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Early branching arbuscular mycorrhizal fungus Paraglomus
occultum carries a small and repeat-poor genome compared to
relatives in the Glomeromycotina

Mathu Malar C', Yan Wang??, Jason E. Stajich*®, Vasilis Kokkoris', Matthew Villeneuve-Laroche', Gokalp Yildirir' and
Nicolas Corradi'*

Abstract

The arbuscular mycorrhizal fungi (AMFs) are obligate root symbionts in the subphylum Glomeromycotina that can benefit
land plants by increasing their soil nutrient uptake in exchange for photosynthetically fixed carbon sources. To date, annotated
genome data from representatives of the AMF orders Glomerales, Diversisporales and Archaeosporales have shown that these
organisms have large and highly repeated genomes, and no genes to produce sugars and fatty acids. This led to the hypothesis
that the most recent common ancestor (MRCA) of Glomeromycotina was fully dependent on plants for nutrition. Here, we aimed
to further test this hypothesis by obtaining annotated genome data from a member of the early diverging order Paraglomerales
(Paraglomus occultum). Genome analyses showed this species carries a 39.6 Mb genome and considerably fewer genes and
repeats compared to most AMF relatives with annotated genomes. Consistent with phylogenies based on ribosomal genes,
our phylogenetic analyses suggest P occultum as the earliest diverged branch within Glomeromycotina. Overall, our analyses
support the view that the MRCA of Glomeromycotina carried hallmarks of obligate plant biotrophy. The small genome size and
content of P occultum could either reflect adaptive reductive processes affecting some early AMF lineages, or indicate that the
high gene and repeat family diversity thought to drive AMF adaptability to host and environmental change was not an ancestral
feature of these prominent plant symbionts.

DATA SUMMARY

All genome data is available from the National Center for Biotechnology Information BioProject PRINA767608 and from Zenodo
(https://doi.org/10.5281/zenodo.5879318).

INTRODUCTION

Arbuscular mycorrhizal fungi (AMF) (subphylum Glomeromycotina) [1-3] form symbiotic relationships with over 70% of
vascular land plants [4, 5]. The arbuscular mycorrhizal symbiosis (AMS) emerged over 400 million years ago [6], and plays a
major role in extant terrestrial ecosystems by allowing plant roots to efficiently acquire poorly soluble soil nutrients (phosphate,
nitrogen and other trace elements) in exchange for carbon sources [4]. During AMS, the fungal partner colonizes the plant roots to
produce tree-like structures (arbuscules) that promote bidirectional nutrient transfers between partners, including carbohydrates
and lipids from plants that AMFs utilize as an energy resource [7]. AMF also interact with the soil microbiome and play a major
role in ecosystems and biodiversity by enhancing plant resistance against pathogens, as well as abiotic and biotic stress [8, 9].

Received 06 February 2022; Accepted 10 March 2022; Published 22 April 2022

Author affiliations: 'Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; ?Department of Biological Sciences, University of Toronto
Scarborough, Toronto, Canada; *Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada; “Department of Microbiology
and Plant Pathology, University of California-Riverside, Riverside, CA, USA, ®Institute for Integrative Genome Biology, University of California—Riverside,
Riverside, CA, USA.

*Correspondence: Nicolas Corradi, ncorradi@uottawa.ca

Keywords: AMF; Paraglomus occultum; early diverging.

Abbreviations: AMF, arbuscular mycorrhizal fungus; MRCA, most recent common ancestor.

Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files. Supplementary
material is available with the online version of this article. Two supplementary figures, eight supplementary files and two supplementary tables are
available with the online version of this article.

000810 © 2022 The Authors

This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read
[T agreement between the Microbiology Society and the corresponding author's institution.

1


http://mgen.microbiologyresearch.org/content/journal/mgen/
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://doi.org/10.5281/zenodo.5879318

Malar C et al., Microbial Genomics 2022;8:000810

Impact Statement

Most plants undergo underground symbioses with single celled organisms called arbuscular mycorrhizal fungi (AMF). This
symbiosis is prominent in terrestrial ecosystems, where AMFsprovide higher access to soil nutrients to plants and represent a
food source for multiple organisms. To date, genome data has shown that these fungi carry relatively large and highly repeated
genomes, and genome comparisons revealed that AMF have lost the ability to produce sugars and lipids; meaning that these
are fully depend on plants for nutrition. In this paper, we aimed to support these findings by sequencing the genome of the early
AMF lineage Paraglomus occultum. Our analyses confirm that all AMF sequenced to date cannot produce lipids and sugars.
However, we found that P occultum carries a very small and gene-poor genome compared to its AMF relatives. This information
drastically changes our view that all AMF genomes evolved to be large and repeat rich as a means to improve their adaptability
to change.

AMEF produce hyphae and spores that harbour thousands of nuclei within one cytoplasm, and studies on model species have
revealed that these organisms are either homokaryotic (all coexisting nuclei carry one dominant genotype) or heterokaryotic
(nuclei derive from two parental strains) [10, 11]. Genome analyses have also shown that these organisms have lost genes involved
in the production of sugars and fatty acids [12-15], and it was recently proposed that these were lost in the most recent common
ancestor (MRCA) of this subphylum [16].

Currently, the Glomeromycotina are subdivided into four orders - i.e. Glomerales, Diversisporales, Archaeosporales and Para-
glomerales [17]. Among these, species in the Paraglomerales are understudied and currently the only ones without a publicly
available annotated genome. The lack of information on the gene repertoires from Paraglomerales primarily results from difficul-
ties in extracting contaminant-free DNA from pot-cultured representatives of this order. To circumvent this, studies have either
used poly-A tailed RNA [5] or single nucleus sequencing [18] as a means to remove obvious bacterial and other non-AMF
contaminants. While these approaches produced sequence data of sufficient quality to perform phylogenetic analyses, their high
fragmentation combined with the absence of gene annotation made these datasets unsuitable for comprehensive comparative
genome studies.

Species in the Paraglomerales inhabit most terrestrial environments where other AMF families co-exist. In communities studies,
members of this order vary in abundance compared to other AMF taxa, depending on the soil conditions and geographical
location [19-22]. There is also evidence that more intensive (disruptive) agricultural practices have direct negative impacts on
the abundance of Paraglomerales compared to other species [23, 24], and that species in this order may be less beneficial in
stimulating both plant growth and nutrient uptake by roots compared to representatives of the Glomerales and Diversisporales
[25]. However, whether any of these traits derive from genetic or genomic traits unique to this AMF order is currently unknown.

To tackle this question, we obtained an annotated draft genome of Paraglomus occultum from less than 100 ng genomic DNA
isolated from pot-cultured spores using a k-mer based [26] metagenomics approach. Our phylogenetic and comparative analyses
revealed that this species carries a small and streamlined genome size and content compared to Glomeromycotina relatives, and
suggest that Paraglomerales could represent the earliest phylogenetic node of this group of prominent symbionts.

METHODS
Cultivation of P. occultum samples

Quiescent spores from P. occultum (DAOM 240472) were harvested from pot-cultures available at the Glomeromycotina in vivo
pot-culture collection at Agriculture and Agri-Food Canada (AAFC) (Ottawa, ON, Canada). This fungal collection is regularly
checked for contamination using both morphological and molecular techniques (i.e. small subunit of the rRNA gene, SSU;
H+ATPases). Using an inverted microscope, only quiescent spores showing viable morphology and lipid contents were used for
downstream DNA extraction. Spores were collected with a sieve cascade of descending size ranging from 500 to 63 mm, and the
lowest fraction was then placed in a 50 ml Falcon tube with the addition of 50% (w/w) sucrose solution. Following centrifugation
at 5000 g for 5min, single spores were isolated from the supernatant, and general species identification was confirmed using
morphological descriptions as detailed by Beaudet et al. [5]. Spores were surface sterilized using successive baths of chloramine-T,
2% Tween 20 for 2min, and sterile distilled water for 1 min, then incubated overnight in a solution of 0.2 mg streptomycin ml™'
and 0.1 mggentamicin ml™', and washed in a final bath of sterile distilled water. Sterilized spores were stored at 4°C.

DNA extraction and genome sequencing and assembly

DNA was extracted from 250 individual spores of P. occultum using the Qiagen DNA extraction kit, following the manufacturer’s
procedures. This resulted in the extraction of 2 ng DNA. The DNA was sent to Fasteris to generate Nextera Illumina paired-end
libraries, which were sequenced using the HiSeq 2500 platform. This procedure generated over 12 billion base pairs of sequence
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Fig. 1. Phylogenetic tree showing the placement of P occultum in the Glomeromycotina clade. The tree was resolved using IQ-TREE on a concatenated
alignment of 434 protein-encoding genes. Numbers indicate nodes with less than 95% bootstrap support. Branches are coloured according to their
phylum.The scale bar indicates number of substitutions per site.

data with 93% of base pairs exceeding a quality score greater than or equal to 30 (Q30). Poor quality and adapter sequences were
trimmed using Trimmomatic with the following parameters of ILLUMINACLIP: 2:30:10 SLIDINGWINDOW: 5:20 LEADING:5
TRAILING:5 MINLEN:50.

The resulting reads were assembled using metaSPAdes v3.11.1 [27], and assembled contigs were binned based on tetra-nucleotide
signatures using coNcocT [28], as described previously [16]. Binned clusters were annotated using the BLAST v 2.6.0+ [29, 30]
nr database with E value cut-off 1x107%, and clusters matching to bacteria were removed. The retained AMF contigs were used
as a reference database to filter the total paired-end reads with Bwa [31] using default parameters, where reads mapping to the
filtered contigs were extracted to construct a cleaned paired-end sequence library. These cleaned libraries were de novo assembled
with SPAdes v3.11.1 [32] with parameters of -k 21,33,55,77 --careful. An additional round of TBLASTN searches of the SPAdes
assembled contigs against the National Center for Biotechnology Information (NCBI) nr database was performed to remove
detected further bacterial contamination. K-mer (k=21) was used on cleaned and filtered reads to estimate the genome size of
P occultum using jellyfish 1.1.12 [33].

Genome annotation

The assembled genome was soft masked before gene prediction using TANTAN [34], and genome annotation was performed
using Funannotate v1.7.4 (https://funannotate.readthedocs.io/) [https://doi.org/10.5281/zenodo.3679386]. Gene annotation was
carried out using published Paraglomus RNA transcripts and RNA-seq data [5]. Gene functions were identified using Diamond
BLASTX [30], Pfam domain analysis was performed using Pfamscan [35, 36]. Carbohydrate-active enzymes (CAZymes) were
identified using the dbCAN2 server [37, 38] and secretory proteins using published pipelines [14, 37]. Metabolic pathway analysis
was performed using the KAAS KEGG server [39], and eggNOG 5.0 [40] was used to classify the orthologue gene functions of
Mortierellomycotina and Glomeromycotina genomes used in this study. Transposable elements were predicted using Transpo-
sonPSI [41]. The completeness of the genome assembly was assessed with Busco version 4.0 [42] on protein datasets with default
parameters using the fungal gene dataset [fungi_odb10].
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Table 1. Genome assembly statistics of P occultum with other Mucoromycota genomes used in this study

Genome Assembly size No. of Scaffold N50 Largest Repeat % BUSCO G+C (mol%)  Gene density

(Mb) scaffolds scaffold (kb) completeness per 10kb
% using V4

Paraglomus occultum 44 4722 160 104.458 12.78 92.2 36.77 2.276

Geosiphon pyriformis 129 795 703 273391 64.35 93.2 29.25 1.893

Gigaspora rosea V1.0 597.95 7526 734 1204.75 63.44 96.3 28.81 0.550

Rhizophagus cerebriforme 136.89 2592 266 709.02 24.77 97.2 26.55 1.574

DAOM227022 V1.0

Rhizophagus irregularis 136.80 1123 129 1375.86 26.38 96.6 27.53 1.913

DAOM 197198V2.0

Diversispora versiformis 147 731 434 2010.39 43.6 95.5 25.1 1.810

strain IT104

Rhizopus microsporus 25.97 131 8 2782.17 4.68 95.7 37.48 4.610

ATCC 11559 V1

Mucor circinelloides 36.59 26 4 6050.25 20.38 95.3 42.17 3.194

CBS 277.49 V2.0

Phycomyces blakesleenus 53.94 80 11 4452.46 9.74 95.7 35.78 3.062

NRRL1555 V2.0

Mortierella elongata 49.86 473 31 1526.29 4.63 99 48.05 3.002

AG-77

Protein orthology analyses

For comparative analyses, published genomes from Glomeromycotina, Mortierellomycotina and Mucoromycotina (10 species in
total) were downloaded from the Joint Genome Institute (JGI) portal MycoCosm database [43, 44], and the predicted proteins
were clustered with FASTORTHO using 50% identify and coverage [14]. From the clustered orthogroup, orthologues were classified
into conserved genes (proteins shared by all genomes), dispensable genes (proteins that are present in at least two genomes), and
species-specific genes (taxonomically restricted proteins). For each category, we also identified duplicated genes.

Single copy core genes were aligned using MAFFT [45] with default parameters and the resulting alignments were trimmed to
remove positions with gaps using trimAl v1.4. rev22 [46]. A maximum-likelihood tree was reconstructed using 1Q-TREE v1.6.12
[47] with 10000 replicates of SH-aLRT. Trees were visualized and annotated with FigTree v1.4.4 (https://beast.community/figtree).

Phylogenetic analysis and alternative topology test

Phylogenomic analysis was carried out using the ‘fungi_odb10’ dataset included in the Busco v4.0 package. Profile hidden-
Markov-models of these markers were used to identify homologues in P. occultum and an additional 44 fungal genomes using
HMMER3 (v3.1b2) employed in the PHYling pipeline (https://doi.org/10.5281/zenodo.1257002). A total of 603 conserved and
single-copy proteins were identified, aligned and concatenated for the following phylogenetic analyses. The phylogenetic tree
was reconstructed using the maximum-likelihood approach with the best-fit substitution model option for individual partitions
defined by each gene marker implemented in 1Q-TREE v.1.6. The final analysis was performed on 195323 sites with 170865 distinct
patterns contributing to the tree structures.

To test the likelihood of alternative phylogenetic placements of P. occultum, we conducted constraint tree searches using partially
forced tree topology files (Alt_T1, Alt_T2 and Alt_T3 as illustrated in Fig. S1, available with the online version of this article) with
the *-g’ option implemented in the 1Q-TREE package. Tree files of the best topology (as shown in Fig. 1) and the alternative ones
(Fig. S1) were included in the computational analysis for log-likelihoods using Kishino—Hasegawa test, Shimodaira—Hasegawa
test, expected likelihood weight, and approximately unbiased test via the “-zb’ and “-au’” parameters included in the 1Q-TREE package
[48-52]. Reliable results were achieved using 10000 resampling estimated log-likelihood (RELL) replicates.

RESULTS
Genomic characteristics of P. occultum

DNA isolated from P. occultum spores was sequenced using two Illumina libraries with read lengths of 125bp, producing a total
of 54 million paired-end reads. The genome was assembled using the k-mer binning based approach recently used to acquire the
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Fig. 2. Plot showing the count, presence and absence of plant cell wall degrading enzyme (PCWDE) categories. The x-axis shows the categories of
PCWDE-encoding enzymes and the y-axis shows the list of Mucoromycota species used in this genomics study. Species highlighted in orange represent
Mucoromycotina, purple highlighted species are from Mortierellomycotina, and the blue colour represents the species from the Glomeromycotina
clade.

genome of Geosiphon pyriformis [16] and Diversispora epigea [13]. This analysis generated 4722 scaffolds for P. occultum with
a total length of 44 Mb, which compares to sizes of 140 Mb and above for publicly available annotated genomes. In total, 10145
genes were predicted in the genome, which compares to a mean of 24000 genes for other AMF taxa, and the P. occultum gene
density and G+C content is significantly higher than other AMFs (Table 1).

Overall, the P. occultum genome size and gene counts are approximately a third of those found in other AME While this small
size may suggest that a large portion of the P. occultum genome was missed/lost during the assembly process, Busco completeness
analyses were virtually identical to those found in other sequenced non-model AMF genomes (92.2%; Table 1) [13-16]. The
reduced genome size and repeat content we observed is also validated by assembly sizes obtained by others on the same species
and Paraglomus brasilianum using independent approaches - i.e. single nucleus sequencing (49 Mb in the work by Montoliu-Nerin
et al. [18] vs 44 Mb for this study).

Our secretome analysis revealed the presence of 209 putative secreted proteins (Table S1) (Supplementary Material 1) and 120
CAZymes in this species (File S1). The genome also contains 52 plant cell wall degrading enzymes, on a par with numbers found
in other AMF species (Fig. 2, File S2). Like all sequenced AMFs, P. occultum lacks the ‘Missing Glomeromycotina Core Genes’
(MGCGs), including those involved in the production of fatty acids and sugars (File S3). Our data also indicates this species
is likely haploid and homokaryotic - i.e. mapping reads onto the P. occultum genome does not reveal evidence of two distinct
genotypes [10, 53, 54]. The genome also carries a complete set of meiosis-specific genes (Table S2), further supporting the presence
of cryptic (para)sexual reproduction across the subphylum [55]. Analyses of metabolic pathways show that P. occultum carries
genes involved in nitrogen metabolism and associated transporters in numbers similar to those found in AMF relatives (File S4).

Phylogenetic placement of P. occultum

A set of 603 conserved single-copy genes that includes those from P. occultum was used to reconstruct a phylogenetic tree of
the fungal kingdom (Fig. 1). These analyses fully support the monophyly of Glomeromycotina and its close relationship with
Mortierellomycotina within the phylum Mucoromycota [3, 56]. Remarkably, in support of rRNA-based phylogenies [57, 58], but in
minor disagreement with recent protein-code-based work [5, 16, 18], our analyses place P. occultum as the earliest lineage within
the Glomeromycotina phylogeny [5, 16, 18]. Furthermore, our analyses place Claroideoglomus claroideum (Claroideoglomus is a
genus that is notoriously difficult to assess phylogenetically) within Diversisporales, while other studies placed this genus either
as a sister clade to Diversisporales/Glomerales [16, 18] or as a member of Glomerales [57, 58].
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Fig. 3. Phylogenetic tree with bubble plot showing the comparison of all the top 40 Pfam domains of AMF genomes used in this study. The x-axis
represents Pfam functional domains and the y-axis represents the species of Glomeromycotina genomes.

The placement of P. occultum in our analyses has full statistical support. Alternative topologies that forced this species as a sister
lineage to the Geosiphon-Ambispora clade (Alt-T1; Fig. S1) or as being associated with Glomerales or Diversisporales (Alt-T2,
Alt-T3; Fig. S1) were either rejected (Alt_T2 and Alt_T3) or less favoured (Alt_T1) using statistical tests implemented in IQ-TREE,
including the KH, SH, ELW and AU tests (File S5).

Shared and unique gene and genome characteristics of P. occultum

Glomeromycotina genomes are expected to be large relative to most fungi, and carry large gene family expansions [11, 12, 14, 59].
P, occultum carries gene expansions of the tetratricopeptide repeat Sell-, the homodimerization BTB (broad-complex, tramtrack
and bric-a-brac) and WD-40 domain-containing protein domains (Fig. 3, File S6). However, in this species, most of these domains
are less abundant compared to other AMF taxa with annotated genomes. For example, P. occultum carries 1066 Sell and 349
Pkinase Tyr motifs, compared to a mean of 3400 and 1500 for other Glomeromycotina with sequenced genomes (Fig. 3, File
S6). Despite its relatively smaller number of protein domains, the P. occultum genome shows enrichment in My-DNA binding
domains and zinc-finger motifs.

P, occultum also contains a fraction of transposable elements found in Glomeromycotina relatives - e.g. 882 (or 0.32 per Mb)
transposable element families compared to a mean of 16400 (or 10.17 per Mb) for other Glomeromycotina. These numbers are
similar (or higher) to those found in members of Mucoromycotina and Mortierellomycotina with similar genome sizes (Fig. S2,
File S7). By comparing our data with genome size and repeat estimates recently obtained from other early AMF taxa, including
another member of Paraglomerales (P. brasilianum) [18], we found that genome size in AMF significantly correlates with repeat
content in the Glomeromycotina (Fig. 4).

To identify core and unique Glomeromycotina genes, we clustered the predicted protein families of six Glomeromycotina and
four Mucoromycotina genomes to detect orthologous groups. Consistent with recent studies [14], orthologues can be classified
into core genes (shared among all Mucoromycota), dispensable genes (shared by at least two species of Mucoromycotina or
Glomeromycotina species), and species-specific genes (Fig. 5). Due to its small genome size, P. occultum contains more than
double the percentage of core genes (23%, compared to ~10% for other Glomeromycotina) and, on a par with values found in
Mortierellomycotina, significantly less species-specific and dispensable genes (39% compared to ~50%) (Fig. 5). P. occultum also
has 200 gene orthologue losses. involved in a variety of putative functions (File S8).

DISCUSSION
Paraglomerales may represent the earliest AMF phylogenetic node

To date, AMF taxonomy is primarily generated by linking a small number of morphological traits (e.g. spore structure and
content) with phylogenetic analyses of the small subunit of the rRNA operon [17, 60]. These rRNA-based analyses supported
the existence of four AMF orders — Diversisporales, Glomerales, Archaeosporales and Paraglomerales — and in these the Para-
glomerales represent the earliest lineage [61]. In recent years, the advent of new sequencing methods generated protein-encoding
sequence data from poorly studied lineages, and its use in phylogenomics produced a different phylogenetic scenario in which
the Paraglomerales group is in a clade that contains members of the Archaeosporales (Ambispora and Geosiphon) [5, 18, 23, 24].

In this study, an extended orthologue gene set extracted from the P. occultum genome produced phylogenies surprisingly consistent
with those obtained using rRNA sequences. However, we were also unable to reject an alternative placement of P. occultum with
members of the Archaeosporales. As such, both current placements of Paraglomerales within the Glomeromycotina phylogeny
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- i.e. earliest node, or with members of Archaeospora - are equally supported by current phylogenetic analyses, and the acquisition
and analysis of annotated genome data from early diverging AMF species will hopefully clarify those relationships.

A streamlined genome in the MRCA of all extant Glomeromycotina or lineage-specific gene losses?

The present work showed that the P. occultum genome has a size, and gene and repeat counts more similar to members of the
Mortierellomycotina - i.e. the sister clade of Glomeromycotina — than to most AMF species. These findings are supported
by Busco values indicating that the P. occultum genome space is largely sampled, and by reports of virtually identical results
obtained on two members of the Paraglomerales (P. occultum and P. brasilianum) using independent approaches [18].

Those genome features, combined with the early placement of P. occultum in the phylogeny, suggest two contrasting scenarios
for Glomeromycotina genome evolution. On one hand, the streamlined features of the P. occultum genome could indicate
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that the MRCA of Glomeromycotina was an obligate plant biotroph but also gene and repeat poor. If correct, then gene and
repeat family expansions commonly attributed to these prominent plant symbionts must have emerged later in the more
derived AMF lineages, possibly to improve their adaptability to environmental and host change [11, 62, 63]. On the other
hand, it is possible that the Paraglomerales have undergone drastic and species-specific genome reductive processes and
the observation of over 200 P. occultum specific gene losses support this view. Either way, genome evidence from additional
members of this order is needed to determine which scenario is more likely.

From an ecological perspective, it is intriguing to speculate that the gene family reduction we observed is linked to the
reduced mycorrhizal capabilities recently reported for this order in comparison to AMF relatives [23, 24]. Alternatively, the
smaller genome might be driven by selection for fast dividing life stages, adaptation to nitrogen limitation, or there may be
due to unknown conditions where Paraglomerales are relatively more abundant (e.g. grow better than other Glomeromycota
under high metal toxicity, or very high or very low pH, or salinity, etc.). Current analyses did not reveal evidence of gene
expansions related to nitrate or metal metabolism and transport in P. occultum that could support this hypothesis, however,
and data on the nuclear dynamics/division of early AMF lineages are currently non-existent [64].

Conclusions

The present findings revealed that not all Glomeromycotina carry large and repetitive genomes. In fact, we show that
early diverged members of this group can carry streamlined genomes with sizes and contents similar to those of other
Mucoromycota subphyla. These reductive features can be explained by two contrasting hypotheses about the evolution of
Glomeromycotina - i.e. late genome expansions vs lineage-specific adaptive reduction - and future studies should now
focus on adding new annotated genome data from strains that belong to early lineages (including Paraglomerales) to address
these conflicting views. Lastly, this work demonstrates that a complete, contaminant-free view of the genome content can
be obtained from pot-cultured AMFs using a few nanograms of DNA, and without the need for expensive DNA/RNA
extraction kits tailored to small amounts of starting material [5], or instruments dedicated to the isolation and sequencing
of individual nuclei [54, 65].
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