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Abstract—Bayesian machine learning is useful for applica-
tions that may make high-risk decisions with limited, noisy,
or unlabeled data, as it provides great data efficiency and
uncertainty estimation. Building on previous efforts, this work
presents CoopMC, an algorithm-architecture co-optimization
for developing more efficient MCMC-based Bayesian infer-
ence accelerators. CoopMC utilizes dynamic normalization
(DyNorm), LUT-based exponential kernels (TableExp), and log-
domain kernel fusion (LogFusion) to reduce computational
precision and shrink ALU area by 7.5x without noticeable
reduction in model performance. Also, a Tree-based Gibbs
sampler (TreeSampler) improves hardware runtime from O(N)
to O(log(N)), an 8.7x speedup, and yields 1.9x better area
efficiency than the existing state-of-the-art Gibbs sampling
architecture. These methods have been tested on 10 diverse
workloads using 3 different types of Bayesian models, demon-
strating applicability to many Bayesian algorithms. In an end-
to-end case study, these optimizations achieve a 33% logic
area reduction, 62% power reduction, and 1.53 x speedup over
previous state-of-the-art end-to-end MCMC accelerators.

Keywords-Algorithm-Architecture Co-Design, Hardware Ac-
celerator, Bayesian Machine Learning, Markov Chain Monte
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I. INTRODUCTION

Bayesian machine learning (ML), often called probabilis-
tic computing, is a type of statistical machine learning
that leverages Bayes’ theorem to model event probabilities
using observed evidence and prior knowledge. It has be-
come an important class of machine learning algorithms for
processing data in various scenarios, including integrating
domain knowledge in models, handling sparse or noisy data,
and handling hierarchical or time-series data. Compared to
many deep learning (DL) algorithms, it provides much better
data efficiency and accurately estimate uncertainty. These
advantages make Bayesian ML a superior choice in certain
fields.

Unlike DL models, Bayesian models do not have high
requirements for dataset quality and quantity: Bayesian
models can easily learn from a limited number of (and even
unlabeled) data points, while still providing useful insights.
With their high data efficiency, Bayesian models’ outperform
their DL counterparts in fields such as insurance [1], finance
[2], and pharmaceuticals [3], where large amounts of labeled
data are hard to acquire and often noisy.

At the same time, Bayesian models provide explicit
uncertainty estimates with inference results. For tasks such
as biomedical analysis and clinical diagnostics, a prediction
result is far from sufficient; an uncertainty estimation about
the model’s inference prediction is crucial when making
critical decisions with real-world consequences. A mission-
critical model must communicate how certain it is about
a query and to “know” when it is uncertain. From this
perspective, DL falls short. Although a final output layer
can provide a quality score for possible classes, this has
been proven to be insufficient when estimating predictive
uncertainty [4]. On the other hand, Bayesian models excel
in problems where uncertainty is critical. A recent example
is COVID-19 predictions, where Bayesian modeling helped
predict daily COVID-19 cases by leveraging prior statis-
tics on similar diseases, such as Severe Acute Respiratory
Syndrome, and by modeling human behaviors, such as
social distancing [5]-[7]. Incorporating Bayesian methods
into DL preserves the learning capabilities of DL while
providing superior uncertainty estimation for its outputs.
This technique has shown its effectiveness in regression
tasks [8], [9], image classification [4], and computer vision
for autonomous vehicles [10].

A typical Bayesian model use its parameters to estimate
the probability of certain events. Predicting the probability
of an event taking an outcome from a Bayesian model
is called Bayesian inference. Bayesian inference relies on
one of two classes of inference algorithms: Markov chain
Monte Carlo (MCMC) or variational inference (VI). For
VI, the posterior inference can be cast as an optimization
problem solvable using gradient-based algorithms, and thus
enjoys the benefits of various acceleration tools built for
DL [11], [12]. However, VI may not always converge and
can introduce unwanted bias during inference, making it
ill-suited for critical problems. On the other hand, MCMC
is guaranteed to converge and with less bias, but does
not scale well on existing computing platforms, namely
CPUs and GPUs. It requires many complex kernels (e.g.,
generating many random numbers and sampling from dis-
crete distributions) which may stall hardware and yield poor
utilization. Table II shows runtime percentage breakdown for
various workloads on CPU. The Probability Generation (PG)
and Sampling from Distribution (SD) are computational
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steps consisting of complex computational kernels. They
dominates the end-to-end runtime for various MCMC-based
workloads. Specialized hardware acceleration to accommo-
date these novel kernels could lead to direct speedups.
For this reason, specialized hardware and accelerators have
shown great potential [13]-[17]. They already demonstrate
dramatic improvements over CPUs/GPUs.

Despite Bayesian models’ unparalleled advantages for
specific classes of problems and acceleration potential, they
have drawn less attention from the architecture and sys-
tems communities, in part due to the high costs associated
with building specialized hardware. Thus, developers and
researchers tend to focus on established fields and well-
known algorithms. Unfortunately, this lack of attention may
hurt machine learning development in the long run [18]. To
highlight the potential of other promising ML algorithms,
such as Bayesian ML, this paper seeks to further improve
acceleration of Bayesian inference. By identifying core
operations within Gibbs sampling, a widely used MCMC
algorithm, we present a collection of optimizations that
improve computational efficiency while maintaining the ro-
bustness of the algorithm against noise or errors introduced.
We first generalize the computational flow of Bayesian
inference into three main steps. Next, we utilize algorithm-
architecture co-design to exploit numerical and structural
properties of the computational flow in reducing hardware
costs while accelerating inference. Finally, we evaluate the
resulting design across a broad variety of workloads. The
contributions of our paper are as follows:

o Generalization of the Bayesian inference computational
flow to three stages: Probability Generation (PG), Sam-
pling from Distribution (SD) and Parameter Update
(PU).

o A collection of optimization methods, Dynamic Nor-
malization (DyNorm), lookup-table-based Exponential
Kernel (TableExp), and Log-domain Kernel Fusion
(LogFusion), to collectively accelerate Bayesian infer-
ence, providing 7.5x ALU area reduction with negli-
gible reduction in model performance.

o A tree-based sampler micro-architecture (TreeSampler)
reducing Gibbs sampling cycle runtime from O(N) to
O(log(N)), with better hardware area efficiency.

o Evaluation across ten diverse Bayesian workloads to
demonstrate robustness and broad applicability to com-
mon Bayesian models.

o A case study highlighting CoopMC'’s effectiveness in
end-to-end designs, combining previously published
designs.

Admittedly, there are some concepts or implementation that
are similar to DyNorm, TableExp, and LogFusion in other
domain’s previous works. This paper’s novelty is in how we
combine the techniques for Bayesian inference acceleration.
Combining the four optimization methods is also a deliberate
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decision: they are codependent. Without DyNorm, TableExp
and LogFusion would not converge for most Bayesian learn-
ing algorithms due to precision loss. LogFusion is specifi-
cally tailored to Bayesian learning, which requires sequences
of multiplications and divisions. Also, unlike previous works
that only focus on a particular model type or inference al-
gorithm, or on a single application, this work explores three
different types of Bayesian models, each running disparate
applications with widely varying numbers of variables and
dimensions—from fewer than 10 to more than 6 million
variables and up to 2 million dimensions each. Furthermore,
CoopMC investigates optimizations for computational kernel
efficiency, which has been larger ignored by previous works.
Thus, methods proposed in CoopMC could be directly added
into past or future accelerator computational pipeline designs
as a plug-in optimization. We will demonstrate its end-to-
end optimization capability in Section IV-D.

II. BACKGROUND

Bayesian models consist of a collection of random vari-
ables. Each random variable has several components: the
variable’s current label, which can be discrete or continuous,
and its probability distribution for taking different labels.
The variable’s correlation to other variables within a model
affects its own probability distribution. The relationships
between different variables inside a model may be expressed
as a graph that incorporates prior knowledge for a given
task. Different causal relationships result in different graph
structures, enabling the application of Bayesian ML for a
wide variety of inference tasks. To show the generality of
our method, we cover three types of Bayesian models with
ten different workloads, as seen in Table I: Markov Random
Field (MRF), Bayesian Network (BN) and Latent Dirichlet
Allocation (LDA).

Although we only discuss these ten workloads in this
paper, methods are designed to provide general acceleration
for MCMC-based sampling algorithm. The MCMC algo-
rithm is analogous to stochastic gradient descent in deep
learning: it is a general tool used in a wide range of Bayesian
machine learning models, including the three (MRF, BN,
LDA) presented in the paper. So CoopMC methods are
applicable to any MCMC algorithm with a discrete sampling
process. For the simplicity of this paper, we will focus on
those ten workloads in Table I.

A. Model Evaluation Metrics

One thing to note is that most of the models discussed
in this work are designed for unsupervised learning. Due
to the nature of unsupervised learning, it is not possible
to calculate model accuracy for an inference task because
data is unlabeled. Therefore, we evaluate the performance
of our optimization methods by comparing the hardware-
optimized performance to a baseline vanilla algorithm per-
formance. The comparison metric will usually be the pos-
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[ Workload | #Variables [ #Labels |
MRF-Image Restoration 6,656 64
MREF-Stereo Matching 110,592 16
MRF-Image Segmentation 150,000 2
MREF-Sound Source Separation 64,125 2
BN-ASIA 3 2
BN-EARTHQUAKE 5 2
BN-SURVEY 6 3
LDA-NIPS 1,932,365 128
LDA-Enron 6,412,172 128
LDA-RNA 540,393 128

Table I: Summary of various benchmark workloads.

[ Workload [ PG% | SD% [ PU% |
MRF-Image Restoration 88.00% 9.20% 2.81%
MREF-Stereo Matching 76.49% | 14.78% 8.73%
MRF-Image Segmentation 45.71% | 31.69% | 22.60%
MRF-Sound Source Separation | 46.14% | 31.63% | 22.23%
BN-ASIA 46.00% | 52.37% 1.63%
BN-EARTHQUAKE 44.97% | 53.36% 1.68%
BN-SURVEY 45.96% | 52.45% 1.59%
LDA-NIPS 40.26% | 53.23% | 6.50%
LDA-Enron 42.84% | 56.34% | 0.83%
LDA-RNA 39.14% | 53.20% | 7.66%

Table II: Runtime percentage breakdown of various bench-
mark workloads.

terior probability of the final result or the difference to a
best convergence result that the vanilla algorithm is able to
achieve. This is a common practice for evaluating unsuper-
vised Bayesian models and inference. Details about model
performance evaluation are provided in the introductions to
each algorithm.

B. Markov Random Field (MRF)

A Markov random field [19], [20] is a Bayesian model
with a correlation graph similar to a grid-like structure V,
containing all nodes. The event abstraction for MRF is
defined as a graph node taking a certain label, which means
each variable will represent a node in the structure. Every
node is correlated to four neighbors surrounding it. For any
node ¢ € V, its probability distribution is determined by the
observed data y; and other correlated nodes’ labels, x; for
j € N;, which represent the set containing all correlated
nodes of ¢. The label of z; may take on [ discrete labels
in the range [0,1). The posterior probability of i taking the
label x;, given its observed label y; and the correlation set
N;, is:

Pi(zi,yi) = %d)i(iﬂuyi) 1T (@i, 25)) (M
JEN;
Z= Y (Pixi,y)) )

z;€[0,0)

¢; is the probability of ¢ taking the label z;, given y;, while
@;,; 18 its probability, given the correlation set N;. The MRF
formulation is often rewritten as a sum of energy functions.
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For every variable ¢, its energy functions consist of two
components. The first is data cost, DC(z;,y;), determined
by the difference between y; and z;. The second is smooth
cost, SC(x;,x;), determined by z; and y;. The sum of
DC(z;,y;) and SC(z;, x;) is the total cost, T'C(z;, y;). TC
is fed into a negative exponential function to generate the
probability distribution. The probability distribution takes
the following form:

TCy(wi,yi) = DCilwi,yi) + >, (SCij(wiz;)) ()

z;€[0,1)
—B*TCi(zi,y:) 4)
The model will continue training until the energy function
converges. The inference result will be the label of each
variable from the last iteration. Four different applications
are used as benchmarks for MRF:

Pi(zi,y;) = e

« Image Restoration: An application to restore an image
from one with added random Gaussian noise and black
boxes. An ideal output completely removes all noise
and restores the original image.

« Stereo Matching: An application to understand the 3D
depth view of an input image. Objects in the same level
of the depth should share the same label.

o Image Segmentation: An application to separate the
foreground from the background of an input image.

e Sound Source Separation: an application to separate
distinct sound sources from an input audio containing
a mix of audio sources.

As previously mentioned, it is unreasonable to provide
a correct answer to an unsupervised workload. Therefore,
performance for each MRF application is evaluated by the
mean-square-error (MSE) of the inference output with a ref-
erence result, or golden result. The golden result is generated
by running a vanilla floating-point inference algorithm for
an excessively large number of iterations, and represents the
best quality MRF is able to achieve on a given workload.
Due to the randomness of MRF, any two inference results
will almost never be exactly the same, so it is natural to
observe a non-zero MSE, even for the vanilla algorithm.
To fairly compare different applications, we normalize each
MSE result with the MSE of the inference result from an
untrained model. A smaller MSE means better inference
quality.

C. Bayesian Network (BN)

A Bayesian network [21], [22] is a Bayesian model whose
variables and their conditional dependence are modeled as
a directed acyclic graph. They are commonly used for
understanding probabilistic relationships between incidents
sharing a predefined casual relationship. Each node in the
graph represents an event for this type of Bayesian model. A
typical workload queries the probability of a variable being a
certain label, given some other variables’ label as evidence e.
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Each node assumes a label in [0, n). n represents the number
of labels that each node could take. Each edge represents a
conditional probability between two variables in the graph.
The MCMC inference algorithm will update every variable’s
label x; by sampling based on its probability, as given by:

P(X; = zile) = P(X; = z;|Pa(X;), e)
< I (PilPa(v;),e) x

Y;€Ch(X;)
Pa(X;) represents all parent nodes of X;, while Ch(X;)
represents all children nodes of X;. After each iteration,
the label of X; will be recorded, and the probability of X;
taking different labels is generated from counting the number
of times each label is selected during the inference process.
The sampling process will stop when the probability of the
variables reach steady-state. Three different datasets are used
as benchmarks for BN:

o ASIA [23]: A network that describes the relationship
between different patients’ symptoms and their poten-
tial causes.

o EARTHQUAKE [24]: A network that describes the
relationship between earthquakes and neighbors’ calls
due to an alarm system.

« SURVEY [25]: A network that describes how differ-
ent peoples’ demographic factors will influence their
transportation methods.

Similar to before, the inference quality of the BNs is
evaluated by comparing their MSEs to golden results. Here,
a golden result consists of the average results of several
inferences using vanilla floating-point Gibbs sampling in-
ference. Again, the smaller the MSE, the better the result.

D. Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation [26], [27] is a generative
model that views documents in a corpus as “bags of words”
generated from a vocabulary. Each word may be treated
as an event associated with a source document, vocabulary,
and latent topic (to be inferred). Different word labels are
represented as different event outcomes. The distribution of
topics across documents and vocabulary are captured by
two parameter tables: a Document-Topic table (DT) and
Vocabulary-Topic table (VT). DT and VT have sizes D x T’
and V x T, respectively, where D represents the number of
documents, V' represents the size of vocabulary and T is the
number of topics. Training an LDA model requires updating
DT and VT using an input corpus until convergence. Once
trained, these tables may be used to infer the distribution
of topics for new documents. In this paper, we adopt a
common inference method, called collapsed Gibbs sampling
[28], [29]. Collapsed Gibbs sampling uses the following
probability distribution expression:

(DTd,t + a)(VTt,1J + ﬂ)
Zve[o,V) (VTt’v) + BV

B )]
P(e)

P(k) =

(6)
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Three different datasets are used as benchmarks for LDA:

o NIPS: A collection of academic papers from NeurIPS.
The workload is to identify key discussion topics for
each paper in the dataset.

o Enron: A collection of email transcripts. The LDA
model aims to determine the essential topics for each
e-mail.

« RNA: Multiple generic RNA sequences. A typical task
is to find similar sequences for genomic expression.

The inference quality of a dataset is evaluated by the log-
likelihood of the final converged model. This log-likelihood
value is determined by the likelihood of the model variables’
configurations, given its observed data. This is the common
comparison standard used in previous works [30]-[32] for
LDA. Higher log-likelihood indicates better quality.

III. ALGORITHM AND ARCHITECTURE
CO-OPTIMIZATION

We propose co-optimization methods generally applicable
to inference across a broad variety of Bayesian models.
To provide such generality, we first construct a common
computational model that works for most Bayesian infer-
ence. Second, we discover common patterns such as solv-
ing exponential equations, multiplication-division sequences,
low-precision requirements, and sampling. Third, we exploit
these characteristics to reduce precision and hardware re-
quirements, fuse different computational kernels, and reduce
sampling run time.

Based on the discussion in Section II, this work focuses
on Bayesian inference using Gibbs sampling. The inference
process for any Bayesian model is essentially a continuous
sampling of new labels from a probability distribution for
each random variable in the model until convergence. More
concretely, for each random variable = in a model B, its
sampling process consists of the following three steps, also
visualized in Figure 1:

e Step 1 - Probability Generation (PG): Based on the
current labels of all other variables correlated with
x, a probability distribution P, (a vector of size N)
is generated. The n'" element in P, represents the
probability of = taking the label of n, given the current
state of B. In an accelerator, these computations require
hardware components that can perform several types
of kernels, including division, multiplication, addition,
and exponentiation. P, is stored as a probability vector,
usually in a register file (ProbReg), for use in the next
step. Multiple processing elements can generate several
elements of P, in parallel.

o Step 2 - Sampling from Distribution (SD): Based on
the probability distribution P, from PG, a new label
Nnew 18 randomly sampled for random variable x. The
probability of n,,.,, being n is proportional to the n*"
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Figure 1: A diagram shows three essential steps for Bayesian
inference, and its computation flow.

element in P,. This step usually requires special hard-
ware to sample from a distribution generated during
PG.

e Step 3 - Parameter Update (PU): Update the label of x
in the model B with the sampling result 7,,¢,, from SD.
Other variables correlated with x require the update to
be completed before moving to the next variable.

For each iteration, every variable in the model goes
through these three steps to update its label. The inference
result will be the final converged model. Any hardware
aiming to accelerate Bayesian inference must implement
these steps in their processing element. Previous works on
accelerating Bayesian inference have focused on optimizing
the PU step. Various methods such as chromatic sampling
and asynchronous updates help to relax the sequential re-
quirements for PU [16]. These methods enable much better
parallelism and almost linear speedup with the number
of PE cores. However, their optimization and co-design
never touch on PG or SD. As reported in their work, the
probability distribution is generated using a standard 32-
bit fixed-point computational pipeline. Every computational
kernel, such as multiplication, exponentiation, and sampling,
follows the vanilla algorithm exactly. At the same time, their
optimizations for PU have only demonstrated effectiveness
for MRFs. Building on these previous works, we investigate
how to further optimize hardware accelerators for Bayesian
inference by exploiting patterns or characteristics commonly
found in Bayesian inference models.

A. DyNorm: Dynamic Normalization

Exponential kernels are commonly used in Bayesian
models. Take the stereo matching application using MRF
as a concrete example. The probability function for MRF
is expressed as an exponential family in canonical form.
In previous MRF accelerators, implementations used a 32-
bit fixed point exponential ALU for the exponential kernel.
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Figure 2: Dynamic normalization greatly improves algo-
rithms’ tolerance to low-precision computation.

However, whether 32-bit precision is required for MRF has
not been investigated. To understand the precision require-
ments for the exponential kernel, we investigate how model
performance will change as the precision of the exponential
kernel varies.

As shown in Figure 2, different bitwidths, or precisions,
have a significant impact on the convergence performance of
the model. If fewer than 8 bits are used, the model does not
successfully converge. The model is trapped at a steady state
due to the very low precision of the exponential kernel, and
most probabilities in this workload require a much smaller
domain, usually smaller than 273, With just 4 bits assigned
to the exponentiation kernel, only values larger than 274
can be expressed, yielding a vector of zeroes for the P,
generated from Stage 1. Consequently, instead of sampling
based on P,, Stage 2 will only be able to select a label
uniformly at random and assign that label to z. The sampler
no longer correctly updates the label of z, resulting in a
horizontal line in the right plot of Figure 2. Even when
the number of bits is increased to 16, the final result is still
unable to attain the same level of performance as with 31
bits.

However, if we confine the activation range of the expo-
nential kernel output to a predetermined range, low precision
is still viable. To achieve this, we designed a method called
Dynamic Normalization and apply this to the original MRF
algorithm. In the original algorithm, each element in P, is
equal to the following expression:

exp(TC,)
>z €2p(TCr)

TC,, is the input for each of the exponential kernels,
when variable x takes label m. Constraining 7°C,, will
prevent exp(TC,,) from becoming too small. Dividing the
numerator and denominator by a constant exp(C') does not
affect the value of p,(m). Thus, the constant C' may be used
to limit the size of each of the inputs to the exponential
kernel. However, since every p,(m) for each z has a wide
activation range, it is impractical to predetermine the value
for the normalizing constant C. Instead, this constant is
determined at runtime and takes the maximum value of

(7

pa(m) =
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Figure 3: Hardware for applying DyNorm onto an array of
inputs. NormTree structure is marked by the dashed box,
which is used for finding the maximum value in the input
array.

p(m) for each x.
<)
Zgzl exp(input,, — C)

N !
cxp(input,) ,MAX (input,,) =0 (9)
Zgﬂ exp(input!,) m

With the help of DyNorm, the maximum value of TC/,
for each z is always zero. This limits the maximum output
value of the exponential kernel to one. A visualization of this
process is shown in Figure 3. Since the sampling process
cares most about the m with the highest p, (m), shifting all
exponential kernel output values back towards zero greatly
helps the sampler in generating more meaningful results,
even with lower precision. This effect is clearly shown
by the right plot in Figure 2. After applying Dynamic
Normalization, even exponential kernels with only 1-bit
precision retain partial inference capabilities. Using more
precision, such as 8 bits, shows identical results to the full
31-bit exponential kernel. Both the convergence rates and
final convergence results show no noticeable differences.
The DyNorm operation introduces an additional kernel
into the design. This operation needs to find the maximum
value from a probability distribution P,. We propose the
NormTree design, which is a tree-based maximum kernel
for finding the maximum value from an array of inputs.
This tree-based design may be extended for more complex
usage, as discussed in the following section. Figure 3 shows
the hardware design for supporting DyNorm operation with
a NormTree structure. Each Tree node in the NormTree
is a comparator, which compares between two incoming
inputs and outputs the larger value to the next layer. The
output of the last layer is the maximum value from the input
array. The runtime will be O(log(Npipe) + 1), where Npipe
is the number of pipelines for the PG step, offering very
good scalability for large numbers of parallel pipelines. The
hardware cost for this component is amortized by N as well,
resulting in a minuscule hardware cost for DyNorm.

exp(input,, —

®)

pa(m) =
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Figure 4: Comparison of kernel output error for

approximation-based exp kernel and LUT-based exp
kernel (TableExp)

B. TableExp: LUT-Based Exp Kernel

Dynamic Normalization shows great potential to lower the
precision requirements for the exponential kernel. However,
the actual hardware is still relatively complex even when
using approximations to compute the exponential value.
Since the precision can be reduced dramatically (e.g., to
only 8-bit), it is not necessary to provide a very precise
approximation. Instead, a fully lookup-table-based (LUT-
based) exponential kernel can be used. Since DyNorm will
also be applied to TableExp, all input values to this kernel
will always be non-positive. For the lookup table, size;,; is
the number of elements in the lookup table, and step;,,; is the
step between two adjacent quantized inputs. TableExp will
quantize any negative input x;, into k, the largest integer
smaller than —x;,/stepy,:. If we set step,: to a power
of 2, then the quantization operation is easily implemented
using simple shifts. The quantized input k is also used to
index the lookup table. If the index is smaller than the size
of the lookup table, the output value will simply be the k"
element of the table. If the index is greater than the size of
the lookup table, the output value will be zero. Each element
in the table is defined using the following expression:

exp(—k - steppur) (k< sizepyt)
0 (k > sizeput)
(10)

The lookup table design is also defined by another parameter,
the number of bits (#bit;,;) used to express each entry in
the table. After numerical analysis of different workloads,
we rarely found x;, to be smaller than -16 after DyNorm.
Thus, we fixed step;,: to 16/sizep,:. Using TableExp can
greatly simplify the exp kernel design, but can also introduce
more error into the kernel output. Figure 4 shows an error
comparison between the approximation-based exp kernel
and a TableExp with sizej,; = 1024 and #bity,: = 32.

To understand how this introduced error affects inference
quality, we perform a case study using the stereo matching
benchmark, sweeping sizej,; and #bit;,;, two key design
parameters for TableExp. The parameter sweep result is
shown in Figure 7, and demonstrates that Bayesian is very
resilient to lower-precision hardware kernels. Using only

TableExp(xin) = {
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Figure 6: Micro-architecture of a probability generation (PG)
computational core with LogFusion, DyNorm and TableExp.

8-bit precision results in almost the same performance as
using a full 32 bits. There is also no significant overhead
associated with the number of elements used in the lookup
table. Storing 64 quantized values in a lookup table does not
significantly impact learning rate or the final convergence
result, compared to the lookup table with 1024 elements. By
applying TableExp, any accelerator design can circumvent
the complex approximation-based exponential kernel and
instead replace it with an efficient low-precision read-only
memory (ROM) while preserving inference quality.

The computational flow of Bayesian inference explains
the tolerance to lower precision. In sampling from distri-
butions, Bayesian inference is not a process that requires
exact computation. Random error and noise are common
even during the inference process using floating-point prob-
abilities. Furthermore, during the sampling process, the most
probable labels will have a much larger probability than
other labels for each variable, so adding some additional
error into the system should not significantly influence
the sampling result and the most probable label will still
be most frequently selected. Low-precision computation is
already very common in DL accelerators [33], [34], so it is
reasonable to also observe this kind of resilience to lower-
precision in Bayesian inference.
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C. LogFusion: Log-Domain Kernel Fusion

Apart from exp kernels, there are other types of kernels
commonly used in PG. Algorithms like LDA and BN contain
a sequence of multiplications and divisions after PG. This
pattern requires the system to incorporate a high-cost divider
component into the accelerator design. Additionally, the
number of multiplications and divisions could be propor-
tional to the number of correlated variables. If an accel-
erator is to generally accommodate any kind of Bayesian
inference, ALUs supporting exponentiation, multiplication,
and division need to be incorporated into the system.

However, from the previous section, we concluded that
high precision is not a strict requirement for Bayesian
inference, so long as all intermediate results stay within a
reasonable activation range. With this in mind, we propose
a kernel fusion method called Log-Domain Kernel Fusion
(LogFusion) for Bayesian inference. Instead of directly
computing the result from a long sequence of expensive
multiplications and divisions, LogFusion reduces computa-
tional cost by performing all computation in the log-domain,
where multiplications and divisions are transformed into
cheaper additions and subtractions. This is easily shown by
the following equation:

H#num @ #num #denom
bdonam = eap( ) loglas) = 3 log(b;))
szl bj =1 j=1

an

In the equation, the numerator needs to take the product of
all a; together, while the denominator needs to take the prod-
uct of all b; together. Through this conversion, division and
multiplication kernels are no longer needed and are replaced
by (#num+#denom) additions and one subtraction. After
a sequence of additions and subtractions has been computed,
the output result is converted back to real results using the
exp kernel. Additionally, with the help of DyNorm, input
values to the exp kernel will always be brought back into
an acceptable range for the kernel. Although there is an
additional overhead for the exp kernel and the log kernel, the
high cost of incorporating sequences of multiplications and
divisions still makes this trade-off favorable. Figure 6, shows
the Mirco-architecture, combining all optimizations for PG.
The PG ALU can calculate any sequence of multiplication
and division without the need for a multiplier or divider.
Multiple PG ALUs can be used to exploit parallelism. Since
DyNorm works on a vector of inputs, it will be shared by
multiple PG pipelines. As a result, its additional hardware
cost will be amortized by the number of parallel pipelines
in the compute core.

An accelerator using LogFusion still has its distinctive
advantages, even if it is compared with an alternative accel-
erator on FPGA using Digital Signal Processor (DSP). For
example, the Xillinx DSP48E1 DSP Module supports 25-bit
x 18-bit multiplication and 48-bit addition. Using a single
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Figure 7: Using smaller sizey,; and #bit;,;

DSP unit, a 32-bit multiplication needs four cycles, but only
1 cycle for 32-bit addition. Even accounting for log and
exp conversions (2 cycles), log-domain computation is still
faster. Probability computations for Bayesian models usu-
ally require many consecutive multiplications and divisions,
so benefits easily accumulate. Treating division as inverse
multiplication would cause underflow issues for fixed-point
formats. Resolving division-by-zero problems requires larger
bit widths for mantissa alignment and multiplication. In
contrast, LogFusion incurs no additional cost.

D. TreeSampler: Tree-Based Sampler

In addition to the optimizations for PG, operations in
SD can also be improved. Sampling to find a new label
based on a vector is essentially a vector search operation.
Prior implementations apply a for-loop pointer to this kernel.
However, this iterative search method requires O(XN) run-
time and is not ideal for larger numbers of labels. Utilizing
a tree-based structure for search algorithms is common
practice to reduce runtime. Taking inspiration from the
binary search tree data structure, we propose the TreeGibbs
architecture, generalizing the sampling process into a tree
structure to achieve O(log(N)) runtime.

A sampler samples a topic from a distribution provided
as a vector of probability values P, for a variable x, which
takes a label n € [0,N), where N is the number of
possible labels for z. The vector P, contains a probability
P, (n) for every possible label of n. The larger P.(n) is,
the more likely the sampler assigns label n to variable
x. If computation is done sequentially, P, may be con-
verted into a vector A, containing cumulative probabilities
Ay(m) =30 _, Py(m). A threshold value T is generated
by multiplying the total sum of P, (ie., A,(N — 1)) by
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can still provide similar inference quality as the Float32 baseline.

a random value from the standard uniform distribution.
The smallest n that makes A, (n) larger than T will be
assigned to «x as its new label. The sampling process requires
cumulative summing so, if N is not large, using an iterative
compute architecture to compute each probability uses the
least amount of logic. This structure requires at least 2N 41
cycles for the hardware to sample a token. However, if N
is very large, the required time for generating a sample
increases significantly.

To solve this runtime issue, we propose TreeSampler.
Fig. 8 shows a simplified diagram of TreeSampler divided
into three modules: TreeSum, ThresholdGen and Traverse-
Tree. TreeSum is the tree structure that sums all elements of
P,. Each node sums the outputs of its children nodes and
passes the summed value to its counterpart in TraverseTree.
ThresholdGen generates 7' by multiplying the total sum by
a uniform random number from a hardware Pseudo-random
Number Generator (PRNG). TraverseTree enables the tree
structure to select the correct leaf node. Each node will
compare its parent node’s value N, with its left child node’s
value N;. If the left child has a higher value, the node will
update its own value to IV, and activate the left child node.
Otherwise, the node will update its own value to N, — N;
and activate the right child node. Using this structure, the
runtime for sampling each token is reduced from O(2N +1)
to O(log(N)).

TreeSampler shows great runtime reduction compared
to a sequential sampler and scales much better, as shown
in Figure 9. As the number of labels in the workload
increases, the runtime speedup also increases. This is crucial
for workloads that require a higher number of labels for
each random variable. While this tree-based design is much
more complex, TreeSampler provides far better hardware
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Figure 9: Runtime speedup of TreeSampler scales well with
number of labels.

utilization and is more efficient than a sequential sampler.

By adding additional shift registers between the same
layers in Tree Sum and TraverseTree, we ensure information
can be passed from TreeSum to TraverseTree. This means
the entire TreeSampler hardware can operate on several
different inputs without interference. The additional shift
register from TreeSum to TraverseTree creates a pipelined
version of TreeSampler (PipeTreeSampler). Compared to
TreeSampler, the runtime is exactly the same, but the maxi-
mum throughput is further improved to one sample per cycle.
Although much more complex and expensive to build, its
hardware efficiency is the best among the sequential sampler,
TreeSampler, and itself. More discussion on this topic is in
Section IV-C.

IV. EXPERIMENTAL RESULTS

We applied our methods to ten different benchmarks using
three types of Bayesian models introduced in Section II.
These three algorithms and the various datasets for each
provide a good representation of common discrete Bayesian
inference workloads.

In this section, we first provide an algorithmic evaluation
of DyNorm, TableExp, and LogFusion on ten different
workloads. Their combined effect enables low-precision
computation without noticeable loss in model performance.
Secondly, we will evaluate the effectiveness of hardware cost
reduction by jointly applying the presented methods. Thirdly,
we will show the throughput speedup from TreeSampler and
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discuss its hardware resource efficiency. There is no need for
a discussion on algorithm inference quality for TreeSampler,
because it implements the same sampling algorithm as a
vanilla sequential Gibbs sampler.

A. Algorithmic Evaluation of DyNorm, TableExp and Log-
Fusion

1) MRF Benchmarks: In Section III-A, we presented the
effects of applying DyNorm and TableExp for Stereo Match-
ing. DyNorm allows MRF inference with a precision as low
as 8-bit. Without this, inference results show a significant
degradation compared to the Float32 results. In addition,
TableExp can further reduce the hardware requirement for
the compute pipeline. The algorithm shows strong resilience
to lower-precision compute. These patterns do not pertain to
Stereo Matching alone. We applied the two techniques to all
four benchmarks of MRF.

DyNorm is able to reduce hardware precision without loss
of inference quality. In Figure 10, four different applications
are provided. For each application, 4-bit and 8-bit fixed-
point results are shown on the graph, with the floating
point MREF result as reference. For all applications, directly
using fixed-point compute is not ideal for inference quality.
However, once DyNorm is applied, model inference results
immediately show improvement, attaining almost identical
quality to the floating point result. For Stereo Matching,
there still exists a slight degradation in convergence speed
for the 4-bit fixed-point result. Despite this, 8-bit precision
with DyNorm allows all applications to reach the same
inference quality as the floating point baseline.

Combining all three proposed methods shows their ef-
fectiveness across all MRF applications. To investigate how
different TableExp design parameters affect model perfor-
mance, we sweep two key design parameters and record
the final converged result. The first parameter is sizej,,
which represents the number of elements stored in the
lookup table. The second parameter is #bit;,:, Which is
the number of fractional bits used for each element in
the lookup table. Theoretically, larger sizey,; and #bity,,
should result in better precision for the exp kernel. However,
a better precision does not always result in better model
convergence. Figure 11 shows convergence results on four
different applications. There are very small differences when
varying #bit;,:, while size;,; appears to be more influential
on the final converged result. Achieved inference quality
is already similar to Float32 once the size;,; reaches 32.
Intuitively, this behavior is expected as the resolution of
the EXP kernel output is determined by sizey,; and has
a larger influence on the determination of discrete labels,
moreso than the accuracy of the quantized output values.
Considering the convergence speed difference shown in
Figure 11, 8 bits are needed to reach the same convergence
speed. As a result, using 8-bit precision and sizeg,; of 32 is
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Figure 11: Design parameter sweep of TableExp on MRF.
Float32 result is given as a reference baseline. Lower nor-
malized MSE means better inference quality.

sufficient for the hardware to reach the same quality as the
floating point algorithm.

2) BN Benchmarks: CoopMC can also be applied to other
discrete Bayesian workloads, such as Bayesian networks or
latent Dirichlet allocation. Figure 12 shows how #bit;,; and
sizeyy,: influence the final converged result. Unlike results
for MRF, both #bit;,; and sizey,; significantly influence
the converged inference result. Using lower precision values
in TableExp produces a dramatic change in the final accu-
racy. These three Bayesian network workloads’ small size
contributes to a larger sensitivity to precision. Although the
sensitivity to precision affects the converged performance
metrics for lower precision LUTs, the converged results are
well above the threshold precision of 8 bits. Meanwhile,
sizey,: demonstrates very similar behavior to the MRF
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Figure 12: Design parameter sweep of TableExp on BN.
Float32 result is given as a reference baseline. Lower MSE
means better inference quality.

applications. A larger size;,; will lead to better convergence
results for Bayesian networks, until a threshold has been
reached, after which convergence results remain similar. For
the three tested Bayesian network workloads, the threshold
is 128.

3) LDA Benchmarks: Figure 13 shows inference results
of LDA after applying DyNorm, TableExp, and LogFusion.
The x-axis shows different sizes for the lookup table size;y:,
and the y-axis shows the log-likelihood, a common eval-
uation metric representing the probability of the current
state of an LDA model, given an observed dataset. A
higher probability implies better model inference quality.
The points in the plots show convergence results for their
corresponding dataset. Each line represents the number of
bits #bits;,: used for lookup table entries in TableExp.

Experimental results from LDA shows a very similar trend
to the BN results. Both size;,; and #bit;,; have significant
impact on inference quality. For size;,, the inference result
shows a clear saturation trend, once a certain threshold
has been reached. For all three cases, sizep,; of 128 is
sufficient for the convergence result to reach parity with
floating point. For #bit, the requirements are tighter than
what was observed with BN. To match the full-precision
version, 16-bit precision is required. Also, the separation
between lines with different #bit;,; is much clearer than
with the MRF or BN results.

The higher precision requirement results from the high
connectivity between different variables in the model, due
to the nature of the LDA algorithm. Unlike MRF or BN,
each variable is connected to every other variable within
the same document, as well as every other instance of the
same vocabulary in the corpus. This implies the probability
distributions for the labels of connected variables are similar.
The only way to distinguish these variables from each other
is by the slight differences in their probabilities. However,
lower precision fails to represent those small differences,
which eventually results in poor performance. Nevertheless,
DyNorm, TableExp, and LogFusion still give the same level
of performance as the baseline, given #bit;,; > 16 and
F#sizep > 128.
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Type Area for Divider Baseline (um?)
Divider Total | Reduction
Baseline 3831 3831 1x
Type Area for LogFusion (um?)
LOG | ADD | DN | EXP | Total | Reduction
DN+LF 267 76 84 830 | 1257 3.05%
DN+LF+TE 267 76 84 80 507 7.56%

Table III: Hardware Area Comparison among DyNorm(DN)
+ LogFusion(LF), DyNorm(DN) + LogFusion(LF) + Table-
Exp(TE) and Divider Baseline.

B. DyNorm, TableExp, and LogFusion Hardware Evalua-
tion

Combining Dynamic Normalization, LUT-Based EXP
kernel and log-domain Kernel Fusion shows great potential
in reducing hardware precision requirements and unneces-
sary compute kernels. To evaluate CoopMC from a hardware
resource perspective, we implement our proposed methods
and synthesize our design in RTL. The accelerator RTL is
synthesized using a commercial EDA tool, Cadence Genus,
based on the commercial GlobalFoundries 12nm technology.
Furthermore, the memories in the accelerator are generated
using a commercial 12nm SRAM compiler to obtain realistic
area and energy numbers. The frequency of the accelerator
is signed off at 500 MHz at 0.8V based on a typical process
corner. The hardware area estimation is shown in Table III.

The first row of the table shows the baseline logic area
requirements of a pipelined 32-bit divider. As a reference
point, it does not use any hardware optimization methods.
LogFusion can remove the need for a divider by introducing
additional components to the hardware. The baseline sam-
pler is replaced by a log kernel, an add kernel, a DyNorm
kernel, and an exp kernel. For both design choices using
LogFusion, ADD is the addition/subtraction kernel, which is
used by the hardware to compute division or multiplication
in log-domain. DN is the hardware for DyNorm, and its
design is shown in Figure 3. Since DyNorm is shared by
multiple pipelines for generating probabilities, its hardware
cost is also amortized by the number of parallel inputs it
handles. The reported area cost has been averaged by the
number of parallel input pipelines.

In the case of DyNorm+LogFusion(DN+LF), both log and
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exp kernels are 32-bit approximation-function-based kernels
(16 bits each, for the integer and fractional parts). Due to
the higher precision and complexity of the approximation
function, the exp ALU has a relatively high area cost,
contributing to most of the hardware used for DN+LF.
This design choice still has a lower cost than that of the
divider, providing more than 3.05x reduction in chip area.
In the case of DyNorm+LogFusion+TableExp(DN+LF+TE),
an additional layer of optimization is applied to the de-
sign. Rather than using the approximation-based exp kernel,
TableExp helps to further reduce area overhead. The only
major component in the lookup table is a ROM containing
pre-computed values, so TableExp is only 10% of its coun-
terpart’s size.

This reduction improves the Kernel Fusion area reduction
to more than 7.56x. One thing to note is that the hardware
size we are considering here is the largest LUT dimension
(32-bit with sizey,: of 1024), as discussed in previous
sections. If further low-precision optimization is applied for
the LUT, the hardware area reduction continues to improve,
making 7x a lower bound. With these area savings, the
benefits of using Kernel Fusion significantly outweighs the
overhead of adding more components into the design. Any
future accelerator design for discrete Bayesian inference
could benefit from this methodology.

C. Hardware Evaluation of TreeSampler

In previous works on accelerating Gibbs sampling for
discrete Bayesian inference [16], [35], discrete sampling
is implemented as a sequential process with a runtime of
O(N). With our tree-based sampler, the runtime is signif-
icantly reduced to O(log(N)). The reduction in runtime
is already shown in Figure 8. However, the TreeSampler
structure is considerably more complex than its sequential
counterpart. To further investigate the hardware area us-
age of TreeSampler, we implemented a sequential sampler,
TreeSampler, and pipelined TreeSampler (PipeTreeSampler),
and synthesized them using GlobalFoundries’ 12nm tech-
nology node. Their hardware area comparison is shown in
Figure 14.

As shown in the plot, TreeSampler and PipeTreeSampler
are significantly more costly than the sequential sampler.
This would seem to indicate a large sacrifice in hardware
resource efficiency for the O(log(NN)) runtime. However, a
more useful metric is throughput per unit area, shown in
Figure 15. One thing to note is that the TreeSampler design
is determined by #labels, not #variables. The #labels
represent possible discrete labels each random variable could
take, while #variables is the number of random variables
for a workload. Although larger workloads, like LDA-Enron
might have millions of variables, they just need 128 for
their #labels, shown by Table 1. TreeSampler samples a
new label from a vector with the size of #labels, not
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#variables, so we sweep the design parameters from 2 to
128 in those two plots.

The left plot shows the relative throughput speedup from
using the three types of discrete sampler, with the sequential
sampler throughput used as the reference point. The speedup
for TreeSampler shows a step function pattern: due to the
nature of TreeSampler, its runtime will be the smallest
integer that is larger than log(N). That is, in between two
exponents of 2, its throughput will remain constant.

The right plot shows throughput speedup normalized by
area. PipeTreeSampler always leads in performance and
efficiency, albeit at higher hardware cost. The amount of
throughput generated per pm? is still superior to the se-
quential sampler for most cases. Due to the step function
behavior, it can be slightly less efficient than the sequential
sampler in some cases, but still offers better throughput per
core, which could condense a multi-core design into a single-
core one while maintaining the same level of hardware
throughput. Also, as the number of labels increases, maxi-
mum speedup also increases, and minimum throughput per
area improves. Compared to previous designs with 64 labels,
TreeSampler provides 8.7 x speedup while being 1.9 x more
area-efficient. Generally, when there is sufficient accelerator
area to use a TreeSampler, it will provide better through-
put, latency, and area efficiency compared to a sequential
sampler.
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Version Logic Area (um?) | Power (mW) | Speedup
VBaseline 14491 100% 7.96 | 100% 1x
Vpa 9719 67% 3.08 38% 0.98 x
Vrs 25657 177% 149 | 187% 1.59x
Vectrs 19874 137% 9.53 | 120% 1.53x

Table IV: Logic area and estimated power comparison
between different versions of end-to-end implementation

D. Hardware End-to-End Case Study

To ensure past and future accelerator designs can easily
benefit from our methods, we designed CoopMC such that
significant overhauls to the overall architecture or memory
system are unnecessary. CoopMC can serve as a well-
optimized plug-and-play design to improve the performance
and area usage of computational kernels.

More concretely, we reconstructed previous work by im-
plementing a similar MCMC computational core, which is
based on the design of the Gibbs Sampler in [16], and the
SPU in [36]. The computational core is designed for both
the PG and SD steps, and is implemented using Global-
Foundries” 12nm libraries, the same technology node used
for previous area comparisons. We benchmark our design
with a 64-label MRF workload. As a baseline, Vigseline
of this computational core follows the naive design, using
a single PG compute pipeline and a discrete sampler, with
full 32-bit precision. Vpg adopts the PG step optimizations,
which are DyNorm, TableExp and LogFusion. Vg adopts
TreeSampler for the SD step without using the optimization
methods in Vpg. Vpgyrs combines all optimizations for
the best performance and efficiency. Compute logic area and
power estimates are shown in Table IV.

As shown by the table, Vpas shows 33% area and 62%
power improvement compared to the baseline. The combina-
tion of DyNorm, TableExp and LogFusion shows significant
improvements in the MCMC computational core and main-
tains its advantages even for end-to-end implementations.
Vrs requires more area and power, but it provides 59%
end-to-end cycle speedup. Using PG step optimizations, we
can further reduce the area and energy cost in Vpgirg to
achieve a 1.53x speedup, requiring only 37% more area
and 20% more power. With more parallel pipelines for the
PG step, end-to-end speedup could be further improved. The
combined advantages of our proposed optimization methods
significantly out-weigh their potential drawbacks.

Our RTL implementation follows in the spirit of [16,
36], accelerating an MRF workload with 64 labels and
streams in data cost. With those assumptions, computing
each variable inside the accelerator engine requires 2072
bits for reading and 6 bits for output. Based on the roofline
model, we are compute-limited if 2078 bits are transferable
within the computation duration. The baseline (Vpgsetine)
has a threshold bandwidth of 15 bits/cycle while the fully
optimized version (Vpg4rs) requires 22 bits/cycle. This is
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easily achievable using 32-bit SRAM, consuming 8.8mW.
After applying our optimizations, memory bandwidth is not
the limiting factor, so optimizations for PG and SD directly
contribute to end-to-end performance.

V. RELATED WORKS

MCMC-based Bayesian inference is very computationally
intensive, and its inherent sequential requirements make
parallelism difficult to exploit. Much of the existing literature
focuses on algorithm improvements such as methods to
parallelize the sequential algorithm while minimizing added
bias. Some of these methods relax some of the mathematical
properties to create a nearly identical parallelized version.
MultiBUGS [37] is an example of work that does not
alter statistical guarantees while parallelizing sampling. It
extends a well-known Bayesian modeling software called
BUGS [38] with multi-core functionality, by taking tasks
within MCMC that can be calculated in parallel, including
operations such as likelihood computation, and runs them on
multiple cores while also sampling conditionally indepen-
dent variables in parallel. [39] presents a suite of Bayesian
inference workloads, BayesSuite, with characterization and
profiling results on various processors with different mi-
croarchitectures. It also presents schedule and optimization
techniques for faster execution on the processors.

Various works also present hardware implementations
for Bayesian inference architectures that outperform Multi-
BUGS, including FPGA-based implementations. [40] is an
implementation of Hamiltonian Monte Carlo sampling, an
MCMC variant known to be efficient for sampling con-
tinuous distributions. [14] presents a compiler to generate
efficient FPGA implementations using predefined hardware
templates for parallel execution of MCMC sampling meth-
ods. [15], [41] present FPGA-based accelerators that show
significant gains over ARM CPUs for audio processing and
computer vision tasks in a mobile setting. They demonstrate
an architecture that concurrently samples conditionally in-
dependent variables for parallel Gibbs sampling.

Additionally, several works also propose ASIC solutions.
[16], [35] have presented the first programmable Bayesian
inference accelerator for computer vision and audio process-
ing on mobile settings. These works support asynchronous
(or Hogwild!) Gibbs sampling as well as parallelization of
conditional independent variables, enabling an additional
level of parallelism on top of the other existing work
mentioned above. Another implementation of these paral-
lel Gibbs sampling architectures optimized specifically for
sound source separation to be applied for automatic speech
recognition SoC [42]. [17] is another chip implementa-
tion that uses an exact deterministic inference called Sum-
Product Networks.

Most previous designs focus on how to parallelize
MCMC-based inference. In most of their implementations,
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their computational core design is naive and without suffi-
cient optimizations. Taking another approach, [36] investi-
gated the statistical robustness of MCMC accelerators when
using reduced precision for probabilities to improve effi-
ciency. This work defined sampling quality, convergence di-
agnostics, and goodness of fit as metrics for qualitative eval-
uation of correctness for probabilistic accelerators. CoopMC
looks into optimizations for the entire MCMC computational
pipeline. Our work includes, but is not limited to, techniques
such as reduced precision to increase efficiency, and takes
advantage of statistical robustness for optimizing MCMC.
Our optimizations do not rely on changes to the parallel
architecture of computational cores or their memory hierar-
chies. Consequently, our design can be used in conjunction
with the previous hardware approaches and provide benefits
for past and future designs.

VI. CONCLUSION

We present CoopMC, an algorithm-architecture co-
optimization for Markov Chain Monte Carlo accelerators.
We generalize MCMC-based Bayesian inference into three
computational steps: probability generation (PG), sampling
from distributions (SD), and parameter updates (PU). Based
on the numerical characteristics of the PG step, we propose
DyNorm, TableExp and LogFusion to jointly exploit the
low-precision robustness of Bayesian inference and avoid
unnecessary division and multiplication kernels. Fusion of
these techniques help reduce the required precision and
shrink the computational kernel area cost by up to 7.5x. For
the SD step, we propose TreeSampler to reduce hardware
runtime dramatically, from O(N) to O(log(N)). This results
in an 8.7x speedup, compared to the published state-of-
the-art Gibbs sampler architecture, while simultaneously
increasing area efficiency by 1.9x. In an end-to-end case
study, CoopMC shows a 33% logic area reduction and 62%
power reduction, and that a 1.53x speedup can be achieved
with better area and power efficiency. All of our proposed
methods have been tested on ten diverse workloads, using
three different types of Bayesian models, without noticeable
reduction in model performance. The general applicability
of these methods suggests its extensibility to other Bayesian
models.
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