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ABSTRACT We report six metagenome-assembled genomes (MAGs) associated with
Massospora cicadina strain MCPNR19 (ARSEF 14555), an obligate entomopathogenic fun-
gus of periodical cicadas. The MAGs include representatives of Pantoea, Pseudomonas,
Lactococcus, and one potential new Chryseobacterium species. Future research is needed
to resolve the ecology of these MAGs and determine whether they represent symbionts
or contaminants.

assospora cicadina (Zoopagomycota) is an understudied obligate entomopatho-

genic fungus that infects periodical cicadas (1, 2). During assembly and annotation
of an improved genomic resource for M. cicadina strain MCPNR19 (ARSEF 14555) (3) using
BlobTools2 (4), we identified many bacterial contigs. Given the discovery of psychoactive
compounds present in Massospora species (5) and the uncertainty regarding their produc-
tion, coupled with the established relationships between cicadas and bacterial mutualists
(6), we sought to bin metagenome-assembled genomes (MAGs) from the improved M.
cicadina genome to inform future investigations into tripartite cicada-Massospora-bacteria
interactions.

The sampling, extraction, sequencing, quality control, and assembly methods are
described by Stajich et al. (3). Briefly, conidia and azygospores of M. cicadina
MCPNR19 (ARSEF 14555) were collected from fungal plugs of infected brood XllI
Pharaoh cicadas (Magicicada septendecim) in June 2019. Genomic DNA from spores
was sequenced using both Illumina and Nanopore technologies. The Nanopore data
were assembled using wtdbg2 v. 2.5 (7), followed by multiple rounds of polishing
with the lllumina reads (8).

We screened the preliminary M. cicadina genome assembly from Stajich et al. (3) for
MAGs using the Anvi'o v. 7 pipeline (9). First, we calculated the genomic coverage
against the lllumina reads using Bowtie2 v. 2.4.2 (10) and SAMtools v. 1.11 (11). We then
used “anvi-gen-contigs-database” to generate a database from the M. cicadina genome
assembly and called open-reading frames on this database using Prodigal v. 2.6.3 (12).
As part of the Anvi'o pipeline, we identified bacterial (13), archaeal (13), and protista (14)
single-copy genes using HMMER v. 3.2.1 (15) and rRNA genes using Barrnap (16). A pre-
dicted taxonomy was assigned to each gene call using Kaiju v. 1.7.2 (17) with the NCBI
BLAST nonredundant (nr) protein database v. 2020-05-25, which included fungi and mi-
crobial eukaryotes. An Anvi'o profile was then constructed using “anvi-profile” for con-
tigs >2.5 kbp with the “-cluster-contigs” option. The automatic binning algorithm,
MetaBAT2 v. 2.12.1 (18), was run on contigs >2.5 kbp from the M. cicadina genome as-
sembly to generate the preliminary MAGs. These MAGs were imported into Anvi'o using
“anvi-import-collection” and were then manually inspected, combined, and refined using
“anvi-interactive” and “anvi-refine.” The completeness and redundancy of the MAGs was
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FIG 1 Phylogenetic placement of draft MAGs using GTDB-Tk. Phylogenetic trees were produced using GTDB-Tk for (A)
Chryseobacterium sp. MCPNR19-01, (B) Pantoea vagans MCPNR19-02, (C) Pseudomonas sp. strain MCPNR19-03, (D) Lactococcus lactis
MCPNR19-04, (E) Scandinavium goeteborgense MCPNR19-05, and (F) Erwinia aphidicola MCPNR19-06. MAGs generated in this study are
highlighted in orange.

assessed within Anvi'o using “anvi-summarize” and then again using the CheckM v. 1.1.3
lineage-specific workflow (19). We defined the MAGs as high quality if they were >90%
complete, medium quality if >50% complete, and low quality if <50% complete as in
reference 20. To obtain a putative taxonomy for each MAG, we used GTDB-Tk v. 1.5.0
(21), which places MAGs phylogenetically in the context of the Genome Taxonomy
Database. We visualized the MAG phylogenetic placement in R v. 4.1.2 using the ggtree
v.3.2.1 and Treeio v. 1.18.1 packages (22-24).

We generated a total of six draft MAGs (two high-quality and single-contig, two me-
dium-quality, and two low-quality MAGs) representing six genera, including a high-
quality MAG for a potentially new Chryseobacterium species (Fig. 1; Table 1). No MAGs
were obtained representing the known cicada bacterial mutualists Hodgkinia or Sulcia.
The higher genomic coverage of MAGs in the azygospore sequencing libraries may
indicate that these MAGs represent opportunistic infections of moribund cicadas.
Ultimately, these MAGs will provide valuable future insight into Massospora-bacterial
interactions and symbiosis.

Data availability. The sequence reads have been deposited under SRA accession num-
bers SRR17553520 to SRR17553526 and BioProject accession number PRINA795459. The
four medium- and high-quality MAG assemblies have been deposited at DDBJ/ENA/
GenBank under accession numbers JALIHLOO0000000, JALIHM000000000, JALIHNOOO000000,
and JALIHO000000000. The versions described in this paper are JALIHLO10000000,
JALIHMO010000000, JALIHNO10000000, and JALIHO010000000. The two low-quality MAG
assemblies are archived at Zenodo (25). Related computational scripts for this work are avail-
able on GitHub and archived in Zenodo (26).
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