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The early detection of laryngeal cancer significantly increases the survival rates, permits more conservative
larynx sparing treatments, and reduces healthcare costs. A non-invasive optical form of biopsy for laryngeal
carcinoma can increase the early detection rate, allow for more accurate monitoring of its recurrence, and
improve intraoperative margin control.

In this study, we evaluated a Raman spectroscopy system for the rapid intraoperative detection of human
laryngeal carcinoma. The spectral analysis methods included principal component analysis (PCA), random forest
(RF), and one-dimensional (1D) convolutional neural network (CNN) methods.

We measured the Raman spectra from 207 normal and 500 tumor sites collected from 10 human laryngeal
cancer surgical specimens. Random Forest analysis yielded an overall accuracy of 90.5%, sensitivity of 88.2%,
and specificity of 92.8% on average over 10 trials. The 1D CNN demonstrated the highest performance with an
accuracy of 96.1%, sensitivity of 95.2%, and specificity of 96.9% on average over 50 trials. In predicting the first
three principal components (PCs) of normal and tumor data, both RF and CNN demonstrated high performances,
except for the tumor PC2.

This is the first study in which CNN-assisted Raman spectroscopy was used to identify human laryngeal cancer
tissue with extracted feature weights. The proposed Raman spectroscopy feature extraction approach has not
been previously applied to human cancer diagnosis. Raman spectroscopy, as assisted by machine learning (ML)
methods, has the potential to serve as an intraoperative, non-invasive tool for the rapid diagnosis of laryngeal
cancer and margin detection.

1. Introduction treatments. It also reduces the length of hospital stay required and

associated health care costs [4]. The five-year relative survival rate for

The American Cancer Society estimates 13,000 new cases of laryn-
geal cancer diagnosed annually [1,2]. Approximately 3700 patients die
annually from laryngeal cancer [3]. Early diagnosis and the precise
control of the disease margins are essential for the surgical management
of laryngeal carcinoma. Important visual features related to malignancy
may be overlooked in routine laryngoscopy, and multiple biopsies are
generally required for diagnosis.

The early detection of laryngeal cancer significantly increases the
survival rate and allows for more conservative larynx sparing
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Stage I glottic carcinoma is 90%. This decreases to 74%, 56%, and 44%
in Stages II, I1I, and IV, respectively [5]. The lack of locoregional control
is the most significant cause of surgical failure.

Over the past 20 years, there has been a trend toward a more con-
servative, larynx sparing surgery for Stage I and II laryngeal carcinomas,
which is performed using a trans-oral endoscopic approach [6].
Early-stage laryngeal carcinomas are generally treatable by conducting
larynx sparing endoscopic surgery if adequate margins of resection are
realized. Persistent positive margins may require a complete total
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laryngectomy and/or radiation therapy, which can be avoided by per-
forming a complete initial resection [7,8]. However, realizing adequate
margins of resection can be challenging [9].

Optical coherence tomography (OCT) [10] is a near-infrared inter-
ferometry technique. It demonstrates a high resolution and can be used
to image scales with sizes ranging approximately from 10 pm to 10 mm.
It is used widely in ophthalmology for retinal imaging. There are reports
on the OCT imaging of the larynx and upper airway to measure airway
patency. The main disadvantage is the high cost (approximately $75,000
for a retinal imaging system). Moreover, OCT imaging is deployed with
fiberoptic technology to ensure adaptability to existing endoscopes.

Near-infrared (NIR) optical fluorescence spectroscopy [11,12] in-
corporates a fluorescent dye such as indocyanine green (ICG) to visu-
alize neoplastic vascularization [13]. In 2017, researchers reported the
real-time NIR-ICG identification of head and neck mucosal lesions
[14]. The positive findings correlated with histological malignancy with
an overall accuracy of 89%.

Narrow-band imaging [15,16] uses blue-light (415 nm) and
green-light (540 nm) filtering to enhance the visualization of hemo-
globin. It is useful in identifying lesions with enhanced microvascular
patterns, including neoplasms. The findings are nonspecific (with an
accuracy of 88%, sensitivity of 92%, and specificity of 76% [16]);
however, the technique is effective in characterizing neo-angiogenesis in
pre-cancerous and cancerous aerodigestive lesions. It is inexpensive and
can be readily employed deployed in all endoscopes. In particular, it is
cost-effective for use in screening endoscopy for colon polyps; however,
its effectiveness in identifying head and neck lesions is limited.

There are alternative modern imaging techniques for laryngeal
cancer diagnosis, such as dual-energy CT scanning (sensitivity of 86%
and specificity of 96%) [17], magnetic resonance imaging (MRI) with a
sensitivity of 89-95% and specificity of 74-84% for cartilage invasion
[18], and positron emission tomography (PET) - CT scanning (sensitivity
of 16.7% and specificity of 97.1%) [19]. Other less frequently use mo-
dalities for laryngeal tumor imaging include NIR visual imaging with
tumor photosensitizing [20] and in-vivo microscopy [21].

Raman spectroscopy exploits the inelastic scattering of incident
monochromatic light exhibited by many substances. Complex biological
molecules, including proteins, nucleic acids, and lipids have distinct
Raman spectral signatures that have been sufficiently characterized in
laboratory experiments [22]. Recent developments in Raman spectros-
copy technology have allowed investigators to detect variations in the
structure and concentration of biomolecules in tissue, including
biochemical markers associated with neoplasia [23].

When monochromic light from a laser source incidents strikes a
substance, photons are absorbed by its surface and reemitted. Most of
the reemitted light is at the same frequency as the monochromatic
source (elastic scattering). Depending on the sample, a small portion of
the re-emitted light is radiated at frequencies above and below the
incident frequency (inelastic scattering). Inelastic scattering is depen-
dent on the molecular structure of the specimen and is referred to as the
Raman effect. The molecular structure of several substances can be
determined using their Raman spectra. Raman signals can be assigned to
specific molecular chemical groups and chemical bond vibrational
modes. Biomolecules with distinct Raman signals include proteins,
nucleic acids, and lipids. Molecular interactions can exhibit distinctive
spectral features [24].

A typical Raman spectroscopy system consists of a laser light source,
an optical filter to define the incident frequency, and a CCD. It is com-
mon for a Raman spectroscopy system to incorporate several modifica-
tions to improve the frequency resolution and acquisition times.
Modular, portable systems were recently developed for in-field imple-
mentation [25].

The Raman spectra of tissue specimens represent the weighted sum
of their macromolecular species and are highly tissue-specific. Re-
searchers identified cellular differentiation in several epithelial types
using Raman spectroscopy. In-situ applications with respect to brain
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[26], bladder [27], breast [28], colon [29], and skin [30] neoplasms
were reported. In previous studies, spectral differences were observed
between normal tissue, benign lesions, and carcinoma in ex-vivo
laryngeal specimens [31,32].

Principal component analysis (PCA) is a dimension reduction algo-
rithm for data processing. Moreover, PCA is a useful technique for
increasing the interpretability of large datasets while minimizing in-
formation loss. Previous researchers employed PCA for Raman spectra
analysis to reduce complex, multipeak spectra to two or three principal
components [33]. Supervised machine learning (ML) algorithms, with
or without PCA, can be used to automate Raman spectra interpretation.

Random forests are a type of supervised ML method based on deci-
sion tree generation for the solution of classification (majority voting
method) or regression (average method) problems. The basic algorithm
trains multiple decision trees to predict labeled outcomes. During clas-
sification, the model traverses all the decision trees and outputs the class
reached by most trees. In 2009, The et al. conducted the RF analysis of
laryngeal tissue based on Raman spectra and reported a diagnostic
sensitivity of 88.0% and specificity of 91.4% for laryngeal malignancy
identification [34].

Neural networks are a form of artificial intelligence (AI) consisting of
multiple units (neurons) arranged in layers that calculate the relation-
ship between their inputs and outputs based on a set of parameters.
Neural networks are the major focus of current research on ML and Al
[35]. CNNs extend the neural network concept with the addition of
specialized layers for pattern recognition [36,37]. Two-dimensional
CNNs have been extensively studied in the fields of computer vision
and image processing. Similarly, 1D CNNs can be implemented to
interpret spectral data. In 2019 Dong et al. conducted a 1D CNN analysis
of Raman spectra to discriminate human blood from animal blood [38].
There are no reports of CNN-assisted Raman spectroscopy applied to the
classification of tissue specimens.

In this study, we employed RF and CNN models to automate the
interpretation of the Raman spectra of resected ex-vivo laryngeal cancer
specimens. In particular, we applied this approach to the discrimination
of laryngeal carcinoma and non-cancerous margins. The proposed CNN-
assisted Raman spectroscopy method demonstrated a significantly
higher diagnostic performance than previously reported Raman spec-
troscopy methods for human laryngeal cancer diagnosis and achieved an
accuracy of 96.1%, sensitivity of 95.2%, and specificity of 96.9%. The
overall performance of the proposed model was superior to other com-
mon diagnostic methods (e.g., narrowband imaging (NBI) [16],
computed tomography (CT) [17], and intraoperative frozen section
analysis [21,39]) for human laryngeal cancer, with the added advantage
of rapid intraoperative detection. Moreover, although CNN is effective
in various classification applications, it is challenging to extract the
features that are critical to the classification [40,41], and such a process
has not been reported for the application of Raman spectroscopy for
human cancer diagnosis. The proposed scheme can classify the laryngeal
tissue and determine the feature importance from the hidden layers by
integrating the weights.

2. Materials and methods
2.1. Experimental setup and instrumentation (Fig. 1)

The lab-assembled Raman spectroscopy system consisted of a Raman
probe (RPS785, InPhotonics, Inc) connected to a 2 mm optical fiber, 785
nm laser diode source (Turnkey Raman Lasers-785 Series, Ocean Optics,
Inc), and spectrometer with a charge-coupled device (CCD) (QE Pro;
Ocean Optics, Inc). The system was interfaced with a computer for data
collection and assembled at a movable workstation for portability [42].
An enclosure was used to shield the specimen and probe during the
ex-vivo tissue study. For the tissue evaluations after following laryngeal
cancer resection, the system was deployed in a non-sterile workspace
adjacent to the operating room where the procedures were performed.
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2.2. Raman spectroscopy evaluation of resected laryngeal cancer
specimens

All procedures were performed at Our Lady of the Lake Hospital in
Baton Rouge, Louisiana, United States of America. All subjects provided
informed consent, and all the procedures were in accordance with
human ethical guidelines. In particular, the study was approved by the
Louisiana State University Institutional Review Board (IRB #4267).

We collected the Raman spectroscopy data off specimens remove
from subjects who underwent resections for histologically confirmed
laryngeal carcinoma. Based on prior evaluations of resected tissue (un-
published study) we determined the ideal incident laser parameters. The
laser intensity was set at 130 mW, and the Raman spectra were sampled
with exposure times of 3 s. The laser power density was a maximum of
1.99 J/cm? The distance between probe and sample was ~5 mm. For
each sample site, we recorded 7-10 spectra. The Raman spectrum was
ranged from 509 em~! to 3978 em !, with 440 wavenumbers; the mean
spectral resolution was 7-8 cm™'. The data was collected ex vivo in
darkness in this study as the samples were covered by a dark box.

Ten laryngeal cancer specimens were studied, including two total
laryngectomy (Fig. 2) cases and eight transoral microsurgical laser re-
sections. All specimens were oriented and labeled by the senior surgeon
(Andrew J. McWhorter, MD) in accordance with existing surgical
specimen processing protocols. The endoscopically resected specimens
were placed in cassettes to maintain orientation with labeled margins
(Fig. 3).

For each specimen, multiple Raman spectra were recorded from the
labeled margins and central tumor bed. The findings were compared
with the final histopathology results. In all the cases, the consulting
pathologist was not provided with the spectroscopy findings.

2.3. Data processing and principal component analysis (PCA)

The recorded Raman data were preprocessed prior to analysis [43,
44]. The signal processing protocol was coded using MATLAB (R2018a;
MathWorks Inc, Natick, Mass) and consisted of 1) autofluorescence
removal with baseline subtraction using asymmetric least squares
smoothing [45], 2) Savitzky-Golay filter smoothing (the sliding window
was set 10 elements; the polynomial order was 6) [46], and 3) signal
normalization (the linear scaling method scaled the data to [0, 1]).

The mean Raman spectra were calculated from the labeled, pre-
processed data of the cancerous and non-cancerous tissue. PCA was used
for dimensional reduction and coded in Python and Sci-kit-learn [47].
The sample size was set as the number of components, and the singular
value decomposition (SVD) solver was set to auto. The first three com-
ponents were calculated (PC1, PC2, and PC3) with specific peak mark-
ings. The RF and CNN models were trained and tested using the PCA
data to determine the predictive value of ML based on the Raman PCA

Specimen

pectron?ter

Light source

|

Fig. 1. Experimental setup for the ex-vivo Raman analysis of tissue.
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Fig. 3. Representative endoscopic resected laryngeal carcinoma specimen in a
cassette with labeled margins.

datasets.

2.4. Machine learning (ML) methods

The proposed random forest model was developed using Python and
Sci-kit-learn. The RF model architecture is shown in Fig. 4a. The CNN
model architecture consisted of one convolutional layer (32 channels)
and one fully connected layer (Fig. 4b), and it was developed using
Python and Pytorch [48]. The CNN model had a kernel size of five and a
stride of two; the loss function was binary crossentropy (BCEWithLo-
gitsLoss), with the learning rate of 0.01, momentum of 0.9 and weight
decay of 0.00004; the optimizer was Stochastic Gradient Descent (SGD).

For both models, we identified the Raman spectral features corre-
sponding to the cancerous and non-cancerous tissue by examining the
trained model weights for individual peaks (RF) and wavenumber
ranges (CNN). The features were ranked in the order of decreasing
magnitude.

3. Results

A total of 500 Raman spectra were recorded from histologically
confirmed cancer-positive biopsy sites and 207 confirmed negative
margins. Discrete spectra were recorded from 509 to 3978 em ! across
440 wavenumbers. For the classifier, we randomly selected 207 of the
cancer spectra to generate a balanced dataset with a total of 414

recordings.

3.1. Random forest classification of resected laryngeal carcinoma
specimens

RF classification was assessed using 90% of the combined dataset for
training and 10% for testing. The average accuracy was 90.5%. The
sensitivity and specificity were 88.2% and 92.8%, respectively. The RF-
assisted receiver operating characteristic (ROC) curve is shown in Fig. 5.
The area under the curve (AOC) was 0.964.
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Fig. 4. Schematics of the (a) RF and (b) CNN models for the classification of resected laryngeal tissue.
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Fig. 5. Receiver operating characteristic (ROC) curve for the random forest
classification of resected laryngeal carcinoma specimens.

The averaged weights calculated for the branches in the RF model
decision trees corresponding to individual Raman peaks are shown in
Table 1, which presents the 24 highest weights.

The 3756 cm ~! peak was the most weighted feature. The RF model

Table 1

Random forest model feature weights.
Wavenumber (cm-1) Weight Wavenumber (cm-1) Weight
3756 0.0184 1573 0.0099
1536 0.0155 3570 0.0098
2381 0.0150 1592 0.0095
1601 0.0133 2983 0.0088
1527 0.0129 1564 0.0086
1583 0.0126 2776 0.0086
1545 0.0124 1647 0.0085
1638 0.0117 3509 0.0084
3761 0.0114 1384 0.0084
2783 0.0109 1365 0.0083
1374 0.0108 2990 0.0076
2920 0.0107 911 0.0074

assigned weights greater than 1% to 12 peaks. The sum of the highest 24
feature weights was 0.259.

3.2. Convolutional neural network classification of resected laryngeal
carcinoma specimens

For CNN training and testing, a 90%/10% random data allocation
was used for 50 epochs/run. Convergence was observed after 30 epochs
(Fig. 6), and the results were averaged over 50 runs.

The overall accuracy was 96.1%, and the sensitivity and specificity
were 95.2% and 96.9%, respectively. The CNN-assisted ROC curve is
shown in Fig. 7. The AOC was 0.980.

Table 2 presents the top 26 features by weight in the CNN model,
corresponding to spectral wavenumber ranges most important for the
binary cancer classifier. The weights were extracted and summed from
32 mappings in the linear layer. There was a wide distribution from
3744 to 3779 em ™! in the high-wavenumber region, which was consis-
tent with the 3756 cm ™! and 3761 cm ™! peak weights in the RF model.
Moreover, the ranges of 921-963 cm™! and 1461 - 1498 cm ™! in the
fingerprint region were prominent, and both had regression weights
approximately equal to 1, which is consistent with existing empirical
data [49,50].

The single wavenumber weights were calculated by averaging the
range weight, followed by normalization. For example, the average
weight corresponding to the first five wavenumbers (w1, w2, w3, w4,
and w5), averaged across the 32 convolution mappings, was 0.119; and
the average weight corresponding to the second five wavenumbers (w3,
w4, w5, w6, and w7, stride = 2) was 0.038. The weight corresponding to
the wavenumber w3 was calculated as the mean of the two: (0.119 +
0.038)/2 = 0.0785. The averaged weights were normalized by dividing
by the sum of the weights. Table 3 illustrates the 36 largest single
wavenumber weights for the CNN model.

3.3. PCA and combined PCA-ML analysis of spontaneous Raman
scattering data of human laryngeal cancer

The PCA analysis is summarized in Fig. 8. PC1 plot for laryngeal
cancer revealed distinct Raman signals at 727 em !, 958 ecm ™!, and
1553 cm ™ !. Non-cancerous tissue exhibited stronger signals at 1125
em™), 1434 em™!, and 1655 em™! for the Raman spectra without
dimensional reduction. The PC1 plot was similar to the unreduced data.

The tissue prediction using the RF model and PCA data (PC1, PC2,

and PC3) from 10 tests, wherein each test involved 10 runs
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Fig. 6. Training and testing accuracy and training loss convergence plots for the CNN classification of resected laryngeal carcinoma specimens.
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Fig. 7. ROC curve for the CNN classification of resected laryngeal carci-
noma specimens.

Table 2

Ranges of feature importance weights for CNN classification of laryngeal cancer.
Wavenumber (cm- Regression Wavenumber (cm- Regression
1) weight 1) weight
921-963 1.024 2887-2906 0.219
1461-1498 0.939 3552-3577 0.216
3744-3767 0.851 1046-1087 0.214
3756-3779 0.797 1188-1228 0.203
1517-1564 0.451 1647-1684 0.192
2891-2920 0.448 2990-3018 0.175
2613-2643 0.439 1208-1247 0.175
3564-3589 0.421 2962-2990 0.167
1403-1442 0.384 1536-1573 0.167
2776-2805 0.360 575-620 0.165
2805-2834 0.330 2762-2791 0.161
1066-1107 0.293 773-816 0.157
1845-1880 0.250 1555-1592 0.155

demonstrated the specificity of 100% with respect to normal tissue. The
tumor prediction sensitivity was 39% using PC1, and no tumor spectra
were accurately predicted using PC2. Moreover, the tumor prediction
sensitivity was 100% using PC3.

Using the same dataset and the CNN model for 10 tests, the predic-
tion specificity for normal tissue was 100%, 100%, and 95% for PC1,

Table 3
Feature importance weights for CNN classification of laryngeal cancer (single
wavenumber).

Wavenumber (cm-1) Weight Wavenumber (cm-1) Weight

3761 0.02085 3744 0.00774
3767 0.01422 3779 0.00735
3756 0.01420 1527 0.00681
953 0.01381 2783 0.00659
932 0.01345 1555 0.00653
1470 0.01285 3564 0.00652
1489 0.01283 1077 0.00641
3750 0.01122 2913 0.00628
3773 0.01056 2805 0.00626
963 0.00965 2635 0.00620
942 0.00954 2620 0.00616
921 0.00950 2891 0.00606
1498 0.00929 2906 0.00603
1461 0.00929 1536 0.00595
1480 0.00920 1432 0.00594
2899 0.00844 3583 0.00579
3570 0.00806 1413 0.00571
1545 0.00782 3577 0.00568

PC2, and PC3, respectively. The tumor tissue sensitivity was 100%, 2%,
and 100% for PC1, PC2, and PC3, respectively.

4. Discussions

Laryngeal cancer is diagnosed histologically. Frozen section analysis
is the current standard method for intraoperative diagnoses and margin
assessments [39,51]. This method is expensive and time-consuming. In
particular, 20-30 min is required for intraoperative frozen section
analysis, and several hours or days are required for postoperative his-
topathology. Moreover, only a limited number of biopsy points are
inspected. Numerous lesions spread in a submucosal plane and multi-
focal occurrences (“field cancerization™) are common. The identification
of optimal best sites for biopsy can be difficult and numerous patients
undergo multiple biopsy procedures prior to the confirmation of a
diagnosis [52]. A non-invasive, rapid (<1 min) optical form of biopsy for
laryngeal carcinoma is, therefore, required to improve early detection,
allow for more accurate monitoring of its recurrence, and improve
intraoperative margin control.

In this work, 207 cancer and 500 normal tissue Raman spectra were
collected and analyzed from 10 human laryngeal cancer clinical studies.
The ML techniques, including PCA, RF, and CNN, were applied for the
Raman spectral analysis to evaluate the classification performance. The
accuracy of 90.5%, the sensitivity of 88.2%, and the specificity of 92.8%
of the RF model were similar to the previous report on laryngeal cancer
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Fig. 8. PCA results of Raman spectra of resected cancerous and non-cancerous laryngeal tissue: a) original Raman spectra; b) PC1; c¢) PC2; d) PC3. (Key peaks

are labeled).

classification by Raman spectroscopy and Random Forest classification
algorithm with voting for decision [34]. To the best of our knowledge,
no study of human laryngeal cancer Raman spectra analysis by CNN has
been reported before, and the classification performances by CNN
models, with the accuracy of 96.1%, sensitivity of 95.2%, and specificity
of 96.9% are significantly better than the RF model. Our 1D-CNN-aided
Raman spectroscopy also outperformed any previous Raman spectros-
copy studies for the identification of human laryngeal cancers and most
other common diagnostic schemes for laryngeal cancer, with faster
diagnosis speed (<1 min) and the potential for intraoperative diagnosis.

Lin et al. published the only report on in-vivo Raman spectroscopy
for laryngeal lesions, with reference to the available literature [53].
They documented the spectral discrimination between cancerous and
non-cancerous tissue during laryngoscopy. The proposed Raman spec-
troscopy system conducted simultaneous wave number analysis within
the ranges of 800-1800 cm™! and 2800 - 3600 cm™'. Moreover, the
system included a near-infrared diode laser source (785 nm) and
thermo-electric cooled CCD. The system demonstrated a diagnostic ac-
curacy of 91.1% (sensitivity of 93.3%, specificity of 90.1%) for laryngeal
cancer. While our methods hugely improve the performance as the in-
crease of 1% is an excellent work in the machine learning field. In
addition, many important feature peaks had been extracted from the RF
and CNN models, which has significant influence on cancer tissue
component analysis. Another novel approach of our work is using PCs
for prediction, which could be applied for new laryngeal Raman data
predication. Both PC1 and PC3 showed excellent predictions results. The
possible reason of 2nd PCA component did not perform well for pre-
diction was PC2 did not extract the significant peaks for classification.
As shown in Fig. 8, the Raman spectra of PC2 contained less similar
peaks compared with PC1 and PC3 to the original Raman spectra, which
indicated PC1 and PC3 remained more useful peak information.

In addition to the superb classification performance of cancer and
normal tissue of Raman spectra, we also extracted critical features by
our ML models, which has always been challenging [40]. Fukuhara et al.
achieved important regions by extracting spectra from the pooling layer
and fully connected layer [54]. The RF model is based on decision trees,
a special method of Bootstrap Aggregating: majority voting is for clas-
sification, the average is for regression. As our approach is classification,
we need to use the voting method. In our RF model, each decision tree
contributes the feature importance of classification, generating weight

at each node, and 440 weights for 440 features with the sum of 1 of all
feature weights. In the CNN model, every five features attribute to the
range weight due to the kernel size of 5; both ranges weights and single
wavenumber weights are recorded and calculated from CNN layers. The
weight reflects how important the feature is to some extent, which
means the larger the weight is, the more this feature contributes to the
classification of cancer and normal tissues. In our CNN model, only one
convolutional layer was applied, which has already resulted in excellent
classification performance; the single convolutional layer analysis also
facilitated the critical feature importance extraction. Comparing the
weights of RF and CNN, we found some important features in both
models, such as 1) ~3756 c¢m-1/3744 c¢cm-1 - 3767 cm-1.2) ~1536
cm-1/1517 cm-1 - 1564 cm-1.3) ~1545 ¢m-1/1536 cm-1 - 1573 cm-1,
and so on.

Different components or chemical bonds result in various peak in-
tensities and wavenumbers of Raman signals. The results revealed
prominent laryngeal cancer peaks at 727 ecm ™' (deoxyribonucleic acid
(DNA)-based adenine, bending) [55], and 1553 cm™! (DNA-based
Guanine, bending). Non-cancerous laryngeal tissue exhibited stronger
Raman signals at 1125 em ! (proteins, C-N stretching), and 1655 em !
(amide I, C=0 stretching). The findings were consistent with the known
biochemical and cellular transformations in cancerous tissue with
increased nucleic acids to protein/lipid ratios [24,32].

In previous studies conducted on biochemical, the importance of
DNA glutathione (GSH) as a marker in human head and neck cancer was
reported [56,57]. Glutathione (GSH) [58] is identified in Raman spectra
with typical wavenumbers at ~1365 cm™!, 1536 cm™!, and ~1638
cm ! in the RF model. These key identifiers may play a role in cancerous
tissue classification. Additional GSH related peaks were identified by the
CNN model, including ~921 em™!, 932 em™!, 953 em ™!, ~963 ecm Y,
~1077 em™!, ~1413 em™, ~1461 cm™?, and 1536 cm™'. The 1536
em ™! peak was identified by both the RF and CNN models.

In this study, we evaluated the classification capacities of the RF and
CNN models with respect to cancerous vs non-cancerous tissue when
trained using the original spectra and the first three principal compo-
nents of the preprocessed data. With respect to the available literature,
this is the first study on CNN-assisted Raman spectroscopy for human
laryngeal cancer analysis. In previous studies, the overall accuracy of
PCA-linear discriminant analysis (LDA) was 84.3% for the detection of
colorectal cancer in ex-vivo samples [59]. Teh et al. used NIR Raman
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spectroscopy to diagnose laryngeal malignant cancerous tissue and
non-cancerous tissue, with the sensitivity of 92.9% and specificity of
83.3% [60]. Lin et al. also achieved a diagnostic 90.3% sensitivity and
90.9% specificity by applying high-wavenumber Raman spectroscopy
for laryngeal cancer diagnosis [61]. Our results indicated improved
accuracy using ML algorithms, even with a small dataset, when
compared with empirical peak assignments. For the binary classification
of cancerous and non-cancerous of the laryngeal tissue, the CNN modes
outperformed the RF model in terms of specificity, sensitivity, and
overall accuracy. The CNN-assisted Raman spectroscopy model
demonstrated a significantly higher diagnosis performance than Raman
spectroscopy systems proposed in previous studies and most traditional
diagnosis methods (e.g., NBI, CT, MRI, and frozen section analysis) for
human laryngeal cancer [16-18,39]. Moreover, the important features
were extracted to facilitate the analysis of biochemical changes among
different classes of tissues. The excellent classification performance and
the extracted Raman features with the bio-chemical changes of laryngeal
cancer (e.g., GSH biomarkers), we believe that the resolution of the
spectrometer and this Raman system is good enough for the laryngeal
cancerous and non-cancerous tissue classification.

5. Conclusions

In this work, we employed various machine learning algorithms to
effectively classify laryngeal cancer and normal tissues based on their
spontaneous Raman scattering signals. The rapid spectrographic classi-
fication of cancerous vs non-cancerous tissue during laryngeal carci-
noma resection can be realized. Raman spectroscopy integrated with ML
allows system designers to automate the classification process, and the
CNN model is the most effective ML approach. In particular, the pro-
posed CNN-assisted Raman spectroscopy system demonstrated an ac-
curacy of 96.1%, sensitivity of 95.2%, and specificity of 96.9%, which
are significantly superior to those of Raman spectroscopy systems pro-
posed in previous studies conducted on human laryngeal cancer diag-
nosis and most of the traditional diagnosis schemes in this field. We also
extracted the critical features that are important in the classification of
laryngeal tissues with RF and CNN models. Both models showed the
larger weight in the Raman signal that corresponds to the glutathione
signals, which is critical to the classification of laryngeal cancer; this
extracted feature is consistent with the previous biochemical finding
that glutathione significantly increases in laryngeal cancer, as compared
to non-cancerous tissue. Furthermore, the rapid diagnosis and margin
delineation of laryngeal carcinoma is within the scope of current Raman
spectroscopy technology. Overall, the CNN-assisted Raman spectros-
copy showed excellent accuracy, sensitivity, and specificity in classi-
fying laryngeal cancer from normal tissues, which may potentially
become a rapid precise diagnostic tool for the early or intraoperative
detection of laryngeal carcinoma in the future.
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