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Preparation of metrological states in dipolar-interacting spin

systems
Tian-Xing Zheng 1,2, Anran Li1,2, Jude Rosen 1,2, Sisi Zhou1,3, Martin Koppenhöfer 1, Ziqi Ma4,5, Frederic T. Chong4,

Aashish A. Clerk 1, Liang Jiang1 and Peter C. Maurer1✉

Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate

metrological states in small dipolar-interacting spin ensembles with limited qubit control. For both regular and disordered spatial

spin configurations the generated states enable sensing beyond the standard quantum limit (SQL) and, for small spin numbers,

approach the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble

Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite

spin polarization and a non-Markovian noise environment. The developed black-box optimization techniques for small spin

numbers (N ≤ 10) are directly applicable to diamond-based nanoscale field sensing, where the sensor size limits N and conventional

squeezing approaches fail.
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INTRODUCTION

Spin systems have emerged as a promising platform for quantum
sensing1–4 with applications ranging from tests of fundamental
physics5,6 to mapping fields and temperature profiles in condensed
matter systems and life sciences3. Improving the sensitivity of these
qubit sensors has so far largely relied on increasing the number of
sensing spins and extending spin coherence through material
engineering and coherent control. However, with increasing spin
density, dipolar interactions between individual sensor spins cause
single-qubit dephasing7,8 and, in the absence of advanced
dynamical decoupling9–11, set a limit to the sensitivity.
Although dipolar interactions in dense spin ensembles lead to

complex evolution, they can provide a resource for the creation of
metrological states that enable sensing beyond the SQL. Current
approaches to create such states (i.e., GHZ states and SSS, see
Supplementary Fig.1) either require all-to-all interactions12–15 or
single-qubit addressability16–18, which are challenging to imple-
ment experimentally. An alternative approach that relies on
adiabatic state preparation requires less control but results in
preparation times that increase exponentially with system
size19,20, leaving this method susceptible to dephasing.
Variational methods provide a powerful tool for controlling many-

body quantum systems21–23. Such methods have been proposed for
Rydberg-interacting atomic systems24,25 and demonstrated in
trapped ions26. However, these techniques rely either on all-to-all
interactions (i.e., trapped ions26) or strong coupling within a finite
radius (i.e., Rydberg atoms24,27,28) which are generally absent in
solid-state spin ensembles. In this work, we develop a variational
algorithm that drives dipolar-interacting spin systems [Fig. 1(a)] into
highly entangled states. The resulting states can be subsequently
used for Ramsey-interferometry-based single parameter estimation1.
The required system control relies solely on uniform single-qubit
rotations and free evolution under dipolar interactions. Different
spatial distributions of the spins (later referred as ‘spin configura-
tion’) including 2D regular arrays and 3D random spin configurations

are investigated. The generated states resemble GHZ states or SSS
depending on the spin-pattern geometry and the depth of the
variational circuit. Experimental imperfections such as finite
initialization/readout fidelity and dephasing noise are discussed for
the example of a 2D regular array. The requirements on those
imperfections for beating the SQL are given. Potential experimental
platforms include dipolar-interacting ensembles of nitrogen-vacancy
(NV) centers, nitrogen defects in diamond (P1), rare-earth-doped
crystals, and ultra-cold molecules.

RESULTS

Variational ansatz

As shown in Fig. 1(b), the variational circuit SðθÞ ¼ Um:::U2U1 is
constructed by m layers of unitary operations. Each U i consists of
the parameterized control gates

U i ¼ Ry
π
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with μ0 the vacuum permeability, ℏ the reduced Planck constant, γ
the spin’s gyromagnetic ratio, and βij the angle between the line
segment connecting (ri, rj) and the direction of bias magnetic field.
An evolutionary algorithm29 (Method) is applied on the m-layer
circuit which contains 3m free parameters constituting the vector
θ ¼ ðτ1; ϑ1; τ

0
1; ::: ; τi; ϑi; τ

0
i ; ::: ; τm; ϑm; τ

0
mÞ. Each τi is restricted to

τi 2 ½0; 1=f dd� where f dd is the average nearest-neighbor interaction
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strength for the considered spin configuration. After the metrolo-
gical relevant states are generated by the variational ansatz, a
Ramsey sequence1,30,31 is applied to detect the external magnet
field signal. During the Ramsey propagation1 the spins accumulate a
field dependent phase for a time τ. Prior to the readout, a Rx(π/2)
rotation converts this phase into a signal-dependent Pz expectation
value. For the spin systems in which the dipolar interaction cannot
be turned on and off at will, a Waugh-Huber-Haeberlen (WAHUHA)
type dynamical decoupling sequence7,9,32 is applied to cancel the
dipolar interactions during the signal accumulation. The Ansatz in
Eq. (1) is the most general set of global single-qubit gates that
preserves the initial collective spin direction 〈∑iSi〉/∣〈∑iSi〉∣, here
chosen to be the x-direction24, Supplementary Note 1. Although this
Ansatz does not enable universal system control33–35, Supplemen-
tary Discussion, we show that with increasing circuit depth, sensing
near the HL can be achieved. A gradient-free black-box optimization
algorithm is used for searching the parameter space {θ} for an
entangler that generates a desired metrological state. As shown in
Fig. 1(d), the algorithm samples the parameter space θ following a
Gaussian distribution. In each generation, the algorithm iteratively
updates the mean and variance of the Gaussian distribution
according to the resulting cost function. This semi-random searching
process is able to effectively jump out of local maxima.

Metrological cost function

The Ramsey protocol shown in Fig. 1(b) encodes the quantity of
interest in the accumulated phase ϕ= ωtR, with ω the detuning

frequency and tR the Ramsey sensing time. The Classical Fisher
Information (CFI)1 quantifies how precisely one can estimate an
unknown parameter ϕ under a measurement basis. Our variational
approach treats the spin systems as a black-box for which the
algorithm finds a control sequence that maximizes the CFI
associated with the parameter estimation problem

CFIϕ ¼
X

z

Tr½Pzρϕ�
∂ log Tr½Pzρϕ�

∂ϕ

� �2

: (3)

The sum runs over the 2N basis states zj i ¼ �N
i¼1 szi

�

�

	

, where szi are
the eigenvalues of Szi . Pz � zj i zh j denotes the corresponding
measurement operator and ρϕ the density matrix. The CFI is
chosen as cost function because it quantifies the sensitivity of a
measurement outcome to an external signal and measures the
maximal achievable sensitivity for a given measurement basis1,36.
Measurement operators such as parity (Pπz ) or total spin
polarization (Ptotz ) result in a smaller outcome space and are
therefore more efficient in experimental implementations25,37–39,
but contain less information than Pz. While we optimize the
measurement for Pz in the main text, the obtained results also
hold for measurements of Ptotz and Pπz . We found that when
measuring Ptotz or Pπz the results improve when compared to Pz.
Please check Supplementary Fig. 3 for detailed discussion.

Numerical results for regular and disordered spin
configurations

We start by testing our approach for three distinct regular spin
configurations. Figure 2(a) shows the CFI after optimization for
spins arranged on a linear chain (blue), a two-dimensional (2D)
square lattice (orange), and a circle (green). All three configura-
tions result in states with CFI above the SQL. When multiple circuit
layers are added, the CFI further improves. Next, we simulate the
case of disordered three-dimensional (3D) spin configurations
(later referred as 3D-random). In our simulations the spins are
randomly located in a box of length L∝ N1/3 (constant spin
density). Compared to the regular spin array, the disordered case
shows a noticeable saturation of the CFI as a function of N
[Fig. 2(b)]. The N at which this saturation occurs can be increased
by increasing the circuit depth [Fig. 2(c)]. This result for small N is
different from the infinite sized systems where time evolution
under dipolar interactions D(τ) alone is not sufficient to generate
metrologically useful entangled state (note, dipolar interactions in
a 3D-random configuration average to zero, i.e.,
hð1� 3cos2θÞi ¼ 0). We attribute the observed metrological gain
in Fig. 2(b) to a finite-size effects for small spin ensembles. This is
in stark contrast to the 2D case where dipolar interaction does not
average out40 or regular 3D patterns41.

Entanglement characterization

We investigate the N-qubit entangled states created by our
variational method. The resulting states are visualized by plotting
out the phase space quasiprobability distribution of the spin
wavefunction in terms of the Wigner function (for more details on
how the density matrix of a spin system is connected to the
Wigner function, we refer to refs. 42–44; examples of Wigner
distributions for specific states can be found in Supplementary Fig. 1).
Figure 3(a) shows the corresponding Wigner distributions for a
regular 2D spin array (top) and the average Wigner distributions
for 50 different 3D-random spin configurations (bottom). In both
cases, the optimized states resemble GHZ states when N is small
and m is large. For large N and small m, the states are close to SSS.
Non-Gaussian states that provide sensitivity beyond the SSS but
lower than GHZ states are also generated. Our algorithm tends to
drive the system into a GHZ state that lives in J= N/2 total angular
momentum subspace, as it has the unique property of attaining
the HL in Ramsey spectroscopy45.

Fig. 1 Preparation of metrological states by variational ansatz.
a Schematic of a dipolar-interacting spin ensemble in a 3D-random
configuration. b The quantum circuit consists of three parts: a
sequence for generating entanglement (entangler), phase accumu-
lation (Ramsey) and single-qubit readout in the Pz basis. Dipolar
interactions during Ramsey interference are eliminated by dynami-
cal decoupling7,9,32. The measurement outcome is processed on a
classical computer and used to determine the next generation for θ.
c Gate sequence of each variational layer and the Wigner
distributions for a 5-spin state after each gate. d Illustration of an
optimization process on a 3-spin system with m= 1. The contour
plots show the 2D projection of the multidimensional θ space for
fixed ϑ1. The orange points mark the sampling positions in the
parameter space. Convergence to the global maximum is reached in
the 63rd generation.
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For quantitatively analysing the build-up of entanglement, the
von-Neumann entanglement entropy (EvN ¼ �Trðρslog2ρsÞ)

46 is
used as a measure for the degree of entanglement between a spin
subsystem (ρs ¼ Trsρtot) and the remaining system. As an
example, we explore one case of a 3D-random configuration of
9 spins. Figure 3(b) shows the von-Neumann entropy of each spin
after employing a 2-layer circuit (left) and a 7-layer circuit (right). In
the case ofm= 2, the achieved degree of entanglement is modest
with spin No.6 for example showing no substantial entanglement
with the surrounding spins. When the circuit depth is increased to
7, all spins display substantial entanglement. While the single-
particle entropy detects spins unentangled with the remaining
system, it does not determine whether all spins are entangled
with each other or entanglement is local. We distinguish these two
scenarios by identifying the smallest clusters with EvN ≤ 0.4. For
m= 2, the spin ensemble segments into 5 clusters [Fig. 3(b)], while
for m= 7 only 2 clusters are found. The results verify that multiple
layers are required to overcome the anisotropy of the dipolar
interaction [Eq. (2)] when building up entanglement over the
entire system. Finally, in Fig. 3(c) we analyze the size of the largest
cluster for each of the 50 spin configurations and observe an
overall increase of the largest cluster size and a decrease of the
variance.

State preparation time

Minimizing the preparation time is central in practical applications,
as it increases bandwidth, reduces decoherence, and enables
more measurement repetitions1. Figure 3(d) shows the average
state preparation time for 8 spins in 50 different 3D-random
configurations as a function of layer number. The preparation time

increases with the layer number and is inversely proportional to
the average dipole coupling strength of the nearest-neighbor
spins f dd . Compared to adiabatic methods19, our approach results
in an 11 × reduction of the preparation time to reach the same CFI
for identical spin number and density (see Supplementary Note 8
for detailed derivation). This is of particular importance when
imperfections, such as dephasing, are taken into consideration.

State preparation under decoherence, initialization, readout
and erasure errors

Until now our analysis assumed full coherence and perfect spin
initialization and readout. We also assumed the spin configuration
is fixed during each run of the optimization. However, dephasing,
initialization, readout and erasure errors will be limiting factors in
experimental implementations. We next examine the impact of
such imperfections on state preparation and sensing. Figure 4(a)
and (b) show the optimized CFI in the presence of imperfect
initialization and finite readout fidelity for spins on a 2D square
lattice. The algorithm is limited by computational resources and
able to perform optimization for imperfect initialization for up to
8 spins. Beyond-SQL sensitivity is reached for 75% initialization
fidelity (for N ≤ 8) and 92% readout fidelity (for N ≤ 10),
respectively.
For further understanding the impact of readout fidelity on the

optimized metrological states, we plot out the resulting states
optimized under different readout fidelities. Figure 4(c) indicates
that without readout errors, the Wigner distribution of the
resulting state is close to a GHZ state. However, with a finite
readout error rate, our algorithm drives the system into a state
resembling a SSS. When the readout noise is further increased, the

Fig. 2 Optimization results of different spin configurations. a Top: CFI for m= 1 (circles) and m= 7 (squares) circuits. The colors correspond
to the configurations shown below. Bottom: schematics of different spin configurations. The numbers in the 2D square lattice pattern label
the order in which spins are added to form a lattice of size N. b Average CFI for 50 configurations of 3D-randomly distributed spins. Error bars
stand for the standard deviations of the optimized CFI from different spin configurations. (Error bars for m= 2, 3, 5 are omitted for clear
presentation). c Average number of layers required to achieve a CFI within a given percentage of the HL in the case of 3D-random
configuration. The fit m= aNb

+ c with b= 2.45 (goodness of fit R2= 0.996) serve as a guide to the eye. The same data also fits to an
exponential model with slightly lower R2= 0.995. The investigation of deeper circuits becomes increasingly challenging as the efficiency of
the employed optimization algorithm steeply decreases for m > 9. See Supplementary Figs. 2,5,6 and Supplementary Methods for more
details.
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SSS transforms into a coherent spin state (CSS). The results agree
with the fact that GHZ states are sensitive to single-spin readout
errors while SSS are more robust47.
In addition to the discussed spin readout and initialization errors

many experimental platforms also suffer from changing spin
configurations between consecutive runs. This so-called erasure
error is caused by a finite ionization/deionization rate in the case of
NV centers48,49 and a finite loading possibility in the case of cold
molecules50. Figure 4(d) shows the optimized average CFI versus the
average number of loaded spins N* per cycle. The obtained results
indicate that our approach is comparable robust to erasure errors,
with beyond-SQL sensitivity for loading efficiencies as low as 50%.
During the state preparation, decoherence (T2) reduces

entanglement. We assume independent, Markovian dephasing
of each spin as described by a Lindblad master equation46. Figure 4(e)
shows the CFI for various T2 times using the previously optimized
gate parameters for 2D square lattice. While a finite T2 decreases
the CFI, coherence times exceeding 0.5/fdd result in states with
beyond-SQL sensitivity for N ≤ 8. Here, fdd denotes the nearest-
neighbor interaction strength for 2D square lattice. For small T2
the resulting state will converge toward a CSS, which results in a
sensitivity set by the SQL.

Sensitivity in a non-Markovian environment

In addition to impacts on state preparation, dephasing affects
performance in Ramsey interferometry. In the presence of spatially
uncorrelated Markovian noise, entanglement does not lead to a
beyond-SQL scaling51,52. In a non-Markovian environment, this
limitation does not hold53–55. Such as in a solid-state spin system,
slow evolution of nuclear spins leads to correlated noise8,56 on the
sensing qubit. We examine the performance of our optimized states

in a non-Markovian noise environment. We adopt a noise model53 in
which the amplitude of single-spin coherence reduces according to

ρ01ðtÞ ¼ ρ01ð0Þe
� t

T2

� �ν

(4)

where ν is the stretch factor set by the noise properties. The time
evolution under Ramsey propagation is simulated with a general-
ized Lindblad master equation54. The sensing performance of
optimized states is characterized by the square of the signal-noise-
ratio SNR2∝ CFIω/tR (see Supplementary Notes 2–7). Figure 4(f)
shows their performance compared to the CSS and the GHZ states
for a ν= 2 and ν= 4 noise exponent8. The created entangled
states provide an advantage over uncorrelated states. For small
spin numbers, the SNR follows the HL scaling53.

Proposed experimental platforms

Candidate systems for realizing the proposed variational approach
need to possess long T2 coherence time, strong dipolar-interacting
strength, and high initialization and readout fidelity. Recent
developments in solid-state spin systems and ultracold molecules
have demonstrated coherence times that exceed dipolar coupling
times (1=f dd) as well as high-fidelity spin initialization and readout.
Table 1 lists the experimentally observed parameters for different
candidate systems, including NV ensembles, P1 centers in diamond,
rare-earth doped crystals, and ultracold molecule tweezer systems.
The listed T

ðDDÞ
2 in Table 1 are lower bounds for the actual T2.

Specifically, T
ðDDÞ
2 represent the experimental coherence measured

under WAHUHA-type dynamical decoupling, which contains remain-
ing dephasing terms caused by dipolar interaction11. On the other
hand, our protocol relies on the presence of dipolar interaction for
the generation of the desired entangled states. Therefore dipolar

Fig. 3 Entanglement build-up in metrological states. a Wigner distributions versus spin number for m= 2 and m= 7 in the case of 2D
square lattice and 3D-random configurations. The projected states into the J= N/2 total angular momentum subspace are shown here. b von-
Neumann entanglement entropy for one specific 3D-random configuration of 9 spins for m= 2 and m= 7. Individual spins are labeled with an
integer 1 through 9 to facilitate the discussion in the main text. The color of each data point corresponds to the von-Neumann entropy noted
in the color bar to the right. Entangled clusters are marked by solid black lines. c Histograms depicting the maximal size of entangled clusters
for 50 3D-random configurations. The number of spins per entangled clusters increases with circuit depth. d Average CFI (blue) and state
preparation time (orange) versus m. Error bars indicate the standard deviations of CFI/state preparation time from different 3D random spin

configurations. The state preparation time is given as a unitless quantity f ddT with T ¼
Pm

i¼1ðτi þ τ0iÞ.

T.-X. Zheng et al.

4

npj Quantum Information (2022) ��	 Published in partnership with The University of New South Wales



interaction between spins is part of the system Hamiltonian that
does not contribute to dephasing during the state preparation. Thus,
the relevant coherence is the single particle T2 in the absence of
dipolar spin-spin interacting (see Supplementary Table 1).

DISCUSSION

This work introduces a variational circuit that efficiently generates
entangled metrological states in a dipolar-interacting spin system.
The required system parameters are within the reach of several
experimental platforms. When directly running this variational
method on an experimental platform, metrological states can be
generated without the prior knowledge of the actual spin locations.
While this study remains limited to small system sizes (N ≤ 10,
limited by computational resource), our results are of immediate
interest to nanoscale quantum sensing where spatial resolution is

paramount and the finite sensor size limits the number of spins that
can be utilized. Specific examples include the investigation of 2D
materials57–60, structures and dynamics of magnetic domains61,62,
vortex structures in superconductivity63,64, and magnetic resonance
spectroscopy on individual proteins and DNA molecules65–68.
Extending our investigation to N > 10 can either be achieved by

utilizing symmetries in regular arrays or directly testing our
optimization algorithms on an actual experimental platform. The
developed method is also potentially applicable to preparing
other highly entangled states relevant to quantum computing and
quantum communication.

METHOD

Gradient-free optimization: CMA-ES

The optimization in the 3m dimensional parameter space is highly
non-convex [Fig. 1(d)] due to the large inhomogeneity of the
interaction strength. In our setting, the previously used Dividing
Rectangles algorithm22,24 cannot converge to a beyond-SQL result
despite large number of iterations. We address this challenge by
using the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) as our optimization algorithm29. CMA-ES balances the explora-
tion and exploitation process when searching in the parameter
space so that convergence is reached after <~2000 generations for
N,m ≤ 10. This corresponds to about 108 repetitions of the Ramsey
experiment, which can be further reduced if collective measure-
ment observables are measured (Supplementary Fig. 3).
We reduce the complexity of the optimization by restricting τi

within ½0; 1=f dd� where f dd is the average nearest-neighbor
interaction strength for the considered spin configuration. Setting
a large parameter searching range for the interaction gates’ time τi

Fig. 4 Performance under imperfections. a CFIϕ under finite initialization fidelity (IF). IF ¼
N"�N#

N
, where N↑ (N↓) denotes the number of spins in

the "j i ( #j i) state at the beginning of the sensing protocol in Fig. 1(b). b CFIϕ under finite readout fidelity (RF). RF= 1− p(↓∣↑)= 1− p(↑∣↓).
c Optimized Wigner functions and CFIϕ of a 10-spin state versus different readout fidelities (RF). For comparison, the row `CSS' represents the
CFIϕ for a coherent spin state given the same RF. See Supplementary Fig. 9 for more information. d Average CFIϕ under finite loading
efficiency. Effective spin number N* is the averagely loaded spin number for a given configuration and loading efficiency. e CFIϕ in the
presence of decoherence in the entangler. f Ramsey protocol’s results of the generated states when considering non-Markovian noise during
signal accumulation (see Supplementary Fig. 8 for more details). All data correspond to the optimized states from 2D square lattice
configuration using a 5-layer circuit.

Table 1. Parameters of different experimental platforms.

Systems f dd T
ðDDÞ
2 f ddT

ðDDÞ
2 Pini Freadout ν

NV ensemble 35
kHz32

7.9(2)
μs32

0.28 97.5%69 97.5%69 2− 48

P1 centers 0.92
MHz70

4.4
μs70

4.0 95%71 95%71 ?

Rare-Earth
crystals

1.96
MHz72

2.5
μs72

4.9 97%17 94.6%73 2.4 ± 0.156

Cold
Molecules

52 Hz7 80 ms7 4.16 97%50 97%50 ?
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would potentially ensure the global maximum CFI location is
included in the parameter space. However, when the upper bound
of τi is much bigger than 1=f dd, the evolution of neighboring spin
pairs is fast when sweeping τi. This would introduce a huge
amount of local maximum points in the parameter search so that
it is impractical for the black-box optimization algorithm to
converge to that global maximum point. A good value for f dd can
be estimated from the doping level of the spin defects (NV, P1,
rare-earth ions) or the distance between the cold molecule
tweezers. Measuring the fast oscillation frequency in Ramsey
experiments will also provide an estimate of the f dd.
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