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Abstract—Bayesian machine learning is useful for applica-
tions that may make high-risk decisions with limited, noisy,
or unlabeled data, as it provides great data efficiency and
uncertainty estimation. Building on previous efforts, this work
presents CoopMC, an algorithm-architecture co-optimization
for developing more efficient MCMC-based Bayesian infer-
ence accelerators. CoopMC utilizes dynamic normalization
(DyNorm), LUT-based exponential kernels (TableExp), and log-
domain kernel fusion (LogFusion) to reduce computational
precision and shrink ALU area by 7.5× without noticeable
reduction in model performance. Also, a Tree-based Gibbs
sampler (TreeSampler) improves hardware runtime from O(N)
to O(log(N)), an 8.7× speedup, and yields 1.9× better area
efficiency than the existing state-of-the-art Gibbs sampling
architecture. These methods have been tested on 10 diverse
workloads using 3 different types of Bayesian models, demon-
strating applicability to many Bayesian algorithms. In an end-
to-end case study, these optimizations achieve a 33% logic
area reduction, 62% power reduction, and 1.53× speedup over
previous state-of-the-art end-to-end MCMC accelerators.

Keywords-Algorithm-Architecture Co-Design, Hardware Ac-
celerator, Bayesian Machine Learning, Markov Chain Monte
Carlo

I. INTRODUCTION

Bayesian machine learning (ML), often called probabilis-

tic computing, is a type of statistical machine learning

that leverages Bayes’ theorem to model event probabilities

using observed evidence and prior knowledge. It has be-

come an important class of machine learning algorithms for

processing data in various scenarios, including integrating

domain knowledge in models, handling sparse or noisy data,

and handling hierarchical or time-series data. Compared to

many deep learning (DL) algorithms, it provides much better

data efficiency and accurately estimate uncertainty. These

advantages make Bayesian ML a superior choice in certain

fields.

Unlike DL models, Bayesian models do not have high

requirements for dataset quality and quantity: Bayesian

models can easily learn from a limited number of (and even

unlabeled) data points, while still providing useful insights.

With their high data efficiency, Bayesian models’ outperform

their DL counterparts in fields such as insurance [1], finance

[2], and pharmaceuticals [3], where large amounts of labeled

data are hard to acquire and often noisy.

At the same time, Bayesian models provide explicit

uncertainty estimates with inference results. For tasks such

as biomedical analysis and clinical diagnostics, a prediction

result is far from sufficient; an uncertainty estimation about

the model’s inference prediction is crucial when making

critical decisions with real-world consequences. A mission-

critical model must communicate how certain it is about

a query and to “know” when it is uncertain. From this

perspective, DL falls short. Although a final output layer

can provide a quality score for possible classes, this has

been proven to be insufficient when estimating predictive

uncertainty [4]. On the other hand, Bayesian models excel

in problems where uncertainty is critical. A recent example

is COVID-19 predictions, where Bayesian modeling helped

predict daily COVID-19 cases by leveraging prior statis-

tics on similar diseases, such as Severe Acute Respiratory

Syndrome, and by modeling human behaviors, such as

social distancing [5]–[7]. Incorporating Bayesian methods

into DL preserves the learning capabilities of DL while

providing superior uncertainty estimation for its outputs.

This technique has shown its effectiveness in regression

tasks [8], [9], image classification [4], and computer vision

for autonomous vehicles [10].

A typical Bayesian model use its parameters to estimate

the probability of certain events. Predicting the probability

of an event taking an outcome from a Bayesian model

is called Bayesian inference. Bayesian inference relies on

one of two classes of inference algorithms: Markov chain

Monte Carlo (MCMC) or variational inference (VI). For

VI, the posterior inference can be cast as an optimization

problem solvable using gradient-based algorithms, and thus

enjoys the benefits of various acceleration tools built for

DL [11], [12]. However, VI may not always converge and

can introduce unwanted bias during inference, making it

ill-suited for critical problems. On the other hand, MCMC

is guaranteed to converge and with less bias, but does

not scale well on existing computing platforms, namely

CPUs and GPUs. It requires many complex kernels (e.g.,

generating many random numbers and sampling from dis-

crete distributions) which may stall hardware and yield poor

utilization. Table II shows runtime percentage breakdown for

various workloads on CPU. The Probability Generation (PG)

and Sampling from Distribution (SD) are computational
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steps consisting of complex computational kernels. They

dominates the end-to-end runtime for various MCMC-based

workloads. Specialized hardware acceleration to accommo-

date these novel kernels could lead to direct speedups.

For this reason, specialized hardware and accelerators have

shown great potential [13]–[17]. They already demonstrate

dramatic improvements over CPUs/GPUs.

Despite Bayesian models’ unparalleled advantages for

specific classes of problems and acceleration potential, they

have drawn less attention from the architecture and sys-

tems communities, in part due to the high costs associated

with building specialized hardware. Thus, developers and

researchers tend to focus on established fields and well-

known algorithms. Unfortunately, this lack of attention may

hurt machine learning development in the long run [18]. To

highlight the potential of other promising ML algorithms,

such as Bayesian ML, this paper seeks to further improve

acceleration of Bayesian inference. By identifying core

operations within Gibbs sampling, a widely used MCMC

algorithm, we present a collection of optimizations that

improve computational efficiency while maintaining the ro-

bustness of the algorithm against noise or errors introduced.

We first generalize the computational flow of Bayesian

inference into three main steps. Next, we utilize algorithm-

architecture co-design to exploit numerical and structural

properties of the computational flow in reducing hardware

costs while accelerating inference. Finally, we evaluate the

resulting design across a broad variety of workloads. The

contributions of our paper are as follows:

• Generalization of the Bayesian inference computational

flow to three stages: Probability Generation (PG), Sam-

pling from Distribution (SD) and Parameter Update

(PU).

• A collection of optimization methods, Dynamic Nor-

malization (DyNorm), lookup-table-based Exponential

Kernel (TableExp), and Log-domain Kernel Fusion

(LogFusion), to collectively accelerate Bayesian infer-

ence, providing 7.5× ALU area reduction with negli-

gible reduction in model performance.

• A tree-based sampler micro-architecture (TreeSampler)

reducing Gibbs sampling cycle runtime from O(N) to

O(log(N)), with better hardware area efficiency.

• Evaluation across ten diverse Bayesian workloads to

demonstrate robustness and broad applicability to com-

mon Bayesian models.

• A case study highlighting CoopMC’s effectiveness in

end-to-end designs, combining previously published

designs.

Admittedly, there are some concepts or implementation that

are similar to DyNorm, TableExp, and LogFusion in other

domain’s previous works. This paper’s novelty is in how we

combine the techniques for Bayesian inference acceleration.

Combining the four optimization methods is also a deliberate

decision: they are codependent. Without DyNorm, TableExp

and LogFusion would not converge for most Bayesian learn-

ing algorithms due to precision loss. LogFusion is specifi-

cally tailored to Bayesian learning, which requires sequences

of multiplications and divisions. Also, unlike previous works

that only focus on a particular model type or inference al-

gorithm, or on a single application, this work explores three

different types of Bayesian models, each running disparate

applications with widely varying numbers of variables and

dimensions—from fewer than 10 to more than 6 million

variables and up to 2 million dimensions each. Furthermore,

CoopMC investigates optimizations for computational kernel

efficiency, which has been larger ignored by previous works.

Thus, methods proposed in CoopMC could be directly added

into past or future accelerator computational pipeline designs

as a plug-in optimization. We will demonstrate its end-to-

end optimization capability in Section IV-D.

II. BACKGROUND

Bayesian models consist of a collection of random vari-

ables. Each random variable has several components: the

variable’s current label, which can be discrete or continuous,

and its probability distribution for taking different labels.

The variable’s correlation to other variables within a model

affects its own probability distribution. The relationships

between different variables inside a model may be expressed

as a graph that incorporates prior knowledge for a given

task. Different causal relationships result in different graph

structures, enabling the application of Bayesian ML for a

wide variety of inference tasks. To show the generality of

our method, we cover three types of Bayesian models with

ten different workloads, as seen in Table I: Markov Random

Field (MRF), Bayesian Network (BN) and Latent Dirichlet

Allocation (LDA).

Although we only discuss these ten workloads in this

paper, methods are designed to provide general acceleration

for MCMC-based sampling algorithm. The MCMC algo-

rithm is analogous to stochastic gradient descent in deep

learning: it is a general tool used in a wide range of Bayesian

machine learning models, including the three (MRF, BN,

LDA) presented in the paper. So CoopMC methods are

applicable to any MCMC algorithm with a discrete sampling

process. For the simplicity of this paper, we will focus on

those ten workloads in Table I.

A. Model Evaluation Metrics

One thing to note is that most of the models discussed

in this work are designed for unsupervised learning. Due

to the nature of unsupervised learning, it is not possible

to calculate model accuracy for an inference task because

data is unlabeled. Therefore, we evaluate the performance

of our optimization methods by comparing the hardware-

optimized performance to a baseline vanilla algorithm per-

formance. The comparison metric will usually be the pos-
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Workload #Variables #Labels

MRF-Image Restoration 6,656 64

MRF-Stereo Matching 110,592 16

MRF-Image Segmentation 150,000 2

MRF-Sound Source Separation 64,125 2

BN-ASIA 8 2

BN-EARTHQUAKE 5 2

BN-SURVEY 6 3

LDA-NIPS 1,932,365 128

LDA-Enron 6,412,172 128

LDA-RNA 540,393 128

Table I: Summary of various benchmark workloads.

Workload PG% SD% PU%

MRF-Image Restoration 88.00% 9.20% 2.81%

MRF-Stereo Matching 76.49% 14.78% 8.73%

MRF-Image Segmentation 45.71% 31.69% 22.60%

MRF-Sound Source Separation 46.14% 31.63% 22.23%

BN-ASIA 46.00% 52.37% 1.63%

BN-EARTHQUAKE 44.97% 53.36% 1.68%

BN-SURVEY 45.96% 52.45% 1.59%

LDA-NIPS 40.26% 53.23% 6.50%

LDA-Enron 42.84% 56.34% 0.83%

LDA-RNA 39.14% 53.20% 7.66%

Table II: Runtime percentage breakdown of various bench-

mark workloads.

terior probability of the final result or the difference to a

best convergence result that the vanilla algorithm is able to

achieve. This is a common practice for evaluating unsuper-

vised Bayesian models and inference. Details about model

performance evaluation are provided in the introductions to

each algorithm.

B. Markov Random Field (MRF)

A Markov random field [19], [20] is a Bayesian model

with a correlation graph similar to a grid-like structure V ,

containing all nodes. The event abstraction for MRF is

defined as a graph node taking a certain label, which means

each variable will represent a node in the structure. Every

node is correlated to four neighbors surrounding it. For any

node i ∈ V , its probability distribution is determined by the

observed data yi and other correlated nodes’ labels, xj for

j ∈ Ni, which represent the set containing all correlated

nodes of i. The label of xi may take on l discrete labels

in the range [0, l). The posterior probability of i taking the

label xi, given its observed label yi and the correlation set

Ni, is:

Pi(xi, yi) =
1

Z
φi(xi, yi)

∏

j∈Ni

(φi,j(xi, xj)) (1)

Z =
∑

xi∈[0,l)

(Pi(xi, yi)) (2)

φi is the probability of i taking the label xi, given yi, while

φi,j is its probability, given the correlation set Ni. The MRF

formulation is often rewritten as a sum of energy functions.

For every variable i, its energy functions consist of two

components. The first is data cost, DC(xi, yi), determined

by the difference between yi and xi. The second is smooth

cost, SC(xi, xj), determined by xi and yi. The sum of

DC(xi, yi) and SC(xi, xj) is the total cost, TC(xi, yi). TC
is fed into a negative exponential function to generate the

probability distribution. The probability distribution takes

the following form:

TCi(xi, yi) = DCi(xi, yi) +
∑

xi∈[0,l)

(SCi,j(xi, xj)) (3)

Pi(xi, yi) = e−β∗TCi(xi,yi) (4)

The model will continue training until the energy function

converges. The inference result will be the label of each

variable from the last iteration. Four different applications

are used as benchmarks for MRF:

• Image Restoration: An application to restore an image

from one with added random Gaussian noise and black

boxes. An ideal output completely removes all noise

and restores the original image.

• Stereo Matching: An application to understand the 3D

depth view of an input image. Objects in the same level

of the depth should share the same label.

• Image Segmentation: An application to separate the

foreground from the background of an input image.

• Sound Source Separation: an application to separate

distinct sound sources from an input audio containing

a mix of audio sources.

As previously mentioned, it is unreasonable to provide

a correct answer to an unsupervised workload. Therefore,

performance for each MRF application is evaluated by the

mean-square-error (MSE) of the inference output with a ref-

erence result, or golden result. The golden result is generated

by running a vanilla floating-point inference algorithm for

an excessively large number of iterations, and represents the

best quality MRF is able to achieve on a given workload.

Due to the randomness of MRF, any two inference results

will almost never be exactly the same, so it is natural to

observe a non-zero MSE, even for the vanilla algorithm.

To fairly compare different applications, we normalize each

MSE result with the MSE of the inference result from an

untrained model. A smaller MSE means better inference

quality.

C. Bayesian Network (BN)

A Bayesian network [21], [22] is a Bayesian model whose

variables and their conditional dependence are modeled as

a directed acyclic graph. They are commonly used for

understanding probabilistic relationships between incidents

sharing a predefined casual relationship. Each node in the

graph represents an event for this type of Bayesian model. A

typical workload queries the probability of a variable being a

certain label, given some other variables’ label as evidence e.
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Each node assumes a label in [0, n). n represents the number

of labels that each node could take. Each edge represents a

conditional probability between two variables in the graph.

The MCMC inference algorithm will update every variable’s

label xi by sampling based on its probability, as given by:

(5)

P (Xi = xi|e) = P (Xi = xi|Pa(Xi), e)

×
∏

Yj∈Ch(Xi)

(

P (Yj |Pa(Yj), e)
)

×
1

P (e)

Pa(Xi) represents all parent nodes of Xi, while Ch(Xi)
represents all children nodes of Xi. After each iteration,

the label of Xi will be recorded, and the probability of Xi

taking different labels is generated from counting the number

of times each label is selected during the inference process.

The sampling process will stop when the probability of the

variables reach steady-state. Three different datasets are used

as benchmarks for BN:

• ASIA [23]: A network that describes the relationship

between different patients’ symptoms and their poten-

tial causes.

• EARTHQUAKE [24]: A network that describes the

relationship between earthquakes and neighbors’ calls

due to an alarm system.

• SURVEY [25]: A network that describes how differ-

ent peoples’ demographic factors will influence their

transportation methods.

Similar to before, the inference quality of the BNs is

evaluated by comparing their MSEs to golden results. Here,

a golden result consists of the average results of several

inferences using vanilla floating-point Gibbs sampling in-

ference. Again, the smaller the MSE, the better the result.

D. Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation [26], [27] is a generative

model that views documents in a corpus as “bags of words”

generated from a vocabulary. Each word may be treated

as an event associated with a source document, vocabulary,

and latent topic (to be inferred). Different word labels are

represented as different event outcomes. The distribution of

topics across documents and vocabulary are captured by

two parameter tables: a Document-Topic table (DT) and

Vocabulary-Topic table (VT). DT and VT have sizes D×T
and V × T , respectively, where D represents the number of

documents, V represents the size of vocabulary and T is the

number of topics. Training an LDA model requires updating

DT and VT using an input corpus until convergence. Once

trained, these tables may be used to infer the distribution

of topics for new documents. In this paper, we adopt a

common inference method, called collapsed Gibbs sampling

[28], [29]. Collapsed Gibbs sampling uses the following

probability distribution expression:

P (k) =
(DTd,t + α)(V Tt,v + β)
∑

v∈[0,V ) (V Tt,v) + βV
(6)

Three different datasets are used as benchmarks for LDA:

• NIPS: A collection of academic papers from NeurIPS.

The workload is to identify key discussion topics for

each paper in the dataset.

• Enron: A collection of email transcripts. The LDA

model aims to determine the essential topics for each

e-mail.

• RNA: Multiple generic RNA sequences. A typical task

is to find similar sequences for genomic expression.

The inference quality of a dataset is evaluated by the log-

likelihood of the final converged model. This log-likelihood

value is determined by the likelihood of the model variables’

configurations, given its observed data. This is the common

comparison standard used in previous works [30]–[32] for

LDA. Higher log-likelihood indicates better quality.

III. ALGORITHM AND ARCHITECTURE

CO-OPTIMIZATION

We propose co-optimization methods generally applicable

to inference across a broad variety of Bayesian models.

To provide such generality, we first construct a common

computational model that works for most Bayesian infer-

ence. Second, we discover common patterns such as solv-

ing exponential equations, multiplication-division sequences,

low-precision requirements, and sampling. Third, we exploit

these characteristics to reduce precision and hardware re-

quirements, fuse different computational kernels, and reduce

sampling run time.

Based on the discussion in Section II, this work focuses

on Bayesian inference using Gibbs sampling. The inference

process for any Bayesian model is essentially a continuous

sampling of new labels from a probability distribution for

each random variable in the model until convergence. More

concretely, for each random variable x in a model B, its

sampling process consists of the following three steps, also

visualized in Figure 1:

• Step 1 - Probability Generation (PG): Based on the

current labels of all other variables correlated with

x, a probability distribution Px (a vector of size N )

is generated. The nth element in Px represents the

probability of x taking the label of n, given the current

state of B. In an accelerator, these computations require

hardware components that can perform several types

of kernels, including division, multiplication, addition,

and exponentiation. Px is stored as a probability vector,

usually in a register file (ProbReg), for use in the next

step. Multiple processing elements can generate several

elements of Px in parallel.

• Step 2 - Sampling from Distribution (SD): Based on

the probability distribution Px from PG, a new label

nnew is randomly sampled for random variable x. The

probability of nnew being n is proportional to the nth
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Figure 1: A diagram shows three essential steps for Bayesian

inference, and its computation flow.

element in Px. This step usually requires special hard-

ware to sample from a distribution generated during

PG.

• Step 3 - Parameter Update (PU): Update the label of x
in the model B with the sampling result nnew from SD.

Other variables correlated with x require the update to

be completed before moving to the next variable.

For each iteration, every variable in the model goes

through these three steps to update its label. The inference

result will be the final converged model. Any hardware

aiming to accelerate Bayesian inference must implement

these steps in their processing element. Previous works on

accelerating Bayesian inference have focused on optimizing

the PU step. Various methods such as chromatic sampling

and asynchronous updates help to relax the sequential re-

quirements for PU [16]. These methods enable much better

parallelism and almost linear speedup with the number

of PE cores. However, their optimization and co-design

never touch on PG or SD. As reported in their work, the

probability distribution is generated using a standard 32-

bit fixed-point computational pipeline. Every computational

kernel, such as multiplication, exponentiation, and sampling,

follows the vanilla algorithm exactly. At the same time, their

optimizations for PU have only demonstrated effectiveness

for MRFs. Building on these previous works, we investigate

how to further optimize hardware accelerators for Bayesian

inference by exploiting patterns or characteristics commonly

found in Bayesian inference models.

A. DyNorm: Dynamic Normalization

Exponential kernels are commonly used in Bayesian

models. Take the stereo matching application using MRF

as a concrete example. The probability function for MRF

is expressed as an exponential family in canonical form.

In previous MRF accelerators, implementations used a 32-

bit fixed point exponential ALU for the exponential kernel.

Figure 2: Dynamic normalization greatly improves algo-

rithms’ tolerance to low-precision computation.

However, whether 32-bit precision is required for MRF has

not been investigated. To understand the precision require-

ments for the exponential kernel, we investigate how model

performance will change as the precision of the exponential

kernel varies.

As shown in Figure 2, different bitwidths, or precisions,

have a significant impact on the convergence performance of

the model. If fewer than 8 bits are used, the model does not

successfully converge. The model is trapped at a steady state

due to the very low precision of the exponential kernel, and

most probabilities in this workload require a much smaller

domain, usually smaller than 2−5. With just 4 bits assigned

to the exponentiation kernel, only values larger than 2−4

can be expressed, yielding a vector of zeroes for the Px

generated from Stage 1. Consequently, instead of sampling

based on Px, Stage 2 will only be able to select a label

uniformly at random and assign that label to x. The sampler

no longer correctly updates the label of x, resulting in a

horizontal line in the right plot of Figure 2. Even when

the number of bits is increased to 16, the final result is still

unable to attain the same level of performance as with 31

bits.

However, if we confine the activation range of the expo-

nential kernel output to a predetermined range, low precision

is still viable. To achieve this, we designed a method called

Dynamic Normalization and apply this to the original MRF

algorithm. In the original algorithm, each element in Px is

equal to the following expression:

px(m) =
exp(TCm)

∑N

m=1 exp(TCm)
(7)

TCm is the input for each of the exponential kernels,

when variable x takes label m. Constraining TCm will

prevent exp(TCm) from becoming too small. Dividing the

numerator and denominator by a constant exp(C) does not

affect the value of px(m). Thus, the constant C may be used

to limit the size of each of the inputs to the exponential

kernel. However, since every px(m) for each x has a wide

activation range, it is impractical to predetermine the value

for the normalizing constant C. Instead, this constant is

determined at runtime and takes the maximum value of
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Figure 3: Hardware for applying DyNorm onto an array of

inputs. NormTree structure is marked by the dashed box,

which is used for finding the maximum value in the input

array.

px(m) for each x.

px(m) =
exp(inputm − C)

∑N

m=1 exp(inputm − C)
(8)

=
exp(input′m)

∑N

m=1 exp(input
′
m)

,MAX(input′m) = 0 (9)

With the help of DyNorm, the maximum value of TC ′
m

for each x is always zero. This limits the maximum output

value of the exponential kernel to one. A visualization of this

process is shown in Figure 3. Since the sampling process

cares most about the m with the highest px(m), shifting all

exponential kernel output values back towards zero greatly

helps the sampler in generating more meaningful results,

even with lower precision. This effect is clearly shown

by the right plot in Figure 2. After applying Dynamic

Normalization, even exponential kernels with only 1-bit

precision retain partial inference capabilities. Using more

precision, such as 8 bits, shows identical results to the full

31-bit exponential kernel. Both the convergence rates and

final convergence results show no noticeable differences.

The DyNorm operation introduces an additional kernel

into the design. This operation needs to find the maximum

value from a probability distribution Px. We propose the

NormTree design, which is a tree-based maximum kernel

for finding the maximum value from an array of inputs.

This tree-based design may be extended for more complex

usage, as discussed in the following section. Figure 3 shows

the hardware design for supporting DyNorm operation with

a NormTree structure. Each Tree node in the NormTree

is a comparator, which compares between two incoming

inputs and outputs the larger value to the next layer. The

output of the last layer is the maximum value from the input

array. The runtime will be O(log(Npipe) + 1), where Npipe

is the number of pipelines for the PG step, offering very

good scalability for large numbers of parallel pipelines. The

hardware cost for this component is amortized by N as well,

resulting in a minuscule hardware cost for DyNorm.

Figure 4: Comparison of kernel output error for

approximation-based exp kernel and LUT-based exp

kernel (TableExp)

B. TableExp: LUT-Based Exp Kernel

Dynamic Normalization shows great potential to lower the

precision requirements for the exponential kernel. However,

the actual hardware is still relatively complex even when

using approximations to compute the exponential value.

Since the precision can be reduced dramatically (e.g., to

only 8-bit), it is not necessary to provide a very precise

approximation. Instead, a fully lookup-table-based (LUT-

based) exponential kernel can be used. Since DyNorm will

also be applied to TableExp, all input values to this kernel

will always be non-positive. For the lookup table, sizelut is

the number of elements in the lookup table, and steplut is the

step between two adjacent quantized inputs. TableExp will

quantize any negative input xin into k, the largest integer

smaller than −xin/steplut. If we set steplut to a power

of 2, then the quantization operation is easily implemented

using simple shifts. The quantized input k is also used to

index the lookup table. If the index is smaller than the size

of the lookup table, the output value will simply be the kth

element of the table. If the index is greater than the size of

the lookup table, the output value will be zero. Each element

in the table is defined using the following expression:

TableExp(xin) =

{

exp(−k · steplut) (k < sizelut)

0 (k ≥ sizelut)

(10)

The lookup table design is also defined by another parameter,

the number of bits (#bitlut) used to express each entry in

the table. After numerical analysis of different workloads,

we rarely found xin to be smaller than -16 after DyNorm.

Thus, we fixed steplut to 16/sizelut. Using TableExp can

greatly simplify the exp kernel design, but can also introduce

more error into the kernel output. Figure 4 shows an error

comparison between the approximation-based exp kernel

and a TableExp with sizelut = 1024 and #bitlut = 32.

To understand how this introduced error affects inference

quality, we perform a case study using the stereo matching

benchmark, sweeping sizelut and #bitlut, two key design

parameters for TableExp. The parameter sweep result is

shown in Figure 7, and demonstrates that Bayesian is very

resilient to lower-precision hardware kernels. Using only
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Figure 5: Visualization of a computational pipeline with

LogFusion.

Figure 6: Micro-architecture of a probability generation (PG)

computational core with LogFusion, DyNorm and TableExp.

8-bit precision results in almost the same performance as

using a full 32 bits. There is also no significant overhead

associated with the number of elements used in the lookup

table. Storing 64 quantized values in a lookup table does not

significantly impact learning rate or the final convergence

result, compared to the lookup table with 1024 elements. By

applying TableExp, any accelerator design can circumvent

the complex approximation-based exponential kernel and

instead replace it with an efficient low-precision read-only

memory (ROM) while preserving inference quality.

The computational flow of Bayesian inference explains

the tolerance to lower precision. In sampling from distri-

butions, Bayesian inference is not a process that requires

exact computation. Random error and noise are common

even during the inference process using floating-point prob-

abilities. Furthermore, during the sampling process, the most

probable labels will have a much larger probability than

other labels for each variable, so adding some additional

error into the system should not significantly influence

the sampling result and the most probable label will still

be most frequently selected. Low-precision computation is

already very common in DL accelerators [33], [34], so it is

reasonable to also observe this kind of resilience to lower-

precision in Bayesian inference.

C. LogFusion: Log-Domain Kernel Fusion

Apart from exp kernels, there are other types of kernels

commonly used in PG. Algorithms like LDA and BN contain

a sequence of multiplications and divisions after PG. This

pattern requires the system to incorporate a high-cost divider

component into the accelerator design. Additionally, the

number of multiplications and divisions could be propor-

tional to the number of correlated variables. If an accel-

erator is to generally accommodate any kind of Bayesian

inference, ALUs supporting exponentiation, multiplication,

and division need to be incorporated into the system.

However, from the previous section, we concluded that

high precision is not a strict requirement for Bayesian

inference, so long as all intermediate results stay within a

reasonable activation range. With this in mind, we propose

a kernel fusion method called Log-Domain Kernel Fusion

(LogFusion) for Bayesian inference. Instead of directly

computing the result from a long sequence of expensive

multiplications and divisions, LogFusion reduces computa-

tional cost by performing all computation in the log-domain,

where multiplications and divisions are transformed into

cheaper additions and subtractions. This is easily shown by

the following equation:

∏#num

i=1 ai
∏#denom

j=1 bj
= exp(

#num
∑

i=1

log(ai)−

#denom
∑

j=1

log(bj))

(11)

In the equation, the numerator needs to take the product of

all ai together, while the denominator needs to take the prod-

uct of all bj together. Through this conversion, division and

multiplication kernels are no longer needed and are replaced

by (#num+#denom) additions and one subtraction. After

a sequence of additions and subtractions has been computed,

the output result is converted back to real results using the

exp kernel. Additionally, with the help of DyNorm, input

values to the exp kernel will always be brought back into

an acceptable range for the kernel. Although there is an

additional overhead for the exp kernel and the log kernel, the

high cost of incorporating sequences of multiplications and

divisions still makes this trade-off favorable. Figure 6, shows

the Mirco-architecture, combining all optimizations for PG.

The PG ALU can calculate any sequence of multiplication

and division without the need for a multiplier or divider.

Multiple PG ALUs can be used to exploit parallelism. Since

DyNorm works on a vector of inputs, it will be shared by

multiple PG pipelines. As a result, its additional hardware

cost will be amortized by the number of parallel pipelines

in the compute core.

An accelerator using LogFusion still has its distinctive

advantages, even if it is compared with an alternative accel-

erator on FPGA using Digital Signal Processor (DSP). For

example, the Xillinx DSP48E1 DSP Module supports 25-bit

x 18-bit multiplication and 48-bit addition. Using a single
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Figure 7: Using smaller sizelut and #bitlut can still provide similar inference quality as the Float32 baseline.

DSP unit, a 32-bit multiplication needs four cycles, but only

1 cycle for 32-bit addition. Even accounting for log and

exp conversions (2 cycles), log-domain computation is still

faster. Probability computations for Bayesian models usu-

ally require many consecutive multiplications and divisions,

so benefits easily accumulate. Treating division as inverse

multiplication would cause underflow issues for fixed-point

formats. Resolving division-by-zero problems requires larger

bit widths for mantissa alignment and multiplication. In

contrast, LogFusion incurs no additional cost.

D. TreeSampler: Tree-Based Sampler

In addition to the optimizations for PG, operations in

SD can also be improved. Sampling to find a new label

based on a vector is essentially a vector search operation.

Prior implementations apply a for-loop pointer to this kernel.

However, this iterative search method requires O(N) run-

time and is not ideal for larger numbers of labels. Utilizing

a tree-based structure for search algorithms is common

practice to reduce runtime. Taking inspiration from the

binary search tree data structure, we propose the TreeGibbs

architecture, generalizing the sampling process into a tree

structure to achieve O(log(N)) runtime.

A sampler samples a topic from a distribution provided

as a vector of probability values Px for a variable x, which

takes a label n ∈ [0, N), where N is the number of

possible labels for x. The vector Px contains a probability

Px(n) for every possible label of n. The larger Px(n) is,

the more likely the sampler assigns label n to variable

x. If computation is done sequentially, Px may be con-

verted into a vector Ax containing cumulative probabilities

Ax(m) =
∑n

m=0 Px(m). A threshold value T is generated

by multiplying the total sum of Px (i.e., Ax(N − 1)) by

a random value from the standard uniform distribution.

The smallest n that makes Ax(n) larger than T will be

assigned to x as its new label. The sampling process requires

cumulative summing so, if N is not large, using an iterative

compute architecture to compute each probability uses the

least amount of logic. This structure requires at least 2N+1
cycles for the hardware to sample a token. However, if N
is very large, the required time for generating a sample

increases significantly.

To solve this runtime issue, we propose TreeSampler.

Fig. 8 shows a simplified diagram of TreeSampler divided

into three modules: TreeSum, ThresholdGen and Traverse-

Tree. TreeSum is the tree structure that sums all elements of

Px. Each node sums the outputs of its children nodes and

passes the summed value to its counterpart in TraverseTree.

ThresholdGen generates T by multiplying the total sum by

a uniform random number from a hardware Pseudo-random

Number Generator (PRNG). TraverseTree enables the tree

structure to select the correct leaf node. Each node will

compare its parent node’s value Np with its left child node’s

value Nl. If the left child has a higher value, the node will

update its own value to Np and activate the left child node.

Otherwise, the node will update its own value to Np − Nl

and activate the right child node. Using this structure, the

runtime for sampling each token is reduced from O(2N+1)
to O(log(N)).

TreeSampler shows great runtime reduction compared

to a sequential sampler and scales much better, as shown

in Figure 9. As the number of labels in the workload

increases, the runtime speedup also increases. This is crucial

for workloads that require a higher number of labels for

each random variable. While this tree-based design is much

more complex, TreeSampler provides far better hardware
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Figure 8: Micro-architecture diagram of TreeSampler

Figure 9: Runtime speedup of TreeSampler scales well with

number of labels.

utilization and is more efficient than a sequential sampler.

By adding additional shift registers between the same

layers in Tree Sum and TraverseTree, we ensure information

can be passed from TreeSum to TraverseTree. This means

the entire TreeSampler hardware can operate on several

different inputs without interference. The additional shift

register from TreeSum to TraverseTree creates a pipelined

version of TreeSampler (PipeTreeSampler). Compared to

TreeSampler, the runtime is exactly the same, but the maxi-

mum throughput is further improved to one sample per cycle.

Although much more complex and expensive to build, its

hardware efficiency is the best among the sequential sampler,

TreeSampler, and itself. More discussion on this topic is in

Section IV-C.

IV. EXPERIMENTAL RESULTS

We applied our methods to ten different benchmarks using

three types of Bayesian models introduced in Section II.

These three algorithms and the various datasets for each

provide a good representation of common discrete Bayesian

inference workloads.

In this section, we first provide an algorithmic evaluation

of DyNorm, TableExp, and LogFusion on ten different

workloads. Their combined effect enables low-precision

computation without noticeable loss in model performance.

Secondly, we will evaluate the effectiveness of hardware cost

reduction by jointly applying the presented methods. Thirdly,

we will show the throughput speedup from TreeSampler and

discuss its hardware resource efficiency. There is no need for

a discussion on algorithm inference quality for TreeSampler,

because it implements the same sampling algorithm as a

vanilla sequential Gibbs sampler.

A. Algorithmic Evaluation of DyNorm, TableExp and Log-

Fusion

1) MRF Benchmarks: In Section III-A, we presented the

effects of applying DyNorm and TableExp for Stereo Match-

ing. DyNorm allows MRF inference with a precision as low

as 8-bit. Without this, inference results show a significant

degradation compared to the Float32 results. In addition,

TableExp can further reduce the hardware requirement for

the compute pipeline. The algorithm shows strong resilience

to lower-precision compute. These patterns do not pertain to

Stereo Matching alone. We applied the two techniques to all

four benchmarks of MRF.

DyNorm is able to reduce hardware precision without loss

of inference quality. In Figure 10, four different applications

are provided. For each application, 4-bit and 8-bit fixed-

point results are shown on the graph, with the floating

point MRF result as reference. For all applications, directly

using fixed-point compute is not ideal for inference quality.

However, once DyNorm is applied, model inference results

immediately show improvement, attaining almost identical

quality to the floating point result. For Stereo Matching,

there still exists a slight degradation in convergence speed

for the 4-bit fixed-point result. Despite this, 8-bit precision

with DyNorm allows all applications to reach the same

inference quality as the floating point baseline.

Combining all three proposed methods shows their ef-

fectiveness across all MRF applications. To investigate how

different TableExp design parameters affect model perfor-

mance, we sweep two key design parameters and record

the final converged result. The first parameter is sizelut,
which represents the number of elements stored in the

lookup table. The second parameter is #bitlut, which is

the number of fractional bits used for each element in

the lookup table. Theoretically, larger sizelut and #bitlut
should result in better precision for the exp kernel. However,

a better precision does not always result in better model

convergence. Figure 11 shows convergence results on four

different applications. There are very small differences when

varying #bitlut, while sizelut appears to be more influential

on the final converged result. Achieved inference quality

is already similar to Float32 once the sizelut reaches 32.

Intuitively, this behavior is expected as the resolution of

the EXP kernel output is determined by sizelut and has

a larger influence on the determination of discrete labels,

moreso than the accuracy of the quantized output values.

Considering the convergence speed difference shown in

Figure 11, 8 bits are needed to reach the same convergence

speed. As a result, using 8-bit precision and sizelut of 32 is
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Figure 10: Dynamic normalization makes low-precision

MRF reach the same inference quality as the floating-point

MRF for four different applications.

Figure 11: Design parameter sweep of TableExp on MRF.

Float32 result is given as a reference baseline. Lower nor-

malized MSE means better inference quality.

sufficient for the hardware to reach the same quality as the

floating point algorithm.

2) BN Benchmarks: CoopMC can also be applied to other

discrete Bayesian workloads, such as Bayesian networks or

latent Dirichlet allocation. Figure 12 shows how #bitlut and

sizelut influence the final converged result. Unlike results

for MRF, both #bitlut and sizelut significantly influence

the converged inference result. Using lower precision values

in TableExp produces a dramatic change in the final accu-

racy. These three Bayesian network workloads’ small size

contributes to a larger sensitivity to precision. Although the

sensitivity to precision affects the converged performance

metrics for lower precision LUTs, the converged results are

well above the threshold precision of 8 bits. Meanwhile,

sizelut demonstrates very similar behavior to the MRF

Figure 12: Design parameter sweep of TableExp on BN.

Float32 result is given as a reference baseline. Lower MSE

means better inference quality.

applications. A larger sizelut will lead to better convergence

results for Bayesian networks, until a threshold has been

reached, after which convergence results remain similar. For

the three tested Bayesian network workloads, the threshold

is 128.

3) LDA Benchmarks: Figure 13 shows inference results

of LDA after applying DyNorm, TableExp, and LogFusion.

The x-axis shows different sizes for the lookup table sizelut,
and the y-axis shows the log-likelihood, a common eval-

uation metric representing the probability of the current

state of an LDA model, given an observed dataset. A

higher probability implies better model inference quality.

The points in the plots show convergence results for their

corresponding dataset. Each line represents the number of

bits #bitslut used for lookup table entries in TableExp.

Experimental results from LDA shows a very similar trend

to the BN results. Both sizelut and #bitlut have significant

impact on inference quality. For sizelut, the inference result

shows a clear saturation trend, once a certain threshold

has been reached. For all three cases, sizelut of 128 is

sufficient for the convergence result to reach parity with

floating point. For #bit, the requirements are tighter than

what was observed with BN. To match the full-precision

version, 16-bit precision is required. Also, the separation

between lines with different #bitlut is much clearer than

with the MRF or BN results.

The higher precision requirement results from the high

connectivity between different variables in the model, due

to the nature of the LDA algorithm. Unlike MRF or BN,

each variable is connected to every other variable within

the same document, as well as every other instance of the

same vocabulary in the corpus. This implies the probability

distributions for the labels of connected variables are similar.

The only way to distinguish these variables from each other

is by the slight differences in their probabilities. However,

lower precision fails to represent those small differences,

which eventually results in poor performance. Nevertheless,

DyNorm, TableExp, and LogFusion still give the same level

of performance as the baseline, given #bitlut ≥ 16 and

#sizelut ≥ 128.

47

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:51:07 UTC from IEEE Xplore.  Restrictions apply. 



Figure 13: Design parameter sweep of TableExp on LDA.

Float32 result is given as a reference baseline. Higher log-

likelihood implies better inference quality.

Type Area for Divider Baseline (um2)
Divider Total Reduction

Baseline 3831 3831 1×

Type Area for LogFusion (um2)
LOG ADD DN EXP Total Reduction

DN+LF 267 76 84 830 1257 3.05×

DN+LF+TE 267 76 84 80 507 7.56×

Table III: Hardware Area Comparison among DyNorm(DN)

+ LogFusion(LF), DyNorm(DN) + LogFusion(LF) + Table-

Exp(TE) and Divider Baseline.

B. DyNorm, TableExp, and LogFusion Hardware Evalua-

tion

Combining Dynamic Normalization, LUT-Based EXP

kernel and log-domain Kernel Fusion shows great potential

in reducing hardware precision requirements and unneces-

sary compute kernels. To evaluate CoopMC from a hardware

resource perspective, we implement our proposed methods

and synthesize our design in RTL. The accelerator RTL is

synthesized using a commercial EDA tool, Cadence Genus,

based on the commercial GlobalFoundries 12nm technology.

Furthermore, the memories in the accelerator are generated

using a commercial 12nm SRAM compiler to obtain realistic

area and energy numbers. The frequency of the accelerator

is signed off at 500 MHz at 0.8V based on a typical process

corner. The hardware area estimation is shown in Table III.

The first row of the table shows the baseline logic area

requirements of a pipelined 32-bit divider. As a reference

point, it does not use any hardware optimization methods.

LogFusion can remove the need for a divider by introducing

additional components to the hardware. The baseline sam-

pler is replaced by a log kernel, an add kernel, a DyNorm

kernel, and an exp kernel. For both design choices using

LogFusion, ADD is the addition/subtraction kernel, which is

used by the hardware to compute division or multiplication

in log-domain. DN is the hardware for DyNorm, and its

design is shown in Figure 3. Since DyNorm is shared by

multiple pipelines for generating probabilities, its hardware

cost is also amortized by the number of parallel inputs it

handles. The reported area cost has been averaged by the

number of parallel input pipelines.

In the case of DyNorm+LogFusion(DN+LF), both log and

exp kernels are 32-bit approximation-function-based kernels

(16 bits each, for the integer and fractional parts). Due to

the higher precision and complexity of the approximation

function, the exp ALU has a relatively high area cost,

contributing to most of the hardware used for DN+LF.

This design choice still has a lower cost than that of the

divider, providing more than 3.05× reduction in chip area.

In the case of DyNorm+LogFusion+TableExp(DN+LF+TE),

an additional layer of optimization is applied to the de-

sign. Rather than using the approximation-based exp kernel,

TableExp helps to further reduce area overhead. The only

major component in the lookup table is a ROM containing

pre-computed values, so TableExp is only 10% of its coun-

terpart’s size.

This reduction improves the Kernel Fusion area reduction

to more than 7.56×. One thing to note is that the hardware

size we are considering here is the largest LUT dimension

(32-bit with sizelut of 1024), as discussed in previous

sections. If further low-precision optimization is applied for

the LUT, the hardware area reduction continues to improve,

making 7× a lower bound. With these area savings, the

benefits of using Kernel Fusion significantly outweighs the

overhead of adding more components into the design. Any

future accelerator design for discrete Bayesian inference

could benefit from this methodology.

C. Hardware Evaluation of TreeSampler

In previous works on accelerating Gibbs sampling for

discrete Bayesian inference [16], [35], discrete sampling

is implemented as a sequential process with a runtime of

O(N). With our tree-based sampler, the runtime is signif-

icantly reduced to O(log(N)). The reduction in runtime

is already shown in Figure 8. However, the TreeSampler

structure is considerably more complex than its sequential

counterpart. To further investigate the hardware area us-

age of TreeSampler, we implemented a sequential sampler,

TreeSampler, and pipelined TreeSampler (PipeTreeSampler),

and synthesized them using GlobalFoundries’ 12nm tech-

nology node. Their hardware area comparison is shown in

Figure 14.

As shown in the plot, TreeSampler and PipeTreeSampler

are significantly more costly than the sequential sampler.

This would seem to indicate a large sacrifice in hardware

resource efficiency for the O(log(N)) runtime. However, a

more useful metric is throughput per unit area, shown in

Figure 15. One thing to note is that the TreeSampler design

is determined by #labels, not #variables. The #labels
represent possible discrete labels each random variable could

take, while #variables is the number of random variables

for a workload. Although larger workloads, like LDA-Enron

might have millions of variables, they just need 128 for

their #labels, shown by Table I. TreeSampler samples a

new label from a vector with the size of #labels, not
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Figure 14: Hardware area of various sampler design for

different number of labels.

Figure 15: Throughput and area efficiency of various sampler

design for different number of labels.

#variables, so we sweep the design parameters from 2 to

128 in those two plots.

The left plot shows the relative throughput speedup from

using the three types of discrete sampler, with the sequential

sampler throughput used as the reference point. The speedup

for TreeSampler shows a step function pattern: due to the

nature of TreeSampler, its runtime will be the smallest

integer that is larger than log(N). That is, in between two

exponents of 2, its throughput will remain constant.

The right plot shows throughput speedup normalized by

area. PipeTreeSampler always leads in performance and

efficiency, albeit at higher hardware cost. The amount of

throughput generated per μm2 is still superior to the se-

quential sampler for most cases. Due to the step function

behavior, it can be slightly less efficient than the sequential

sampler in some cases, but still offers better throughput per

core, which could condense a multi-core design into a single-

core one while maintaining the same level of hardware

throughput. Also, as the number of labels increases, maxi-

mum speedup also increases, and minimum throughput per

area improves. Compared to previous designs with 64 labels,

TreeSampler provides 8.7× speedup while being 1.9× more

area-efficient. Generally, when there is sufficient accelerator

area to use a TreeSampler, it will provide better through-

put, latency, and area efficiency compared to a sequential

sampler.

Version Logic Area (um2) Power (mW) Speedup

VBaseline 14491 100% 7.96 100% 1×

VPG 9719 67% 3.08 38% 0.98×

VTS 25657 177% 14.9 187% 1.59×

VPG+TS 19874 137% 9.53 120% 1.53×

Table IV: Logic area and estimated power comparison

between different versions of end-to-end implementation

D. Hardware End-to-End Case Study

To ensure past and future accelerator designs can easily

benefit from our methods, we designed CoopMC such that

significant overhauls to the overall architecture or memory

system are unnecessary. CoopMC can serve as a well-

optimized plug-and-play design to improve the performance

and area usage of computational kernels.

More concretely, we reconstructed previous work by im-

plementing a similar MCMC computational core, which is

based on the design of the Gibbs Sampler in [16], and the

SPU in [36]. The computational core is designed for both

the PG and SD steps, and is implemented using Global-

Foundries’ 12nm libraries, the same technology node used

for previous area comparisons. We benchmark our design

with a 64-label MRF workload. As a baseline, VBaseline

of this computational core follows the naive design, using

a single PG compute pipeline and a discrete sampler, with

full 32-bit precision. VPG adopts the PG step optimizations,

which are DyNorm, TableExp and LogFusion. VTS adopts

TreeSampler for the SD step without using the optimization

methods in VPG. VPG+TS combines all optimizations for

the best performance and efficiency. Compute logic area and

power estimates are shown in Table IV.

As shown by the table, VPG shows 33% area and 62%

power improvement compared to the baseline. The combina-

tion of DyNorm, TableExp and LogFusion shows significant

improvements in the MCMC computational core and main-

tains its advantages even for end-to-end implementations.

VTS requires more area and power, but it provides 59%

end-to-end cycle speedup. Using PG step optimizations, we

can further reduce the area and energy cost in VPG+TS to

achieve a 1.53× speedup, requiring only 37% more area

and 20% more power. With more parallel pipelines for the

PG step, end-to-end speedup could be further improved. The

combined advantages of our proposed optimization methods

significantly out-weigh their potential drawbacks.

Our RTL implementation follows in the spirit of [16,

36], accelerating an MRF workload with 64 labels and

streams in data cost. With those assumptions, computing

each variable inside the accelerator engine requires 2072

bits for reading and 6 bits for output. Based on the roofline

model, we are compute-limited if 2078 bits are transferable

within the computation duration. The baseline (VBaseline)

has a threshold bandwidth of 15 bits/cycle while the fully

optimized version (VPG+TS) requires 22 bits/cycle. This is
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easily achievable using 32-bit SRAM, consuming 8.8mW.

After applying our optimizations, memory bandwidth is not

the limiting factor, so optimizations for PG and SD directly

contribute to end-to-end performance.

V. RELATED WORKS

MCMC-based Bayesian inference is very computationally

intensive, and its inherent sequential requirements make

parallelism difficult to exploit. Much of the existing literature

focuses on algorithm improvements such as methods to

parallelize the sequential algorithm while minimizing added

bias. Some of these methods relax some of the mathematical

properties to create a nearly identical parallelized version.

MultiBUGS [37] is an example of work that does not

alter statistical guarantees while parallelizing sampling. It

extends a well-known Bayesian modeling software called

BUGS [38] with multi-core functionality, by taking tasks

within MCMC that can be calculated in parallel, including

operations such as likelihood computation, and runs them on

multiple cores while also sampling conditionally indepen-

dent variables in parallel. [39] presents a suite of Bayesian

inference workloads, BayesSuite, with characterization and

profiling results on various processors with different mi-

croarchitectures. It also presents schedule and optimization

techniques for faster execution on the processors.

Various works also present hardware implementations

for Bayesian inference architectures that outperform Multi-

BUGS, including FPGA-based implementations. [40] is an

implementation of Hamiltonian Monte Carlo sampling, an

MCMC variant known to be efficient for sampling con-

tinuous distributions. [14] presents a compiler to generate

efficient FPGA implementations using predefined hardware

templates for parallel execution of MCMC sampling meth-

ods. [15], [41] present FPGA-based accelerators that show

significant gains over ARM CPUs for audio processing and

computer vision tasks in a mobile setting. They demonstrate

an architecture that concurrently samples conditionally in-

dependent variables for parallel Gibbs sampling.

Additionally, several works also propose ASIC solutions.

[16], [35] have presented the first programmable Bayesian

inference accelerator for computer vision and audio process-

ing on mobile settings. These works support asynchronous

(or Hogwild!) Gibbs sampling as well as parallelization of

conditional independent variables, enabling an additional

level of parallelism on top of the other existing work

mentioned above. Another implementation of these paral-

lel Gibbs sampling architectures optimized specifically for

sound source separation to be applied for automatic speech

recognition SoC [42]. [17] is another chip implementa-

tion that uses an exact deterministic inference called Sum-

Product Networks.

Most previous designs focus on how to parallelize

MCMC-based inference. In most of their implementations,

their computational core design is naive and without suffi-

cient optimizations. Taking another approach, [36] investi-

gated the statistical robustness of MCMC accelerators when

using reduced precision for probabilities to improve effi-

ciency. This work defined sampling quality, convergence di-

agnostics, and goodness of fit as metrics for qualitative eval-

uation of correctness for probabilistic accelerators. CoopMC

looks into optimizations for the entire MCMC computational

pipeline. Our work includes, but is not limited to, techniques

such as reduced precision to increase efficiency, and takes

advantage of statistical robustness for optimizing MCMC.

Our optimizations do not rely on changes to the parallel

architecture of computational cores or their memory hierar-

chies. Consequently, our design can be used in conjunction

with the previous hardware approaches and provide benefits

for past and future designs.

VI. CONCLUSION

We present CoopMC, an algorithm-architecture co-

optimization for Markov Chain Monte Carlo accelerators.

We generalize MCMC-based Bayesian inference into three

computational steps: probability generation (PG), sampling

from distributions (SD), and parameter updates (PU). Based

on the numerical characteristics of the PG step, we propose

DyNorm, TableExp and LogFusion to jointly exploit the

low-precision robustness of Bayesian inference and avoid

unnecessary division and multiplication kernels. Fusion of

these techniques help reduce the required precision and

shrink the computational kernel area cost by up to 7.5×. For

the SD step, we propose TreeSampler to reduce hardware

runtime dramatically, from O(N) to O(log(N)). This results

in an 8.7× speedup, compared to the published state-of-

the-art Gibbs sampler architecture, while simultaneously

increasing area efficiency by 1.9×. In an end-to-end case

study, CoopMC shows a 33% logic area reduction and 62%

power reduction, and that a 1.53× speedup can be achieved

with better area and power efficiency. All of our proposed

methods have been tested on ten diverse workloads, using

three different types of Bayesian models, without noticeable

reduction in model performance. The general applicability

of these methods suggests its extensibility to other Bayesian

models.
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