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1  |  INTRODUC TION

Metabarcoding of fungal communities using high-throughput tech-
nologies is a powerful tool for investigating fungal ecology. The 
internal transcribed spacer (ITS) region of the rDNA operon has 

been used extensively as the DNA barcode for fungi, particularly in 
environmental sequencing studies (Gardes & Bruns, 1996; Schoch 
et al., 2012). Because the ITS region has been used as a barcode for 
approximately two decades, the bioinformatic tools for processing 
amplicon data are well developed and the ITS reference databases 
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Abstract
Metabarcoding is an important tool for understanding fungal communities. The in-
ternal transcribed spacer (ITS) rDNA is the accepted fungal barcode but has known 
problems. The large subunit (LSU) rDNA has also been used to investigate fungal com-
munities but available LSU metabarcoding primers were mostly designed to target 
Dikarya (Ascomycota + Basidiomycota) with little attention to early diverging fungi 
(EDF). However, evidence from multiple studies suggests that EDF comprise a large 
portion of unknown diversity in community sampling. Here, we investigate how DNA 
marker choice and methodological biases impact recovery of EDF from environmen-
tal samples. We focused on one EDF lineage, Zoopagomycota, as an example. We 
evaluated three primer sets (ITS1F/ITS2, LROR/LR3, and LR3 paired with new primer 
LR22F) to amplify and sequence a Zoopagomycota mock community and a set of 146 
environmental samples with Illumina MiSeq. We compared two taxonomy assignment 
methods and created an LSU reference database compatible with AMPtk software. 
The two taxonomy assignment methods recovered strikingly different communities 
of fungi and EDF. Target fragment length variation exacerbated PCR amplification bi-
ases and influenced downstream taxonomic assignments, but this effect was greater 
for EDF than Dikarya. To improve identification of LSU amplicons we performed 
phylogenetic reconstruction and illustrate the advantages of this critical tool for in-
vestigating identified and unidentified sequences. Our results suggest much of the 
EDF community may be missed or misidentified with “standard” metabarcoding ap-
proaches and modified techniques are needed to understand the role of these taxa in 
a broader ecological context.
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(UNITE and INSD) are consistently curated and updated (Abarenkov 
et al., 2020; Nilsson et al., 2019). However, even with the widespread 
usage of these databases there are problems, including poor rep-
resentation of some taxonomic groups, low quality sequences, and 
incorrect taxonomic annotation (Abarenkov et al., 2018; Hofstetter 
et al., 2019; Nilsson et al., 2012). These problems mean that re-
sults from taxonomic assignments of operational taxonomic units 
(OTUs) must be interpreted with caution (Nilsson et al., 2006; Yahr 
et al., 2016). Despite its widespread use, the ITS is not a suitable 
barcode for all taxonomic groups. There are known issues with se-
quencing ITS in some fungal lineages, including high variability in ITS 
length between groups (resulting in favoured PCR and sequencing 
for shorter fragments) (Castaño et al., 2020; Engelbrektson et al., 
2010; Manter & Vivanco, 2007), lack of interspecific discrimination 
(and therefore inability to use the marker for species-level determi-
nations; Badotti et al., 2017; Gazis et al., 2011), interspecific rDNA 
copy number variation (Lindner & Banik, 2011), and primer biases 
which exclude some groups (Bellemain et al., 2010; Li et al., 2020; 
Tedersoo & Lindahl, 2016). For example, among arbuscular mycor-
rhizal fungi (AMF) the ITS is hypervariable and has high intraspecific 
and intraspore variation compared to the small (SSU) and large (LSU) 
rDNA subunits (Egan et al., 2018; Thiéry et al., 2012). One study 
found up to 6% divergence among sequences from a single spore 
(Lloyd-MacGilp et al., 1996). A recent study also found wide rDNA 
copy number variation across kingdom fungi that was uncorrelated 
with trophic mode (Lofgren et al., 2019), making such variation un-
predictable in environmental samples. Interspecific rDNA variation 
can lead to the formation of multiple OTUs derived from a single 
individual and individuals with more rDNA copies could potentially 
dominate during PCR amplification and sequencing from mixed tem-
plates. Among early diverging fungal (EDF) lineages, direct compar-
isons of markers for metabarcoding have not been performed for 
many groups. An exception are the AMF for which the SSU, LSU, 
and ITS have been evaluated and some combination of two markers 
is commonly used (Hart et al., 2015; Öpik et al., 2014). Additionally, 
the LSU was suggested to perform better than ITS as a barcode for 
EDF due to greater PCR success and a larger barcode gap (i.e., dif-
ference between inter- and intraspecific variation) than SSU (Schoch 
et al., 2012). One disadvantage of SSU is that, due to its greater se-
quence conservation, it is less useful for taxonomic identification of 
unknown sequences. On the other hand, a critical advantage of the 
LSU and SSU is the ability to perform phylogenetic reconstruction 
with the OTUs to provide preliminary placement of unidentified 
sequences.

The majority of fungal metabarcoding studies have focused on 
the Dikarya. In contrast, EDF such as chytrids and zygomycetes are 
often overlooked or ignored in environmental sequencing studies. 
EDF are also generally missing or underrepresented during attempts 
to develop “universal” fungal primers for metabarcoding. For ex-
ample, mock communities used to validate primer performance 
often contain none or a few EDF, despite the fact that these fungi 
often have highly divergent target sequences relative to Dikarya 
(Asemaninejad et al., 2016; Ihrmark et al., 2012; Pérez-Izquierdo 

et al., 2017; Stielow et al., 2015; Tedersoo et al., 2015). Early diverg-
ing lineages are among the least studied fungi and are generally chal-
lenging to collect and manipulate in the laboratory. Many EDF are 
not culturable using standard techniques, are obligate symbionts, 
and have limited or no sequence data available (Benny, Ho, et al., 
2016; Corsaro et al., 2014, 2017; Lazarus & James, 2015; Letcher 
& Powell, 2019; Malar et al., 2021). Available data suggest that a 
large portion of undescribed taxa belong to EDF lineages (Tedersoo 
et al., 2017, 2020; Torres-Cruz et al., 2017; Walsh et al., 2020). 
Metabarcoding methods can provide an essential tool for learning 
more about these “dark matter fungi” (Grossart et al., 2016), es-
pecially if taxonomy can be reliably assigned to the OTUs. Among 
the most understudied groups of EDF is the Zoopagomycota. The 
placement of Zoopagomycota is still unresolved but phylogenomic 
studies indicate this lineage is either sister to all other terrestrial 
fungi (Dikarya + Mucoromycota – Spatafora et al., 2016) or sister 
to the Mucoromycota (Li et al., 2021). This phylum is ecologically 
diverse and includes fungal parasites (mycoparasites) as well as par-
asites of small animals. Specialized enrichment methods indicate 
that some taxa are diverse and widespread in soils, leaf litter, and 
dung (Benjamin, 1958; Benny, Smith, et al., 2016; Drechsler, 1938; 
Duddington, 1955). Despite these findings, Zoopagomycota species 
are absent or found in low abundance in most metabarcoding stud-
ies (Lazarus et al., 2017; Reynolds et al., 2019), and no published me-
tabarcoding study has focused on this phylum specifically.

We focused on some species of Zoopagomycota as a test case 
for evaluating methodological biases because: (1) these fungi are 
routinely found in soil during culture-based studies (Benjamin, 
1958; Benny, Ho, et al., 2016) and yet they are not readily de-
tected with metabarcoding, (2) there are limited reference se-
quence data available, (3) among species for which sequence data 
are available there is large ITS sequence length variation (Lazarus 
et al., 2017; Reynolds et al., 2019), and (4) they are difficult to iso-
late, culture, and work with in the laboratory, making environmen-
tal sampling a particularly important investigative tool. Out of the 
three subphyla (Entomophthoromycotina, Kickxellomycotina, and 
Zoopagomycotina) we focused on taxa that have been isolated 
from soil samples. This includes members of the Zoopagomycotina 
and Kickxellomycotina that have been regularly isolated from 
our study sites and for which we have a large culture collection. 
Zoopagomycotina species are mycoparasites that primarily attack 
host fungi in the Mucoromycota (and sometimes Ascomycota) or are 
parasites of microinvertebrates (e.g., amoebae, nematodes, rotifers) 
(Zoopagales). The Kickxellomycotina is the most diverse subphy-
lum and includes mycoparasites (Dimargaritales) that are parasitic 
on Mucoromycota and Ascomycota, commensalistic arthropod 
gut-dwelling species (Asellariales, Harpellales, Orphellales), and pu-
tative saprotrophs (Kickxellales). We collected soil (Dimargaritales, 
Kickxellales, Zoopagales), freshwater sediments and water 
(Harpellales, Orphellales), and microinvertebrate (Zoopagales) 
samples from multiple sites in California (CA) and Florida (FL), two 
geographically distant states with divergent climate and soils. Both 
locations have been heavily sampled for Zoopagomycota fungi using 
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selective culturing methods (Benjamin, 1958, 1959, 1961; Benny, Ho, 
et al., 2016; Lazarus et al., 2017; Reynolds et al., 2019). We did not 
include Entomophthoromycotina because they are obligate arthro-
pod pathogens and likely to be rare or absent from many environ-
mental samples.

In order to detect fungal communities, we compared the 
ITS1 marker region to two different regions of the LSU rDNA, using 
two primer pairs for LSU (LROR/LR3 and LR3 paired with the newly 
designed primer LR22F). Because relatively few studies have used 
LSU as a sole marker for profiling fungal communities, we also com-
pared the efficacy of two methods for LSU OTU taxonomy assign-
ment: the RDP Naïve Bayesian Classifier (hereafter RDP classifier) 
(Wang et al., 2007) and UTAX (Edgar, 2010) to search a manually 
curated reference database. We created the new LSU database by 
combining the RDP (Cole et al., 2014) and SILVA (Quast et al., 2013) 
reference databases along with additional sequences from GenBank 
and our laboratory. Finally, we used a subset of LSU OTUs gener-
ated from each primer pair that were identified as Zoopagomycota 
or only to kingdom Fungi and included them in phylogenetic recon-
structions. Analysing amplicons in this way allowed us to validate 
the taxonomic assignments made by our pipeline as well as identify 
putative errors, a step that is not possible with ITS data. We created 
a Zoopagomycota mock community that was evaluated alongside 
the environmental samples to investigate how the metabarcoding 
pipeline affected that group specifically. In this study, we aimed 
to address the following questions: (1) Are Zoopagomycota truly 
rare in the environment? (2) Are methodological biases (such as 
marker choice and fragment length) inhibiting the detection of 
Zoopagomycota?, and (3) Are both factors contributing to the ab-
sence of Zoopagomycota in metabarcoding studies? We hypoth-
esized that: (1) fragment length amplification and sequencing bias 
would decrease the detection of Zoopagomycota species, (2) the 
LR22F/LR3 primer pair would outperform the LROR/LR3 primer pair 
in terms of OTU clustering and phylogenetic reconstruction, and (3) 
taxonomy assignment methods would strongly differ in the identifi-
cation of Zoopagomycota and other EDF OTUs.

2  |  MATERIAL S AND METHODS

2.1  |  Zoopagomycota fungi in the mock community

A mock community comprised of Zoopagomycota fungi was created 
by combining equilibrated aliquots of genomic DNA from species of 
Dimargaritales, Kickxellales, and Zoopagales. DNA of mock commu-
nity members was obtained from cultures grown from the University 
of Florida Gerald Benny culture collection or received from col-
laborators (Table 1). Species of Dimargaritales, Piptocephalis, and 
Syncephalis are haustorial mycoparasites and were grown in dual cul-
tures with their host fungi (Benny, Smith, et al., 2016). Accordingly, 
the DNA extracts from these cultures also contained an unknown 
quantity of host DNA. Similarly, genomic DNAs from the Davis, 
Amses, Benny, et al. (2019) study were single cell genomes amplified 

by multiple displacement methods and also contained DNA from 
both the fungi and their host organisms. Species of Kickxellales are 
saprotrophic and were grown axenically (Benjamin, 1958). A pre-
liminary test of ITS1F/ITS2 primers on DNA from Piptocephalis and 
Syncephalis species mixed with soil DNA indicated that increased 
ITS1  length in these taxa resulted in reduced amplification and 
sequencing (Figure S1; Table S2). We included those taxa and ad-
ditional taxa with known length variation in our mock community 
to further examine these potential biases across different markers. 
The final community contained 30 isolates of Zoopagomycota fungi 
(Table 1). We also generated reference Sanger sequences from in-
dividual mock community members using primer pair LROR/LR5 
(Hopple & Vilgalys, 1994; Vilgalys & Hester, 1990) for LSU and primer 
pair ITS1F/ITS4 (Gardes & Bruns, 1993; White et al., 1990) for ITS. 
Reference sequences were verified by BLAST analysis against NCBI 
GenBank and with phylogenetic reconstruction (data not shown). 
A nonbiological, equimolar DNA mock community which consisted 
of a mixture of 12 synthetic single-copy sequences (SYNMO) was 
included alongside the ITS1 samples to help detect index bleed be-
tween samples and evaluate bioinformatic parameters (Palmer et al., 
2018). All OTUs recovered from the mock community samples were 
submitted for BLAST searches to assess the taxonomic identity of 
the OTUs for comparison against the bioinformatic output.

2.2  |  Environmental samples

We collected environmental samples from five sites in CA and two 
in FL (Table S1). At each site five substrates were collected: (1) bulk 
water from a freshwater stream or pond (water), (2) saturated sedi-
ment from the edge of the water body (mud), (3) the upper soil lay-
ers and leaf litter, consisting of the visible organic layer (topsoil), (4) 
the mineral soil layers below the topsoil (deep soil), and (5) micro-
invertebrates collected from the soil samples using Baermann fun-
nels (invertebrates). At each site five replicates of each sample type 
were collected. The topsoil and deep soil replicates were collected 
at increasing distances from the water source along a 25  m tran-
sect (i.e., sample 1 was closest to the water and soil sample 5 was 
furthest from the water). For each sample approximately 15–25 ml 
of soil was collected into sterile 50 ml tubes and filled with sterile 
2× Cetyl Trimethyl Ammonium Bromide lysis buffer (CTAB) to 30–
35 ml. Water samples were collected in 950 ml sterilized Mason jars 
by dipping the jar into the water from the embankment. Water sam-
ples included some sediment and debris present on the bottom or 
floating on the top of the water. Large debris such as sticks, rocks, 
and clumps of leaves were removed. Vacuum filtration and a sterile 
Büchner funnel were used to filter the water through filter paper 
(6 μm pore size). After filtration, the filter papers were immediately 
placed in sterile 50  ml tubes filled with CTAB. No water samples 
were collected from the “Sweeney wash” site in California because 
there was no standing water although mud samples were collected 
from a wet depression between rocks. Microinvertebrates (pro-
tists, nematodes, tardigrades, etc.) were collected using Baermann 
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TA B L E  1  Zoopagomycota mock community members and results of mock community OTU taxonomy comparisons across the ITS1F/ITS2, 
LROR/LR3, and LR22F/LR3 primer sets, including the target fragment length in base pairs (bp), GenBank accession numbers (ITS, LSU), and 
the primer columns list the number of OTUs of each mock community member detected by the RDP classifier taxonomy (outside parentheses) 
versus the RDP + SILVA LSU database (for LSU) or the AMPtk hybrid method (for ITS1F) (in parentheses)

Isolatea

ITS1F/
ITS2 length 
bpb

LR22F/
LR3 length 
bp

LROR/
LR3 length 
bp GenBank accession no.c

ITS1F 
OTUs

LROR 
OTUs

LR22F 
OTUs

Coemansia aciculifera NRRL 2694 412 365 689 OL351846, OL396561 1 (1) 0 (1) 0 (1)

Coemansia thaxteri IMI 214463 412 363^ 700^ OL351847 0 (0) 0 (0) 0 (0)

Piptocephalis cruciata CBS 826.97 527 446 773 MG764652, MG764611 0 (0) 1 (1) 0 (1)

Piptocephalis microcephala CBS 418.77 457 437 764 MG764650, MG764609 0 (0) 1 (1) 0 (1)

Syncephalis californica A23985 433+ 503+ 845+ KY001705, KY001776 0 (0) 0 (0) 0 (0)

Syncephalis pseudoplumigaleata S71 778^ 503 817 KY001697, KY001764 0 (0) 0 (0) 0 (0)

Coemansia erecta IMI 312319 287+ 361+ 687+ OL351848, OL396562 0 (0) 0 (2) 0 (1)

Coemansia interrupta BCRC 34489 216^ 241 568 OL351849, JN982932 0 (4) 0 (2) 0 (2)

Dimargaris xerosporica NRRL 3178 728+ 261+ 592+ AY997043, DQ273791 0 (1) 0 (0) 0 (0)

Piptocephalis cylindrospora RSA 2659 427 455 783 MG764680, MG764623 0 (0) 0 (1) 0 (1)

Piptocephalis moniliformis NRRL 13723 335^ 468 780 MG764647, MG775651 0 (0) 3 (1) 2 (1)

Syncephalis cornu NRRL A−5447 (61) 407+ 501 813 KT601335, KY001803 0 (0) 0 (0) 0 (0)

Syncephalis depressa S116 (4) 271^ 491 833 KY001683, KY001766 0 (1) 0 (1) 0 (1)

Tieghemiomyces parasiticus RSA 861 Unknown 227 544^ NA, KF848916 0 (0) 0 (1) 0 (1)

Acaulopage tetraceros T2 281 416 733 OL351852, OL396563 0 (0) 0 (1) 0 (1)

Coemansia sp. RSA 1933 219 OL351850 0 (0) 0 (1) 0 (1)

Coemansia sp. RSA 2604 186 OL351851 0 (0) 0 (1) 0 (1)

Piptocephalis graefenhanii S99022101 280+ 522+ 848+ JX312513, JX128019 0 (1) 0 (1) 0 (1)

Syncephalis digitata S521 (K12) 270 458 808 KY001695, KY001806 0 (1) 0 (1) 0 (1)

Syncephalis obconica S227 (K10) 321 458 808 KU317676, KY001788 0 (0) 0 (0) 0 (0)

Mycoemilia scoparia NBRC 100468 Unknown 354 683^ NA, AB287999 0 (0) 0 (1) 0 (1)

Myconymphaea yatsukahoi NBRC 100467 Unknown 370 698^ NA, AB287998 0 (0) 0 (1) 0 (1)

Pinnaticoemansia coronantispora CBS 
131509

Unknown 370^ 698^ NA, AB288000 0 (0) 0 (1) 0 (1)

Stylopage hadra B35 483+ 421 745 KY937196, OL396564 0 (0) 0 (0) 0 (0)

Zoophagus pectospora B39 Unknown 354 677 NA, OL396565 0 (0) 0 (0) 0 (0)

Acaulopage acanthospora Ac1 Unknown 416 746 NA, OL396566 0 (0) 0 (1) 0 (1)

Zoopage sp. C3 326 461 794 OL351853, OL396567 0 (0) 0 (0) 0 (0)

Acaulopage sp. Ap 246^ 416 789 KY937195, OL396568 0 (0) 0 (0) 0 (0)

Cochlonema odontospora E1 Unknown 389 721 NA, OL396569 0 (0) 0 (1) 0 (1)

Zoopage sp. Zo2 Unknown 461 811 NA, OL396570 0 (0) 0 (0) 0 (0)

Hosts (Cokeromyces, Cunninghamella, 
Rhizopus, Umbelopsis)

Typically short 
(~300)

5 (4) 5 (5) 5 (5)

Unidentified Kickxellales Typically short 
(~300)

0 (7) 1 (0) 0 (0)

Non-zygomycetes (animals, protists, 
Dikarya fungi)

0 (7) 4 (0) 8 (0)

“Unclassified” or “Fungi” 21 (0) 11 (0) 9 (1)

aIsolate names in bold indicate species for which genomic DNAs were combined to make the mock community. The remaining “isolates” refer to OTU 
identifications that were recovered after amplification, sequencing, and bioinformatic processing.
bLengths with ^ indicate that the number is an estimate due to the reference sequence missing one or more priming sites. Lengths with + indicate 
that the length is an estimate based on a different isolate of the same species or the same genus if data were not available for a species. Unbolded 
GenBank numbers indicate the sequence that was used as a reference.
cBold GenBank accession numbers indicate isolates newly sequenced for this study.
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funnels. A 50/50 mixture of topsoil and deep soil was added to a 
funnel, filled with sterilized water, and covered with Parafilm. Then, 
1 ml of water was collected in a sterile tube after 24 h incubation and 
stored in a –20°C freezer, and a second 1 ml of water was collected 
during the second 24 h period. The two samples were centrifuged at 
15,000 × g for 15 min, the excess water was drained, and the sam-
ples were combined into one tube with CTAB for DNA extraction. 
For the three “Sweeney” desert sites in California, three rather than 
five Baermann funnel replicates were obtained due to limited funnel 
availability. Five microinvertebrate replicates were performed for 
all other sites. Baermann funnel samples are enriched for potential 
hosts of Zoopagales parasites and were used to target these taxa.

2.3  |  DNA extraction

DNA extraction followed a modified CTAB protocol (Gardes & 
Bruns, 1993). Topsoil, deep soil, and filter papers from the water 
samples were subjected to several cycles of freezing and thawing in 
50 ml tubes with CTAB prior to DNA extraction. Several sterilized 
glass beads were then added, and samples were shaken for 1 min at 
1,500 RPM in a 1600 MiniG tissue homogenizer (SPEX, Metuchen, 
NJ, USA). Two ml of CTAB was collected from each 50 ml tube and 
placed in sterile microcentrifuge tubes. Samples in CTAB were incu-
bated with a 1:1 mixture of phenol:chloroform overnight and then 
washed with an additional chloroform step. The remainder of the 
CTAB protocol was performed without modification. Extractions 
from cultures followed the methods of Reynolds et al. (2019) and 
also used the CTAB protocol. Following extraction, DNA yield was 
estimated by a Nanodrop 2000 spectrophotometer (ThermoFisher 
Scientific). Samples with genomic DNA concentrations >200 ng/µl 
were further cleaned with the DNeasy PowerClean Pro cleanup kit 
(Qiagen); samples with low DNA yield (<200 ng/µl) were not cleaned 
due to loss of DNA during the clean-up process.

2.4  |  Primer selection

A multiple sequence alignment containing Dikarya, Mucoromycota, 
and all available Zoopagomycota sequences from GenBank, as well 
as the newly sequenced Zoopagomycota species, was created in 
Mesquite (Maddison & Maddison, 2019) and aligned with MUSCLE 
(Edgar, 2004). This reference alignment was used to evaluate the 
number of mismatches between published primer sequences and 
Zoopagomycota fungi and ensure complementarity of primer se-
quences across groups. After testing several modified primer com-
binations on four samples, we chose the primers ITS1F and ITS2 
(White et al., 1990) for the ITS1 region for further comparisons. 
For LSU, we chose the LROR/LR3 (Hopple & Vilgalys, 1994) primer 
set, which has been successfully used in metagenomics studies by 
processing only the forward reads (Benucci et al., 2019; Bonito 
et al., 2014; Johansen et al., 2016). We also included a modified 
forward primer LR22F (5′-GAGACCGATAGHRHACAAG-3′) used in 

combination with reverse primer LR3. LR22F is the reverse compli-
ment of primer LR22 to which we added three degenerate positions 
to maximize compatibility with EDF. This primer is similar to LR22R 
(Mueller et al., 2015, 2016) but shifted upstream eight base pairs 
(bp) because target Zoopagomycota taxa in our alignment had mis-
matches to LR22R (Figure S2). Hereafter we refer to these primer 
sets by the forward primer: ITS1F, LROR or LR22F.

2.5  |  Library preparation

We prepared the ITS1F Illumina library using the thermocycling pro-
tocols of Truong et al. (2019). Briefly, we used Phusion high fidelity 
polymerase (ThermoFisher Scientific) and a dual-indexing approach 
with the following modifications. Amplification and sequencing with 
LROR were the same as for ITS1F except that the thermocycling pro-
gram for the initial amplification step was 95°C for 1 min, step down 
of –0.1°C per cycle from 55°C, and 72°C for 1:30 with a total of 30 
cycles and a final elongation step of 72°C for 10 min. Temperature 
gradient tests were performed for LR22F to determine the best an-
nealing temperature. The thermocycling program for LR22F was 
the same as for LROR except that the annealing temperature was a 
step down of –0.2°C per cycle starting from 65°C. All samples were 
amplified in three separate replicates and the replicates were com-
bined prior to the indexing reaction. Negative PCR controls were in-
cluded in all reactions. Amplicons from both the initial amplification 
and index attachment reaction were verified on 1.5% agarose gels. 
Indices were added using the Nextera XT index kit v2 (Illumina) in a 
separate PCR step with the following protocol: GoTaq Green master 
mix (Promega) was used for the reaction and the thermocycling pro-
gram included nine cycles at 94°C for 1 min, 55°C for 1 min, 72°C 
for 1:30, and a final elongation step of 72°C for 10 min. Indexed PCR 
products were pooled into groups of three based on similar band 
intensity and then cleaned with the Select-a-Size DNA Clean and 
Concentrator kit (Zymo). All samples were then quantified using a 
Qubit 4.0 Fluorometer (Invitrogen), equilibrated, and combined for 
the final library. Libraries were further purified with the Agencourt 
AMPure XP kit (Beckman Coulter) to remove primer dimers and 
then sequenced with the Illumina MiSeq 300 bp PE protocol using 
V3 chemistry (Illumina) at either the UF Interdisciplinary Center for 
Biotechnology Research or the UC Riverside Institute for Integrative 
Genome Biology. Raw data are available at NCBI’s Sequence Read 
Archive (BioProject PRJNA660245).

2.6  |  Bioinformatics

All sequencing data were processed with the amptk pipELiNE v 1.4.1 
(Palmer et al., 2018). Up to two nucleotide mismatches were allowed 
in each primer, a maximum of two expected errors were allowed dur-
ing demultiplexing and quality filtering, the maximum length was set at 
600 bp, a standard index bleed of 0.5% was set, and reference-based 
chimera filtering was used during clustering. The 600  bp maximum 
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length refers to the truncation of reads for downstream processing in 
AMPtk. Reads are only truncated if they are above the length cutoff. 
We tested several different length cutoffs and found that 600 bp re-
turned the best results for consistent contig formation. For the ITS1F 
data, a minimum length of 150 bp was used, the clustering threshold 
was 97% using the UNOISE3 (Edgar, 2010) algorithm, and the built-in 
UNITE ITS database in AMPtk was used for taxonomic identification 
via the hybrid method. The ITS OTUs were also assigned taxonomy 
with the RDP classifier for comparisons across primer sets. The LSU 
data from both primer sets were processed with a minimum length of 
225 bp and a clustering threshold of 98% using the UNOISE3 method. 
Because some fungal species have ITS1  sequences under 200  bp, a 
shorter minimum length was used for ITS1F than LSU. A custom LSU 
database was installed in AMPtk for taxonomy assignment (see below) 
because the built-in LSU database was outdated (RDP training set 8) 
and no other comprehensive LSU database compatible with AMPtk was 
available. The clustering thresholds for the LROR and LR22F data sets 
were determined by evaluating which mock community output best 
matched the true community composition after processing the data at 
different cutoffs (97%, 98%, and 99% for both primer sets) and compar-
ing UNOISE3 against DADA2 (Callahan et al., 2016). For both LSU data 
sets, UNOISE3 was used instead of DADA2 because DADA2 doubled 
the number of OTUs in the output and did not significantly improve re-
covery of the mock community. Additionally, using UNOISE3 enabled 
direct comparisons between data sets generated with the three primer 
sets. Any remaining OTUs detected in the negative controls after filter-
ing were deleted from the OTU tables. OTU tables were trimmed to 
remove samples with fewer than five OTUs and/or <500 reads.

To create the LSU database, the RDP (training set 11) (Liu et al., 
2012; Wang et al., 2007) and SILVA (LSU Ref 132; Quast et al., 2013) 
fungal LSU reference FASTA files were downloaded, concatenated, 
and the taxonomy strings reformatted for use in AMPtk. Reference 
sequences from Zoopagomycota in the mock community were added 
to the database along with >200 sequences of animals, fungi, plants, 
and protists from GenBank. We selected these additional sequences 
based on BLAST results of OTUs in the data set that were initially 
unidentified or misidentified by the databases. Due to limitations 
in formatting, the database is only compatible with the UTAX or 
DADA2 taxonomy assignment methods in AMPtk. The final updated 
database consisted of 115,382 dereplicated sequences and is freely 
available on OSF (https://osf.io/cz3mh/). We refer to this modified 
database as RDP+SILVA, and the program used for taxonomy assign-
ment was UTAX. All three OTU data sets were also assigned taxon-
omy with the RDP classifier v 2.12 (Wang et al., 2007) executed in 
AMPtk using the ITS UNITE and LSU training sets, a commonly used 
methodology for metabarcoding studies.

2.7  |  Statistical analyses

Once OTU tables were obtained, further analyses were conducted 
in R (R Core Team, 2019) with scripts available at OSF (https://osf.io/
cz3mh/). To check sampling coverage, rarefaction plots were made 

using the package iNEXT (Chao et al., 2014; Hsieh et al., 2020). 
Community comparisons were performed on the subset of OTUs 
identified as EDF and compared to all fungi. To visualize community 
differences among primer sets, the OTU table was converted into 
presence/absence format and Bsim dissimilarity matrices were cal-
culated with the betadiver function in the vegan package (Oksanen 
et al., 2019) using the “w” method (Koleff et al., 2003). Nonmetric 
multidimensional scaling (NMDS) ordinations were performed with 
the metaMDS function in vegan and plotted using ggpLOt2 (Wickham, 
2016). These ordinations were visualized for the entire fungal com-
munity and on subsets of the EDF OTUs. Two samples that were 
detected as outliers were removed prior to further analyses. NMDS 
ordinations were performed for each primer set separately and 
the scores were extracted as dataframe objects which were then 
overlayed onto a single plot without modification of the coordi-
nates. To compare the effect of the sampling location and sample 
type on fungal and EDF community composition, the dissimilarity 
matrices were analysed with permutational multivariate analysis 
of variance (PERMANOVA - Anderson, 2001) of the Bsim distance 
matrices (Anderson et al., 2006) using the adonis2 function in the 
vegan package. Because PERMANOVA tests are sensitive to disper-
sion of the samples within groups, an ANOVA analysis of the Bsim 
distance matrices was conducted to test for significant differences 
between groups of interest. Significant ANOVA results of Bsim out-
put indicate that dispersion between groups may confound results 
from PERMANOVA analyses. Centroid differences were used for 
Bsim (type = “centroid”), and both Bsim and PERMANOVA used 
9,999 permutations. To further examine similarities between primer 
sets, Mantel tests of correlation between the dissimilarity matrices 
of each primer set were conducted using Spearman's rank correla-
tion and 999 permutations. Finally, taxonomy bar plots and alpha 
diversity metrics for all fungi and the subset of EDF were conducted 
in phyloseq (McMurdie & Holmes, 2013) or the R base functions. 
Relative abundances were calculated as a percentages. Alpha di-
versity measures were evaluated for fungal community differences 
based on site and sample type with ANOVA and Tukey's honest 
significant differences using the agricolae package (de Mendiburu, 
2020). Mantel tests of fungal OTUs utilized a subset of the data that 
contained only the 127  samples (118 for EDF) that worked for all 
three primer sets.

We selected 50 OTUs from the LROR data set and 50 OTUs from 
the LR22F data set to study using phylogenetic analyses. We se-
lected those that had the greatest number of reads, were detected 
in more than one sample, and were identified only as kingdom Fungi 
with our pipeline (i.e., the UTAX algorithm and RDP+SILVA data-
base). The OTUs were also subjected to BLAST searches and OTUs 
with high matches to non-fungal sequences were not included. 
These 100 unknown OTUs were added to a sequence alignment of 
Zoopagomycota, other EDF taxa, and additional Dikarya. As a check 
on the taxonomic identification by our pipeline, OTUs classified 
within the Zoopagomycota (Kickxellomycotina or Zoopagomycotina) 
were included in a smaller alignment and processed the same way 
as the larger alignment. The sequences were aligned with MUSCLE, 

https://osf.io/cz3mh/
https://osf.io/cz3mh/
https://osf.io/cz3mh/
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ambiguously aligned regions were excluded, and Maximum 
Likelihood analyses were performed in RAxML v 8 (Stamatakis, 
2014) using the GTRGAMMA model and 1,000 bootstraps. The 
unknown OTUs were also examined using BLAST searches against 
GenBank using both default parameters and excluding uncultured/
environmental sample sequences and the results were compared 
to the placement of the OTUs in the phylogeny. Resulting figures 
were modified in figtREE v 1.4.3 (Rambaut, 2012) and iNkScapE v 0.92.2 
(https://inksc​ape.org/en/).

3  |  RESULTS

3.1  |  Comparisons of sequencing and bioinformatic 
processing

The ITS1F data set included 146 samples (105 CA, 42 FL), had the 
most reads (14.2  million), and resulted in 7,609 OTUs. The LR22F 
data set included 142 samples (106 CA, 36 FL), had the fewest reads 
(7.4  million), and resulted in 10,028 OTUs. The LROR data set in-
cluded 144 samples (107 CA, 37 FL), had an intermediate number of 
reads (9.1 million) and resulted in 5,786 OTUs (Figure 1). The ITS1F 
data set had the highest percentage of reads discarded due to primer 
incompatibility (6.37%) while the LR22F set had the lowest percent-
age of primer incompatibility (0.38%), but the highest percentage of 
reads discarded due to short length (5.76%). Data from the LR22F 
primer set were mostly assembled into contigs that used both for-
ward and reverse reads (Figure 1). In contrast, pairing between for-
ward and reverse reads for ITS1F data was widely variable, whereas 

reads from the LROR primer set generally could not be compiled into 
contigs. This resulted in the majority of LROR OTUs being comprised 
of only forward reads (283 bp). Rarefaction plots indicate sufficient 
sampling from each state for each primer set (Figure S3).

The proportion of fungal OTUs was different for each of the 
three primer pairs and the two taxonomy assignment methods 
(Figure 2, Figure S4). The ITS1F data set recovered the most fun-
gal OTUs followed by LROR and LR22F according to the hybrid (for 
ITS1F) and UTAX (for LSU) methods of taxonomy assignment. The 
RDP classifier assigned 100% of ITS1F OTUs to fungi but assigned 
a greater proportion of LROR and LR22F OTUs to nonfungal groups 
than the UTAX method (47.2%–54% RDP vs. 38.8%–33.2% UTAX; 
Figure 2c). The majority of fungal reads from all three data sets were 
assigned to Ascomycota followed by Basidiomycota but the three 
data sets differed in the proportion of sequences that were assigned 
to EDF groups (Figure 2). The maximum OTU length was similar for all 
primer sets (ITS1F 534 bp, LR22F 548 bp, LROR 546 bp). Correlation 
plots of OTU length versus read number indicate that these vari-
ables are significantly negatively related for ITS1F, but not for the 
LSU data sets (Figure S5). Finally, the ITS1F data set had the lowest 
percentage of unidentified OTUs with 1.9%, followed by LROR with 
23.8%, and LR22F with 35.5% using the hybrid and UTAX methods, 
respectively. The RDP classifier recovered fewer unidentified OTUs 
with 0% for ITS1F, 18.3% for LR22F, and 24.1% for LROR.

Within Fungi, several orders of Dikarya were dominant across 
all primer sets and samples (Figure S6; Table S3). The greatest dif-
ferences between primer sets were among less OTU-rich groups 
that were recovered by only one or two of the three primer sets 
(Figure 3; Figure S6). The LROR and LR22F data sets recovered more 
EDF OTUs from Blastocladiales, Calcarisporiellales, Chytridiales, 
Cladochytriales, Endogonales, Entomophthorales, Gromochytriales, 
Monoblepharidales, Neocallimastigales, Zoopagales, and 
Microsporidia than ITS1F (Figure 3). The LROR and LR22F data 
sets also recovered more OTUs from fungal-like organisms in class 
Oomycetes (kingdom SAR) and slime molds in Physariida (kingdom 
Amoebozoa). In other cases, the ITS1F data set had several times 
the number of OTUs than either of the LSU data sets. For exam-
ple, Rozellomycota was the dominant taxon among EDF for ITS1F, 
but Chytridiomycota was dominant for both LSU markers (Figure 3). 
Likewise, the ITS1F data set had 36 OTUs assigned to Kickxellales 
compared to five or fewer for each of the LSU primer sets. This mir-
rors the inflation of Kickxellales in the mock community in the ITS1F 
data set (see below).

3.2  |  Comparison of mock communities

Inspection of the ITS1F mock community show some likely errors in 
the OTU taxonomic assignment (Table 1). The AMPtk hybrid taxon-
omy assignment method identified two ITS1F OTUs as Stramenopiles 
(SAR), but each had BLAST matches to Acaulopage (Zoopagales), 
a mock community member (73% coverage, 91.5% identity and 
72% coverage, 78.08% identity). The OTU identified as Dimargaris 

F I G U R E  1  Violin plots of the average percentage of forward 
and reverse reads that were merged to form contigs from each 
primer set (ITS1F/ITS2, LROR/LR3 and LR22F/LR3). The number of 
total reads returned for each data set is listed above the boxes and 
the number of total (i.e., fungal and nonfungal) OTUs found after 
filtering and quality control is given below
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cristilligena had a BLAST match of 100% coverage and 97.4% identity 
to Cokeromyces recurvatus, the host of this mycoparasite. Five other 
OTUs found in the ITS1F Zoopagomycota mock community were 
identified as Basidiomycota, Metazoa, or Haptista. These Dikarya 

and nonfungal OTUs were not found in the negative controls and 
they were not returned in the mock communities sequenced with 
the LSU primers. These OTUs could have been amplified from the 
mixed genomic DNA present in the nonaxenic mock isolates. The 

F I G U R E  2  Primer set variation (ITS1F/ITS2, LROR/LR3, LR22F/LR3) in OTU length and read number assigned to each OTU according to 
taxonomic assignment by Kingdom and fungal phylum using the hybrid (for ITS1F) or UTAX (for LSU) method (a, b) and the RDP classifier 
(c, d). Box plot height and whiskers represent OTU length range, whereas the box plot width represents the proportion of reads assigned to 
each group. The LROR primer set was almost entirely comprised of forward reads with a length of 283 bp, resulting in a flat line. Figure S4 
contains additional graphs of the LROR data separately. Percentages indicate the proportion of nonfungal (a,c) and fungal (b,d) OTUs in each 
data set. Note that Glomeromycotina is a subphylum within the Mucoromycota but is categorized separately for comparison with the ITS 
taxonomy
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ITS1F hybrid data set also returned 12 OTUs assigned to Kickxellales 
in the mock community whereas only nine taxa were actually in-
cluded. Similarly, the ITS1F data set had only three Zoopagales OTUs 
even though 21 isolates were originally added. The RDP classifier 
method identified five putative Mucoromycota host fungi OTUs and 
one Kickxellales OTU from the mock community. The remaining 21 
OTUs were classified only to kingdom Fungi by RDP.

Mock community recovery was more accurate with the LSU data 
sets using the UTAX taxonomy assignment and RDP+SILVA data-
base than the ITS1F data set (Table 1). Both LSU primer sets recov-
ered almost all the members of the mock community except that the 
LR22F data set identified one less Coemansia OTU. Both LSU primer 
sets also recovered OTUs assigned to putative Mucoromycota host 
fungi of the mycoparasites included in the mock. Comparison of 
UTAX against the RDP+SILVA LSU database to the RDP classifier 
shows that few of the mock community members were identified 
by RDP (Table 1). Many mock isolates were classified as Metazoa 
or remained unclassified with RDP but were accurately identified as 
fungi by UTAX and the RDP+SILVA LSU database. Across all primer 
sets, the Zoopagales mock members were underrepresented with 

several isolates remaining undetected by all three primer sets. There 
are multiple possible reasons these taxa did not amplify or sequence 
well: (1) priming site mismatches (particularly for ITS1F), (2) ampli-
fication competition from shorter host DNA fragments present in 
the community, and/or (3) these fungi may have uncharacterized se-
quence features that reduce amplification, such as high G:C content 
(Dutton et al., 1993).

3.3  |  Ordination plots and statistical analyses

Community analyses are based on the subset of OTUs identified as 
Fungi or the subset of OTUs identified as EDF. The ITS1F primer 
set recovered 6,140 fungal OTUs, 1,757 of which were EDF, LROR 
recovered 2,095 fungi (369 EDF), and LR22F recovered 3,126 fungi 
(447 EDF). There were no observable differences in the fungal 
community recovered between primer sets based on the grouping 
of samples in the NMDS plots (Figure 4) (individual plots for each 
primer set separately are given in Figure S7). However, fungal com-
munities from CA and FL were distinct with additional partitioning 

F I G U R E  4  Nonmetric multidimensional scaling (NMDS) ordination plots for all fungi and early diverging fungal communities recovered 
by the primer sets (ITS1F/ITS2, LROR/LR3, LR22F/LR3) for all California (CA) and Florida (FL) environmental sampling sites. Point colours 
represent different sampling locations and point shapes indicate primer set. Stress values are listed for each data set
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based on sampling site. The Evey Canyon and San Jacinto forested 
sites clustered separately from the Mojave Desert Sweeney sites in 
CA, whereas the two FL sites overlapped (Figure 4b,d). For EDF, CA 
site clusters were separated in the ITS1F data set, but those com-
munities overlapped in the LSU data sets (Figure 4a). PERMANOVA 
analyses found significant effects of site and sample type on the 
fungal communities among each of the primer sets (Table 2), but the 

effect size (R2) was small. Generally, sample type had a greater effect 
on EDF and fungal communities from FL, whereas site had a stronger 
impact on communities in CA. The ANOVA results of the Bsim ma-
trices for CA were all significant except for ITS1F site (fungi) and 
sample (EDF). Mantel test comparisons between primer sets were 
all significant for both fungi and EDF, indicating that the recovered 
communities were significantly correlated between the three data 

TA B L E  2  Results of PERMANOVA and whether ANOVA analyses of the Bsim output were significant for all fungi and early diverging 
fungal (EDF) communities recovered by each primer set (ITS1F/ITS2, LROR/LR3, LR22F/LR3) by sites within states (California, CA and 
Florida, FL) and by sample type (including invertebrates, mud, soil, and water), as well as the interaction between site and sample type, with 
asterisks indicating significant p-values (<.05)

PERMANOVA
Degrees of 
freedom

Sum 
squares R2 F value p-value

ANOVA Bsim 
significant?

ITS1F CA fungi site 4 9.845 0.21154 8.8969 .0001* No

ITS1F CA fungi sample 3 3.755 0.08068 4.5242 .0001* Yes

ITS1F CA fungi site x sample 11 9.149 0.19658 3.0065 .0001*

ITS1F FL fungi site 1 1.3797 0.0855 4.5509 .0001* Yes

ITS1F FL fungi sample 3 3.4 0.2107 3.7382 .0001* Yes

ITS1F FL fungi site x sample 3 2.2622 0.14018 2.4872 .0001*

ITS1F CA EDF site 4 9.678 0.19172 7.4519 .0001* Yes

ITS1F CA EDF sample 3 3.784 0.07495 3.8844 .0001* No

ITS1F CA EDF site x sample 11 9.746 0.19306 2.7287 .0001*

ITS1F FL EDF site 1 1.4805 0.093 4.7734 .0001* No

ITS1F FL EDF sample 3 3.8367 0.241 4.1235 .0001* Yes

ITS1F FL EDF site x sample 3 1.9184 0.1205 2.0617 .0007*

LROR CA fungi site 4 9.328 0.18756 7.6923 .0001* Yes

LROR CA fungi sample 3 5.096 0.10247 5.6033 .0001* Yes

LROR CA fungi site x sample 11 9.542 0.19185 2.8612 .0001*

LROR FL fungi site 1 1.2176 0.08762 4.4197 .0001* No

LROR FL fungi sample 3 3.6358 0.26163 4.399 .0001* No

LROR FL fungi site x sample 3 2.1557 0.15512 2.6082 .0001*

LROR CA EDF site 4 8.618 0.1528 5.4378 .0001* Yes

LROR CA EDF sample 3 5.205 0.09228 4.3787 .0001* Yes

LROR CA EDF site x sample 11 8.899 0.15779 2.0418 .0001*

LROR FL EDF site 1 1.2958 0.12837 6.4159 .0001* No

LROR FL EDF sample 3 3.4713 0.34388 5.7291 .0001* Yes

LROR FL EDF site x sample 3 1.692 0.16761 2.7925 .0001*

LR22F CA fungi site 4 9.531 0.2103 9.1561 .0001* Yes

LR22F CA fungi sample 3 4.397 0.09702 5.6324 .0001* Yes

LR22F CA fungi site x sample 11 9.274 0.20461 3.2395 .0001*

LR22F FL fungi site 1 1.32 0.0919 5.1877 .0001* No

LR22F FL fungi sample 3 3.7993 0.26452 4.9772 .0001* Yes

LR22F FL fungi site x sample 3 2.1189 0.14753 2.7758 .0001*

LR22F CA EDF site 4 9.335 0.16055 5.7059 .0001* Yes

LR22F CA EDF sample 3 4.364 0.07506 3.5568 .0001* Yes

LR22F CA EDF site x sample 11 9.68 0.16648 2.1516 .0001*

LR22F FL EDF site 1 1.3695 0.10074 6.0836 .0001* No

LR22F FL EDF sample 3 4.1174 0.30287 6.0965 .0001* No

LR22F FL EDF site x sample 3 2.2544 0.16583 3.3381 .0001*
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sets (Table 3). The correlation (R) was <0.50 for fungal ITS1F ver-
sus LROR and LROR vs. LR22F and less than 0.60 for all EDF com-
parisons. The highest Mantel R statistic was for fungal ITS1F versus 
LR22F, with a value of 0.71.

Plots of fungal richness between each primer set, site, and sam-
ple type showed that overall fungal richness was similar across all 
three primer sets, but soil samples generally had the highest diver-
sity (Figure S8). Evey Canyon and San Jacinto forested sites had 
among the highest OTU richness for all sample types across all three 
primers. Fungal richness was lower for invertebrate samples across 
all primer sets but was higher for ITS1F than either LSU primer set. 
However, EDF diversity patterns differed. For ITS1F, many water, 
mud, and invertebrate samples had greater EDF diversity than 
soil (Figure 5). Conversely, soil and mud from Sweeney sites in the 
Mojave Desert had among the highest EDF diversity for both LSU 
markers (Figure 5). Tukey's test results varied for EDF and all fungi 
and by primer (Table S4) and separation of EDF communities by sam-
ple type and site are also observable in the NMDS plots (Figure S7).

3.4  |  Phylogenetic reconstruction of LSU OTUs

The 50 LROR and 50 LR22F OTUs identified only as “Fungi” were 
added to the sequence alignment that included 436 taxa. After 
exclusion of ambiguous sites, the LSU alignment contained 1,104 
characters and OTUs had a final length of 216–239 bp for LR22F 
and 186–230 bp for LROR. Figure 7 shows the phylogeny and Table 
S5 lists the LSU OTUs used in the phylogeny and BLAST results for 
each OTU. Backbone nodes of the phylogeny were mostly unsup-
ported whereas nodes near the tips had higher bootstrap support 
(>70). Both primer sets recovered monophyletic clades of OTUs 
that had BLAST matches to protist sequences (Table S5), but the 
LR22F data set had fewer than LROR (Figure 6). The majority of 
these LROR OTUs had higher BLAST identity scores to the pro-
tist sequences than the LR22F OTUs, a maximum of 81% coverage 
and 100% identity for LROR, but only 20% coverage and 98.86% 
identity for LR22F. The LROR OTUs that had BLAST matches to 
protists were resolved in two different clades, one with three 
OTUs that had matches to Stramenopiles, and a larger clade with 
matches to Rhizaria. The LR22F protist clade was nested within the 

Chytridiomycetes, but all the matches (except the one mentioned 
above) had identity scores in the 75%–78% range. Most fungal OTUs 
from both primer sets were resolved in the Chytridiomycetes and 
Orbiliomycetes. The OTUs placed in the Orbiliomycetes had close 
BLAST matches to Orbiliomycetes. In contrast, many OTUs placed 
in the Chytridiomycetes had matches to other fungal orders. Only 
LROR OTUs were placed within Aphelidiomycetes, and clades 
in the Basidiomycota, Eurotiomyctes, Umbelopsidomycetes, and 
Zoopagomycetes. The Archaeorhizomycetes, Endogonomycetes 1, 
and Sordariomycetes contained LR22F OTUs but none from LROR. 
The Glomeromycetes contained four LROR OTUs and one LR22F 
OTU. In the Zoopagomycota-only phylogeny, the two subphyla are 
recovered as polyphyletic, contrary to other studies (Davis, Amses, 
Benny, et al., 2019), with the Dimargaritales and Ramicandelaber 
nested within the Zoopagomycotina (Figure 7). Additionally, the 
Harpellales are sister to the two subphyla rather than nested within 
Kickxellomycotina as found by other studies (Wang et al., 2019). 
Only OTU 6654 (LR22F) did not place in a clade matching its taxo-
nomic classification from the taxonomy pipeline.

4  |  DISCUSSION

4.1  |  Taxonomic assignment of OTUs

Recovery of EDF communities is impacted more by methodologi-
cal choices during metabarcoding sampling than Dikarya communi-
ties. In particular, target fragment length and taxonomy assignment 
method can each have a profound impact on EDF detection. We 
found considerable differences in taxonomic identifications be-
tween taxonomy methods for all primer sets. This was even true at 
the Kingdom level where LSU OTUs were more likely to be identi-
fied as nonfungal by the RDP classifier (47%–54%) compared to our 
RDP + SILVA database (33%–38%). The ITS1F data set had the great-
est number of OTUs identified as Fungi. This result was expected due 
to differences in primer specificity (i.e., the ITS1F/ITS2 primer com-
bination is more fungal-specific but has known biases for Dikarya 
– Bellemain et al., 2010; Tedersoo et al., 2015) and the completeness 
of the ITS versus LSU databases. Because the ITS databases have 
>1,000,000 reference sequences compared to <200,000 for LSU 

TA B L E  3  Mantel test results for the correlation analyses between the distance matrices of each primer set (ITS1F/ITS2, LROR/LR3, 
LR22F/LR3) for fungal and early diverging fungal (EDF) OTUs using Spearman's rank correlation, asterisks indicate significant p-values (<.05)

Comparison R statistic Significancea 90% quantile 95% quantile
97.5% 
quantile

99% 
quantile

ITS1F vs. LROR EDF 0.5397 0.006* 0.0345 0.0436 0.0539 0.0641

ITS1F vs. LR22 EDF 0.5603 0.006* 0.0318 0.0408 0.0487 0.0543

LROR vs. LR22F EDF 0.5849 0.006* 0.0356 0.0483 0.0598 0.0698

ITS1F vs. LROR fungi 0.4716 0.006* 0.0389 0.0532 0.0637 0.0740

ITS1F vs. LR22F fungi 0.7101 0.006* 0.0373 0.0481 0.0545 0.0667

LROR vs. LR22F fungi 0.4483 0.006* 0.0424 0.0518 0.0601 0.0771

ap-values adjusted for multiple comparisons using the Holm method (Holm, 1979).
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databases, we expected more accurate taxonomic assignment for 
ITS1F OTUs.

In the mock community analyses, both LSU data sets more 
closely recapitulated the community than ITS1F (Table 1). Errors 
in the taxonomy assignment of ITS1F OTUs from the mock com-
munity indicate misidentification of reference sequences (e.g., 
Dimargaris) and also a lack of reference sequences for some taxa 
(e.g., Zoopagales) (Table 1). Correlation plots of fungal OTU length 
and taxonomic identity score had significant negative relation-
ships for the LSU primer sets (Figure S9), but a positive relationship 
for ITS1F. The negative relationship for LSU probably reflects the 
greater representation of the shorter length reference sequences 
from Dikarya species in the databases than longer non-Dikarya. 
However, while there was a negative relationship between OTU 
length and read number for ITS1F, there was no significant correla-
tion for the LSU data sets (Figure S5). This implies that taxonomic 

representation in the reference databases rather than OTU length 
has a greater impact on taxonomy scores of LSU OTUs. However, 
our RDP + SILVA LSU database substantially improved identification 
of Zoopagomycota isolates in the mock community compared to the 
RDP classifier (Table 1) with ≤ 10% of mock members identified with 
RDP versus 63% with RDP +  SILVA. In contrast, ITS1F recovered 
27% of the mock members using the hybrid taxonomy method. It is 
important to note, however, that populating our RDP + SILVA data-
base with additional nonfungal sequences from GenBank improved 
the accuracy of determining fungal versus nonfungal sequences 
compared to RDP. The supported placement of Zoopagomycota 
OTUs in our reduced phylogeny also reinforces the accuracy of the 
taxonomic classifications made by our pipeline (Figure 7). Therefore, 
a robust reference database should include a diversity of eukaryotic 
sequences, especially for LSU because primers for this region are 
often less fungal-specific.

F I G U R E  5  Comparison of alpha 
diversity measures for early diverging 
fungi for each primer set (ITS1F/ITS2, 
LROR/LR3, LR22F/LR3) by site (colours) 
and sample type (shapes)
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These results demonstrate the profound effect that refer-
ence databases have on the classification of OTUs. Other taxo-
nomic assignment approaches, like BLAST followed by MEGAN 
(Huson et al., 2011) or the statistical assignment package (Munch 
et al., 2008), have the potential to improve LSU OTU identification 
(Porter & Golding, 2012). However, many of our unidentified OTUs 

had best matches to other unidentified sequences in GenBank 
(Table S5) or best matches that did not reflect the phylogenetic 
placement of the OTU, indicating that BLAST and reference-based 
methods cannot completely alleviate identification problems 
(Anslan et al., 2018; Lücking et al., 2020). The disparity between 
named fungal species and unnamed environmental sequences 

F I G U R E  6  Maximum likelihood phylogenetic reconstruction of fungal LSU sequences including references from GenBank and newly 
sequenced isolates from this study. 50 OTUs identified only as “Fungi” from each of the LROR and LR22F data sets were included and the 
numbers are bolded. Analyses were performed in RAxML v 8 using the GTR + GAMMA model and 1,000 bootstrap replicates. Classes 
of fungi are coloured if they include unknown LSU OTUs or shaded grey if they do not. The dark grey “BLAST match to protists” shading 
indicates that these clades are comprised of OTUs that had GenBank matches to protist sequences with the OTU IDs in red. Asterisks 
indicate early diverging clades. Table S5 has a list of all OTUs included in the phylogeny along with their BLAST matches
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is substantial (Nilsson et al., 2016) and available data suggest 
that many unidentified sequences represent EDF, including 
Zoopagomycota (Lazarus & James, 2015; Picard, 2017; Tedersoo, 
Bahram, et al., 2017, 2020). Even within a relatively small order, 
Zoopagales, 13 out of 22  genera lack any sequence data (Davis 
et al., 2019). Although much has been done to improve fungal LSU 
databases (Hanafy et al., 2020; Vu et al., 2019), further additions 
and curation can bring LSU on par with ITS as an rDNA metabar-
coding marker. Until intensive efforts are made to curate and fill 
the taxonomic gaps within databases, it is clear that taxonomic as-
signment issues will be problematic irrespective of improvements 
in sequencing and bioinformatics. For example, the long reads and 
simultaneous sequencing of multiple rDNA markers at once of-
fered by PacBio technology was not able to entirely overcome the 
pitfalls of reference-based taxonomic assignment (Anslan et al., 
2018; Furneaux et al., 2021; Heeger et al., 2018).

4.2  |  Primer comparison

Comparisons between metabarcoding data sets from different stud-
ies are challenging due to variable methods of sample collection, 
PCR amplification, sequencing, and bioinformatics. However, our 
results using data from >127 environmental samples support the 
broad pattern of fungal community congruence between ITS and 
LSU markers as evidenced by significant Mantel tests (Table 3) and 
found by others (Amend et al., 2010; Benucci et al., 2019; Bonito 
et al., 2014; Brown et al., 2014; Johansen et al., 2016; Mota-
Gutierrez et al., 2019; Nelson & Shaw, 2019; Skelton et al., 2019; 
Xue et al., 2019). Our NMDS plots (Figure 4; Figure S7) demonstrate 
that the ITS1F, LROR, and LR22F data sets recovered similar fun-
gal communities and detected mostly the same OTU-rich lineages 
(Figure S6). However, there were discrepancies among rarer groups, 
like some chytrid orders for which more LSU OTUs were detected 

F I G U R E  7  Maximum likelihood phylogenetic reconstruction of Zoopagomycota LSU sequences including references from GenBank 
and newly sequenced isolates from this study. OTUs identified as Zoopagomycota species from each of the LROR and LR22F datasets 
are included and the numbers are in bold and include the order to which each OTU was classified. Analyses were performed in RaxmL 
v 8 using the GTR + GAMMA model and 1000 bootstrap replicates. Branch supports ≥70 are shown
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than ITS1F (Figure 3). Similarly, Nelson and Shaw (2019) and Benucci 
et al. (2019) reported greater numbers of Chytridiomycota OTUs 
with LROR than ITS. Conversely, the ITS1F marker inflated the num-
ber of OTUs assigned to the Kickxellales in the mock community; we 
originally added nine taxa but recovered 12 OTUs. This could be a 
result of biological (e.g., intraspecific rDNA copy number variation) 
and/or methodological (e.g., inappropriate OTU clustering identity 
threshold) factors. Artificial inflation of the number of ITS OTUs 
has been shown for various taxa in mock communities in metabar-
coding studies (Castaño et al., 2020; De Filippis et al., 2017; Jusino 
et al., 2019; Nguyen et al., 2015; Větrovský et al., 2016). These re-
sults underscore the importance of mock communities for detect-
ing methodological errors and refining bioinformatic parameters 
such as clustering thresholds (Caporaso et al., 2011; Palmer et al., 
2018; Taylor et al., 2016). Furthermore, taxonomic assignments of 
ITS OTUs cannot be tested with phylogenetic analyses. Thus, groups 
with dramatic differences in representation between markers (e.g., 
Rozellomycota in our data set, Figure 3) cannot easily be evaluated 
for accuracy.

We further aimed to test LSU primer pairs for their ability to 
amplify fungi broadly, and Zoopagomycota fungi specifically, as well 
as compare their performance in the bioinformatics pipeline. The 
LR22F data set had more fungal and total OTUs than LROR and fun-
gal diversity analyses found significant differences between groups 
for LR22F not found with LROR (Table S4; Figure S8). Similar results 
were found by Mueller et al. (2016) for the related LR22R primer, 
which recovered richness estimates closer to ITS than LROR. We 
found that the forward and reverse reads from the LR22F data set 
were consistently paired into contigs, contrary to both the ITS1F 
and LROR primer sets (Figure 1). The LROR target fragments for 
the mock community members were commonly >700 bp (Table 1), 
well beyond the sequenceable length of Illumina MiSeq chemistry. 
The resulting data are therefore almost entirely restricted to the 
forward reads, resulting in significant data loss. However, paired 
reads have several advantages over unpaired reads: more data are 
utilized, overlapping sequences reduce sequence errors, and longer 
sequences reduce problems during OTU clustering and taxonomy 
assignment (Bartram et al., 2011; Truong et al., 2019). Furthermore, 
longer sequences are more accurately identified using bioinfor-
matic methods (Liu et al., 2012; Porras-Alfaro et al., 2014; Porter 
& Golding, 2012). As a result, the taxonomic identification of LROR 
OTUs may be less reliable than the longer LR22F OTUs. We also 
found that sequence length influenced our phylogenetic analysis 
where the longer LR22F OTUs were generally placed with higher 
resolution than shorter LROR OTUs (Figure 6). Twenty-two of the 
50 LR22F OTUs were placed in a clade that matched the fungal 
class of their BLAST match, compared to only 15 of the 50 LROR 
OTUs. Conversely, both LROR and LR22F OTUs resolved well in the 
smaller Zoopagomycota tree (Figure 7), and the majority were placed 
in clades that correspond to the taxonomy assignment output from 
the UTAX/RDP + SILVA pipeline. These results illustrate the utility 
of phylogenetic reconstruction of LSU OTUs for identifying poten-
tial divergent EDF fungal sequences as well as sequence artefacts or 

taxonomic errors that need further investigation (Glass et al., 2013). 
For example, the OTUs that were placed within the Orbiliomycetes 
(and had high BLAST matches to Orbiliomycetes) indicate that the 
corresponding reference sequences in the database could be iden-
tified beyond kingdom to increase the accuracy of the taxonomy.

4.3  |  Methodological biases impacting detection of 
EDF: The example of Zoopagomycota

We found additional evidence that target region length (for both 
ITS1 and LSU fragments) strongly affects the metabarcoding pro-
cess at different steps. For ITS1F, the strongest bias putatively 
occurs during PCR when shorter fragments are preferentially ampli-
fied (Castaño et al., 2020; Jusino et al., 2019; Palmer et al., 2018). In 
our initial experiments with the ITS1F primer set, Zoopagomycota 
species with the longest ITS1 (≥400  bp) were not recovered from 
mixed samples. This was true despite adding DNA from those spe-
cies at twice the concentration of the “background” DNA (Figure 
S1; TABLE S2). This pattern was reiterated in mock community re-
sults (Table 1) where target species with the longest ITS1 (≥400 bp) 
were not detected. This bias towards short fragments is also taxo-
nomically biased. Many species of Ascomycota, Basidiomycota, and 
Mucoromycota have short ITS1 regions (<200–300 bp) (Bellemain 
et al., 2010; Bokulich & Mills, 2013), with a few notable exceptions 
(e.g., Cantharellales may have ITS1 >1,000  bp – Feibelman et al., 
1994). On the other hand, most Zoopagomycota species we exam-
ined have an ITS1 >300 bp with significant variation between taxa. 
For example, Piptocephalis and Syncephalis species have ITS1 that 
ranges from 300–800 bp (Lazarus et al., 2017; Reynolds et al., 2019) 
and we have also found variation among Coemansia species (Table 1). 
However, the Coemansia isolates had shorter ITS1 than many other 
mock members, which probably contributed to their overrepre-
sentation in the ITS1F results. Species of Harpellales have extreme 
variation with an ITS1 range of 250–1000 bp (Gottlieb & Lichtwardt, 
2001). Similar length variation occurs in the ITS2 region and in some 
cases ITS2 is longer than ITS1, such as in some Harpellales that have 
1100 bp for ITS2 but only 500 bp for ITS1 (Gottlieb & Lichtwardt, 
2001). Although the fragment length for LR22F is variable among 
Zoopagomycota, the variation is lower than for ITS1F. In our mock 
community, the difference in fragment length between the longest 
and the shortest Syncephalis species was only 45 bp for LR22F ver-
sus 508 bp for ITS1F. Likewise, the range among Piptocephalis spe-
cies was 85 bp for LR22F versus 247 bp for ITS1F.

Beyond sequencing and bioinformatics, the biology of 
Zoopagomycota must also be considered. The symbiotic nature 
of Zoopagomycota fungi means that their abundance in any given 
sample is linked with the abundance of their host organisms and 
dependent on host/parasite interactions. As a result, the distribu-
tion of these fungi is probably patchy and highly variable through 
time, lowering the probability of their detection from any single 
sample. Little is known about the host/parasite dynamics among 
Zoopagomycota parasites, making the choice of locations and 
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sample types for metabarcoding less straightforward. For ex-
ample, although the mycoparasitic species can be isolated from 
soil, they also are frequently isolated from dung. Are these spe-
cies mainly coprophilic, or do they actively attack hosts in the 
soil environment as well? How long do their spores persist in the 
soil? Similarly, Zoopagales species that attack microinvertebrates 
have been isolated from wet substrates like moss and decaying 
plant material (Drechsler, 1938; Duddington, 1955). We attempted 
to concentrate potential hosts of these fungi and thereby in-
crease our chance of detecting them by using Baermann funnels. 
However, these invertebrate samples were generally dominated 
by Chytridiomycota OTUs followed by Blastocladiomycota and 
Mucoromycota (Figure 3). A small number of Zoopagales OTUs 
were detected from other sample types by each primer set, and 
phylogenetic analyses supported their identification (Figure 7). 
Nonetheless, the number of OTUs detected is still less than the 
number of isolates recovered from these sites using specialized 
culturing techniques. Benny, Ho, et al. (2016) found that 46% 
of 520  soil samples (mostly from Florida) contained at least one 
Syncephalis species, but we only recovered one Syncephalis OTU 
from two samples in the LROR data set. Likewise, the spores of 
Harpellales fungi are thought to pass between hosts through 
transmission in the water column (Lichtwardt, 1986). However, we 
were unable to detect Harpellales OTUs from water or mud sam-
ples, which were mostly dominated by chytrid OTUs. Species of 
Kickxellales grow axenically and can be isolated from soil or dung, 
but their trophic modes remain unclear. Although Kickxellales 
fungi are assumed to be saprotrophic, there are reports of some 
species growing on other fungi or in association with arthropods 
and many species exhibit fastidious growth in culture (Jackson 
and Dearden, 1948; Linder, 1943; Kurihara et al., 2001, 2008). 
Furthermore, most species are assumed to be rare, but the dearth 
of reports could be an artifact of undersampling. Our results 
demonstrate that Kickxellales can be detected from soil (Figure 3) 
and phylogenetic analyses indicate the clade may be more diverse 
and more widely distributed than currently recognized (Figure 7).

The combined effects of methodological biases and environmen-
tal sample heterogeneity (with symbiotic Zoopagomycota probably 
having lower abundance) may have a synergistic impact on me-
tabarcoding outcomes, leading to artificially inflated representation 
of some groups and absence of others. These biases are rooted in 
methodology and can affect any group of organisms with highly 
variable target fragment lengths and/or poor reference sequence 
representation. Castaño et al. (2020) found such a pattern in mock 
communities where longer fragments added in unequal proportions 
to shorter fragments were severely underrepresented in Illumina 
MiSeq results while shorter fragments could be highly overrepre-
sented (up to 57% greater output than input). Although PacBio RS 
II sequencing produced less severe discrepancies, a length bias was 
still detected (Castaño et al., 2020), an effect that can also be in-
fluenced by sample loading method (Tedersoo et al., 2017). Our 
results demonstrate that both PCR length bias and lack of refer-
ence sequences severely impact the detection of Zoopagomycota 

from mixed samples. Other lineages of EDF are similarly involved 
in symbiotic associations and lack reference sequence data (e.g., 
Blastocladiomycota, Rozellomycota), indicating they are likewise 
often missed or misidentified in metabarcoding studies. Many un-
answered questions about Zoopagomycota remain, such as their 
roles in microbial food webs and their effect on host populations. 
Metabarcoding has the potential to help unravel some of these mys-
teries but novel approaches are needed to overcome methodological 
biases, such as PCR-free on-array hybrid capture (Mamanova et al., 
2010). Combined with targeted culturing approaches, improved en-
vironmental sampling methods can help illuminate the diversity and 
ecological roles of “dark matter fungi” (Grossart et al., 2016).
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