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Abstract— The proliferation of personal artificial intelligence
(AI) -assistant technologies with speech-based conversational AI
interfaces is driving the exponential growth in the consumer
Internet of Things (IoT) market. As these technologies are being
applied to keyword spotting (KWS), automatic speech recognition
(ASR), natural language processing (NLP), and text-to-speech
(TTS) applications, it is of paramount importance that they
provide uncompromising performance for context learning in
long sequences, which is a key benefit of the attention mechanism,
and that they work seamlessly in polyphonic environments. In this
work, we present a 25-mm2 system-on-chip (SoC) in 16-nm
FinFET technology, codenamed SM6, which executes end-to-end
speech-enhancing attention-based ASR and NLP workloads. The
SoC includes: 1) FlexASR, a highly reconfigurable NLP inference
processor optimized for whole-model acceleration of bidirectional
attention-based sequence-to-sequence (seq2seq) deep neural net-
works (DNNs); 2) a Markov random field source separation
engine (MSSE), a probabilistic graphical model accelerator for
unsupervised inference via Gibbs sampling, used for sound source
separation; 3) a dual-core Arm Cortex A53 CPU cluster, which
provides on-demand single Instruction/multiple data (SIMD)
fast fourier transform (FFT) processing and performs various
application logic (e.g., expectation–maximization (EM) algorithm
and 8-bit floating-point (FP8) quantization); and 4) an always-
ON M0 subsystem for audio detection and power manage-
ment. Measurement results demonstrate the efficiency ranges of
2.6–7.8 TFLOPs/W and 4.33–17.6 Gsamples/s/W for FlexASR
and MSSE, respectively; MSSE denoising performance allowing
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6× smaller ASR model to be stored on-chip with negligible
accuracy loss; and 2.24-mJ energy consumption while achieving
real-time throughput, end-to-end, and per-frame ASR latencies
of 18 ms.

Index Terms— Attention mechanism, Gibbs sampling, hard-
ware accelerators, Internet of Things (IoT), natural language
processing (NLP), recurrent neural networks (RNNs), sound
source separation, speech recognition, system-on-chip (SoC).

I. INTRODUCTION

A I-RELATED workloads are increasingly shifting to the

edge, spurred by the unabated growth of raw sensor

data [46]. This exploding volume of information has become

a dominant driver for mobile and the Internet of Things (IoT)

throughout all segments, from consumer to industrial and

automotive markets. Intelligence at the edge is also gaining

greater interest as it can provide marked advantages over cloud

computing in terms of energy efficiency, latency, security/

privacy, and autonomy [22], [51].

Conversational artificial intelligence (AI) interfaces using

automatic speech recognition (ASR) or keyword spot-

ting (KWS) commands are the main human-to-machine com-

munication channel for a multitude of small form factor

IoT devices. Recently published ASR and KWS chips [10],

[11], [30], [50] operate in pristine acoustic conditions, rais-

ing questions about their performance and viability in a

more acoustically adverse environment containing multiple

noise sources. Furthermore, the underlying recognition algo-

rithms in several of these works are context-blind deep

neural networks (DNNs) implemented on small-vocabulary

tasks. However, for long-sequence transduction on large-

vocabulary tasks (e.g., >100k words), the attention mech-

anism [3] provides superior context learning by allowing

neural networks to emphasize the most relevant tokens of

information when making inference predictions. Enabling bidi-

rectional functionality [6] in sequence-to-sequence (seq2seq)

recurrent neural networks (RNNs) further improves inference

accuracy of long input sequences (e.g., >10 words). This

neural class of attention-based RNN models is commonly

known as listen-attend-spell (LAS) models [5] with wide

adoption in ASR [15], [16], [29], text-to-speech [36], neural

machine translation [47], and text summarization [32] appli-

cations. In this work, we describe SM6, a system-on-chip
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Fig. 1. Inference pipeline executed on SM6. Upon detecting audio, the M0 subsystem wakes up the accelerators and A53 produces spectrogram features
that get denoised by the MSSE engine. Then, from the enhanced speech, FlexASR accelerates attention-based ASR workloads.

(SoC) for edge/the IoT devices, executing end-to-end speech-

enhancing attention-based ASR workloads (Fig. 1). The

proposed hardware–software co-design solution demonstrates

a tight coupling between special function accelerators and

CPU processing. Notably, the mobile-class A53 CPU performs

feature extraction tasks and other critical accelerator support-

ing tasks on its dual-issue datapath. The Markov random field

source separation engine (MSSE) runs sound source separation

on the post-processed spectrogram frames in an unsupervised

fashion. Then, FlexASR accelerates a bidirectional LAS model

for noise-robust ASR. To save power during intermittent

inference jobs, the always-ON M0 autonomously monitors

incoming audio amplitudes and subsequently boots the A53,

MSSE, and FlexASR when the signal magnitude exceeds a

threshold.

High-performance ASR systems are often trained with

datasets exhibiting adverse acoustic conditions. In such sys-

tems, noise robustness is partly paid with larger ASR model

sizes that may stretch the on-chip memory capacity of an IoT

SoC while at the same time worsening latency and energy

metrics. In SM6, by virtue of having MSSE sound source

separation preceding the speech-to-text computation, up to

6× smaller and iso-accurate LAS models can be fully stored

in FlexASR scratchpads—promoting higher energy efficiency

without compromising accuracy.

This article, therefore, makes the following contributions.

1) Energy-Efficient Acceleration of Attention-Based Bidi-

rectional RNNs in FlexASR: We describe FlexASR

processing element (PE) architecture utilizing adaptive

floating-point datapaths for performing quantized DNN

computations with greater accuracy. We further describe

its multi-function global buffer GB) unit, which effi-

ciently accelerates the attention mechanism among other

specialized compute units (e.g., layer normalization and

pooling).

2) Unsupervised Sound Source Separation in MSSE: We

make the case for using probabilistic Bayesian models

and solving them via accelerated Gibbs sampling inside

MSSE in order to enhance noise-corrupted speech sig-

nals. By virtue of preceding the speech-to-text com-

putation, MSSE allows FlexASR to fully store and

infer significantly smaller size, iso-accurate ASR models

trained on single-source clean datasets.

3) End-to-End Performance Demonstrating Real-Time

Throughput: SM6 achieves end-to-end per-frame ASR

latencies well below the 32-ms spectrogram frame length

while consuming nominally 2.24 mJ per inference.

The proposed chip was first presented in [17] and [18]. This

article significantly expands on the architectural design and

measurement details of the system and its various computing

components. This article is organized as follows. Section II

provides an overview of the main machine learning work-

loads executed on the test chip. The SoC architecture and

the various agile design logistics used to implement the

test chip are presented in Section III. The FlexASR accel-

erator and the MSSE are detailed in Sections IV and V,

respectively. The test chip measurement results are presented

in Section VI. Finally, concluding remarks are drawn in

Section VII.

II. BACKGROUND

In this section, we offer an overview of the machine learning

models behind the main workloads accelerated in the inference

pipeline (Fig. 1), namely, sound source separation and ASR.

A. Bayesian Inference on Markov Random Field

A pairwise Markov random field (MRF) with four-

connected neighbors is a type of Bayesian model commonly

used for labeling problems. Fig. 2 shows the factorized dis-

tribution on a four-connected pairwise MRF. Given a node

i ∈ V , the set of all nodes, the relationship between the label

on the node xi and the observed data yi is represented as

potential φi . The edge between nodes i and j represents the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:37:43 UTC from IEEE Xplore.  Restrictions apply. 



TAMBE et al.: 16-nm SoC FOR NOISE-ROBUST SPEECH AND NLP EDGE AI INFERENCE 3

Fig. 2. Bayesian MRF model highlighting sampled, observed, and neighbor
nodes.

affinity between the neighboring nodes using potential φi, j .

The posterior distribution of MRF is the product of all node

and edge factors

P(x, y) =
1

Z

∏

i∈V

φi (xi , yi)
∏

i, j∈E

φi, j (xi , x j) (1)

where Z is called a partition function or a normalizing

constant; it is the sum of all possible values of φ. Following

Gibbs distribution formulation, the probability distribution in

(1) is proportional to the sum of energy functions, which is

equivalent to taking the negative log of (1):

E(x, y) =
∑

i∈ν

θi(xi , yi ) +
∑

i, j∈ε

θi, j(xi , x j) (2)

where θi(xi , yi) and θi, j (xi , x j) are energy functions often

referred to as data cost and smoothness cost, respectively [35],

[37]. They are labeled next to their corresponding edges

in Fig. 2. To find the maximizing assignment of x in (1),

we use the Gibbs sampling, which is executed by MSSE,

to perform maximum a posteriori (MAP) inference to find

labels x that minimize the energy function. The Gibbs sam-

pler is constructed by iteratively sampling each variable in

the MRF given all the neighboring variables. Since each

variable’s energy function depends on its neighbor’s label,

updating each variable’s label will slightly improve its neigh-

bor’s probability distribution as well. After enough iteration,

all variables’ labels reach convergence, which would mini-

mize the total energy function and maximize their posterior

probability.

B. LAS seq2seq Models

The seq2seq deep learning models [8] have generated

impressive results in many sequence transduction tasks, such

as speech recognition [8], machine translation [26], question

answering [14], and image captioning [49]. For greater con-

textual performance, it is standard to augment the decoding

process of seq2seq networks with an attention mechanism [3],

which allows the network to pay attention to the most relevant

parts of the source sequence during each decoding time

step.

Fig. 3 shows a typical attention-based seq2seq network

known as LAS [5], which is adopted in this work for ASR

inferencing. The encoder stage contains unidirectional or

bidirectional vanilla-RNN, GRU, or long short-term mem-

ory (LSTM) stacks sandwiched between normalization and

Fig. 3. LAS seq2seq network highlighting the encoder stage (in red) and
the attention-based decoding stage (in blue). For each output time step, all
the final encoder hidden states are attended and scored.

TABLE I

COMPUTATIONS ACCELERATED IN FLEXASR

pooling layers. At each output time step, the decoder stage

estimates the saliency weight of each output hidden state

coming out of the final encoder layer via the attention mech-

anism [3]. The latter is often called “soft” attention given

that the final encoder hidden state sequence acts as a soft-

addressable memory [9] whose words are weighted to compute

the context vector after a pass through the decoder RNN

stack. Assuming a greedy search, the most likely prediction

is computed by taking the Argmax of the Softmax output

probabilities. We note that this Softmax operation is useful

only during training for gradient approximation that can be

skipped during inference of the LAS model in FlexASR. The

decoder computes the next time steps in an auto-regressive

manner.

The main computation kernels in LAS models (i.e., RNN

and linear layers, attention, layer normalization, and pooling

as shown in Table I) are efficiently accelerated inside FlexASR

(discussed in Section IV).

III. SOC ARCHITECTURE AND IMPLEMENTATION

This section describes the SM6 SoC architecture and

the hardware–software design and verification methodology

employed during the test chip implementation. The main

computing components of the SoC (Fig. 4) are: 1) FlexASR;

2) MSSE; 3) dual-core Arm Cortex-A53 CPUs; and 4) an

always-ON M0 subsystem—interconnected by 128-bit AXI

and 32-bit AHB buses. A 1-MB SRAM buffer is provisioned

at the top level in order to store the intermediate pre- and post-

processed data [25] of the inference pipeline (Fig. 1). The SoC

is also equipped with various off-chip interfaces required for

DRAM access via field-programmable gate array (FPGA) and

for debug.
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Fig. 4. Block diagram of the SM6 SoC, highlighting main components.

A. FlexASR

It is designed to support the key computational kernels and

features seen in LAS seq2seq networks (Fig. 3) as shown in

Table I while also allowing spatial and temporal configura-

tions. As shown in Fig. 4, FlexASR consists of four PEs and a

multi-function GB unit. The communication between GB and

PEs is performed via custom-built channel links. A centralized

arbiter is used to referee the stream of PE partial results, which

will be aggregated by the GB. Once the full activation has been

collected, the GB will then broadcast it back to the PEs for the

next time step computation. Each PE and GB is interfaced with

an AXI-Slave port. An interrupt (IRQ) channel originating

from the GB to the A53 cluster is implemented to indicate

the successful completion of the instructed task.

Section IV further expands on the FlexASR architecture,

detailing its PE, GB, and tiling mechanisms.

B. MRF Source Separation Engine

Over the last decade, there has been extensive research on

the design of ML accelerators [1], [7], [12], [13], [28], [31],

[39], [39] to solve supervised learning problems. In contrast,

unsupervised Bayesian models can be effective in solv-

ing problems relying on unlabeled data expressing various

degrees of information uncertainty [19], [20]. Unfortunately,

Bayesian inference workloads do not efficiently scale on

traditional CPUs and GPUs, therefore requiring specialized

hardware.

In this work, we accelerate Gibbs sampling operations on

MRFs for the purpose of denoising noise-corrupted speech or

enhancing a particular acoustic source in an environment with

multiple sound sources. The unsupervised Bayesian algorithm

excels in a more dynamic environment such as when sources

are moving with respect to the microphones [18], which

can potentially create problematic corner cases for supervised

methods where it is necessary to cover all scenarios with

training data. This specialized computation is accelerated in

the MSSE further discussed in Section V.

MSSE, which contains 12 parallel Gibbs samplers (Fig. 4),

is similar to PGMA [20], a general-purpose Bayesian inference

accelerator. However, we further customized and optimized it

specifically for sound source separation workloads by enabling

only binary label support. This customization resulted in fewer

pipelines and 2× speedup over PGMA (Section VI).

C. Dual-Core Arm Cortex-A53

The inference of the speech-enhancing pipeline (Fig. 1)

effects numerous dynamic data exchanges between the CPU

and the accelerators. SM6 integrates two A53 CPU cores [42],

proven in high-performance embedded and mobile SoCs, for

the following versatile purposes.

1) Feature Extraction Tasks: Framing, windowing, and

1024-pt fast fourier transform (FFT) tasks, required to

synthesize the overlapping sequence of speech spec-

trograms, are vectorized using Ne10 single Instruc-

tion/multiple data (SIMD) instructions [45].

2) Accelerator Programming: The AXI-Master port of the

A53 issues instruction set architecture (ISA) instructions

to FlexASR and MSSE to configure the nature, shape,

and size of their workloads.

3) Expectation–maximization (EM) algorithm, which is a

supplemental step of the Gibbs sampling process during

sound source separation [33].

4) 8-bit Floating-Point (FP8) Quantization: As FlexASR

PEs work on FP8 operands, the 32-bit fixed-point out-

puts from MSSE need to be converted and scaled down

to lower bit precision.

5) Label Mask Convolution: A53 convolves the binary label

mask from MSSE with the original spectrogram in order

to extract the clean speech.

6) Other miscellaneous tasks that include IRQ handling.

D. Design and Verification Methodology

In order to develop the SoC in an agile manner while

minimizing tapeout risks, we adopted the chip design and

infrastructure methodology first outlined in [24]. Specifically,

leveraging the CHIPKIT scaffold [48] and various ARM

collaterals (e.g., A53 and M0 soft IPs, Arm Socrates for

generating the NIC-400 interconnect) allowed us to focus

on the main differentiating features of the SoC. One such

differentiation was in the hardware–software co-design of

FlexASR.

FlexASR was designed using object-oriented high-level

synthesis (HLS) for fast SystemC-to-RTL prototyping [17].

In order to evaluate the bit-level correctness of the hardware

on a realistic speech-to-text workload, we developed a design

and verification flow, which closes the loop between the

software modeling and the backend hardware implementation

being abstracted within the HLS environment. Considering

the software ML framework (e.g., PyTorch and TensorFlow)

to be golden, the HLS environment allowed us to quickly

make hardware tweaks and ECOs until the hardware and

software DNN activations returned matching numerical results,

the post-HLS verification is functionally correct, and post-HLS

PPA results are satisfactory. This agility is made possible by

the higher level of abstraction imposed by the HLS flow.

The SystemC source code description of FlexASR is now

publicly available [43].
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Fig. 5. (a) FlexASR PE highlighting its FP vector MAC and ActUnit. For (b) LSTM example, we adopt (c) a custom interleaved tensor tiling in the weight
buffer for (d) hazard-free vector operations in the ActUnit.

IV. FLEXASR

In this section, we provide details of the FlexASR architec-

ture to accelerate LAS models. We can categorize the seq2seq

computations into two main parts: 1) RNN computations for

each time step, which mainly involve matrix-vector multipli-

cations (MVMs) with fixed weights and dynamic activations,

and 2) auxiliary operations such as attention, normalization,

and pooling, which involve activations across time steps.

For the first case, four PEs with 16 lanes of vector multiply-

and-accumulates (MACs) are provisioned to efficiently par-

allelize MVMs. The idea of a weight stationary [7], [34]

dataflow is adopted to divide the workload of RNN compu-

tations and minimize the data movement of weights, given

that the RNN workload tends to be memory-bound. Therefore,

each PE will initially store fractions of the weight matrix in

their respective weight buffer, and during computation, the GB

and PEs exchange input and output activations. The second

case is handled by the GB unit, which houses the input and

output activations and contains several specialized functional

units to handle across-time-step seq2seq computations such as

normalization, pooling, and attention.

A vector size of 16 is applied to every part of the FlexASR

design, that is to say, the operations in the PE or GB are

always effected on 16-element vectors or involve multipli-

cation between a 16 × 16 matrix and a 16-element vector.

Larger vector sizes produce higher accelerator throughput at

the expense of reduced granularity for the RNN hidden state

size. Therefore, the size of the RNN hidden state programmed

in FlexASR is constrained to be a factor of 16—although

one may zero-pad a non-compliant tensor shape in software

prior to acceleration with FlexASR. Our choice of tile size

is also influenced by the design of memory instances and

the 128-bit AXI format. For example, a tile of input/weight

has 16 ∗ 8-bit = 128-bits, which motivates a memory bank

design with a data width of 128 bit per entry such that an

AXI operation can access the full row in this memory bank.

A. Processing Element

The PE [Fig. 5(a)] is the computational workhorse of

FlexASR during RNN, LSTM, GRU, or linear layer com-

putations. It contains a 1-MB 16-bank weight buffer and a

TABLE II

VECTOR OPERATIONS SUPPORTED IN THE FLEXASR ACTUNIT

4-kB input and bias buffer for storing the MVM operands

in FP8 precision. FlexASR FP8 format is E4M3 (i.e., 1-bit

sign, 4-bit exponent, and 3-bit mantissa) without support

for denormals. This FP8 format yielded the best accuracy

outcomes after performing a search on the optimal exponent

bit width to satisfy the dynamic range requirements of LAS

models. The PE also provides alternative support for weight

clustering implemented using lookup tables (LUTs) mapping

4-bit weight indexes to their 8-bit centers. This enables 2×
storage compression in the PE weight buffer.

Each weight buffer bank has a read port that feeds into

a floating-point vector MAC that provides scalability along a

vector dimension of 16 (similar to the PE architecture in [52]).

Therefore, each PE instantiates 16 vector MACs in total

(i.e., 256 MACs/cycles), to perform MVMs between an FP8

weight vector and an FP8 activation vector.

To boost the dynamic range and accuracy of quantized

RNN computations, the 32-bit fixed-point accumulated sum

is dynamically shifted, at a per-layer granularity, by an

exponential bias, expbias. The latter is extracted from the

maximum absolute value in the layer’s weight matrix and

stored in PE registers. This allows resilient and near-FP32

accuracy at FP8 precision on seq2seq models exhibiting wide

parameter distribution [41]. After layer-wise adaptive floating-

point exponent shift, the partial sums are then post-processed

by the PE activation unit (ActUnit).

The ActUnit performs a sequence of vector operations

(Table II) to compute the necessary activation functions
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Fig. 6. Macro-architecture of the FlexASR multi-function GB unit.

(e.g., sigmoid, tanh, and ReLU) and the element-wise addi-

tion (EADD) and multiplication of matrix-vector products

coming out of the truncation unit. Fig. 5(c) shows the tiling

convention in the multi-bank weight buffer and the ensuing

sequence of ActUnit commands required to fully compute

LSTM kernels without encountering logical hazards.

B. Multi-Function GB Unit

The FlexASR GB unit collects and unifies, across time

steps, the partial RNN output states that the PEs compute.

Once the partial RNN outputs for a time step are fully aggre-

gated, the GB then broadcasts the complete activation back

to each PE for the next time step computation. Moreover, the

GB is augmented with auxiliary processing units that compute

the attention mechanism, mean and max pooling, and layer

normalization, all of which are commonly invoked in modern

seq2seq natural language processing (NLP) networks. We note

that the normalization and the softmax operations used during

the attention calculation contain several serial operations (e.g.,

running average); therefore, DNN accelerators often offload

these computations to a nearby CPU due to the lack of

parallelism opportunities. We propose to compute them within

the confines of FlexASR in order to reduce CPU-accelerator

inter-layer activation exchanges, thereby avoiding undue

latencies during the end-to-end inference of the seq2seq

model.

Fig. 6 shows the macro-architecture of the FlexASR GB.

A 1-MB 16-banks unified buffer is used to store the partial

RNN hidden states computed by the PEs across time steps.

This capacity is large enough to fully store thousands of

activation time steps at any given time, corresponding to

more than 200 words of speech, and allow inference of

large-vocabulary applications requiring nuance and context

understanding, especially in long-sequence transductions.

While the unified buffer has a single write port, each

bank has its own independent read port. A 16-kB auxiliary

buffer is used to house the attention intermediate states and

the learnable normalization parameters. Load/store accesses

to the 1-MB and 16-kB buffers are controlled by a GB

manager, which responds to the requests from the PEs and the

auxiliary processing modules. The latter is composed of the

following.

1) The RNN control unit which orchestrates the sequencing

of the configured RNN flow mode (i.e., uni-directional,

bidirectional, and seq2seq decoder mode) between the

PEs and GB units. For this purpose, the RNN control

module uses the configured number of time steps and

the RNN hidden state size to track its job progress.

2) The attention mechanism unit which computes the soft

attention mechanism [26] for each decoding time step.

During this phase, encoder and decoder states are read

from the GB unified and auxiliary buffers, respectively,

before MAC operations generate scores processed by a

SoftMax unit to produce the attention weights. To pre-

vent numerical instability, the SoftMax is computed by

subtracting the max score in the numerator and denom-

inator. The attention context vector is then obtained by

multiplying the attention weights with the transposed

encoder states. Algorithm 1 details the step-by-step

vectorized computation of the attention unit.

3) The layer reduction unit which can be configured to per-

form mean or maximum pooling on the RNN activations,

as well as EADD of the forward and backward time

steps during the bidirectional mode. Notably, Concat,

sum, and average merge modes used during bidirectional

RNNs are supported by striping forward and backward

time steps across alternate banks in the GB unified

activation buffer. For the sum or average merge modes,

the GB layer reduction module performs EADD or

averaging on concatenated activations.

4) The normalization unit which computes layer normaliza-

tion [2] on the RNN activations in order to speed up the

training process. During the seq2seq inference, a hidden

state activation is normalized as

Xnorm =
X − E[X]
√

Var[X]
∗ γ + β (3)

where γ and β are learnable parameters obtained after

training and stored in the GB auxiliary buffer. The

normalization module first computes the mean, E[X],
by running average over the number of hidden states, and

then evaluates the variance, Var[X], as: E[X2]− E[X]2.

This process gets repeated for all the needed time steps.

Finally, we note here that the attention, pooling, and normal-

ization datapaths vectorize their computations with a vector

size of 16, which accelerates sequential operations.

V. MRF SOUND SOURCE SEPARATION ENGINE

The sound source separation mechanism is similar to the

approach used in [21] whereby, from the interaural level

difference (ILD) of the input spectrograms, a binary MRF is

constructed and then solved using the Gibbs sampling, which

is a popular Bayesian Markov chain Monte Carlo (MCMC)

inference method. The latter is an iterative process that com-

putes a set of labels that minimize a cost function describing

the conditional distribution for each label. Consequently, the

mean and variance for each of the sources are updated repeat-

edly during the Gibbs sampling inference until convergence.

In Fig. 7, we observe that starting from a mixture of sound

sources, the denoising performance improves with the number

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:37:43 UTC from IEEE Xplore.  Restrictions apply. 



TAMBE et al.: 16-nm SoC FOR NOISE-ROBUST SPEECH AND NLP EDGE AI INFERENCE 7

Algorithm 1 Computation Steps of the Attention Unit

Input: Encoder Matrix M , Decoder Vector v

Output: Attention Context Vector A

NT := encoder time steps in tiles

ND := decoder size in tiles

max = − inf

// 1st MV Mult

for i = 0 to NT − 1 do

accum := 0

for j = 0 to ND − 1 do

W := M[16i :16i+15][16 j :16 j+15]
v := v[16 j :16 j+15]
accum+ = W ∗ v

store accum to auxiliary buffer

// Get maximum at the same time of 1st stage

if max < max(accum) then

max = max(accum)

// Denote output of 1st MV Mult as X

X [16i :16i+15] = accum

// Softmax step 1: SRAM read on X

sumexp = 0

for i = 0 to NT − 1 do

sumexp+ = sum(ex p(X [16i :16i+15] − max)

// Softmax step 2: SRAM read/write to get result X 0

for i = 0 to NT − 1 do

X 0
[16i :16i+15] = (X [16i :16i+15] − max)/sumexp

// 2nd MV Mult

for i = 0 to ND − 1 do

accum := 0

for j = 0 to NT − 1 do

W := MT
[16i :16i+15][16 j :16 j+15]

v := X 0
[16 j :16 j+15]

accum+ = W ∗ v

store accum to GB auxiliary buffer

// Context vector, A, is output of 2nd MV Mult

A[16i :16i+15] = accum

of Gibbs sampling iterations. Notably, at 120 iterations, the

mean square error (MSE) with respect to the baseline spec-

trogram is only 2%.

Formally, Bayesian sound source separation can be divided

into two phases. In the first phase, Gibbs sampling is per-

formed for a specified number of T iterations for N nodes in

the MRF. Then, in the second phase, the MRF distribution is

updated by computing improved Gaussian parameters through

EM. MSSE is designed to accelerate the Gibbs sampling

process via parallelization, while the EM step is handled by

the A53 cores. MSSE contains programmable registers to

configure the width and height of the MRF and the number of

Gibbs sampling iterations, T, to execute inside the hardware.

The ILD matrix is computed from the difference between

the audio recorded at the two microphones. As shown

in Fig. 8, MSSE takes in the ILD matrix and assumes

Fig. 7. Unsupervised sound source separation process showing improved
spectrogram quality following successive Gibbs sampling iterations.

Fig. 8. Sound source separation is performed via Gibbs sampling inference
on the ILD from the speech and noise sources.

Fig. 9. Datapath of the Gibbs sampler in MSSE.

that the probabilities of observing ILD values follow two

source-specific Gaussian distributions and assigns binary

labels to minimize a cost function based on how likely the

observed ILD values are to have come from either source. The

final output labels classify each time–frequency component as

being from one of the two separated output channels. The

binary mask output is used to isolate the time–frequency

components corresponding to each source, and the desired

clean audio is then identified as the output channel with greater

magnitude. This denoised audio is then passed to the FlexASR

inference pipeline.

Prior to running Gibbs sampling in MSSE, the MRF is split

into multiple tiles such that each MRF node update step is

handled by one of the 12 provisioned Gibbs samplers. Fig. 9

shows the 32-bit fixed-point datapath of the Gibbs sampler.

First, the sampler receives the smoothness cost (i.e., degree of

label difference between neighboring nodes) and the data cost

(i.e., mixture of Gaussian distributions) of an MRF node in

order to generate probabilities for every binary label value. The

smoothness cost is usually pre-computed and could be stored

in a read-only memory (ROM), while the data cost is computed

based on the input audio clip. Then, the Gibbs sampler samples

a new label based on the computed probability distribution.

To sample a new label, the probability distribution for each

label and their cumulative sums are stored in a first in, first

out (FIFO). A uniform random number, produced from a

pseudo-random number generator (PRNG), scales the final

cumulative sum (total sum of all probabilities) in order to

generate a probability threshold that is compared against each

of the cumulative sums in the FIFO. This comparison is

repeated until a sum larger than the probability threshold is

found—at which point the corresponding label mask is pushed

out of the sampler and stored in a dedicated new label buffer.

VI. MEASUREMENT RESULTS

An annotated photograph of the 25-mm2 SM6 die is shown

in Fig. 10(a). The SM6 die was implemented in the TSMC
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Fig. 10. (a) Annotated die photograph of the 25-mm2 SM6 test chip.
Summary of (b) SoC and (c) its main compute clusters.

16-nm FinFET technology and flip-chip bonded into a 672-pin

ball grid array (BGA) package [Fig. 10(b)]. In order to

orchestrate various energy efficiency ranges, six clock domains

capable of outputting fine-grained frequencies and five power

domains with a 0.55–1.0-V functional operation range are

servicing the main compute clusters and other on-chip end-

points. Fig. 10(c) lists the technical specifications of the main

compute clusters. Notably, at 0.8-V nominal voltage, the A53

cores, MSSE, and FlexASR dissipate 50.4, 42.2, and 214 mW,

respectively, at their maximum operating frequencies. With

the compute clusters inactive, SM6 has a standby power of

∼4 mW, as the M0 remains active to sense the GPIO pins for

audio detection.

To compare SM6 against commodity edge platforms,

we evaluated speech-to-text LAS models and Gibbs sampling

on an Nvidia TX2 mobile GPU, a Xilinx ZCU102 FPGA, and

the integrated dual-core A53 CPU. TX2 results were obtained

from CUDA implementations on the GPU module in order to

reap the benefits of parallelization. The ASIC RTL of FlexASR

and MSSE was programmed on the ZCU102 platform for

evaluating FPGA performance. The Ne10 [45] and eigen [44]

libraries were used to vectorize supporting ASR and Gibbs

sampling kernels on the A53 SIMD units.

We conducted the following application-level measurements

at room temperature using typical silicon.

A. Per-Layer Characterization

We begin by characterizing the processing times and energy

dissipation of the main SM6 compute clusters while run-

ning individual seq2seq layers and Gibbs sampling iterations

(Fig. 11). We can make the following observations.

1) FlexASR provides significant speedup gains while accel-

erating seq2seq layers—with attention, LSTM, and GRU

RNNs showing greater benefits. Notably, the 160-time

steps bidirectional LSTM (BILSTM) exhibits higher

processing speedup over CPU, GPU, and FPGA com-

pared to the unidirectional LSTM scenario—due to

FlexASR striping forward and backward activations

in alternate banks in its GB unit. In addition, even

though the normalization and pooling operations are

very serial in nature, by specializing their datapaths

within the confines of the accelerator and thereby avoid-

ing accelerator-CPU activation exchange, FlexASR still

outperforms all other platforms.

2) MSSE achieves appreciable latency reductions over the

commercial edge platforms—demonstrating the need for

specialized Gibbs sampling accelerated computing as

the A53 cores, TX2 GPU, and ZCU102 are 1577×,

7×, and 4× slower than MSSE, respectively. Moreover,

as MSSE was optimized for Bayesian inference with

binary labels as opposed to the general-purpose PGMA

accelerator [19], [20] (supporting up to 64 labels), Gibbs

sampling runs twice as fast on MSSE.

3) Both FlexASR and MSSE generate orders-of-magnitude

smaller energy consumption compared to the commer-

cial edge devices. This is particularly striking during

Gibbs sampling as the A53 cores, TX2 GPU, and

ZCU102 produce 1969×, 134×, and 446× larger energy

dissipation, respectively, compared to MSSE. Further-

more, although the FPGA generally executes seq2seq

kernels faster than the dual-core A53 and TX2 GPU,

its power consumption envelope is significant enough to

make it the least energy-efficient platform for several

workloads (e.g., BILSTM, GRU, and pooling).

Finally, we note that the RNN (BILSTM, LSTM, or GRU)

and linear workloads, which are computed in the FlexASR

PEs, achieve near 100% MAC utilization. However, at the

overall end-to-end ASR workload level, PE utilization is about

71%, given that the PEs become idle during the computation

of normalization, pooling, and attention that account for 19%,

6%, and 4%, respectively, of a representative ASR workload.1

B. End-to-End Characterization

To demonstrate the accuracy and end-to-end performance

benefits of the proposed speech-enhancing pipeline, we com-

pare our approach (Scenario D) with three other com-

mon inference scenarios using the LibriSpeech dataset [27],

as shown in Fig. 12. Scenario A emulates a clean environment

in which the speaker’s voice is the single audio source.

Scenario B mixes the speaker’s voice with another human

voice source in a simulated room environment for a signal-

to-noise ratio (SNR) of 0.90 dB. Finally, Scenario C (Noisy +
Big) adopts a much larger ASR model (22 versus 3.5 MB

used in Scenarios A, B, and D) trained with a noise-corrupted

LibriSpeech dataset in order to learn from noisy inputs. The

Noisy + Big model was gradually sized up, by increasing the

hidden state dimension, until its word error rate (WER) is

much closer to Scenario A in noisy cases. The ASR LAS

model adopted in Scenarios A, B, and D consists of four

BILSTM RNN stacks in the encoder with 512 cells and a

256-cell unidirectional LSTM RNN in the decoder. The LAS

model in Scenario D was scaled up to 1024 cells in each of

the four BILSTM RNN stacks in the encoder and 1024 cells

in its decoder LSTM RNN unit. The following observations

are made.

1) By denoising incoming audio signals and pre-

ceding the speech-to-text inference, MSSE allows

FlexASR to compute significantly smaller size (up

to 6× smaller), iso-accurate ASR models trained on

widely available single-source clean datasets [Fig. 12

1The ASR model used in Scenarios A, B, and D from Fig. 12.
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Fig. 11. Breakdown of latency (top row) and energy (bottom row) for individual seq2seq layers running on FlexASR and Gibbs sampling running on MSSE,
compared to running on different commercial platforms. Here, FlexASR, MSSE, and the A53 cores are running at frequencies of 440, 533, and 715 MHz,
respectively, at 0.8 V. Accelerators’ throughput can be found in Table III.

(top left)]—obviating the very inefficient strategy of

scaling up the DNN model size (Scenario C) in order

to achieve noise robustness. Furthermore, the proposed

ASR pipeline delivers 3× accuracy improvement over

the unseparated noise case (Scenario B) and is within

1% of the clean input baseline case (Scenario A).

We note that in Scenario D, MSSE executes 150 Gibbs

sampling iterations, improving speech quality by up to

7.3-dB signal-to-distortion ration (SDR).

2) The proposed pipeline achieves 4.3× lower end-to-end

per-frame latency (bottom left) and 7× energy improve-

ment (bottom right) compared to the similarly accurate

case in Scenario C, which requires significant off-chip

data movements because the weights of the upsized

ASR model cannot fully fit in FlexASR PE scratchpads.

Notably, SM6 achieves latency per frame of 18.4 ms

while dissipating 2.24 mJ of energy during the end-to-

end speech-enhancing ASR inference.

3) Due to the use of RNNs, the inference computation is

mainly memory-bound. Therefore, it can be observed

that the latency and energy costs of memory transfers

in the bigger ASR model (i.e., Noisy + Big in Scenario

C) are much higher compared to the leaner ASR model

used in Scenarios A, B, and D. For example, memory

transfers in Scenario C account for 36% of the end-to-

end latency versus only 6% in our proposed pipeline

whose RNN model is 6× smaller.

4) Fig. 12 (top right) shows that despite substantial energy

expenditures, the commercial edge platforms fail to pro-

vide real-time performance as their per-frame latencies

exceed the 32-ms frame length.

C. CPU Characterization

As specified in Section III-C, the integrated A53 cores

perform various important tasks during the inference of the

speech-enhancing pipeline, which includes front-end feature

Fig. 12. End-to-end measurement results for ASR inference with (A) clean
input audio, (B) noisy input audio, (C) noisy input audio using 6× larger ASR
model, and (D) this work—noisy input audio with Bayesian sound source
separation denoising. WER performance (top left), end-to-end per-frame
latency (bottom left), energy (bottom right), and cross-platform comparisons
(top right) are shown.

extraction, FP8 quantization in preparation to speech-to-text

acceleration in FlexASR, and the EM algorithm.

Fig. 13 shows the runtime breakdown of running these

supporting tasks on the dual-core A53 CPU. Notably, the A53

spends the most time working on FP8 quantization (33.2%),

EM (29.7%), and FFT (25.9%). FP8 quantization is necessary

due to the difference in data type between MSSE (FxP32)

and FlexASR (FP8) as Gibbs sampling is known to require

significantly more precision for robust operation and fast

convergence [4].

Spectrogram framing and windowing and the process of

extracting clean labels after Gibbs sampling account for 6.1%
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TABLE III

COMPARISON WITH RELATED WORK

Fig. 13. Breakdown of the processing times resulting from running various
supporting workloads on the dual-core A53 CPU during the end-to-end
speech-enhancing ASR pipeline.

Fig. 14. Impact of voltage scaling on (a) accelerators’ power efficiency and
(b) end-to-end ASR latency and SoC power envelope.

and 3.2% of the CPU workloads, respectively. The CPU

spends the remaining tasks (1.9%) on interrupt handling,

instruction dispatch, and other minor miscellaneous applica-

tion logic.

D. Voltage Scaling

To evaluate the functional efficiency range of the SoC,

all the power domains are uniformly scaled from 1.0 down

to 0.55 V, while the various compute clusters (FlexASR,

MSSE, and dual-A53) are clocked at their respective max-

imum frequencies. Fig. 14(a) shows that voltage/frequency

scaling on FlexASR and MSSE produces the efficiency ranges

of 2.6–7.8 TFLOPs/W and 4.33–17.6 GSamples/s/W, respec-

tively. The per-frame, end-to-end latency varies from 45 to

15 ms as the SoC voltage scales from 0.55 to 1.0 V while

consuming 19–227 mW on average [Fig. 14(b)]. At nominal

0.8 V, the average per-frame SoC power is 111 mW.

E. Comparison With Previous Work

Table III provides a qualitative and quantitative comparison

with some recent related work [10], [11], [23], [50] published

in silicon to date. First, the proposed work is the only solution

supporting an on-chip denoising solution prior to ASR or

KWS, enabling computation of highly accurate, yet leaner,

ASR models fully stored on-chip, thereby preventing costly

DRAM accesses. Second, this is the first work to demon-

strate specialized on-chip support of context-understanding

attention-based seq2seq RNNs for large-vocabulary and long-

sequence ASR workloads. Third, despite executing sound

source separation prior to speech-to-text, this work shows

competitive end-to-end per-frame ASR latency compared

to prior work. Fourth, this work demonstrates 4× higher

FP8 energy efficiency than a recent FP8 implementation in

7 nm [23].

VII. CONCLUSION

This article presents a 25-mm2 SoC in 16-nm FinFET,

which executes end-to-end speech-enhancing attention-based

seq2seq NLP workloads. The SoC, codenamed SM6, con-

tains two custom accelerators: 1) MSSE, a probabilistic

graphical model accelerator for MRF-based speech denoising,

and 2) FlexASR, a reconfigurable processor with a rich

ISA for accelerating ASR via attention-based bidirectional

RNNs. Feature extraction is performed in the integrated

dual-A53 cores, and an always-ON M0 serves as audio

detection and power management. The specialized accelera-

tors provide orders-of-magnitude greater latency and energy

gains over popular commercial edge platforms. At nominal

voltage, the test chip consumes 2.24-mJ per frame while

achieving end-to-end latency of 18 ms—enabling real-time
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throughput. MSSE speech denoising allows on-chip stor-

age of significantly smaller LAS ASR models in FlexASR

scratchpads—promoting higher energy efficiency during the

speech-enhancing pipeline without compromising inference

accuracy.

The views and conclusions contained in this document

are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied,

of the U.S. Government.
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