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ABSTRACT: Observational data collection is extremely hazardous in supercell storm environments, which makes for a
scarcity of data used for evaluating the storm-scale guidance from convection allowing models (CAMs) like the National
Oceanic and Atmospheric Administration (NOAA) Warn-on-Forecast System (WoFS). The Targeted Observations with
UAS and Radar of Supercells (TORUS) 2019 field mission provided a rare opportunity to not only collect these observa-
tions, but to do so with advanced technology: vertically pointing Doppler lidar. One standing question for WoFS is how the
system forecasts the feedback between supercells and their near-storm environment. The lidar can observe vertical profiles
of wind over time, creating unique datasets to compare to WoFS kinematic predictions in rapidly evolving severe weather
environments. Mobile radiosonde data are also presented to provide a thermodynamic comparison. The five lidar deploy-
ments (three of which observed tornadic supercells) analyzed show WoFS accurately predicted general kinematic trends in
the inflow environment; however, the predicted feedback between the supercell and its environment, which resulted in en-
hanced inflow and larger storm-relative helicity (SRH), were muted relative to observations. The radiosonde observations
reveal an overprediction of CAPE in WoFS forecasts, both in the near and far field, with an inverse relationship between
the CAPE errors and distance from the storm.

SIGNIFICANCE STATEMENT: It is difficult to evaluate the accuracy of weather prediction model forecasts of se-
vere thunderstorms because observations are rarely available near the storms. However, the TORUS 2019 field experi-
ment collected multiple specialized observations in the near-storm environment of supercells, which are compared to
the same near-storm environments predicted by the National Oceanic and Atmospheric Administration (NOAA)
Warn-on-Forecast System (WoFS) to gauge its performance. Unique to this study is the use of mobile Doppler lidar ob-
servations in the evaluation; lidar can retrieve the horizontal winds in the few kilometers above ground on time scales
of a few minutes. Using lidar and radiosonde observations in the near-storm environment of three tornadic supercells,
we find that WoFS generally predicts the expected trends in the evolution of the near-storm wind profile, but the re-
sponse is muted compared to observations. We also find an inverse relationship of errors in instability to distance from
the storm. These results can aid model developers in refining model physics to better predict severe storms.

KEYWORDS: Storm environments; Supercells; Lidars/Lidar observations; Radiosonde/rawinsonde observations;
Ensembles; Model evaluation/performance

1. Introduction

For several decades, numerical weather prediction systems
have shown the potential to reproduce the structure of super-
cell thunderstorms and their associated severe weather haz-
ards (Klemp and Wilhelmson 1978; Weisman and Klemp
1982; Wicker and Wilhelmson 1995). With these early, ideal-
ized studies came the desire to explicitly predict supercells
and their hazards before severe weather occurs (Lilly 1990).
Continued advancement in computer power has allowed for
high-resolution (3–4-km horizontal grid spacing, .50 vertical
levels), deterministic convection allowing models (CAMs) to
produce forecasts rapidly enough to provide useful informa-
tion to forecasters in real time (Pielke and Carbone 2002;
Weisman et al. 2008).

As advancements in modeling and data assimilation of atmo-
spheric observations continued, attention turned to an ensemble
approach to account for rapid, flow-dependent convection-scale
error growth in CAMs (Hohenegger and Schar 2007; Zhang et al.
2016; Judt 2020). One such ensemble numerical weather predic-
tion system being developed within the National Oceanic and
Atmospheric Administration (NOAA), the Warn-on-Forecast
System (WoFS), aims to provide short-term (0–6 h) probabilistic
guidance for severe weather events like hail, flash floods and tor-
nadoes (Stensrud et al. 2009; Lawson et al. 2018). WoFS proto-
types have produced skillful predictions of severe hail (Snook
et al. 2016), tornadic mesocyclones (Dawson et al. 2012; Yussouf
et al. 2013), and flash flooding events (Yussouf et al. 2016). Re-
cent work shows that real-time WoFS runs, from 2016 onward
(Wheatley et al. 2015; Jones et al. 2016, 2020), can produce accu-
rate forecasts of thunderstorm and mesocyclone position on spa-
tiotemporal scales typical of National Weather Service (NWS)
warnings (Skinner 2016; Skinner et al. 2018; Flora et al. 2019).
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An important component of WoFS development is the vali-
dation of forecasts to inform system developers of model
deficiencies and to inform researchers on how to best commu-
nicate findings that have relevant implications for the perfor-
mance of the model. These verification efforts have focused
on comparing simulated and observed storm characteristics,
like storm placement, intensity, and rotation (Skinner et al.
2018; Flora et al. 2019). However, an important component of
model performance is the depiction of the storm environment
(Stensrud and Gao 2010; Coniglio et al. 2013, 2019), which
has a large control on storm characteristics and evolution
(e.g., Weisman and Klemp 1982; Rasmussen and Blanchard
1998; Markowski and Richardson 2014). In particular, a signif-
icant source of environment error in CAMs is thought to be
from the planetary boundary layer (PBL) scheme, which is
necessary to parameterize the effects of subgrid-scale turbu-
lence on gridscale variables. The two categories of PBL
schemes are referred to as local and nonlocal and, with their
contrasting biases, provide spread around the ensemble
mean. Local schemes generally undermix the PBL, leading to
negative errors in temperature and PBL height1 and positive
errors in moisture. The nonlocal schemes typically predict
more mixed, deeper, warmer, and drier PBLs (see Cohen et al.
2015 for a summary of these biases in CAM forecasts). As de-
scribed in more detail in section 2, WoFS uses three PBL
schemes (two local, one nonlocal) that produce known
biases in temperature and humidity in the lower atmo-
sphere. Some of these biases may have noticeable impacts
on storm-scale characteristics in WoFS (Potvin et al. 2020),
which provides motivation to continue exploring PBL scheme
errors in WoFS.

Another motivation for this study is that storms can modify
their ambient environment through diabatic temperature
changes and dynamic effects associated with deep convection,
such as rotation in updrafts (Rotunno and Klemp 1982;
Klemp and Rotunno 1983). For instance, low pressure that
forms beneath a strong rotating updraft causes an accelera-
tion of air toward the storm and enhances the wind field
near the supercell, increasing local storm-relative helicity
(SRH) (Parker 2014; Wade et al. 2018; Flournoy et al.
2020). These feedbacks can be depicted in CAM forecasts
(Kerr et al. 2019; Nowotarski and Markowski 2016, Potvin
et al. 2019, 2020). Other than Kerr et al. (2019), studies that
evaluate model depictions of storm environments focus on
“undisturbed” conditions away from deep convection in an
effort to sample the ambient environment in which the
storm is thought to develop and respond. However, Kerr
et al. (2019) presents evidence that feedbacks to the envi-
ronment from the storm can alter the storm itself. There-
fore, if feedbacks can be influential in storm evolution,
it is important to understand how well CAMs depict
storm–environment feedbacks to more fully explore storm–

environment errors.

Prior studies have also tended to explore conditions
thought to be in undisturbed environments because direct
observations of conditions close to storms are relatively
scarce, especially above the ground. This scarcity is due in
part to practical difficulties in obtaining those observations;
Potvin et al. (2010) show that storms are much more likely
to influence the environment within 40 km of the updraft,
usually termed the “near-field”2 of the storm. Observations
that could be used to validate environments within this dis-
tance of storms are mostly relegated to those collected from
specialized field projects [e.g., VORTEX2 (Wurman et al.
2012), MPEX (Weisman et al. 2015), PECAN (Geerts et al.
2017)]. The overlap of routinely available CAM ensembles
designed to predict the short-term evolution of storms (like
WoFS) and field projects that can provide the necessary ob-
servations to validate storm environments is small and lim-
ited to the last 5–10 years.

The Targeted Observations with UAS and Radar of Super-
cells (TORUS, https://www.eol.ucar.edu/field_projects/torus)
field campaign took place in 2019, during a period when
WoFS ran routinely over the same areas targeted by TORUS,
and provides a set of unique observations to validate storm–

environment feedbacks in WoFS. Therefore, a goal of this
study is to use these observations to explore how WoFS de-
picts these feedbacks.

Past studies of ambient supercell-environments (Rasmussen
and Blanchard 1998; Thompson et al. 2003; Potvin et al.
2010; Parker 2014; Wade et al. 2018), supercell characteris-
tics (Klemp and Wilhelmson 1978; Coniglio and Parker
2020; Flournoy et al. 2020), and the feedbacks between
the two (Markowski and Richardson 2014) motivate inves-
tigating how accurately WoFS is predicting this complex
system. The two-way feedbacks between a supercell and its
inflow environment necessitate verification of numerical
weather prediction systems’ ability to resolve these pro-
cesses, which, in turn require specialized observations of
the supercell and its inflow environment. Knowledge of the
model error characteristics and evolution of supercell in-
flow environments informs development of WoFS and
other convection-allowing systems. This paper aims to add
to the studies of convection-allowing numerical weather
prediction systems, specifically regarding PBL scheme per-
formance. Many past verification studies typically use
large numbers of operational radiosonde observations for
the verification dataset; however, as described in more
detail below, this research is the first to compare WoFS
environmental forecasts to dense spatiotemporal observa-
tions of the inflow of supercells using both Doppler wind
lidar and mobile radiosondes. Additionally, to the authors’
knowledge, this study is the first to use high temporal
resolution Doppler wind lidar to verify predictions of
mesoscale modification of the near-storm wind field of
supercells.

1 For this study, the top of the PBL is understood as the height
at which lapse rates drop below 2 K km21; typically this height co-
incides with pressure between 700 and 900 hPa.

2 Herein, the “near-field” is used to describe distances within
40-km of the storm updraft and “far-field” refers to distances
greater than 40 km.
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2. Data and methods

a. TORUS observations

TORUS is a collaborative project including the University
of Nebraska, University of Colorado, Texas Tech University,
University of Oklahoma, the National Severe Storms Laboratory
(NSSL), and the Cooperative Institute for Mesoscale Meteoro-
logical Studies (CIMMS)3 and is motivated by improving the
current conceptual model of supercell thunderstorms. The
primary aim of TORUS is to reveal the four-dimensional
character of storm-generated boundaries and coherent
structures that are crucial to tornadogenesis and the evolu-
tion of supercells.

A plethora of observational platforms were used for
TORUS: Doppler wind lidar, mobile mesonets (Straka et al.
1996; Waugh 2021), mobile radiosondes, uncrewed aerial sys-
tems (UAS) (Argrow and Houston 2007), Ka-band (Weiss
et al. 2009; Duncan et al. 2019) and X-band (Burgess et al.
2010) mobile Doppler radars, and the NOAA P-3 Orion
Hurricane Hunter aircraft (Collins and Flaherty 2014).
These platforms were deployed close to and in the near-field
inflow region of supercells. The first TORUS field phase oc-
curred from 15 May to 15 June 2019, during which 19 super-
cells were sampled. Previous studies have used large (.100)
radiosonde datasets to statistically evaluate model represen-
tation of the PBL in CAMs (Coniglio 2012; Coniglio et al.
2013; Evans et al. 2018). However, similar to Kerr et al.
(2019), this study uses a case study approach to inspect WoFS
forecasts of PBL characteristics given the unique opportunity
to evaluate how a CAM predicts the near-storm environment.
Three days of tornadic supercells from TORUS are the focus
in this study: 17, 20, and 23 May.

This study focuses on profiles of the lower atmosphere
collected with Doppler wind lidar and mobile radiosondes
because these data provide the best, highest-resolution (in
time and height above the ground) datasets available from
TORUS of the PBL.4 There were 118 radiosondes launched
and 37 deployments of the Doppler wind lidar, of which a
subset of 28 radiosonde launches and 8 lidar deployments
occurred across the three case studies examined here.

Temperature, relative humidity, and winds (through GPS)
were collected every 1 s with Vaisala RS41-SGP radiosondes
(Vaisala 2018), which yields a vertical resolution of 4–5 m
given the nominal balloon ascent rate of 4–5 m s21. Vaisala
applies proprietary filters to the raw radiosonde data to pro-
duce the profiles used in this study as truth. Each sounding
was inspected manually by TORUS principal investigators
(PIs) to ensure data consistency and reliability. Observations
collected outside of the inflow to the target supercell or any
observations prior to WoFS initialization at 1900 UTC were
not considered.

A sounding was considered to be in the inflow if the mean
storm-relative PBL wind has a component that points toward
the supercell updraft. Radiosondes are carried by the mean
flow and can cover.50 km in horizontal distance during their
ascent to the tropopause. Considering WoFS outputs convec-
tive parameters on a grid fixed to the ground, potential posi-
tion errors caused by balloon drift and environmental
variability are accounted for by comparing the observed val-
ues to a distribution of modeled convective parameter values
from a 15 3 15 km2 grid north of the observation and cen-
tered zonally (Fig. 1). In general, the winds change direction
with height, but there is a strong southerly component to the
wind throughout most of the atmosphere across all three
cases. This motivates the meridionally symmetric and north-
ern selection of the WoFS grid points used in the parameter
analysis. This approach additionally accounts for small-scale
environmental heterogeneity and allows radiosonde observa-
tions to be compared to a distribution of WoFS values.

The Doppler wind lidar is a Halo Photonics Streamline
XR that was mounted in the bed of a pickup truck and was
stationary and level with the ground while scanning. The

FIG. 1. Small black dots represent all the WoFS grid points in-
cluded in the convective parameter comparisons. The magenta dot
represents the nearest WoFS grid point to the near-ground location
of the sounding observation. The large black dot and arrow repre-
sents the storm location and direction of motion. The salmon filled
circle shows distances from the storm within 40 km (the near field);
yellow is outside 40 km.

3 CIMMS is now known as the Cooperative Institute for Severe
and High-ImpactWeather Research and Operations (CIWRO).

4 Note that the data collected in the PBL by TORUS from the
other observational platforms (e.g., UASs, P-3 compact Raman li-
dar, and dual-Doppler analyses) continued to undergo quality con-
trol (QC) and were not available for use at the time of this study.
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standard lidar scanning strategy during TORUS was a 708 ele-
vation plan position indicator (PPI) scan (including 12 azi-
muths) every 2 min with vertical stares in between. The
vertical profile of horizontal wind components were derived
by applying a velocity–azimuthal display (VAD) technique to
the PPI scans (Liang 2007). The lidar parameters allow for
high vertical and temporal resolution wind profiles; approxi-
mately 18 m in the vertical (starting at ∼60 m AGL) and
30–45 s in time.

The data collection strategy varied by vehicle: one platform
(termed the far-field sounding vehicle, or FFS) was tasked
with releasing soundings every 45 min within the inflow at
40–80 km from the supercell. Two mobile mesonet vehicles
also occasionally deployed radiosondes while performing
transects of the near-field inflow. The lidar vehicle would
position itself to capture the transition from the far-field
inflow environment sampled by FFS to the potentially storm-
modified near-field inflow environment and deployed radio-
sondes in concert with lidar deployments. The horizontal
wind profiles obtained by the lidar have been shown to agree
well with the canonical radiosonde vertical profiles in the
lower levels (Smith et al. 2020).

The lidar data were quality controlled with a signal-to-noise
ratio filter, typically leaving the first available data at around
60 m AGL and terminating somewhere below 2000 m AGL
(due to loss of scattering particles or the presence of cloud
water, which quickly attenuates the “laser” pulse). To create
observational datasets comparable to the WoFS grid, both li-
dar and radiosonde datasets are resampled at the height
(pressure) corresponding to vertical levels in the WoFS for ki-
nematic (thermodynamic) quantities using a 100-m averaging
window. For example, observed data between 150 and 250 m
AGL are averaged to compare to a WoFS vertical level at
200 m AGL. This averaging also reduces noise that could con-
taminate point-to-point comparison.

b. WoFS forecasts

WoFS is a Weather Research and Forecasting (WRF)
Model and Advanced Research version of WRF (WRF-ARW)-
based (Skamarock and Klemp 2008) CAM ensemble designed
to provide probabilistic guidance for severe weather threats
(Wheatley et al. 2015; Jones et al. 2016). The version used
for this study ran in 2019 over a 900 3 900 km2 domain with
3-km horizontal grid spacing. WoFS uses a 51-level stretched
vertical grid with grid spacing of approximately 100 m in the
boundary layer stretching to 1 km at model top (10 hPa).
WSR-88D reflectivity and radial velocity along with satellite
observations of cloud water path and clear sky radiances
are assimilated every 15 min while surface observations are
assimilated every hour using a customized version of the en-
semble Kalman filter in the Community Gridpoint Statisti-
cal Interpolation (GSI) software package (Kleist et al.
2009; Hu et al. 2016). Complete details of the WoFS configu-
ration used in 2019 are available in Jones et al. (2020).
WoFS forecasts use 36 unique members for analyses and
issues 18-member forecasts differentiated by their PBL,
longwave, and shortwave radiation schemes. Past studies

have shown negligible differences in forecast quality across
radiation schemes (Potvin et al. 2020), motivating the focus
here on the different PBL schemes.

Three PBL schemes are distributed among the 18 unique fore-
cast members in WoFS: the Yonsei University (YSU) (Hong
et al. 2006), the Mellor–Yamada–Nakanishi–Niino (MYNN;
Nakanishi and Niino 2004, 2006), and the Mellor–Yamada–Janjić
(MYJ; Janjić 2002) schemes. These schemes parameterize the
larger-scale impacts of turbulence differently. The local (MYJ
and MYNN) schemes constrain the turbulent-mixing equations
by indexing only adjacent vertical grid points in calculations of
state variables, while the nonlocal (YSU) scheme indexes beyond
adjacent grid points to incorporate the impacts of deep eddies in
convective boundary layers (Stull 1991; Cohen et al. 2015).
Numerous studies in the past decades have explored general
characteristics of these schemes in CAMs (e.g., Coniglio
et al. 2013; Cohen et al. 2015; Evans et al. 2018), with
a general finding that nonlocal (local) schemes tend to
over(under)mix the PBL in CAM forecasts, leading to
warmer (cooler) and drier (more moist) PBLs in the nonlo-
cal (local) schemes. The impact of enhanced mixing in the
nonlocal schemes, as shown by Potvin et al. (2020), is that
they produce environments that are less favorable for storm
intensification and yield weaker storms than the local
schemes. However, the impact of these errors on parameters
related to convection, like CAPE and SRH, and on the con-
vection itself do not seem to show clear biases across these
studies, with perhaps the most consistent finding being an
underprediction of CIN. For the WoFS, Potvin et al. (2020)
confirm these findings and suggests the underprediction of
CIN leads to an initial overprediction of storm coverage in
all three PBL schemes in WoFS. These latter two results
provide motivation to continue exploring the relationship
between errors in the PBL and WoFS storm-scale forecasts.

In the spring of 2019, WoFS forecasts were produced every
30 min in the afternoon to early evening hours. For this study,
the forecast initialization and valid times are chosen by select-
ing the nearest forecast valid time to the observation, then se-
lecting the nearest associated initialization time, provided that
the valid forecast is between 15 and 45 min after the initializa-
tion time (e.g., a 2236 UTC observation is compared to a WoFS
forecast initialized at 2200 UTC and valid at 2235 UTC). The
15–45-min range of lead time is chosen because these forecasts
will be the most up-to-date forecasts in a real forecasting sit-
uation, given that WoFS forecasts become available roughly
15 min after initialization time and new forecasts are avail-
able every half-hour. WoFS output is available every 5 min,
resulting in a maximum time difference between the nomi-
nal observation time and valid forecast time of 2.5 min.
Hereafter, references to the observation–WoFS forecast
pairs will appear as follows: observation time, valid WoFS
forecast time used in comparison (e.g., 2302, 2300 UTC).

Because initial and boundary conditions [provided by the
High-Resolution Rapid Refresh Ensemble (HRRRE)] vary
and errors in CAMs grow rapidly, the 18 members in WoFS
predict storms that vary in location and strength compared to
the observed storms. Owing to these differences in storm lo-
cation, simply pulling the WoFS grid point nearest to the
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location of the observation may yield errors caused by incor-
rect storm locations in the model that are larger than the er-
rors in the environment. Therefore, a storm-relative analysis
is employed in this study to maintain a consistent distance be-
tween the storms and the observation location. This approach
leaves out a spatially aligned verification, wherein WoFS
would be assessed in its ability to forecast the location of
storms. Instead, this method provides insight into the accu-
racy of WoFS to forecast the ambient environment in which
the storms exist.

The storm-relative position within the model is determined
by calculating the displacement vector from the observed
storm to the observation, then adding this vector to the loca-
tion of the modeled storms. To do so, a WoFS storm matching
the observed stormmust be found at every forecast time of in-
terest. This was done manually with guidance provided by a
storm-detection algorithm described in Britt et al. (2020). The
algorithm creates storm objects using Python’s scikit-image li-
brary (van der Walt et al. 2014) to identify coherent regions
of 0–2-km updraft helicity (UH) at each 5-min output time in
WoFS output and return the centroids. The initial objects

are then sorted by proximity to the observed storm location
(,30 km), and the first author manually selected the object
that most resembled the observed storm. The location of the
matching observed storm was determined using data from the
nearest WSR-88D within Gibson Ridge radar analysis soft-
ware to pull the latitude and longitude from the manually
identified location of the mesocyclone. While it is usually diffi-
cult to match modeled and observed storms in longer-term
(31 h) forecasts of convection because of storm-scale error
growth, WoFS is designed to assimilate and predict ongoing
individual storms (Skinner et al. 2018) and does so accurately
enough (position errors are generally ,30 km) in the three
case studies used here to present little uncertainty in matching
the correct modeled storm to the observed storm.

Once the storm-relative location is determined in all en-
semble members, a model sounding is extracted from the
WoFS output for each time needed for the comparison to ob-
servations. Environmental variables like CAPE and SRH are
extracted from the grid shown in Fig. 1, while wind, tempera-
ture, and dewpoint values are extracted from the single
storm-relative grid point. The data are then compared to the

FIG. 2. Radar images from KGLD of the 17 May McCook, NE, supercell at 2300 UTC; 0.58 elevation angle.
(a) Reflectivity (dBZ) and (b) storm-relative velocity (kt; 1 kt ≈ 0.51 m s21). (c) The dashed oval encompasses
contours of 45-dBZ simulated composite reflectivity from 30-min forecasts from all 18 WoFS members valid at
2300 UTC and initialized at 2230 UTC 17 May. Different color shading depicts different ensemble members.
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resampled and averaged observations and differences are cal-
culated (model 2 observation) for every member at every
vertical grid point for which observational data are available.

To assess the strength of both the observed and modeled
supercells, rotational velocity (Vrot) and 0–2-km UH are in-
vestigated, respectively. WoFS is able to provide a reliable
proxy for mesocyclone strength (UH); however, this variable
is not observable with traditional observing systems. Radial
velocity derived from WSR-88D data (0.58 elevation angle)
then serves as the observable proxy for mesocyclone strength.
Updraft helicity contains direct information about updraft
strength that Vrot does not; however, both metrics are propor-
tional to mesocyclone strength. The strength of the mesocy-
clone is proportional to the low-level pressure perturbations
induced by the mesocyclone and the inflow low that contrib-
utes to modifying the near-storm wind field.5 Note that Vrot

and updraft helicity are physically different quantities, so their
magnitudes should not be directly compared and should only
be used to compare the relative rotational evolution between
the modeled and observed storms over time.

Rotational velocity Vrot is defined as

Vrot 5
Vout 2 Vin

2
, (1)

where Vout and Vin were manually chosen by selecting two
gates with the largest velocity difference centered on the rota-
tional couplet and not farther than 3 km apart. While UH and
Vrot are proportional to the low pressure perturbation in-
duced by the mesocyclone strength and thus the magnitude of
storm modification, they both have limitations. For example,
Vrot is an approximation of vertical vorticity assuming solid
body rotation and UH is limited by the dependence on verti-
cal velocity and by the grid spacing of WoFS.

The updraft helicty (UH) is defined as

UH 5

�2 km

0km
wzdz, (2)

where w is the vertical velocity of the updraft and z is the ver-
tical component of vorticity. The storm object location chosen
to calculate UH was selected with the algorithms used by Britt
et al. (2020) as discussed above. A single UH value is assigned
to a storm by taking the maximum UH value within the storm
object.

3. Results

a. 17 May 2019 McCook to Farnam, Nebraska, supercell

The first supercell examined was observed by TORUS and
two WSR-88D radars at Goodland, Kansas (KGLD, Fig. 2),
and North Platte, Nebraska (KTLX). Convection initiated
along a dryline in western Kansas and evolved into a supercell
near Goodland, Kansas, by 2100 UTC. The storm moved at
an average heading and speed of 2108 and ∼20 m s21 over the

FIG. 3. Storm-relative locations of observations collected on 17 May used in this study. (a) A similar configuration
as in Fig. 1 and displays storm-relative radiosonde (numbers) and lidar (stars and X marks) observation locations.
(b),(c) The five radiosonde and lidar times, storm-relative coordinates and distance, and Vrot of the targeted mesocy-
clone. In all panels, observations made farther than 40 km from the storm (far field) are shaded in yellow; observa-
tions made closer to the storm are shaded in red (near field). Units of zonal, meridional displacement, and distance to
storm are in kilometers and the Vrot of the mesocyclone, a proxy for supercell strength, is measured in m s21.

5 The size of the mesocyclone influences pressure perturbations
(Markowski and Richardson 2010) and this is not directly ac-
counted for in UH or Vrot; however, it is impractical to estimate
the effects of mesocylone size across all WoFS forecasts.
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following five hours and produced multiple tornadoes from
2240 to 0120 UTC ranging from EF0 to EF3 (NOAA/NCEI
2020). This case study focuses on observations collected by
two radiosondes that made it to the equilibrium level (EL),
launched at 2302 and 0106 UTC by FFS and on the one avail-
able lidar observation, which observed the low-level wind
field nearly continuously between 2230 and 2320 UTC
(Fig. 3). The lidar remained stationary during this period and
entered the near-field of the approaching storm at approxi-
mately 2310 UTC.

The sounding comparisons at times 2302 UTC (taken in the
far-field; Figs. 4a–e) and 0106 UTC (taken in the near-field;
Figs. 4f–j) illustrate the typical WoFS mean errors in tem-
perature among all five radiosondes for this case; they are
mostly ,2 K in magnitude throughout most of the tropo-
sphere (Figs. 4b–e,g–j). In both comparisons the ensemble
members that use nonlocal YSU and local MYJ and MYNN

schemes are behaving as anticipated, with the nonlocal
scheme forecasting a drier, warmer, and more mixed bound-
ary layer (Cohen et al. 2015, 2017). The YSU scheme fore-
casted the smallest errors in temperature (,1 K) near the
location of the isothermal layer between 750 and 700 hPa,
with MYJ and MYNN forecasts being too warm in this
layer. However, as this isothermal layer becomes shallower
and lowers later in the evening (Figs. 4f), the distribution of
member temperature values become noticeably tighter.
These comparisons illustrate that incorporating members
that use the YSU scheme acts to provide spread to the tem-
perature forecasts such that the observation falls within the
WoFS members distribution much more frequently than
they would in a MYJ/MYNN-only ensemble.

The dewpoint temperature errors are sensitive to the loca-
tion of a dry layer from 700 to 500 hPa at 2302 UTC and from
550 to 350 hPa at 0106 UTC and result in mean errors as large

FIG. 4. (a) A sounding of the 2302 UTC radiosonde launch compared to the 2300 UTC WoFS forecast, initialized at 2230 UTC
17 May 2019. The red and green bold lines are the observed temperature and dewpoint temperature, respectively. (b),(c) Vertical profiles
of the error in both temperature and dewpoint temperature (K). (d),(e) Plots of (b) and (c) zoomed in on the PBL for 2230 UTC.
(f)–(j) As in (a)–(e), but for the 0106 UTC radiosonde launch and the 0105 UTC forecast initialized at 0030 UTC. Members are
color-coded based on PBL scheme: YSU is blue, MYJ is magenta, and MYNN is orange.
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as 10–20 K (Figs. 4c,h). At both times, the observed dewpoint
temperature falls within WoFS member values at most alti-
tudes below 300 hPa, but do so in the midtroposphere only
through large spread among the members of 25 K. Overmixing
in the YSU members results in overprediction of the dewpoint
above the observed PBL top (in the 800–650-hPa layer), while
the local schemes have smaller mean errors that are slightly
below zero in this layer. This indicates, again, that having en-
semble members that use the YSU scheme contribute to the
ensemble spread such that the observation becomes more cen-
tered in the WoFS distribution of forecasts.

The observed profile saturates with respect to ice at 250 hPa as
the radiosondes enter the anvil of the storm, but this is not fore-
casted in WoFS by any members (as identified using simulated
satellite fields). The under forecast of anvil coverage should result
in a positive PBL temperature error as a result of more surface
heating than in reality (Frame and Markowski 2010, Frame and
Markowski 2013); however, the observation still falls within the
predicted temperatures of WoFS ensemble members (Figs. 4b,g).
This may suggest there is a source of a negative temperature error
in the PBL balancing the over prediction of surface heating.

Of the five radiosonde observations (1 far-field, 4 near-field;
Fig. 3), again, only two ascended to the EL and can be used to
compare the observed CAPE to WoFS predicted CAPE. The
ensemble mean WoFS over forecasted mixed-layer (ML) CAPE
(computed from a parcel averaged over the lowest 100 hPa) and
surface-based (SB) CAPE in the near and far field (Fig. 5a). The
CAPE decrease from 2300 to 0100 UTC of ∼300 J kg21 is well
forecasted in WoFS; however, an approximately constant positive
error of 300 (500) J kg21 was present in YSU (MYJ/MYNN),
implying that WoFS over predicted MLCAPE and SBCAPE at
both 2300 and 0105 UTC.

WoFS 0–1-km SRH (01SRH) and 0–3-km SRH (03SRH)
errors (Fig. 6) appear to depend more on time than distance
from the storm. Observations made during the earlier two
times (2235 and 2300 UTC) fall within the ensemble spread
with relatively smaller mean errors compared to the observa-
tions made at the later three times (2355, 0055 and 0105 UTC).
All ensemble members under predicted SRH at these times,
with 01SRH (03SRH) errors from 2100 to 2200 m2 s22

(from2200 to2300 m2 s22) at 0105 UTC. Although it is difficult
to separate the influence of the storm from the usual increase in

FIG. 5. Box-and-whisker plots of (top) MLCAPE (J kg21) and (middle) SBCAPE (J kg21) on days (a) 17 May, (b) 20 May, and
(c) 23 May collected over all grid points within a 15 km 3 15 km area near the radiosonde observation (Fig. 1). The notch in the
box designates the median value; circles represent outliers. (d) The PBL scheme mean parameter value minus the observation
value. Boxplots and table data are color coded by PBL scheme: YSU in blue, MYJ in magenta, and MYNN in orange. All columns
refer to the respective time shown above at the top of the figure. The nearest forecast times are used for comparisons [e.g., WoFS
forecasts initialized at 2200 UTC valid at 2235 UTC for an observation at 2236 UTC; observation–WoFS pairs are shown in the for-
mat of radiosonde (WoFS)]. Radiosondes 2236 (2235), 2355 (2355), and 0106 (0105) did not reach the EL so the respective CAPE
plots are shaded gray and do not include an observed value, which are otherwise displayed as a horizontal black bar. In all panels,
observations made farther than 40 km from the storm (far-field) are shaded in yellow; observations made closer to the storm (near field)
are shaded in red.
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SRH toward/after sunset (Coffer and Parker 2015), SRH values
in the far-field increase by 300 m2 s22 between 2200 and 0100
UTC, which show that WoFS is forecasting SRH increases as a
result of the early evening transition (EET). The forecasted in-
crease in SRH from the EET is still less than the observed in-
crease in SRH, suggesting that WoFS could be under predicting
the magnitude of storm-modification to the environment in the
near field. Note that although the early observation at 2236 UTC
was taken in the near field, the WoFS errors of SRH were much
smaller, perhaps because the storm was in an earlier stage of ma-
turity in which storm modifications did not extend far from the
storm (Peters et al. 2022).

Evidence for weaker than observed storm modification is
also seen when comparing the lidar observed wind profiles to
the WoFS wind profiles (Fig. 7). The winds at all levels of li-
dar data were observed to back (turn counterclockwise with
time) as the storm approached (Figs. 7a–c). Since the lidar
was positioned to the northeast of the storm, this is likely a re-
sponse to the storm-induced low pressure perturbation as the
storm approached the stationary lidar. Observed Vrot esti-
mated from the nearest WSR-88D (KGLD) over this time pe-
riod is nearly constant at 40 m s21 (Fig. 7f; beam heights were
in the 2–3-km range), likely indicating that significant storm
rotation, and associated pressure falls, were mainly responsi-
ble for the backing winds (Davies-Jones 2002). The winds also
back in WoFS forecasts over this period; however, not nearly
as much as in the observations}the predicted u component
changes not more than ∼3 m s21 during the duration of the li-
dar deployment and the observed u component changes by

∼8 m s21 during the same time. At 2230 UTC, winds are more
backed in WoFS in the lowest 500 m AGL than in the obser-
vations [negative u errors in green in Fig. 7e(iii)], but WoFS
winds are veered relative to lidar observations by the end of
the deployment owing to greater backing in the lidar data
winds with the approach of the storm. WoFS winds are gener-
ally too strong above 500 m, with y component errors of
11–3 m s21 [Fig. 7e(ii)].

The trend in UH over the period of the lidar deployment is
examined to explore if the weaker storm modification of the
low-level wind field in WoFS is the result of a predicted storm
too weak to induce sufficient pressure perturbations (Fig. 7f).
Although the UH of the modeled storm cannot be compared
directly to observed Vrot, the lack of a significant backing sig-
nal in WoFS does not seem to be caused by a storm that is too
weak; 0–2-km UH increases to a mean of 90 m2 s22 by the
end of the period (Fig. 7f). These 0–2-km UH values are well
above 30 m2 s22, which is roughly the minimum of the 0–3-km
UH thresholds considered useful as proxies for severe
weather for horizontal grid spacing of 3 km (Sobash et al.
2016), despite integrating UH over a shallower layer. WoFS
may be simply under forecasting the storm-scale feedback be-
tween the low-level mesocyclone and the ambient wind field.

b. 20 May 2019 Mangum, Oklahoma, supercell

The supercell that would eventually produce a tornado
near Mangum, Oklahoma, at 2210 UTC initiated ∼30 km east
of Lubbock, Texas, at 1700 UTC and was observed by the
Frederick, Oklahoma (KFDR), WSR-88D radar during the

FIG. 6. As in Fig. 5, but showing (top) 01SRH (m2 s22) and (middle) 03SRH (m2 s22).
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time period TORUS observations were made (Fig. 8). Out of
11 radiosondes available in this period, 5 were made during
WoFS forecasts and are used for analysis, 3 in the far field
and 2 in the near field (Fig. 9). Signal was lost from all five ra-
diosondes as they were ingested into the target supercell at
∼450 hPa, which leaves no CAPE values to compare to
WoFS. The lidar was deployed twice, observing both the near
and far field from 2030 to 2135 UTC, then for a shorter de-
ployment in the near field while the tornado near Mangum
was ongoing.

As for the 17 May case, the WoFS temperature errors are
less than 2 K in magnitude between the surface and 700 hPa
(Fig. 10). However, the WoFS forecasts near the ground are
too warm at 2035 UTC in most members, with errors up to
2 K in some of the YSU and MYJ members (Figs. 10b,d,g,i).
A possible explanation is a lack of anvil shading in the WoFS
forecasts (evident in WoFS simulated infrared satellite) com-
pared to observations. The 2052, 2050 UTC pair also shows a
positive temperature error near the ground (Figs. 10g,i), but it
extends up to 700 hPa at this location, which is peculiar con-
sidering this radiosonde is 68 km from the supercell (Fig. 9)
and thus likely experiences minimal impacts from the storm.

Given the substantial depth to the positive temperature error,
it is possible that the temperature errors were inherited from
the background conditions provided by HRRRE. Given the
presence of clouds from 900 to 700 hPa, reflecting the moist
environment (Figs. 10a,f), a lack of clouds in some HRRRE
members (seen indirectly by many unsaturated WoFS mem-
ber profiles in this layer) may have resulted in larger insola-
tion than reality.

All radiosondes ascended above 3 km so observed SRH up
to this level can be compared to WoFS forecasts of 0–1-km
SRH and 0–3-km SRH (Fig. 6b). For the observation farthest
from the storm (2034 UTC), the mean of the WoFS forecasts
for both 01SRH and 03SRH are close to the observed values
with mean errors generally less than 40 m2 s22, and each of
the five soundings lies within the distribution of WoFS pre-
dicted SRH values. The YSU members forecast SRH values
that are consistently lower and with smaller spread than the
values forecasted by the other two PBL schemes. MYNN
mean errors are the smallest with a relatively large spread. A
consistent, negative SRH bias emerges for the YSU and MYJ
schemes for the four other soundings. These errors appear to
have no dependence on distance from or orientation with

FIG. 7. Hodograph and wind-component errors plotted against time for the lidar observation from 2230 to 2320 UTC. (a)–(c) Lidar
observed winds, WoFS predicted winds, and a stacked plot of the two at 1-min intervals, respectively. Hodographs are shown for 2230,
2240, 2250, 2300, 2310, and 2320 UTC, with times increasing from lighter to darker shades. In all panels, wind at 0–500 m AGL are rep-
resented with green, winds at 500–1000 m AGL are represented with blue, and winds at 1000–1500 m AGL are represented with ma-
genta. The green, blue, and magenta studs in (a)–(c) highlight wind speed at 0, 500, and 1000 m, respectively. (d) Observed u and y
wind components and speed. (e) The error in the u and y wind components and speed as a function of time (m s21). (f) 0–2-km updraft
helicity (m2 s22) and observed Vrot of the mesocyclone (m s21). Shading indicates one standard deviation among the WoFS members.
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respect to the target supercell. As in Cohen et al. (2017), YSU
members predict smaller SRH values than the local schemes,
and MYJ consistently forecasts smaller SRH values than
MYNN. MYNN displays a small underforecast bias for
01SRH, but is actually a little biased toward overforecasting
03SRH values. Again, the variability in SRH is largest for the
MYNN forecasts for these other four soundings.

During the first of two lidar deployments, the winds were
observed to remain nearly constant with time (Fig. 11) with
only a small backing and strengthening in the y component of
3–5 m s21 noted above 500 m AGL after ∼2110 UTC. The li-
dar was positioned mostly in the far field with the lidar still 35 km
away from the storm at the end of the deployment, perhaps
explaining the lack of a stronger modification to the winds
from the mesocyclone. Also, the deployments occur during
the late afternoon, so any nocturnal cooling related modifica-
tions of the wind field are not expected. An additional poten-
tial contributor to the relatively stable wind profile in this
period is a temporary decrease in observed Vrot (Fig. 11f) be-
tween 2100 and 2130 UTC as a storm merger occurred, which
suggests smaller pressure perturbations within the mesocy-
clone and limited modification of the near-storm environ-
ment. As an example of how pressure perturbations modify

the near-storm environment, a uniform pressure gradient of
1 hPa over 10 km acting on a friction-less solid-body re-
quires about 10 min to result in a wind speed change of
5 m s21. This speed increase would be lower in magnitude
and take longer if accounting for friction effects (turbu-
lence), but the calculation gives an order-of-magnitude esti-
mate to the rapid response time of supercell environments
to changes to the pressure field within the storm. Although
the winds in the WoFS forecasts were weaker than observed
toward the end of the deployment (see u and y component
errors after 75 min in Fig. 11e), the wind profiles evolved
similarly to the observations, with winds backing with time
(a little more so than in observations near the ground).

For the near-field deployment (about 20–25 km from the
updraft; Fig. 12), the WoFS forecast also evolved similarly
to the observations; the observed inflow wind speeds ap-
peared to peak from 2155 to 2205 UTC before weakening as
the storm moved farther away from the lidar (Fig. 12). The
evolution of the WoFS hodographs are similar (Fig. 12b)
with weakening of the winds (and a small veering of the
near-surface winds) with time. However, the predicted wind
speeds are too weak overall in the WoFS forecasts, by up to
6–8 m s21. The wind speed errors in WoFS were mostly

FIG. 8. Radar images from KFDR of the 20 May 2019 Mangum, OK, supercell at 2210 UTC, the time of the
Mangum tornado report. (a) Reflectivity (dBZ) and (b) storm-relative velocity (kt). (c) The dashed oval encom-
passes contours of 45-dBZ simulated composite reflectivity from 30-min forecasts from all 18 WoFS members
valid at 2210 UTC and initialized at 2130 UTC. Different color shading depicts different ensemble members.
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driven by errors in the y component (Fig. 12e). This indi-
cates that the WoFS forecasts again evolved similarly to the
observations near the storm, but with a lower amplitude
relative to the observed winds. In this case, the forecasts
were unable to depict the observed strong low-level inflow
of 25–30 m s21 at 500–1000 m AGL into the ongoing tornadic
supercell from within 40 km from the storm. These lower wind
speed values may indicate weaker predicted mesocyclones and
associated storm-modification than in the observations.

c. 23 May 2019 Pampa, Texas, supercells

TORUS targeted multiple supercells on 23 May, all of
which were tornadic at some point in their life cycles. The
first of the storms initiated close to Amarillo, Texas, over a
southwest–northeast outflow boundary from morning con-
vection. This supercell was nontornadic during the lidar ob-
servation period of 2226–2308 UTC and tracked northeast
through the Texas Panhandle. A second supercell initiated
off the outflow of the first a few miles south of Amarillo and
moved to the northeast away from the boundary. This super-
cell produced a tornado from 0000 to 0030 UTC during the
second lidar deployment from 2330 to 0030 UTC (Fig. 13).
A third supercell tracked along a path just south and east of
the first two supercells and approached the lidar location at
0120 UTC. This later deployment was not used in this analy-
sis owing to an outflow boundary moving over the lidar posi-
tion at 0010 UTC. All three supercells were observed by the
Amarillo, Texas, WSR-88D (KAMA; Fig. 14).

The environment of the first two storms was sampled by
three radiosondes for each storm. Of the four radiosondes that
made it to the EL, WoFS substantially over forecasts both
MLCAPE and SBCAPE at all observation times (Fig. 5c).
The errors are consistently smallest for the YSU members and
consistently largest for the MYJ members. These CAPE errors

appear to be related mostly to low-level temperature errors
that are as large as 4 K in magnitude at 2210 UTC (Fig. 5c).
The MLCAPE and SBCAPE (and low-level temperature) er-
rors are smallest for the last radiosonde observation taken at
0104 UTC, which was by far the farthest from the target
storms (Fig. 13). The lack of saturation near the top of the
PBL in the WoFS forecasts compared to the near-saturated
conditions in the observations (with some contribution from
an under forecast of anvil shading in the model forecasts, par-
ticularly at 2210 UTC) again suggests that low-level cloudiness
was under predicted and led to the CAPE errors (Fig. 15).

Above the PBL in the 2210 UTC observation (800–600 hPa)
and in the 2340 UTC observation (800–700 hPa), however, the
later WoFS forecasts are notably warmer and drier than ob-
served. The observation shows near saturation in these layers
and is suggestive of mesoscale lifting in the storm inflow, simi-
lar to that seen in the near field radiosonde observations of
Wade et al. (2018) (although a contribution from precipitation
evaporating into the inflow from above cannot be ruled out).
This possible lifting also is seen in the 2252 UTC observation
(another near field sounding; not shown); however, the WoFS
forecasts appear to represent this cooled/moistened environ-
ment more accurately, perhaps owing to additional assimila-
tion cycles resulting in more accurate analyses of the storms
and their influence on the near-storm environment.

WoFS more accurately forecasts both 01SRH and 03SRH
on 23 May than on 17 and 20 May. All six WoFS ensemble
mean forecasts have mean errors less than 100 m2 s22 and
commonly less than6 50 m2 s22 (Fig. 6c). However, the ten-
dency of an under forecast of SRH seen in the other two cases

FIG. 9. As in Fig. 3, but for 20 May 2019.

6 These values are typically 10%–15% of observed values and
are considered relatively small given the strong (.200 m2 s22)
0–1- and 0–3-km SRH in the environment.
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also is seen for this case. Peculiarly, WoFS tends to under pre-
dict SRH in the far field more so than in the near field (see
the 0000 and 0105 UTC columns on Fig. 6c). The reason why
WoFS is under predicting SRH in the far field is not clearly
understood, but a possible explanation for this finding, noting
that the far field observations were made later in the evening
and the observed increase in SRH with time, is that the fore-
casted EET timing is off. Another possibility could be that an
accurate WoFS prediction of storm modification is distorted
by initial errors in the mesoscale background forecast pro-
vided by the HRRRE. Among all the soundings, the YSU
scheme commonly under forecasts mean SRH (particularly in
the 0–3-km layer) more so than the other schemes, which was
also found in the first two cases (Fig. 6).

The first lidar deployment lasted 35 min and observed the
near-field environment to the east-northeast of the second of
the three supercells (Fig. 13). The lidar was only able to sam-
ple winds up to 500 m AGL because of low clouds, but ob-
served a backing and strengthening in the winds below that

level (Fig. 16a), as would be expected with the decreasing
zonal distance to the strengthening storm and increasing Vrot

(Fig. 16f). WoFS accurately predicts a small amount of back-
ing; however, as in the 20 May case, the increase in low-level
wind speeds at the time the lidar is closest to the storm
[a 21 m s21 south-southeast wind at 500 m AGL (Fig. 16a)]
is somewhat under predicted by WoFS. This can be seen by
the errors from 22 to 23 m s21 in u and y at 2305 UTC
(Fig. 16e). The Vrot of the storm increases from approxi-
mately 2230 to 2245 UTC, while the UH of WoFS storms is
decreasing, implying that the observed storm is strengthen-
ing relative to the WoFS storms. This could potentially ex-
plain some of the under prediction in the 500 m AGL
inflow wind speed at this time.

The second lidar deployment lasted from 2330 to 0030 UTC
and sampled the near field environment of the second tornadic
supercell (third overall supercell) in the line (Fig. 17). This
deployment begins to the northeast and ends almost due south
of the supercell (Fig. 13). This is a particularly interesting

FIG. 10. As in Fig. 4, but for the (a)–(e) 2034 UTC radiosonde launch compared to the 2035 UTC WoFS forecast and (f)–(j) 2052 UTC
radiosonde launch compared to the 2050 UTCWoFS forecast on 20 May 2019.

L A S E R E T AL . 1795OCTOBER 2022



deployment as the winds backed and strengthened early on,
particularly above 250 m AGL, then veered as the storm
moved north of the lidar after 0000 UTC, causing a strong
meridional increase in the winds at 0005 UTC (Figs. 17a,d).
WoFS initially had small errors in the wind, but forecasts
the opposite trend to what is seen in the lidar observations,
with a veering and weakening of the winds during the first
30 min of the deployment (Fig. 17a). This leads to some of
the largest wind errors among the three case studies with
5–7 m s21 errors common in both the u and y components
toward 0000 UTC (Fig. 17e). After this time, WoFS then
backs and strengthens the low-level winds (resulting in a sud-
den decrease in the y component errors after 0005 UTC),
but the winds are still much weaker in WoFS than in observa-
tions. The time-dependent changes before 0005 UTC suggest
that the storms in WoFS may have been weaker, leading to a
lack of a backing signal in the modeled winds and under fore-
casting the increase in wind speed after 0005 UTC. WoFS
under predicting the strength of the wind field relative to
observations could be a result of a weaker storm (as sug-
gested by the decreasing UH values over this time period;
Fig. 17f), but some of the under prediction is likely attribut-
able to an inability of WoFS to fully resolve the perturba-
tion pressure field in mesocyclones with 3-km horizontal
grid spacing. Finer scale pressure perturbations may be con-
centrated regions of dramatically lower pressure (e.g., tor-
nadoes) that contribute substantially to storm environment
modification (Wade et al. 2018).

4. Summary and discussion

With all predictive models, an evaluation of the predictions
relative to the observed events must be done to assess the
quality of the system. To this end, the overlap between WoFS
forecasts and TORUS 2019 operations allowed for a rare
opportunity to evaluate the quality of WoFS predictions in
hazardous severe weather settings, with specific emphasis
on the feedback between supercells and their environments.
This paper is the first to use Doppler wind lidar observations
to capture this dynamic process with high temporal resolu-
tion time series of vertical profiles of wind that are used for
a time-dependent evaluation of WoFS environmental pre-
dictions. In addition, mobile radiosonde observations pro-
vide thermodynamic information that aids in assessing the
impact on WoFS forecasts from each of the PBL schemes.

Due to the limited sample size available, the observed
trends and potential error sources discussed in this paper can-
not be generalized, yet still provide unique information about
WoFS forecast quality. The radiosonde observations collec-
tively show that WoFS tended to over forecast CAPE in both
the near and far field inflow. It seems there may be an inverse
relationship between WoFS over prediction of CAPE and dis-
tance from the storm (i.e., WoFS errors in CAPE becomes
larger closer to the storm). The CAPE errors were most often
attributable to WoFS being too warm near the ground close
to the storms (e.g., Fig. 4), although small moisture biases also
contributed. The over prediction of WoFS surface tempera-
ture and dewpoint likely relates to WoFS under predictions of

FIG. 11. As in Fig. 7, but on 20 May 2019. Times shown in (a)–(c) are 2030, 2040, 2050, 2100, 2110, 2120, and 2130 UTC.
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anvil-level and low-level cloud cover, leading to larger insola-
tion and evapotranspiration than reality. The YSU scheme
predicted lower CAPE and SRH than MYJ and MYNN, sup-
porting the work of Cohen et al. (2015, 2017) and Potvin et al.

(2020) where they found the nonlocal schemes often under
predicted 03SRH and MLCAPE. The under prediction of
SRH and CAPE in the YSU scheme is thought to be a conse-
quence of more aggressive mixing in the nonlocal versus local

FIG. 13. As in Fig. 3, but for 23 May 2019. The blue dots correspond to the first lidar deployment, which observed the
first supercell, and the red dots correspond to the second lidar deployment, which observed the second supercell.

FIG. 12. As in Fig. 7, but on 20 May 2019. Times shown in (a)–(c) are 2155, 2200, 2205, and 2210 UTC.
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schemes. Although YSU consistently predicts the warmest
and driest conditions, the error of YSU predictions relative to
the other members was case dependent.

Several radiosonde observations provide examples of how
the PBL physics diversity in WoFS provides increased ensem-
ble spread (Figs. 4 and 10a–e). The local schemes predict
cooler, more humid PBLs with negative and positive errors,
respectively, while the YSU scheme forecasts a warmer, drier
PBL with positive and negative errors, respectively. The ra-
diosonde observations fall within the ensemble spread more
often than with any single scheme, leading to ensemble mean
errors smaller than those from the individual members. This
increased tendency to predict the possibility of observations
falling in the spread of YSU, MYJ, and MYNN forecasts of-
ten extends above the PBL; YSU tends to entrain relatively
warm, dry air down into the PBL more than MYJ and MYNN
does, which results in cooler temperatures above the PBL; the

WoFS ensemble mean errors also tend to be smaller than the
individual members in this layer.

Although WoFS often accurately forecasts SRH with mean
error magnitudes less than 50 m2 s22 (generally less than 15%
of ensemble mean SRH), there were several instances, both
from the radiosonde and lidar observations, when the pre-
dicted storm-relative winds were weaker and less backed than
observations in the lowest 1 km. These SRH errors tended to
be largest later in the deployments, suggesting a relationship
between SRH errors and supercell duration. Given that two
of the deployments lasted until after 0100 UTC, it is also possi-
ble that some under prediction of the effects of the frictional de-
coupling of the surface layer with the PBL during the EET
(e.g., Wingo and Knupp 2015) contribute to the lack of backing
of low-level winds in WoFS forecasts (e.g., Fig. 7). However, all
of the near field conditions were observed before local sunset
before the majority of horizontal wind speed increases with the

FIG. 14. Radar images from KAMA of the 23 May Pampa, TX, supercell at 2315 UTC, the time of the Pampa
tornado report. (a) Reflectivity (dBZ) and (b) storm-relative velocity (kt). (c) 45-dBZ simulated composite reflectiv-
ity from 30-min forecasts from all 18 WoFS members initialized at 2300 UTC, valid at 2315 UTC 23 May. Different
color shading depicts different ensemble members. Black contour outlines the same area as in (a) and (b).
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EET tend to occur (Mahrt 1981; Smith et al. 2019). Also, the
20 May case displayed clear signs of a low-level wind response to
a low pressure perturbation with the storm as early as 2100 UTC,
so it is likely that storm-induced flow modifications are present to
some extent in all of the near-field observations. The presented
analysis of the five lidar deployments across the three cases stud-
ies collectively illustrate, and add to the presented evidence from
the radiosonde observations, that the wind field in WoFS appears
to be modified by the modeled storms, mostly in the sense that
the wind field is strengthened in the direction of the supercell due
to the low pressure perturbation induced by the rotating updraft.
However, the extent of the response, seen in both the changes in
wind direction (e.g., backing) and speed, is muted compared to
what was observed. Possible explanations for this muted response
could be a result of errors in the prediction of the size and/or in-
tensity of the mesocyclones or perhaps insufficient grid spacing to
reproduce the observed stormmodification.

It was anticipated that SRH errors related to storm modi-
fication would be more strongly dependent on distance from
the storm, but the first radiosonde observations on 17 and

23 May were near field (both approximately 25 km from the
storm), yet showed the smallest errors for each day. This
suggests WoFS may be under forecasting storm modification of
the environment, not solely in a spatial sense, but in a temporal
sense as stormmodifications of the environment need time to de-
velop fully. This would suggest the differences seen inWade et al.
(2018) could be related to the time needed for pressure gradient
accelerations to increase wind velocities to make an appreciable
difference in SRH, given a supercell that is changing strength at
the time of the observation. This trend is seen clearly on 17 May
in Fig. 6 where WoFS predicts increased SRH later in the
evening, but predictions remain lower than the observations.

5. Future research

Extending this analysis to include more case studies from
TORUS 2019 would be informative. Exploring those data for
trends like the ones found in these case studies could help de-
termine if the behavior identified in this work is representative
of WoFS more broadly and in a quantitative sense. Furthermore,

FIG. 15. As in Fig. 4, but for the (a)–(e) 2210 UTC radiosonde launch compared to the 2210 UTC WoFS forecast and (f)–(j) 2340 UTC
radiosonde launch compared to the 2340 UTCWoFS forecast on 23 May 2019.
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Cohen et al. (2017) highlighted the need for regionally dependent
studies as models may behave differently based on typical envi-
ronmental setups for severe convective weather (e.g., higher
SRH and lower CAPE in the Southeast United States). This
study analyzed WoFS environmental forecasts in late afternoon-
to-early evening supercells during the springtime in the U.S.
Great Plains. Exploring WoFS environmental forecasts near ei-
ther tornadic or nontornadic supercells in other parts of the coun-
try at different times of the day or year would provide WoFS
developers with a better understanding of the biases inherent in
WoFS forecasts among a variety of severe weather regimes (e.g.,
squall lines). With enough observations, the analysis could be
split based on if the supercells are tornadic or not to investigate if
WoFS predicted-environments}and their modifications}may
have important implications on the WoFS ability to discern be-
tween tornadic and nontornadic storms similar to the near-field
composites presented in Coniglio and Parker (2020).

The largest errors in the predicted near-storm environment
in this study occurred in regions where WoFS incorrectly pre-
dicted storm-scale features such as cloud cover or intensity
trends. It is likely that improved storm-scale forecasts in WoFS
will in turn improve representation of storm-modifications to
the surrounding environment. In particular, more accurate pre-
diction of cloud cover near predicted storms offers the potential
to improve representation of the near-storm thermodynamics
(Jones et al. 2018).

The importance of near-storm modification to the ambient
environment on subsequent supercell evolution (Markowski

and Richardson 2010; Flournoy et al. 2020) suggests that
WoFS storm-scale forecasts could be improved with a bet-
ter representation of the near-storm environment in the
ensemble. As WoFS underpredicts the intensity or evolu-
tion of storm modification to the inflow wind field in each
of the three cases examined, numerical experiments on
WoFS configuration could identify the source of these er-
rors. Furthermore, it was found that WRF-ARW simula-
tions produced stronger near-storm modifications to the
wind field compared to the FV3 core (Potvin et al. 2019),
suggesting that considerations of storm modification of the
surrounding environment will be important for successful
transition to the Unified Forecasting System.
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