —2,).) Even in such a case,
#SAT(F) < #SAT(F’) - 2" " < p-2™,]

Proposition 2.5: Given a 1-CNF formula F' (i.e. F'is a
conjunction of literals), the number of satisfying assignments
to F' can be computed in linear time.

Proof: Let k be the number of I-clauses (literals) in
F. If F contains both a variable and its negation, then F'
is unsatisfiable, and the number of satisfying assignments is
0. Otherwise, the set of literals in F' is consistent, and the
number of satisfying assignments is 2" % In either case, we
can compute the desired quantity by scanning through the
clauses in F' once. |

As a final pieces of notation, we write A = poly(B) to
denote that A < B¢ for some constant ¢ > 0.

A. Comparison With Related Work

Several works [41]-[46] have considered the task of
approximately counting satisfying assignments to CNF for-
mulas. In particular, given a constant ¢ € (0,1) and CNF
formula ¢, we seek to output an estimate that is within € of
the true fraction of assignments of ¢ which are satisfying.®
In general, the estimates provided by such algorithms may
be strictly more or less than the true fraction of satisfying
assignments, so such approximation algorithms cannot be
used to solve problems like MAJORITY-ASAT.

However, the starting point of our work, the MAJORITY-
2SAT and MAJORITY-3SAT algorithms, uses methods very
similar to those of Trevisan [43], who showed that for any
fixed integer k one can approximately count the fraction
of satisfying assignments in a k-CNF formula efficiently,
by working with maximal disjoint sets of clauses.” Given a
desired additive approximation error &, Trevisan’s approach
shows that every k-CNF can be approximated by a special
kind of decision tree of f(e,k) < O(1) size and depth,
where the internal nodes are labeled by variables and the

80ne can also consider multiplicative approximations to #SAT, but this
task is NP-hard. See for example [47], [48].

91n fact, the second author devised an algorithm for MAJORITY-2SAT
in 2004, inspired by Trevisan’s work, but only recently (with the help of the
first author) found a way to generalize to MAJORITY-3SAT and beyond.

1037

leaves are labeled with 1-CNFs. Computing the exact frac-
tion of satisfying assignments for such a decision tree is
simple to do in linear time, and Trevisan uses this count to
obtain an e-additive approximation of the true fraction of
satisfying assignments.

In our algorithms, we also implicitly (and for
MAJORITY-2SAT, E-MAJ-2SAT, and MAJ-MAJ-2SAT,
explicitly) construct such decision tree representations,
and we also use the fact that one can count satisfying
assignments exactly on such decision tree representations.
However, for MAJORITY-KSAT where k& > 3, our
algorithms and analysis have to dig further into the problem
and take advantage of the structure of the decision tree itself.
Informally, we show there are “gaps” in the possible #SAT
values of such representations. Very roughly speaking, these
gaps are part of what allows us to solve the exact threshold
counting problem for k-CNFs in polynomial time, “as if”
it were an additive approximation problem. Still, many
other cases arise in determining the fraction exactly that
are irrelevant in approximations.

More generally, our algorithms rely on extracting sunflow-
ers from various subformulas. Sunflower lemmas have been
used previously for obtaining additive approximations to
the fraction of satisfying assignments of disjunctive normal
form (DNF) formulas and related problems such as DNF
sparsification and compression [41], [44]-[46]. These results
focus on formulas of super-constant width, whereas our
work is specialized to CNFs of constant width. Due to our
hardness results, one cannot extend our algorithms to 3CNFs
with even one unbounded width clause, unless P = NP.

III. THRESHOLD SAT FOR 2-CNFS IN LINEAR TIME

As a warm-up, we begin with a simple linear-time algo-
rithm for MAJORITY-2SAT (even THR,-2SAT, for every
p > 1/poly(n)) that illustrates a few of the ideas.'”

Theorem 3.1: For every rational o € (0, 1), there is an m-
poly(1/a)-time algorithm that, given any 2-CNF formula F
on n variables and m clauses, decides whether #SAT(F') >
a- 2™ or not. Furthermore, when #SAT(F) > «- 2™ is true,
the algorithm outputs #SAT(F’), along with a a decision tree
representation for F' of poly(1/«) size. The internal nodes
are labeled by variables and leaves are labeled by 1-CNFs.

Proof: For each o € (0,1), define c(a) := 1+
[log,,5(1/c)]. Note that ¢(a) < O(log 1.

Given a 2-CNF F/, start by finding a maximal disjoint set
of clauses S. That is, treat the clauses as sets (ignoring literal
signs) and find a set S of clauses such that (a) every pair of
clauses in S share no variables and (b) all other clauses in
F contain at least one variable occurring in S. This can be
done by greedily choosing the set .S’ (picking disjoint clauses
until we cannot) in time O(m - |S|). We argue that we can
stop once |S| exceeds c(a).

10The second author has known of this result since around 2004; see
Section 7 of [49].

Authorized licensed use limited to: MIT Libraries. Downloaded on January 10,2023 at 20:13:09 UTC from IEEE Xplore. Restrictions apply.

Case 1: Suppose |S| > c(a). Then we claim that
#SAT(F') < a- 2™. Note that each of the clauses in S are
over disjoint variables, so each clause in S reduces the total
number of satisfying assignments by 3/4. By our choice of
c(a), we have (3/4)(®) < q. Therefore, less than an a-
fraction of the possible assignments satisfy the subformula
S, and by Proposition 2.4, we can return NO.

Case 2: Otherwise, .S is a maximal disjoint set of clauses
with |S] < ¢(«). Since every clause in F' contains at least
one variable occurring in S, it follows that, when we plug in
any assignment to the variables of .S, the remaining formula
is a 1-CNF. Therefore, if we try all of the at most

3e(@) < O(g(log(é)/log(4/3))) < O((1/a)382)

satisfying assignments to the clauses of S, and solve #SAT
on the remaining 1-CNF formula in O(m) time (Propo-
sition 2.5), we can determine the number of satisfying
assignments exactly in this case.

Note that Case 1 of this algorithm only occurs when
#SAT(F) < « - 2". Consequently, whenever #SAT(F') >
a - 2" we fall into Case 2 and our algorithm reports the
exact count of satisfying assignments. The overall run time
of this algorithm is m - poly(1/«). [|

It is interesting to contrast the above result with the result
of Leslie Valiant that ©2SAT is &P complete [29]. Valiant’s
result implies that computing the low-order bit of #2SAT in
polynomial time would imply that NP C BPP. Our result
shows that computing the low-order bit of #2SAT looks
much more difficult than higher-order bits.

IV. MAJORITY SAT FOR 3-CNFS IN LINEAR TIME

Recall from Theorem 2.1 that given a positive integer k
and parameter p € (0,1), we define the “threshold SAT”
problem THR,-kSAT to be the task of deciding whether
at least a p-fraction of assignments to a given k-CNF
are satisfying. For example, the MAJORITY-3SAT problem
discussed previously is equivalent to THR;/»-3SAT. In
Section IV-A and Section IV-B we show how to extend the
ideas from Section III with a subformula detection argument
to prove the following result.

Theorem 4.1: For every constant p € [1/2,1], we can
decide in polynomial time if a given 3-CNF on n variables
has at least p - 2™ satisfying assignments.

Generalizations of this theorem, which prove analogous
results for k-CNFs, for fixed positive integers & > 3,
and arbitrary rational thresholds p € (0,1) with constant
denominator, are proved in the full version of the paper [26,
Section 4.3 & Section 5]. This section in this paper is in-
cluded only to present arguments which are less technically
challenging than the proofs of the more general results, and
therefore hopefully more accessible, while still resolving the
complexity of MAJORITY-3SAT.

A. Thresholds Greater than One-Half

1038

Building on the MAJORITY-2SAT algorithm of Theo-
rem 3.1, we propose the following natural generalization to
3-CNFs. In the following, a “disjoint set of clauses” refers
to a variable disjoint set (see Theorem 2.3).

Algorithm A. (With two unspecified constants c;
and cs.)

Given a 3-CNF F, find a maximal disjoint set S
of clauses of F. If |S| exceeds a certain constant
c1, then output NO.

For all 7/5I SAT assignments A to the clauses in
S, let Fy be the 2-CNF induced by assignment
A, and search for a maximal disjoint set S4
of 2-clauses in F4. If |S4| exceeds a certain
constant cg, then output NO. Otherwise, try all
SAT assignments A’ to the clauses in S4. For each
1-CNF formula induced by an A’, count solutions
to the 1-CNF in polynomial time.

Return YES if and only if the total number of
solutions counted (over all assignments A) is at
least p - 2™.

First, we prove that Algorithm A correctly decides
#SAT(F) > p- 2" for all fractions p > 1/2.

Theorem 4.2: For every ¢ € (0,1/2], we can decide in
poly(1/e,n) time if a given 3-CNF on n variables has at
least (1/2+¢) - 2™ satisfying assignments. Moreover, given
any 3-CNF with at least (1/2+¢)-2" satisfying assignments,
we can report the exact number of satisfying assignments.

The ability to report the exact number of satisfying as-
signments will (provably) no longer hold when we consider
the case of ¢ = 0, in the next subsection. This is the major
reason why we have treated the two cases separately.

To prove Theorem 4.2, we show that by setting ¢y, co
appropriately in Algorithm A, we can decide if there are at
least p - 2™ SAT assignments for p > 1/2. We first prove
a lemma regarding the sizes of maximal disjoint sets in
formulas obtained by assigning variables.

Lemma 4.3: Let p > 1/2, and let S be a maximal disjoint
set of k-clauses in a k-CNF F'. Suppose F' has at least p-2™
satisfying assignments. For all possible assignments A to the
variables of S, and for every induced 2-CNF F4 obtained
by assigning A to S, Fl4 must contain a maximal disjoint
set of (k—1)-clauses of size less than 2¥|S|In(1/(p—1/2)).

Proof: The proof is by contrapositive. Let € > 0 be such
that p := 1/2+¢, and let S be a maximal disjoint set of k-
clauses in a given k-CNF F'. Suppose there is an assignment
A to the variables of S such that F'4 has a maximal disjoint
set of (k — 1)-clauses of size at least K := 2¥|S|In(1/e).
By the pigeonhole principle, there exists some literal ¢ €
{x,—x}, coming from a variable x in the maximal disjoint
set S, and a set Ty of at least K/(2|S|) = 25~ 11In(1/e)
clauses in F' of the form

(€ VaigV:--V ai,k_l)

Authorized licensed use limited to: MIT Libraries. Downloaded on January 10,2023 at 20:13:09 UTC from IEEE Xplore. Restrictions apply.

where the variables of a;; are all distinct over all i =
1,...,|T¢| and j = 1,...,k — 1. That is, the subformula
Ty of F has in total 1 4 (k — 1)r distinct variables, where
r =Ty

Since 7 > 2¥~11n(1/¢), the fraction of satisfying assign-
ments in 7} is at most

2(k71)r + (1 _ 1/2,@‘71)’!’ . 2(k71)r

21+(k—1)r
which simplifies to
1 1 1 ¢
e € I 5) LS i e
5 T3 (1-1/27) <5 +35<p,

where the 2(*~1)" term comes from the case where / is true,
and (1—1/2F-1)7.2(k=D" term comes from the case where
¢ is false. Therefore, in such a case, F' must have less than
a p fraction of satisfying assignments by Proposition 2.4. ®

We can apply Lemma 4.3 by arguing that, if any sub-
formula F'4 of F' has a “large” maximal disjoint set of 2-
clauses, then we can output NO when p > 1/2. Otherwise,
every F4 has a “small” maximal disjoint set of 2-clauses,
and Algorithm A works in that case.

Proof of Theorem 4.2: Let ¢ > 0. We consider
Algorithm A with constants ¢; := 10 and ¢; := 721n(1/¢).

If |S| > 10, then the fraction of satisfying assignments
to the subformula S is less than 1/2, therefore F' has less
than a 1/2 fraction by Proposition 2.4. Therefore in step 2
of Algorithm A, we can report NO.

Otherwise, |S| < 9. Suppose we try all possible satisfying
assignments to S (there are at most 3/°!) and suppose there
is some induced formula F'4 with a maximal disjoint set S 4
of at least 72-In(1/¢) clauses. By Lemma 4.3 we can deduce
that F* has less than an p := 1/2 4 ¢ fraction of satisfying
assignments, and can report NO.

In the remaining case, every induced formula F'4 has a
maximal disjoint set S4 of less than 72 - In(1/e) clauses.
By trying all possible SAT assignments to each S4 (there
are 3!541 < poly(1/¢) such assignments) we can count the
number of satisfying assignments for each of the remaining
1-CNF formulas in linear time, and determine the exact
number of satisfying assignments by taking the sum of all
such counts.]

B. Threshold of One-Half

We now we turn to the case of solving THR,-3SAT for
threshold value p = 1/2.

When p = 1/2, Algorithm A does not work correctly
in all cases (regardless of how its parameters are set).
Consider a 3-CNF formula F' in which every clause contains
a common variable = occurring positively. This is trivially
a YES-instance for MAJORITY-3SAT. (Note we cannot
efficiently compute the number of satisfying assignments
exactly in this case, as it would solve the #2SAT problem in
polynomial time!) Running Algorithm A on F, it will find
an S with |S| = 1, since x appears in all clauses. When

1039

we try all satisfying assignments to S, and x is set true,
the formula becomes a tautology. But when z is set false,
the formula becomes an arbitrary 2-CNF, with potentially
a very large disjoint clause set. Regardless of the size of
that clause set, the original F' is still a YES instance, even
if all of the clauses in the remaining 2-CNF are disjoint.
So, an algorithm for MAJORITY-3SAT needs to be able
to account for this sort of behavior, where a single literal
appears in many clauses.

To handle this case, we introduce a check for another type
of “bad” subformula.

Lemma 4.4: Let ¢ € {x, -z} be a literal, and let

S={(lVarVvb),...,((Va Vb),(uvVoVuw)}

be a set of clauses with the following properties:

o For all 4,j € [t], a; and b; are literals from 2¢ distinct
variables, all of which are different from z.

The literal ¢ does not appear in (uV vV w). (However,
—¢ may appear in (u VvV w).)

Then for all ¢ > 8, S has less than 2"~ satisfying assign-
ments, where r is the total number of variables occurring in
S.

Proof: Let r be the total number of variables in S; note
that » > 2t+ 1. When / is set to false, the ¢ clauses (a; V b;)
are all disjoint, so the formula S has at most (3/4)% - 27!
satisfying assignments over the remaining » — 1 variables.
When ¢ is true, the clause (u V v V w) remains, so (over
the remaining r» — 1 variables) the number of satisfying
assignments in this case is at most (7/8)-2"~1. (Note that if
the literal —¢ appears in (u Vv Vw), then the fraction is 3/4,
which is only better for us.) For ¢t > 8, the total number of
satisfying assignments is therefore ((3/4)t +7/8) 27! <
2r—1,]

For t sufficiently large, Lemma 4.4 can be used to show
that S has less than (7/16 +¢)2" satisfying assignments for
any desired € > 0.

MAJ3SAT in P: We are now ready to give a
polynomial-time algorithm for deciding if a 3-CNF has at
least 27! satisfying assignments. For ease of reading, here
we will describe the algorithm alongside its analysis.

Given a 3-CNF F on n variables, we start by checking if
there is a common literal ¢ appearing in every clause of F'.
In this case we output YES, as any such formula is satisfied
by at least half of its assignments.

After this point, we know:

(%) For every literal ¢ there is at least one clause
in F' that does not contain ¢.

Next, we find a maximal disjoint set S among the 3-
clauses in F. If |S| > 6 then, since (7/8)% < 0.449 < 1/2,
we can output NO by Proposition 2.4.

Otherwise, we know that |S| < 5. For each of the 7151
satisfying assignments A to the clauses of S, we do the
following:

Authorized licensed use limited to: MIT Libraries. Downloaded on January 10,2023 at 20:13:09 UTC from IEEE Xplore. Restrictions apply.

For each 2-CNF formula F4 induced by an assignment
A on the variables of S in F, find a maximal disjoint set
S 4 over the 2-clauses in Fy.

1) We claim that, if there is an assignment A such that

|Sa| > 48]S|+2, then F must contain less than 2!
satisfying assignments. Hence we can output NO in
this case.
This paragraph proves the claim. For each 2-clause
(x Vy) in Sa, select one clause from F' that (x V y)
arose from: such a clause is either of the form
(¢V xVy) where £ is a literal whose variable appears
in S, or it is simply (z V y) (F may contain 2-
clauses itself). Put each such clause from F' into a
new set S, so that |S’;| = |Sa|. Suppose there are
at least three 2-clauses in S’,. Since these 2-clauses
are disjoint and appear in F, the subformula of S’;
restricted to these 2-clauses is a subformula of F' and
must have at most a (3/4)3 < 0.422 < 1/2 fraction
of satisfying assignments. By Proposition 2.4, F' has
less than 0.422 - 2™ satisfying assignments in this
case. Otherwise, there are at most two 2-clauses in
S’,. Removing them from S’;, there are still at least
48|S| 3-clauses. As there are 3|S| distinct variables
appearing in S, and hence 6|5 literals whose variable
appears in S, there must be a literal £ whose variable
appears in S such that ¢ appears in at least 8 clauses
of S’;. By property (x) above, it follows that there is
a subformula in F' satisfying Lemma 4.4. Therefore ¥
has less than p2™ satisfying assignments for a constant
p<1/2.

2) Otherwise, for all assignments A, we have |S4| <
48|S|. In this case, we can try all 3/54| satisfying
assignments A’ to the 2-clauses in S4. Since S4 is a
maximal disjoint set of 2-clauses in F'4, every formula
obtained by plugging in A’ is a 1-CNF formula. We
solve #SAT on the resulting 1-CNF formula in linear
time, and add the number to a running sum (calculated
over all choices A and A').

Finally, output YES if the total sum of satisfying assign-
ments exceeds 2”1, otherwise output NO. This completes
the description of the algorithm, and its analysis.

It is interesting to observe that, no matter what 3-CNF
formula is provided, at least one of the following conditions
is true at the end of the algorithm:

(a) There are at least 27! satisfying assignments (an early
YES case).

(b) There are at most p2™ satisfying assignments, for a
constant p < 1/2 (an early NO case).

(c) The number of satisfying assignments is counted ex-
actly.

Therefore, for any 3-CNF formula in which the #SAT

value is strictly between p2” and 2"~ !, the above algorithm

actually computes the #SAT value exactly.

Note that the above algorithm runs in linear time, although
the constant factor in the worst case (enumeration over
partial assignments) is at least 7° - 3¥5-1 > 1018 Of
course, in order to give a succinct proof, we have been
extremely loose with the analysis; a smaller constant factor
is certainly possible.

V. CONCLUSION

There are many interesting open issues left to pursue; here
are a few.

o Determine the complexity of MAJ-MAJ-kKSAT for
k > 3. For any fixed integer k > 3, is the MAJ-MAJ-
kSAT problem PP-complete, in PP, or somewhere in
between? We conjecture the problem is in P for all
constant k£ > 3, but have not yet extended our methods
to prove this result.

« Parameter Dependence. Although our algorithms for
THR,-kSAT run in linear time for fixed k and p,
these runtimes grow extremely quickly as a function
of p, even for kK = 3 (as noted in the full version
[26, Proposition 4.10]). Is a better dependence on p
possible, or can we prove that a significantly better
dependence is unlikely to exist? Could there be a
poly(1/p) dependence, as in the MAJORITY-2SAT
algorithm?

o Threshold Counting Beyond Satisfiability. Are there
other natural problems where the counting problem is
known to be hard, but the threshold counting problem
turns out to admit a polynomial time algorithm? Our
results show this phenomenon holds for the counting
and threshold counting versions of kSAT for constant &,
but perhaps similar behavior occurs for other problems,
such as counting perfect matchings or counting proper
k-colorings of graphs.

o Variants of Weighted Model Counting. A natural
“weighted” extension of the MAJORITY-KSAT prob-
lem would be: given p € (0,1) and m degree-k poly-
nomials p1(x),...,pm(x) € Q[z1,...,x,], determine

if
> Ipi@ =p-2m

a€{0,1}m™ j=1

What does the complexity of this problem look like?
In the special case solved in this paper (k-CNF), our
polynomials have the form 1—C); where C); is a product
of k literals (x; or 1 — x;).
To specialize further (and still fall within the k-CNF
case), suppose each p; takes values in [0, 1] over all a €
{0,1}", so their product [[; p;(a) is always in [0, 1].
For constant p € (0,1), can the above sum-product
problem be solvable in polynomial time?

« Bayesian inference with k-CNFs. Given two k-CNF
formulas F' and G' over a common variable set, and

1040

Authorized licensed use limited to: MIT Libraries. Downloaded on January 10,2023 at 20:13:09 UTC from IEEE Xplore. Restrictions apply.

given p € (0, 1), the inference problem is to determine
whether

PrF(x) = 1| Gz) =1] > p.

By definition, this is equivalent to determining whether

Pr,[(F(x) A G(z)) = 1] »
Pr,[G(z) = 1] -

Since determining if the denominator is nonzero is
already NP-hard for k£ = 3, the best we can hope for
is to put this problem in NP. To sidestep the division-
by-zero issue, we can rephrase the inference problem
as determining whether

Pr{(F(x) A G(x) = 1] > p- Pr[G(z) = 1].

Already this problem is interesting for the case where
F and G are 2-CNF.

Algorithms: The results of this paper imply that the
inference problem is in polynomial time when F' is
3-CNF and G is a 1-CNF. When #SAT(F A G) >
2" /poly(n), Theorem 3.1 implies that the inference
problem is in P for 2-CNFs regardless of p (because
both sides of the inequality can be counted exactly).
Also, if #SAT(G) > 2™ /poly(n) and p > 1/poly(n),
then we can solve the inference problem for 2-CNFs
using Theorem 3.1.

Hardness: If G is an arbitrary 3-CNF, and F is a 1-
CNF, then the inference problem is already NP-hard.
Deciding

Pr{(F(x) A G(x)) = 1] > p- Pr{G(z) = 1]

lets us construct a satisfying assignment for G: try both
F =127 and F = —x; with p = 1/2. Observe that

l;r[G(ac) =1] = Ig’cr[(xl/\G’(:B)) = 1}+I;r[(—\:v1AG(:c)) =1],

so either Pry[(z1 A G(x)) =1] > 1/2-Pr,[G(z) = 1]
or Pry[(—z1 A G(z)) = 1] > 1/2 - Pr,[G(z) = 1].
By choosing the larger of the two, we can construct a
satisfying assignment for G for each variable one at a
time.

The above discussion still does not yet settle the case
where I is a 2-CNF and G is a 2-CNF, and the fractions
involved are smaller than 1/poly(n).

ACKNOWLEDGMENT

The authors were supported by NSF CCF-1909429 and
NSF CCF-1741615. Much of this work was performed while
the second author was visiting the Simons Institute for
the Theory of Computing, participating in the Theoretical
Foundations of Computer Systems and Satisfiability: Theory,
Practice, and Beyond programs.

1041

(1]

(2]

(3]

[4]

(3]

(6]

(7]

(8]

(9]

[10]

(1]

REFERENCES

L. G. Valiant, “The complexity of enumeration and
reliability problems,” SIAM Journal on Computing, vol. 8,
no. 3, pp. 410-421, 1979. [Online]. Available: https:
//doi.org/10.1137/0208032

J. T. Gill, “Computational complexity of probabilistic
Turing machines,” in Proceedings of the Sixth Annual
ACM Symposium on Theory of Computing, ser. STOC
’74. New York, NY, USA: Association for Computing
Machinery, 1974, p. 91-95. [Online]. Available: https:
//doi.org/10.1145/800119.803889

J. Simon, “On Some Central Problems in Computational
Complexity,” Ph.D. dissertation, Cornell University, Jan.
1975. [Online]. Available: https://ecommons.cornell.edu/
handle/1813/6975

L. J. Stockmeyer, “The polynomial-time hierarchy,”
Theoretical Computer Science, vol. 3, no. 1, pp. 1-22,
1976. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/030439757690061X

L. J. Stockmeyer and A. R. Meyer, “Word problems requiring
exponential time(preliminary report),” in Proceedings of the
Fifth Annual ACM Symposium on Theory of Computing,
ser. STOC *73. New York, NY, USA: Association for
Computing Machinery, 1973, p. 1-9. [Online]. Available:
https://doi.org/10.1145/800125.804029

M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

P. Dagum and M. Luby, “Approximating the permanent
of graphs with large factors,” Theoretical Computer
Science, vol. 102, no. 2, pp. 283-305, 1992. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
0304397592902347

M. Mundhenk, “The complexity of optimal small policies,”
Mathematics of Operations Research, vol. 25, no. 1, pp.
118-129, 2000. [Online]. Available: https://doi.org/10.1287/
moor.25.1.118.15214

, “The complexity of planning with partially-observable
markov decision processes,” Dartmouth College, USA, Tech.
Rep., 2000.

D. D. Bailey, V. Dalmau, and P. G. Kolaitis, “Phase transitions
of PP-complete satisfiability problems,” in Proceedings of
the Seventeenth International Joint Conference on Artificial
Intelligence, IJCAI 2001, Seattle, Washington, USA, August
4-10, 2001. Morgan Kaufmann, 2001, pp. 183-192.

A. Krause and C. Guestrin, “Optimal nonmyopic value of
information in graphical models - efficient algorithms and
theoretical limits,” in IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, UK, July 30 - August 5, 2005.
Professional Book Center, 2005, pp. 1339-1345. [Online].
Available: http://ijcai.org/Proceedings/05/Papers/1154.pdf

Authorized licensed use limited to: MIT Libraries. Downloaded on January 10,2023 at 20:13:09 UTC from IEEE Xplore. Restrictions apply.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

D. D. Bailey, V. Dalmau, and P. G. Kolaitis, “Phase
transitions of PP-complete satisfiability problems,” Discret.
Appl. Math., vol. 155, no. 12, pp. 1627-1639, 2007. [Online].
Available: https://doi.org/10.1016/j.dam.2006.09.014

J. Goldsmith, M. Hagen, and M. Mundhenk, “Complexity
of dnf minimization and isomorphism testing for monotone
formulas,” Information and Computation, vol. 206, no. 6,
pp. 760-775, 2008. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0890540108000138

A. Krause and C. Guestrin, “Optimal value of information
in graphical models,” Journal of Artificial Intelligence
Research, vol. 35, pp. 557-591, Jul. 2009. [Online].
Available: https://doi.org/10.1613/jair.2737

T. Teige and M. Frénzle, “Resolution for stochastic boolean
satisfiability,” in Logic for Programming, Artificial Intelli-
gence, and Reasoning. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 625-639.

A. E. Porreca, A. Leporati, G. Mauri, and C. Zandron,
“P systems with elementary active membranes: Beyond np
and conp,” in Membrane Computing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 338-347.

J. Kwisthout, “Most probable explanations in Bayesian
networks: Complexity and tractability,” International Journal
of Approximate Reasoning, vol. 52, no. 9, pp. 1452-
1469, 2011, handling Incomplete and Fuzzy Information
in Data Analysis and Decision Processes. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0888613X11001095

P. Frisco, G. Govan, and A. Leporati, “Asynchronous p
systems with active membranes,” Theoretical Computer
Science, vol. 429, pp. 74-86, 2012, magic in Science.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0304397511009923

J. Kwisthout and C. P. de Campos, ‘“Computional
complexity of Bayesian networks,” July 2015, tutorials
of the 31Ist Conference on Uncertainty in Artificial
Intelligence. [Online]. Available: https://www.youtube.com/
watch?v=7CU5u02Xwlc

“Lecture notes: Computational complexity of
Bayesian networks,” July 2015, tutorials of the 31st
Conference on Uncertainty in Artificial Intelligence.
[Online]. Available: https://auai.org/uai2015/proceedings/
slides/UAI2015_Comp_LN.pdf

D. D. Maud, C. P. De Campos, and F. G. Cozman, “The
complexity of MAP inference in Bayesian networks specified
through logical languages,” in Proceedings of the 24th Inter-
national Conference on Artificial Intelligence, ser. IJCAI’15.
AAALI Press, 2015, p. 889-895.

I 1 Ceylan, A. Darwiche, and G. V. den Broeck, “Open-
world probabilistic databases,” in Principles of Knowledge
Representation and Reasoning: Proceedings of the Fifteenth
International Conference, KR 2016, Cape Town, South
Africa, April 25-29, 2016. AAAI Press, 2016, pp. 339-348.
[Online]. Available: http://www.aaai.org/ocs/index.php/KR/
KR16/paper/view/12908

1042

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

F. G. Cozman and D. D. Maud, “The complexity of
Bayesian networks specified by propositional and relational
languages,” Artificial Intelligence, vol. 262, pp. 96-141,
2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0004370218303047

F. Bridoux, N. Durbec, K. Perrot, and A. Richard, “Complex-
ity of maximum fixed point problem in boolean networks,”
in Computing with Foresight and Industry. Cham: Springer
International Publishing, 2019, pp. 132-143.

F. Bridoux, A. Durbec, K. Perrot, and A. Richard,
“Complexity of fixed point counting problems in boolean
networks,” CoRR, vol. abs/2012.02513, 2020. [Online].
Available: https://arxiv.org/abs/2012.02513

S. Akmal and R. R. Williams, “MAJORITY-
3SAT (and related problems) in polynomial time,”
CoRR, vol. abs/2107.02748, 2021. [Online]. Available:
https://arxiv.org/abs/2107.02748

R. Impagliazzo, W. Matthews, and R. Paturi, “A satisfiability
algorithm for ACO,” in Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, Kyoto, Japan, January 17-19, 2012. SIAM,
2012, pp. 961-972. [Online]. Available: https://doi.org/10.
1137/1.9781611973099.77

T. M. Chan and R. R. Williams, “Deterministic APSP,
Orthogonal Vectors, and more: Quickly derandomizing
Razborov-Smolensky,” ACM Trans. Algorithms, vol. 17,
no. 1, pp. 2:1-2:14, 2021. [Online]. Available: https:
//doi.org/10.1145/3402926

L. G. Valiant, “Accidental algorthims,” in 2006 47th An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS’06), 2006, pp. 509-517.

S. Toda, “PP is as hard as the polynomial-time hierarchy,”
SIAM J. Comput., vol. 20, no. 5, pp. 865-877, 1991.
[Online]. Available: https://doi.org/10.1137/0220053

M. L. Littman, J. Goldsmith, and M. Mundhenk, “The
computational complexity of probabilistic planning,” Journal
of Artificial Intelligence Research, vol. 9, pp. 1-36, Aug.
1998. [Online]. Available: https://doi.org/10.1613/jair.505

J. D. Park and A. Darwiche, “Complexity results and
approximation strategies for MAP explanations,” J. Artif.
Intell. Res., vol. 21, pp. 101-133, 2004. [Online]. Available:
https://doi.org/10.1613/jair. 1236

A. Darwiche, Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, 2009. [Online].
Available: http://www.cambridge.org/uk/catalogue/catalogue.
asp?isbn=9780521884389

M. Gaboardi, K. Nissim, and D. Purser, “The complexity
of verifying loop-free programs as differentially private,” in
47th International Colloquium on Automata, Languages, and
Programming, ICALP 2020, July 8-11, 2020, Saarbriicken,
Germany (Virtual Conference), ser. LIPIcs, A. Czumaj,
A. Dawar, and E. Merelli, Eds., vol. 168. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020, pp. 129:1-
129:17. [Online]. Available: https://doi.org/10.4230/LIPIcs.
ICALP.2020.129

Authorized licensed use limited to: MIT Libraries. Downloaded on January 10,2023 at 20:13:09 UTC from IEEE Xplore. Restrictions apply.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Choi, Y. Xue, and A. Darwiche, “Same-decision proba-
bility: A confidence measure for threshold-based decisions,”
International Journal of Approximate Reasoning, vol. 53,
no. 9, pp. 1415-1428, 2012.

U. Oztok, A. Choi, and A. Darwiche, “Solving ppPP-complete
problems using knowledge compilation,” in Principles of
Knowledge Representation and Reasoning: Proceedings of
the Fifteenth International Conference, KR 2016, Cape
Town, South Africa, April 25-29, 2016, C. Baral, J. P.
Delgrande, and F. Wolter, Eds. AAAI Press, 2016, pp.
94-103. [Online]. Available: http://www.aaai.org/ocs/index.
php/KR/KR16/paper/view/12910

K. W. Wagner, “The complexity of combinatorial problems
with succinct input representation,” Acta Informatica,
vol. 23, no. 3, pp. 325-356, 1986. [Online]. Available:
https://doi.org/10.1007/BF00289117

J. Tordn, “Complexity classes defined by counting
quantifiers,” J. ACM, vol. 38, no. 3, pp. 753-774, 1991.
[Online]. Available: https://doi.org/10.1145/116825.116858

E. Allender, M. Koucky, D. Ronneburger, S. Roy, and
V. Vinay, “Time-space tradeoffs in the counting hierarchy,”
in Proceedings of the 16th Annual IEEE Conference on
Computational Complexity, Chicago, Illinois, USA, June
18-21, 2001. IEEE Computer Society, 2001, pp. 295-
302. [Online]. Available: https://doi.org/10.1109/CCC.2001.
933896

S. Arora and B. Barak, Computational Complexity - A
Modern Approach. Cambridge University Press, 2009.
[Online]. Available: http://www.cambridge.org/catalogue/
catalogue.asp?isbn=9780521424264

M. Luby and B. Veli¢kovi¢, “On deterministic approximation
of DNF,” Algorithmica, vol. 16, no. 4-5, pp. 415-
433, Oct. 1996. [Online]. Available: https://doi.org/10.1007/
bf01940873

E. Hirsch, “A fast deterministic algorithm for formulas that
have many satisfying assignments,” Logic Journal of the
IGPL, vol. 6, no. 1, pp. 59-71, 01 1998. [Online]. Available:
https://doi.org/10.1093/jigpal/6.1.59

L. Trevisan, “A note on approximate counting for k-DNF,”
in Proceedings of the 7th International Workshop on
Approximation Algorithms for Combinatorial Optimization
Problems, APPROX 2004, and 8th International Workshop
on Randomization and Computation, RANDOM 2004,
ser. Lecture Notes in Computer Science, vol. 3122.
Springer, 2004, pp. 417-426. [Online]. Available: https:
//doi.org/10.1007/978-3-540-27821-4_37

P. Gopalan, R. Meka, and O. Reingold, “DNF sparsification
and a faster deterministic counting algorithm,” computational
complexity, vol. 22, no. 2, pp. 275-310, May 2013. [Online].
Available: https://doi.org/10.1007/s00037-013-0068-6

S. Lovett and J. Zhang, “Dnf sparsification beyond
sunflowers,” in Proceedings of the 5Ist Annual ACM
SIGACT Symposium on Theory of Computing, ser. STOC
2019. New York, NY, USA: Association for Computing
Machinery, 2019, p. 454-460. [Online]. Available: https:
//doi.org/10.1145/3313276.3316323

1043

[46]

[47]

(48]

[49]

S. Lovett, N. Solomon, and J. Zhang, “From dnf compression
to sunflower theorems via regularity,” in Proceedings
of the 34th Computational Complexity Conference, ser.
CCC ’19. Dagstuhl, DEU: Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019. [Online]. Available: https:
//doi.org/10.4230/LIPIcs.CCC.2019.5

L. J. Stockmeyer, “On approximation algorithms for #p,”
SIAM J. Comput., vol. 14, no. 4, pp. 849-861, 1985.
[Online]. Available: https://doi.org/10.1137/0214060

H. Dell and J. Lapinskas, “Fine-grained reductions from
approximate counting to decision,” in Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. ACM,
2018, pp. 281-288.

R. Williams, “Defying hardness with a hybrid approach,”
Carnegie Mellon University, CMU-CS-04-159, School of
Computer Science, Tech. Rep., 2004.

Authorized licensed use limited to: MIT Libraries. Downloaded on January 10,2023 at 20:13:09 UTC from IEEE Xplore. Restrictions apply.

