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Abstract—Achieving reliable and persistent environmental field
estimation in Underwater Internet of Things (UW IoT) is a
challenging problem. Given the need for high-resolution spatio-
temporal sensing in such environment, traditional digital sensors
are not suitable due to their high cost, high power consumption,
and non-biodegradable nature. Further, reliable communication
techniques that avoid retransmissions are crucial for reconstruct-
ing the phenomenon in a timely manner at the fusion center
such as a drone. To address the above challenges, we propose a
novel architecture consisting of a substrate of densely deployed
underwater all-analog biodegradable sensors that continuously
transmit data to the surface digital buoys. The analog nodes are
designed to be energy efficient by implementing Analog Joint
Source Channel Coding (AJSCC), a low-complexity compression-
communication technique, using biodegradable Field Effect Tran-
sistors (FETs). We then propose a correlation-aware Hybrid
Automatic Repeat Request (HARQ) technique to transmit data
from the surface buoys to the fusion center. Such HARQ
technique leverages redundancy in the buoy data (arising from
the correlation of the phenomenon at the analog nodes) to avoid
retransmissions, thus saving energy and time. The performance
of the proposed analog sensor design and of the correlation-
aware HARQ communication technique has been evaluated via
simulations and shown to achieve the desired behavior.

I. INTRODUCTION

Overview: The Underwater Internet of Things (UW IoT) [1]
is a novel class of IoTs enabling various practical applica-
tions in aqueous environments such as oceanographic data
collection, pollution and environmental monitoring, tsunami
detection/disaster prevention, assisted navigation, and tactical
surveillance [2], [3]. A new design has to be envisioned for
sensors/things in UW IoT as traditional digital sensors are
expensive (cannot be deployed in high density), high-power
consuming (need to be put to sleep, thus losing temporal
granularity), and finally pollute the environment. Moreover,
similarity/correlation can generally be observed both in the
underwater phenomenon as well as in the channel used for
communication, which can be leveraged to improve efficiency.

Motivation: Firstly, for the UW IoTs to be a success-
ful technology, the “things” or sensors should be able to
capture high temporal and spatial variations of multiple
manifestations—such as temperature, salinity, potential Hydro-
gen (pH)—of the phenomenon in the underwater environment.
This requires high-resolution (in both time and space) sensing.
Traditional digital sensors may not be the right candidates for
such scenarios, as they: (i) Have high power consumption,
because of which they are put to sleep based on specific
duty cycles; moreover, existing sensor-encoding solutions use
all-digital hardware, which demands high power and circuit
complexity; as such, when the phenomenon exhibits high
temporal variation, their batteries drain fast. (ii) Are expensive,
making them a costly choice for high-density deployment,
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Fig. 1: A novel sensing architecture for real-time, persistent water monitor-
ing using biodegradable analog sensors with Analog Joint Source-Channel
Coding (AJSCC) capabilities as substrate above which lies the traditional
Wireless Sensor Network (WSN) consisting of digital surface buoys drift-
ing on the water communicating among themselves and occasionally to a
fusion center (e.g., drone) using correlation-aware Hybrid Automatic Repeat
Request (HARQ) technique to reduce costly retransmissions.

which is needed to track a phenomenon with high spatial
variation. (iii) May pollute when deployed in water bodies
as the material used in the manufacturing of such sensors
is not biodegradable; currently, most electronics are typically
made with nondecomposable, nonbiocompatible, and some-
times even toxic materials, leading to ecological challenges.
Secondly, when the sensors are densely deployed, the
recorded values may be spatially and/or temporally corre-
lated. Since communication of a large amount of measured
data between the nodes results in large overhead (in terms
of energy, time, and bandwidth), conventional point-to-point
communication techniques at the physical and Multiple Access
Control (MAC) layers generally fail to provide the required
functionalities for such scenarios [4]. A reliable communica-
tion technique that takes into account the spatial and temporal
correlations of the phenomenon to avoid costly retransmissions
and thereby save energy and time resources is greatly needed.
Our Vision: To address the above challenges, we envision
an architecture for the UW IoT system, as shown in Fig. 1,
where the analog nodes in the underwater biodegradable
substrate transmit data continuously to the digital surface
buoys in the traditional Wireless Sensor Network (WSN),
which aggregate and transmit the data to the fusion center
(e.g., a drone). The underwater analog biodegradable substrate
consists of wirelessly-transmitting all-analog sensors with
Shannon-mapping [5] capabilities, a low-complexity technique
for Analog Joint Source-Channel Coding (AJSCC) [6]. We
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propose an ultra-low power realization of Shannon map-
ping using characteristics unique to semi-conducting devices
(specifically the input-output relation of a single Metal Oxide
Semiconductor Field Effect Transistor (MOSFET) transistor),
so that the sensors can be powered using only sustainable
energy-harvesting techniques rather than polluting metal bat-
teries. Such low-power/low-cost design allows sensors to be
deployed in high density (thus enabling high spatial resolution)
and also to sense continuously without the need to go into
sleep modes (thus enabling sensing persistence/high temporal
resolution). Since our analog nodes rely on energy-harvesting
techniques to power themselves, they cannot afford long-range
transmissions, i.e., that they need to be close to the buoys.

The sensors employ Frequency Position Modulation and

Multiplexing (FPMM) [7], which allocates a specific fre-
quency to a specific value of a specific node to communi-
cate with the surface buoys. Biodegradable Micro Electro-
Mechanical Systems (MEMS)-based acoustic transceivers with
ranges of few meters are a perfect fit to our scenario. The
digital surface buoys decode the values received from the
analog sensors, i.e., they perform the reverse operation of
Shannon mapping. Since the data received at the surface
buoys could be redundant (due to correlation in the underlying
phenomenon), as shown in Fig. 1, the digital buoys elect some
of them to be “representatives” of the other buoys. Only these
representative buoys transmit data to the drone (indicated in
red as TX in Fig. 1). Further, the representative buoys employ a
novel correlation-based closed-loop Hybrid Automatic Repeat
Request (HARQ) solution to transmit data to the drone. Such
a technique leverages the similarity and correlation of the data
to avoid costly retransmissions and thereby save energy, time,
and bandwidth resources, thus enabling a timely reconstruction
of the phenomenon at the fusion center.

Our Contributions: Our contributions are as follows.

e We propose to use a MOSFET’s drain-source current
(Ips) vs. drain-source voltage (Vpg) and gate-source
voltage (Vgs) characteristic curves as a space-filling
curve to perform Shannon 2:1 mapping, where Ipg en-
codes Vpg and Vg values, resulting in a low-power/low-
complexity all-analog encoding/compression technique.

o We introduce a reliable correlation-based HARQ to trans-
mit data between the buoys and the drone that leverages
the correlation of the data to avoid costly retransmissions;
we adopt chaotic Direct Sequence Spread Spectrum (DS-
SS) to guarantee secure buoy-drone transmissions.

e We validate the proposed sensor-encoding and
correlation-aware HARQ techniques in terms of
functionality using Spice and MATLAB simulations.

Paper Outline: In Sect. II, we go over the state of the art

and similar research in the literature. In Sect. III, we discuss
our proposed solution including the low-power, low-cost sen-
sor design needed for the analog biodegradable substrate and
the proposed correlation-based HARQ technique. In Sect. IV,
we present the simulation results and discuss the benefits of
our solution. Finally, in Sect. V, we draw the main conclusions
and discuss our future work.

II. RELATED WORK

We position here our work with respect to state-of-the-art
research in low-power, low-cost sensor design, and reliable
UW and terrestrial communication/channel coding techniques.

Sensor Design: All of the existing realizations of
AJSCC [7], [8] are in the digital domain [9], except [10]
where Zhao et al. proposed an analog circuit realization of
AJSCC using Voltage Controlled Voltage Sources (VCVS) and
Analog Dividers resulting in power consumption of the order
of 90 W. This is still high (considering additional overheads)
to be powered with energy-harvesting techniques, which pro-
duce few 10’s of W [11]. On the energy-harvesting front,
Toma et al. [12] proposed an underwater energy-harvesting
system based on plucked-driven piezoelectric system with a
maximum power density of 0.35 uW/mm3. There is ongoing
research work in the domain of biodegradable electronics. For
example, Bao’s research group [13] developed water stable
Organic Field Effect Transistors (OFETs) for aqueous sensing
applications. There are also works in the domain of ultra-
low power transceivers [14] and, in particular, biodegrad-
able MEMS transceivers for our sensors. Kim et al. [15]
presented ultra-low power transistor-based transceiver designs
with power consumption of the order of 50 W and a range
of a few meters. For more related work in the above domains,
refer to [8]. All these works suggest that our vision of analog
biodegradable sensors that are ultra lightweight, low power,
and low cost as the sensing substrate is a feasible approach.

Reliable Communications: To improve the accuracy and
efficiency of a system that exhibits spatial and temporal corre-
lations [16], an Error Control (EC) strategy with acknowledg-
ment such as Hybrid Automatic Repeat Request (HARQ) [17],
[18] can be exploited. A type-I HARQ discards the erroneous
received packet and repeats the same packet retransmission un-
til the error is corrected. However, if the channel is not in good
condition, e.g., when in deep fade, the predefined FEC might
not be adequate and the throughput may drop again because of
multiple retransmissions [19]. While more efficient than type-I,
a type-II HARQ requires a larger buffer size and has a higher
complexity. It adapts itself with the channel in such a way
that it first transmits the packet along with the error detection
bits when the channel is good. When the channel becomes
worse and after detecting the erroneous packet, a NACK is sent
back and—rather than retransmitting the same packet as type-
I does—FEC information is transmitted to help decode the
stored packet in the receiver’s buffer. If the error persists, a sec-
ond NACK is issued and the same FEC might be retransmitted
or extra FEC might be added depending on the coding strategy.
Incremental Redundancy (IR) HARQ, which shows a higher
throughput efficiency in terrestrial time-varying channels, adds
extra redundant information in each round of retransmission
after receiving the NACK message [20]. Terrestrial standards
such as High Speed Packet Access (HSPA) and Long Term
Evolution (LTE) have exploited HARQ synchronously for
the uplink, and asynchronously in the downlink direction.
The requirements for designing a network-optimized HARQ
for the fifth generation (5G) of mobile communications is
discussed in [21]. Given the necessity of supporting futuristic
applications such as UW IoT, we believe that a new design for
HARQ that leverages the correlation in the data is essential.

III. PROPOSED SOLUTION

In this section, we explain the important constituents of
our architecture viz., energy-efficient analog biodegradable
substrate (Sect. III-A) and the correlation-based HARQ tech-
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Fig. 2: 2D Shannon mapping (2:1 compression) realized via output charac-
teristics (/45 vs. Vs for different Vys) of a MOSFET in saturation region.

nique that leverages the correlation in the buoy data to avoid
retransmissions between the buoys and the drone (Sect. III-B).

A. Energy-efficient Analog Biodegradable Substrate

We introduce here AJSCC and preset our novel idea of using
MOSFET to realize rectangular AJSCC; we then describe
the communication technique adopted by analog sensors to
transmit data to buoy, followed by decoding and localization
of the analog nodes at the buoy.

Analog Joint Source Channel Coding (AJSCC): Joint
Source-Channel Coding (JSCC), also known as Shannon map-
ping [5], compresses two (or more) signals into one. JSCC
achieves this using a space-filling curve where the x-axis signal
is continuously captured while the y-axis one is quantized (let
us denote the amount of quantization as ¢). The sensed (z,y)
point is mapped to the closest point on the curve and the
encoded (compressed) value is a property of the curve, e.g.,
length of the curve from the origin to the mapped point. To
achieve the low-power/low-complexity advantages of JSCC,
this technique needs to be realized in the analog domain—
hence the name Analog JSCC or AJSCC [9]. However, AJSCC
is hard to realize on hardware in a power-efficient manner; this
is especially important when the sensors are powered using
energy-harvesting techniques [11].

FET-based Encoding at Transmitter: Power is of utmost
importance in biodegradable sensors as they are powered using
energy-harvesting techniques that can deliver power of the
order of ten’s of uWW. Hence, there is a need to realize a
simple implementation of AJSCC for substrate sensors. To
this end, we present the idea of using a FET device’s output
characteristics to perform the encoding. Ideally, any new
space-filling curves for AJSCC should preserve these proper-
ties: (¢) they should achieve better trade-off between channel
noise/compression and approximation noise; (¢¢) they should
be realizable using all-analog components; and (i7¢) they
should result in a unique mapping (i.e., two or more sensor
values should map to only one AJSCC encoded value). Given
these desirable properties of a space-filling curve, we propose
the idea of using the IV (current-voltage) characteristics of a
MOSFET as the space-filling curve (instead of using rectangu-
lar parallel lines as in [10]). A MOSFET has three terminals:

Gate (G), Drain (D), and Source (S). When a suitable voltage
is applied across the G and S terminals, V,, and the D and
S terminals, Vs, a current is generated across the D and S
terminals, I4,. The relationship between Vs, Vs, and 14, for
a real MOSFET in the saturation region (Fig. 2) is,

1 W
Ids - 2 L 1

where W, L [m] are width and length of the MOSFET channel,
respectively, 4 [m?/Vs] is the electron mobility in the channel,
Coy [F/m?] is the oxide capacitance per unit area, and A [V 1]
is the Channel Length Modulation (CLM) parameter. Because
of CLM, I, keeps increasing at a very slow rate (governed by
Vys and other parameters) as Vy, is increased in the saturation
region. Fig. 2 shows these I, curves in the saturation region
to the right of the dashed line (linear region curves are not
drawn for clarity), generated via Spice, where V is varied
in the discrete set, 0.2,0.3,...,1 V (28 nm Silicon technology
MOSFET is used for illustration purpose). We notice that the
slope of the current curves increases as V, increases due
to CLM, which we leverage to perform the decoding at the
receiver, as explained below. 1,4 encodes the values of V,, and
Vs (as opposed to extracting the length of the curve from the
origin to the mapped point, as in [10]). It is necessary to have
a discrete set of y-axis (V) values, and the actual y-axis value
is mapped to the nearest value from the set and applied to the
MOSFET to generate the encoded current (Fig. 2).

We propose the idea of using these saturation-region char-
acteristics of a MOSFET with channel length modulation to
fill the space, where I;, encodes the values of V,, and Vy,
It should be noted that the shape of the output characteristics
(as vs. Vg, for different V) of a biodegradable MOSFET is
similar to that of regular Silicon MOSFET (as shown in [22]).
Moreover, the current generated of the polymer MOSFET
in [22] is of the order of few pA; with a supply voltage of
1V, this will result in few W of power consumption, which
can be supported by energy-harvesting techniques. While the
proposed MOSFET-based space-filling technique satisfies ()
and (¢7) properties mentioned above, it violates (¢i7) as a given
145 value could be generated from multiple pairs of V,, and
Vas values as illustrated in Fig. 2. This is problematic as it is
difficult to decode the correct Vy, at the receiver. To address
this challenge, we propose a decoding technique at the digital
receiver based on the previously received Iy, value.

Frequency Position Modulation and Multiplexing: The
analog sensors will be communicating to the receiver (digital
buoy) using Frequency Position Modulation and Multiplex-
ing (FPMM) as explained below. Assume that there are N
analog nodes communicating with a digital buoy (i.e., the
buoy is within the communication range of the analog nodes).
Assume the AJSCC encoded I, current values at each analog
node are quantized into () levels and the total available
bandwidth is B. This bandwidth is then divided into N x @
frequency bins, and each bin is assigned to a particular value
of a particular node. Assume V,,, represents the value level,
g, of node n, where ¢ € {1,...,Q} and n € {1,...,N}. The
assignment of frequencies to values and nodes is such that
same value level of all nodes, i.e., frequencies corresponding
to {Vig, ...Vng} for any g, are adjacent to each other (call it a
frequency band) to ensure lower interference. While a linear
mapping can be done between value levels and frequency

Coa: . (Vgs - Vth)2 . (1 + )\Vds)7 (1)
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Fig. 3: Localization of sensors into subregions by the buoy based on
directionality (“A”), received power (“P”), and depth-encoded pressure (“D”).

bands, such simplistic mapping can pose two problems: (i) if
the phenomenon is correlated and all the nodes sense same
value, their frequencies are close to each other; if an inter-
ference happens at the location of these frequencies, all data
is lost; (ii) susceptible to eavesdropping. Consequently, it is
desirable to design an analog scrambling mechanism [23] that
scrambles the assignment of frequencies to values in a random
manner that is known only between the nodes and the receiver.

Decoding at Receiver: We assume that the discrete set of
Vys values used at the analog nodes for encoding is known
at the digital receiver. The decoding process relies on the
assumption that physical values do not change abruptly and
hence two consecutive received I, values at the receiver will
lie on the same I;s curve (i.e., corresponding to a particular
Vys value). The probability of them lying on different I,
curves (i.e., corresponding to different V¢ values) is low as the
two consecutive values would have sensed similar values (i.e.,
the sampling rate at the sensor is more than the rate of change
of the phenomenon), would have experienced similar wireless
channel conditions (i.e., the sampling rate at the sensor is more
than the rate of change of channel) and hence would belong
to the same I;; curve. The challenge then lies in identifying
the correct Vg, value out of the discrete set of Vj, values
used at the transmitter using these two consecutive 145 values.
For this purpose, we designed a slope-matching technique as
follows. We calculate slope 1 using (1) and slope 2 assuming
all possible values for V;, and using the geometric two-point

formula. Slope 1 can be calculated as A - (7, éi) +1 U(li)) /2. For
all the possible V,, values, the receiver solves for Vd(s1 ) and

Vd(f) from Ié? and I((ii). Then it calculate slope 2 using the
two-point formula. We then choose that V,; whose slope 2
matches closest with slope 1 and with its corresponding Vs

(for IC(I?) as the decoded Vs and Vj values.

Quantization and Power Consumption: For the above
decoding to work, it is necessary that the V, is quantized at
the transmitter before feeding to MOSFET. We have designed
a precircuit in [24], that quantizes V, at multiple quantization
levels. Specifically, for 9 levels, the power consumed is
~ 24 W, with possibility of 8 pyW. Transmission power is
around 50 pW using MEMS-based transceivers with a range
of few meters [24]. Hence our sensors can be powered using
energy-harvesting techniques, which produce tens of W [24].

Localization at Receiver: Localization of sensor nodes at
the buoy is essential to help visualize how the phenomenon
varies with space and time. However, the traditional approach
of assigning unique IDs to nodes entails additional cost and

overhead and is also unscalable [25]. We instead propose a
scalable location inference technique that uses a combination
of three methods—directionality, received power, and depth-
encoded pressure, as shown in Fig. 3. We will now illustrate
these three techniques using a simple example. Since the buoy
is digital, we assume it can determine the direction of the
received signal using specialized hardware such as acoustic
vector sensors. For illustration, assume it is able to distinguish
among eight directions/angles, indicated as Ag,..., A7, in
Fig. 3. Next, if the nodes transmit with a fixed amount of
power, the power level of the signal received by the buoy
at short ranges varies with the distance between the buoy
and the node [26]. Assume the buoy is able to distinguish
among four received power levels, Py, ..., Ps. Finally, it is
well-known that the pressure varies with depth. The buoy can
extract this information if the nodes sense pressure for Vg,
(along with other manifestations such as Salinity for Vys).
This can be done only occasionally using a simple analog
timing circuit. Since the final AJSCC encoded (/;5) values
are quantized to ) levels as mentioned above, the buoy can
only distinguish among, at maximum, () pressure levels. These
are indicated as Dy, ..., D3 in Fig. 3 for ) = 4. The pressure
levels help reduce the location uncertainty for a given angle
and power level, as shown in Fig. 3. Within a given angle
level (Ap) and power level (), it is possible that the sensor
could lie anywhere on the dashed curve originating at Ps.
However, since the pressure/depth level corresponds to Dy,
the uncertainty has been reduced. We call the largest area that
can be localized using a combination of these three methods
as a subregion. The buoy, upon localizing all its analog nodes
into the above subregions, averages the (decoded) values of
all nodes within the same subregion. Instead of transmitting
the data from all the subregions to the drone, the buoys first
estimate the correlations among the subregion data and elect
among themselves certain representatives (called transmitter
buoys), i.e., only those whose data is transmitted to the drone.
A correlation-aware HARQ technique is used between the
buoys and the drone to avoid costly retransmissions which
is explained in the following section.

B. Correlation-based HARQ Technique

In this section, we present our correlation-based HARQ,
which employs a chaotic DS-SS to avoid interference.

Spatial and Temporal Correlations: Let n;,{i =1,..., N}
denote N subregions with the location index L; € L. C R?,
where L denotes the 3D environment’s space. The data is
shown by matrix P = [P, ..., Py]. The ith column of P, cor-
responding to subregion L;, consists of data from the K man-

ifestations, i.c., [P]; = P = [V (t), .., v (1), ..., ) (1)].

Definition 1. For the subset of interconnected subregions

Li, {t =1,.... N} CL, let the spatial correlation between

two sampled values wgk)(t) and wyC) (t) with means yz(.k) and

®) and o)

i J
o _ B0 - @ —u®)]

= - ! 2)
irj o) (k) ’

g;k) and standard deviations o , at time t, be as

g;

where E[.] represents the expectation value and the time
notation is dropped for simplicity.
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Fig. 4: State transition diagram for a buoy in a correlated set. In the active
mode, i.e., (I) — (IV), the buoy starts the HARQ process with the highest
similarity chosen as the data transmitter. If a NACK is issued, whether the
FEC transmitter is chosen via (1), or the buoy becomes a collector via (V).
If FEC fails, the data is dropped and the next data is transmitted via (V).
If the correlation and similarity of data transmitter drop below a threshold,
it demotes to a collector via (VI), until the estimator is activated after a
specific time via (V' III) to check whether it is qualified to switch the role.

Definition 2. Let the spatial correlation be a function F(.)
of the distance between two locations L; and L; as in

E[(?/)Z(k) —%gk))(wék) —%gk))} = F(L;— L;). The subregions

are correlated when C’Z-(’k-) > Ct(,]f), where C’t(;f) is the spatial
correlation threshold. The correlation matrix for the manifes-
tation k is symmetric and is defined by [C¥)], ;= C’Z-(’];).

Definition 3. The measured data of a manifestation k in subre-
gions i and j are said to be similar if the normalized difference

of their means is less than a threshold (1 —ng)), where SE:) is
the similarity threshold, i.e., 1 — | 92@ - gﬁk) \/gﬁk) > Sé;f).

Definition 4. Temporal correlation is defined as the degree
of correlation for which two consecutive sampled data at the
buoy are correlated. In other words, the amount of correlation
does not change within the time T < TE, where T7’§ is
the temporal correlation of the k-th manifestation. It can be
concluded that C’i(f;) t+71)= C’i(f;i) (t) and so the expectation
of the random variable 1; is constant.

Each buoy at a time has one of the roles of a data
transmitter/FEC transmitter (active mode), a collector, or
an estimator. The transition among the roles is decided by
the phenomenon’s correlation/similarity and also the feedback
command given by the drone as shown in the state diagram,
Fig. 4. Data transmitter role is decided based on two factors:
the highest similarity, arg max(S;;), and spatial correlation
greater than a threshold C;; > Ciy; the control command
from the drone. If the data transmission is not successful and
the drone issues a NACK, the buoy’s state will change from
data transmitter to FEC transmitter as shown in (I7). Drone
could turn the buoy’s role to a collector if it decides to not
receive any data from the same buoy, as shown in (V') and
(VI). An estimator is a collector that has started to evaluate
whether its newly received data from analog nodes is still
correlated and similar to that of its data transmitter buoy or
not. It changes its state to become a data transmitter if there is
a significant variation in the spatial distribution of its data over
time as shown in (X). The two main communications aspects,
intra-cluster communications (among the buoys) and inter-

cluster (between the data/FEC transmitters and the drone) are
discussed in the following sections.

Intra-cluster Chaotic-based Spread Spectrum: Code Di-
vision Multiple Access (CDMA), as both physical-layer and
multiple-access techniques, can be beneficial to handle the
destructive effect of frequency-selective fading, as well as the
simultaneous reception from multiple transmitting devices by
using an appropriate spreading, especially in an IoT network.
Furthermore, given the security dedicated in chaotic CDMA’s
nature, the jamming attacks as a critical malicious threat can
be satisfied [3]. Although Pseudo-Noise (PN) sequences have
been extensively employed in DS-SS, considering their limi-
tation in the number of sequences and their cross-correlation
properties, [27] proposed using chaotic sequences through an
uncomplicated deterministic dynamic map such as in Logsitic
map [28]. Chaotic systems can produce an infinite set of un-
correlated sequences and can provide secure communication.
Similar to the PN sequences, they look like noise but unlike
PN, chaotic codes are not binary and are different for every
bit of transmitted data which makes it much harder for an
eavesdropper to regenerate the sequence. The use of a dis-
tributed CDMA scheme, supporting an adaptive EC strategy,
can therefore increase the channel reuse and reduce packet
retransmissions in scenarios with a large number of buoys,
thus increasing network reliability while decreasing the energy
consumption. While conventional EC strategies consider only
point-to-point data protection, more efficient techniques are
required in such applications in which (i) the buoys have
some sort of similarities and correlations in time or space
in the measured data; (éi) the importance of phenomenon
monitoring is higher than protecting of each buoy alone;
(7i7) the communications overhead is huge—since multiple
buoys communicate with each other and with the drone—
and so a scheduling is required. To support reconfigurable and
flexible IoT applications in which the number of simultaneous
transmissions is not known in advance, chaotic sequences can
be a good candidate to support any number of transmitters.
Chaotic sequences not only provide the security in the channel,
but also possess a considerable robustness due to their good
auto-and cross-correlation properties.

Inter-cluster Correlation-based HARQ: The transmis-
sion process is conducted in an environment in which the
phenomenon’s manifestations change from time to time as
represented by temporal and spatial correlations of the phe-
nomenon. Therefore, an appropriate multi-point EC strategy
should (i) take advantage of the defined correlations of
data/FEC transmitter buoys versus collector and estimator
buoys for efficient decoding by increasing the probability of
successful decoding in each round; (ii) reduce the probability
of retransmission and also the communications overhead with
a correlation-based coding, while the temporal correlation of
the phenomenon is long enough; (ii7) pause the decoding
process and go for the retransmission, while the temporal
correlation of the phenomenon can not be ignored.

As portrayed in Fig. 5, buoys are shown on the left with
numbers 1,2;... while the drone stands on the right side
of the diagram. Each data transmitter buoy broadcasts its
packets through independent channels to the other buoys and
to the drone (within a single-hop distance). As an example,
a conservative approach is taken in case (a), since no a-

Authorized licensed use limited to: Northeastern University. Downloaded on January 25,2023 at 15:21:22 UTC from IEEE Xplore. Restrictions apply.



2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

5% ‘[ Correlated buoys ]‘ M Drone ]ﬂ Correlation &
¥s) similarity detector
@
) (a) Decoded E

Reconst. E
(b) Decoded

zonst

ESTIMATOR

[ ] oaraTransmimTer ] 1] erroneous data

[] FeCredundancy PN couector

Fig. 5: Proposed protocol for data transmission to the drone via a correlated set
of buoys—shown with numbers 1, 2, .... Spatial and temporal correlations are
considered in decoding. Conservative and borderline approaches are compared
in cases (a) and (b).

priori information is available beforehand. Assume the decoder
successfully decodes all the packets, except 3. Here—instead
of issuing a NACK as in the conventional HARQ—buoy 3’s
data can be reconstructed using the correlation among the other
decoded data. The cost is the extra error in estimating the
corrupted data; however, it can be ignored if buoys are highly
correlated. In case (b), the borderline approach is considered to
avoid the excessive redundancy (communications overhead) of
case (a) and to reduce the interference by using only 1 and 2 as
the data transmitter while 3 and 4 are changed to collector and
estimator, respectively. Assume the data from 1 is erroneous
while 2 is still decodable. Again, 1 is reconstructed without
any extra FEC with the cost of more reconstruction error.

Fig. 6 presents two cases (c) and (d) in which both the
received data—such as those of 2 and 3—are erroneous. The
corrupted data is recoverable, if the temporal correlation of
the phenomenon is valid at that time instant and available at
the drone, as shown in case (c). If this condition does not
hold—which is the scenario in case (d)—since the overall
information is not enough for making the decision, 3 is
notified to send the FEC information by switching to the
FEC transmitter role. The extra information in 2* and 3*,
combined with the data from 1 and 4, help the decoder to
have both the conventional HARQ and the spatial correlation
properties. Therefore, the decision is made on 2 and 3 based
on the tolerable amount of reconstruction error in 3. We
define three different notions of time in our coding scheme,
as shown in Fig. 6. HARQ timer, T AR, is used to show the
transmissions/FEC transmission time (for erroneous packets)
for every round of communications. Correl. timer, Tcorr,
represents the time within which data transmission/decoding
can be done consecutively based on the temporal correlation of
the phenomenon. This time is less than or equal to T’p. If the
data is not acknowledged in T arqQ, but Tcorr >> THARQ,
then the data can be recovered without retransmission as
explained in case (c). Struc. timer, Tis¢r,, 1S the time in which
the structure is almost constant. Therefore, outside of this time
period, the correlated sets should be reconsidered, because
of the analog node movement. In this case, the extra FEC
or using the correlation might not be helpful; therefore, the
retransmission of the original/new data using new set of buoys
will be the solution for time ¢ > Tg¢yq,-

Data Reconstruction: Based on the renewal-reward theo-

Correlation &
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M Correlated buoys ]‘

(o )
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Decoded Iz'
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Fig. 6: Proposed solution when the packets are corrupted. Case (c) leverages
the temporal correlation while case (d) uses spatial correlation via combined
data and FEC. Three timers are defined; HARQ timer for each round of
transmission; Correl. timer for the duration of temporal correlation; and
structure timer for the time that the structure of the network is unchanged.

rem [29], let the HARQ long-term throughput for buoy i be
n; = E[X;]/E[T;], where E[X;] and E[T}] represent the num-
ber of decoded information nats and the number of attempts
for channel use during a packet transmission period for buoy
i, respectively. E[X;] is defined as E[X;] = X;(1 — Pr,),
in which X; is the number of information nats for a packet
and Pr,; denotes the probability that the data is not de-
codeable during a packet transmission period. We consider
an alternative packet which comes from a correlated buoy j
with the correlation coefficient C; ;, and Pro(j) < Pro(i), ie.,
the communication channel that j experiences is better than
©’s channel. We conclude that R; < R;, where R stands for
the maximum number of transmission rounds in the HARQ.
The probability of decoding in round R; for buoy ¢ given that
the data has not been decoded in the previous R; — 1 rounds
is equivalent to Pr (NACKj, ..., NACKg,_1,ACKg;). As-
sume at every round r, for all the acknowledged buoys
in the same correlated set, there exists at least a buoy j,
where R; < R;. j is chosen as argmax C;;. There-
fore, R, = min[R;,R;] and so it is a function of the
correlation between i and j. Then, E[T;] can be defined
as E[T;] = Y X,, Pr(NACK;,..,NACK, ,,ACK,),
where X, stands for the part of HARQ data which is trans-
mitted at round r from buoy i. E[T;] can be simplified in two
terms as E[T;] = 17" X;, Pr (NACK;, ..., NACK, ;) +
XJ r; Pr (NACKl, . ACKR/) [30]. Here, the total data trans-
mission from buoy j up to the end of round R} is shown with

Xjr = ET 1 X . The content of X; is correlated with X;
within the temporal correlation Tp. Since their data are not
exactly equal, this leads to an uncertainty related to the amount
of C; ; with the benefit of avoiding R; — R/ rounds of HARQ
retransmissions and having a better long-term throughput.
When the data is transmitted from buoy ¢ to the drone,
it is polluted with the noise and affected by the fading and
the interference. We assume the received signal X; at the
drone follows an Autoregressive time series model of order
one, i.e., AR(1). That is at time instant t,,, X; [t,,}] = p+
p(Xi[tm — 1] — 1) + €;, where p is the mean of X, ¢; is a
zero mean unit variance independent Gaussian process, and p
is the autoregression parameter which is related to the temporal
correlation of the phenomenon. Assume we take p = 0 for the
sake of simplicity. For —1 < p < 1 and for any discrete

Authorized licensed use limited to: Northeastern University. Downloaded on January 25,2023 at 15:21:22 UTC from IEEE Xplore. Restrictions apply.



2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

&

o
©

o
®

o
N

o
=

o
IS

~—e— node number = 50

[ |= © = node number = 100
w90 node number = 200
[ |==#==node number = 300
| |=#—node number = 400
- < - node number = 500

Miss Detection Rate [%)]
o
o

o
w

Drain-to-source Voltage (V ds) ™M
o
S

o

4r + Input
O Decoded

40 —.—\/gs Levels=10
-0~ Vgs Levels=30

Localization Accuracy [%]
o
3

wegenn Vo Levels=50
gs

===V Levels=70 e
10 |—p—V,, Levels=00 3

1 15 2 25 3 35 4 45 5
Gate-to-source Voltage (Vgs) v

(a)

, o
&
3

-55 -50

()

SNR [dB]

P >
45 -40 -35 30 2 4 6 8 10 12 14 16 18 20
Number of Pressure Levels

(©)

Fig. 7: (a) Decoding results for ¢ = 0.5 V when no correction logic is used; (b) Miss Detection Rate vs. SNR as the number of nodes is varied; (c) Localization
accuracy vs. number of pressure levels as the number of AJSCC quantization (Vys) levels are varied.

1000

a
=
3

Sensor node coordinates Y (m)

o
o -
T

1000

500
Sensor node coordinates X (m)

(a) (b)
Fig. 8: (a) Digital nodes (buoys) random distribution on the water surface
(A). Drone (%) passes by each region (shown by Roman numbers) to fuse
the data; (b) Magnified view of region /1 with different degrees of correlation.
Different colors show how the buoys are correlated.

time lag to, Cov(Xi[twm + to], Xiltm]) = p' /(1 — p?) [31].
Here X;[t.], Xi[tm — 1],... form a Markov process given
that channel coherence time (1) is greater than the time
window between two successive received samples %, and
tm—1. Note that in addition to the noisy measured data by
analog nodes, other layers of error are added to the data
when it is received by the drone. Therefore, the difference
between the measured value of the transmitter buoy and
other buoys in the same correlated set is not zero. The
transmitted data from ith transmitter buoy can be written as
P+ &, + Ei, where &, and &.; represent the sensing
error and communications error related to the transmitter buoy
i, respectively. This signal is transmitted through channel h;
and is received at the drone as X;. The phenomenon can be
estimated as P = F ( 252:1 X; + N'), where F(.) represents
a data extraction function, and N is the background AWGN
noise present in the environment. Therefore, the reconstruction

error, Eyec, 1S defined as & .. = )73 —73’ Considering the

number of buoys transmitting in each round of transmission,
the goal is to increase the performance by reducing the com-
munications overhead and destructive effect of other buoys,

~ 2
i.e., to minimize HP — PH , using appropriate channel coding.

IV. PERFORMANCE EVALUATION

We evaluate the performance of the proposed techniques
via MATLAB and Spice simulations, first analog sensor design
including FPMM and localization techniques (Sect. IV-A); and
then the correlation-based HARQ technique (Sect. IV-B).

A. Analog Substrate and Buoy

MOSFET Encoding and Decoding: In order to evaluate
the MOSFET-based encoding and decoding techniques, we

used a 0.18 pm technology n-channel MOSFET (nMOS)
with W - i+ Cor /L = 155 x 1076 F/Vs, Vi, = 0.74 V,
A = 0.037 V~! in LTSpice simulation software. V, is
varied from 4.5 to 10 V, in increments of 0.1 V. The reason
not to start from 0 V is to ensure that the MOSFET is
well into the saturation region. Discrete set of Vg, values
in the range [1,5] V as per ¢ = 0.5 V are considered,
e.g., Vgs = 1,1.5,,...,5 V; hence, for each V,,, 55 values
of Vs are considered. Upon applying these voltages to the
MOSFET, the generated I;5; values are recorded and sent to
the digital receiver (no wireless channel), where the decoding
process is done. At the receiver, each curve is processed
independently and two consecutive 45 values from the same
curve are used for decoding the correct Vs using the slope-
matching technique. The results are shown in Fig. 7(a), where
the original values are shown using ‘+’ and decoded values
using ‘0’. We can see that some of the values are decoded
incorrectly (where there are bare ‘+’ without ‘0’). The reason
is due to mismatch between two slopes—the slope calculated
theoretically, Alys, (varies with V) is an approximation (i.e.,
valid only for A\Vys << 1) of the actual slope calculated
using the two-point formula (independent of V). To solve
this problem, we used a range-checking technique where, if the
decoded V,, value corresponding to the best (in terms of slope
match) Vi, value does not fall within the V;, range assumed at
the transmitter (4.5, 10) V, the next best V, value (in terms of
slope match) is chosen and the process is repeated iteratively.
Using this correction logic, we were able to improve decoding
accuracy (100% for ¢ = 0.5 V).

Frequency Position Modulation and Multiplexing: We
studied the FPMM-based multiplexing for underwater channel
conditions via MATLAB simulations. We have carried out
simulations to find the miss detection rate of the system and
how the noise affects it for different number of users (NVyger),
bandwidths and SNR values. We considered 50 V, levels
and @@ = 100 quantization levels of the final encoded I4;.
We used a Rician channel with single path (as the distance
between the nodes and buoy is of the order of few meters),
and a Doppler shift equal to 1% of the transmitting frequency
(as the analog nodes could move underwater). Then, Additive
White Gaussian Noise (AWGN) noise as per bandwidth (BW)
and SNR considered is added. The received signal at the
buoy has been recorded for 1 s, then passed through Fast
Fourier Transform (FFT) analysis to find the peak frequency.
We considered, Miss Detection Rate (MDR) as the metric
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of evaluation, defined as the number of users with detected
frequency position not equaling the transmitting frequency
position, divided by the total number of users multiplexed by
FPMM. We have set the bandwidth to 10 KHz and varied the
SNR from —60 dB to —30 dB and the number of nodes (V)
from 50 to 500. The result is shown in Fig. 7(b), where, we
can notice that the MDR falls to a low value for SNR=-40 dB.
Due to the frequency modulation adopted, very low SNR can
result in a detectable peak in frequency. We noticed that the
MDR behavior is approximately same for other bandwidths
considered (until 500 KHz).

Localization at Receiver: Since directionality and local-
ization based on received power levels are well-studied in
literature [26], we evaluated only the performance of the lo-
calization with respect to received (AJSCC encoded) pressure
levels. We considered a distance of 5 m between points A
and B, which is divided into equal number of bins equal to
the number of pressure levels considered. An analog node is
assumed to be present in the middle of each bin and encodes
its distance from A into V., while considering an arbitrary
fixed Vs = 2.5 V. These two values are then AJSCC encoded
into 14, by varying the number of V, quantization levels. The
encoded [ is then transmitted to the buoy (without channel
effect) which does AJSCC decoding using the slope-matching
technique (a small variation in Vs is assumed to generate
two I4s values needed by the slope-matching technique). If
the decoded Vj, falls in the same bin as was used in the
transmitter, it is considered a correct localization. Fig. 7(c)

shows the percentage of correct localizations (i.e.,accuracy)
as the number of pressure levels considered is increased for
different number of V,;, quantization levels. We can notice that
the accuracy drops as the number of pressure levels considered
is increased. Interestingly, we can notice that, for about 10
pressure levels, a 100% accuracy can be achieved. Further,
we can notice that accuracy increases (at the cost of higher
quantization error) as the number of V,, levels is reduced. This
is because, the slope matching technique has less than number
of levels to choose from, thereby reducing the probability of
picking wrong V;, level and hence increasing accuracy.

B. Buoy and Fusion Center

We consider an area of study with 100 randomly deployed
buoys for the simulation, as represented in Fig. 8(a). We
divide this area into four regions of interest; each of them
shows a fusion center, the drone, passes by the region to
communicate with the buoys and to fuse the collected data.
The buoys are grouped based on their similarity and cor-
relation. A magnified version of region II is displayed in
Fig. 8(b). This figure also shows the various possible sets
of correlated buoys based on different correlation thresholds.
Data transmission is performed using Binary Phase Shift
Keying (BPSK) modulation and Reed-Solomon coding (7, 3)
or (15,6) and CDMA spreading sequence with logistic map.
As a general rule, spreading sequences should have minimal
cross-correlation to minimize the interference between the
buoys and a delta-function shape autocorrelation to maximize
the detection accuracy of the desired buoy.

Authorized licensed use limited to: Northeastern University. Downloaded on January 25,2023 at 15:21:22 UTC from IEEE Xplore. Restrictions apply.



2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

Fig. 9(a) investigates the performance of our method in
terms of the mean communication error normalized by total
traffic for different number of transmitter buoys. It compares
the effect of changing the spreading length and presents the
results when communication takes place in channels with
different multipath effects. For SL = 150 when the number
of buoys are small, the error is less than 10— (they are not
depicted in the figure). The curves show communication error
increases when the number of buoys grows (as the result
of multi-user interference); however codes with larger SL
are more successful in combating the multi-user interference.
In Fig. 9(b) reconstruction error is presented for total traf-
fic of the transmitter buoys. It also compares the effect of
transmitting under slow and fast fading channels. Fig. 9(c)
calculates the long-term throughput of the proposed HARQ
for different number of correlated buoys. The correlation
threshold is a determinant factor in evaluating the performance
of the system. In Figs. 10(a)-(b), we investigate the effect of
different correlation thresholds. In Fig. 10(a), reconstruction
error is represented with HARQ channel coding (7,3) and
(15,6). Fig. 10(b) presents two components of reconstruction
error (sensing and communication errors). Fig. 10(c) shows
the long-term throughput per normalized delay for correlated
HARQ compared to the conventional HARQ.

V. CONCLUSION AND FUTURE WORK

We proposed a novel architecture for UW IoT consisting
of analog biodegradable substrate deployed underwater in
high-density and transmitting data continuously to digital
surface buoys. We then proposed a correlation-based Hybrid
Automatic Repeat Request (HARQ) to transfer data between
digital surface buoys and the fusion center that leverages
the correlation in the data to avoid costly retransmissions
and thereby enable timely reconstruction of the phenomenon.
The proposed techniques have been evaluated via MATLAB
simulations and shown to provide the desired performance. As
future work, we plan to further reduce the power consumption
of the analog nodes and test the initial prototype of the
architecture in a lake setting. We consider the dynamic change
in the structure and its effect on the proposed HARQ solution.
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