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laryngectomy and/or radiation therapy, which can be avoided by per
forming a complete initial resection [7,8]. However, realizing adequate 
margins of resection can be challenging [9]. 

Optical coherence tomography (OCT) [10] is a near-infrared inter
ferometry technique. It demonstrates a high resolution and can be used 
to image scales with sizes ranging approximately from 10 μm to 10 mm. 
It is used widely in ophthalmology for retinal imaging. There are reports 
on the OCT imaging of the larynx and upper airway to measure airway 
patency. The main disadvantage is the high cost (approximately $75,000 
for a retinal imaging system). Moreover, OCT imaging is deployed with 
fiberoptic technology to ensure adaptability to existing endoscopes. 

Near-infrared (NIR) optical fluorescence spectroscopy [11,12] in
corporates a fluorescent dye such as indocyanine green (ICG) to visu
alize neoplastic vascularization [13]. In 2017, researchers reported the 
real-time NIR-ICG identification of head and neck mucosal lesions 
[14]. The positive findings correlated with histological malignancy with 
an overall accuracy of 89%. 

Narrow-band imaging [15,16] uses blue-light (415 nm) and 
green-light (540 nm) filtering to enhance the visualization of hemo
globin. It is useful in identifying lesions with enhanced microvascular 
patterns, including neoplasms. The findings are nonspecific (with an 
accuracy of 88%, sensitivity of 92%, and specificity of 76% [16]); 
however, the technique is effective in characterizing neo-angiogenesis in 
pre-cancerous and cancerous aerodigestive lesions. It is inexpensive and 
can be readily employed deployed in all endoscopes. In particular, it is 
cost-effective for use in screening endoscopy for colon polyps; however, 
its effectiveness in identifying head and neck lesions is limited. 

There are alternative modern imaging techniques for laryngeal 
cancer diagnosis, such as dual-energy CT scanning (sensitivity of 86% 
and specificity of 96%) [17], magnetic resonance imaging (MRI) with a 
sensitivity of 89–95% and specificity of 74–84% for cartilage invasion 
[18], and positron emission tomography (PET) - CT scanning (sensitivity 
of 16.7% and specificity of 97.1%) [19]. Other less frequently use mo
dalities for laryngeal tumor imaging include NIR visual imaging with 
tumor photosensitizing [20] and in-vivo microscopy [21]. 

Raman spectroscopy exploits the inelastic scattering of incident 
monochromatic light exhibited by many substances. Complex biological 
molecules, including proteins, nucleic acids, and lipids have distinct 
Raman spectral signatures that have been sufficiently characterized in 
laboratory experiments [22]. Recent developments in Raman spectros
copy technology have allowed investigators to detect variations in the 
structure and concentration of biomolecules in tissue, including 
biochemical markers associated with neoplasia [23]. 

When monochromic light from a laser source incidents strikes a 
substance, photons are absorbed by its surface and reemitted. Most of 
the reemitted light is at the same frequency as the monochromatic 
source (elastic scattering). Depending on the sample, a small portion of 
the re-emitted light is radiated at frequencies above and below the 
incident frequency (inelastic scattering). Inelastic scattering is depen
dent on the molecular structure of the specimen and is referred to as the 
Raman effect. The molecular structure of several substances can be 
determined using their Raman spectra. Raman signals can be assigned to 
specific molecular chemical groups and chemical bond vibrational 
modes. Biomolecules with distinct Raman signals include proteins, 
nucleic acids, and lipids. Molecular interactions can exhibit distinctive 
spectral features [24]. 

A typical Raman spectroscopy system consists of a laser light source, 
an optical filter to define the incident frequency, and a CCD. It is com
mon for a Raman spectroscopy system to incorporate several modifica
tions to improve the frequency resolution and acquisition times. 
Modular, portable systems were recently developed for in-field imple
mentation [25]. 

The Raman spectra of tissue specimens represent the weighted sum 
of their macromolecular species and are highly tissue-specific. Re
searchers identified cellular differentiation in several epithelial types 
using Raman spectroscopy. In-situ applications with respect to brain 

[26], bladder [27], breast [28], colon [29], and skin [30] neoplasms 
were reported. In previous studies, spectral differences were observed 
between normal tissue, benign lesions, and carcinoma in ex-vivo 
laryngeal specimens [31,32]. 

Principal component analysis (PCA) is a dimension reduction algo
rithm for data processing. Moreover, PCA is a useful technique for 
increasing the interpretability of large datasets while minimizing in
formation loss. Previous researchers employed PCA for Raman spectra 
analysis to reduce complex, multipeak spectra to two or three principal 
components [33]. Supervised machine learning (ML) algorithms, with 
or without PCA, can be used to automate Raman spectra interpretation. 

Random forests are a type of supervised ML method based on deci
sion tree generation for the solution of classification (majority voting 
method) or regression (average method) problems. The basic algorithm 
trains multiple decision trees to predict labeled outcomes. During clas
sification, the model traverses all the decision trees and outputs the class 
reached by most trees. In 2009, The et al. conducted the RF analysis of 
laryngeal tissue based on Raman spectra and reported a diagnostic 
sensitivity of 88.0% and specificity of 91.4% for laryngeal malignancy 
identification [34]. 

Neural networks are a form of artificial intelligence (AI) consisting of 
multiple units (neurons) arranged in layers that calculate the relation
ship between their inputs and outputs based on a set of parameters. 
Neural networks are the major focus of current research on ML and AI 
[35]. CNNs extend the neural network concept with the addition of 
specialized layers for pattern recognition [36,37]. Two-dimensional 
CNNs have been extensively studied in the fields of computer vision 
and image processing. Similarly, 1D CNNs can be implemented to 
interpret spectral data. In 2019 Dong et al. conducted a 1D CNN analysis 
of Raman spectra to discriminate human blood from animal blood [38]. 
There are no reports of CNN-assisted Raman spectroscopy applied to the 
classification of tissue specimens. 

In this study, we employed RF and CNN models to automate the 
interpretation of the Raman spectra of resected ex-vivo laryngeal cancer 
specimens. In particular, we applied this approach to the discrimination 
of laryngeal carcinoma and non-cancerous margins. The proposed CNN- 
assisted Raman spectroscopy method demonstrated a significantly 
higher diagnostic performance than previously reported Raman spec
troscopy methods for human laryngeal cancer diagnosis and achieved an 
accuracy of 96.1%, sensitivity of 95.2%, and specificity of 96.9%. The 
overall performance of the proposed model was superior to other com
mon diagnostic methods (e.g., narrowband imaging (NBI) [16], 
computed tomography (CT) [17], and intraoperative frozen section 
analysis [21,39]) for human laryngeal cancer, with the added advantage 
of rapid intraoperative detection. Moreover, although CNN is effective 
in various classification applications, it is challenging to extract the 
features that are critical to the classification [40,41], and such a process 
has not been reported for the application of Raman spectroscopy for 
human cancer diagnosis. The proposed scheme can classify the laryngeal 
tissue and determine the feature importance from the hidden layers by 
integrating the weights. 

2. Materials and methods 

2.1. Experimental setup and instrumentation (Fig. 1) 

The lab-assembled Raman spectroscopy system consisted of a Raman 
probe (RPS785, InPhotonics, Inc) connected to a 2 mm optical fiber, 785 
nm laser diode source (Turnkey Raman Lasers-785 Series, Ocean Optics, 
Inc), and spectrometer with a charge-coupled device (CCD) (QE Pro; 
Ocean Optics, Inc). The system was interfaced with a computer for data 
collection and assembled at a movable workstation for portability [42]. 
An enclosure was used to shield the specimen and probe during the 
ex-vivo tissue study. For the tissue evaluations after following laryngeal 
cancer resection, the system was deployed in a non-sterile workspace 
adjacent to the operating room where the procedures were performed. 
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spectroscopy to diagnose laryngeal malignant cancerous tissue and 
non-cancerous tissue, with the sensitivity of 92.9% and specificity of 
83.3% [60]. Lin et al. also achieved a diagnostic 90.3% sensitivity and 
90.9% specificity by applying high-wavenumber Raman spectroscopy 
for laryngeal cancer diagnosis [61]. Our results indicated improved 
accuracy using ML algorithms, even with a small dataset, when 
compared with empirical peak assignments. For the binary classification 
of cancerous and non-cancerous of the laryngeal tissue, the CNN modes 
outperformed the RF model in terms of specificity, sensitivity, and 
overall accuracy. The CNN-assisted Raman spectroscopy model 
demonstrated a significantly higher diagnosis performance than Raman 
spectroscopy systems proposed in previous studies and most traditional 
diagnosis methods (e.g., NBI, CT, MRI, and frozen section analysis) for 
human laryngeal cancer [16–18,39]. Moreover, the important features 
were extracted to facilitate the analysis of biochemical changes among 
different classes of tissues. The excellent classification performance and 
the extracted Raman features with the bio-chemical changes of laryngeal 
cancer (e.g., GSH biomarkers), we believe that the resolution of the 
spectrometer and this Raman system is good enough for the laryngeal 
cancerous and non-cancerous tissue classification. 

5. Conclusions 

In this work, we employed various machine learning algorithms to 
effectively classify laryngeal cancer and normal tissues based on their 
spontaneous Raman scattering signals. The rapid spectrographic classi
fication of cancerous vs non-cancerous tissue during laryngeal carci
noma resection can be realized. Raman spectroscopy integrated with ML 
allows system designers to automate the classification process, and the 
CNN model is the most effective ML approach. In particular, the pro
posed CNN-assisted Raman spectroscopy system demonstrated an ac
curacy of 96.1%, sensitivity of 95.2%, and specificity of 96.9%, which 
are significantly superior to those of Raman spectroscopy systems pro
posed in previous studies conducted on human laryngeal cancer diag
nosis and most of the traditional diagnosis schemes in this field. We also 
extracted the critical features that are important in the classification of 
laryngeal tissues with RF and CNN models. Both models showed the 
larger weight in the Raman signal that corresponds to the glutathione 
signals, which is critical to the classification of laryngeal cancer; this 
extracted feature is consistent with the previous biochemical finding 
that glutathione significantly increases in laryngeal cancer, as compared 
to non-cancerous tissue. Furthermore, the rapid diagnosis and margin 
delineation of laryngeal carcinoma is within the scope of current Raman 
spectroscopy technology. Overall, the CNN-assisted Raman spectros
copy showed excellent accuracy, sensitivity, and specificity in classi
fying laryngeal cancer from normal tissues, which may potentially 
become a rapid precise diagnostic tool for the early or intraoperative 
detection of laryngeal carcinoma in the future. 
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