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The design of heterogeneous systems that include domain speciic accelerators is a challenging and time-consuming process.

While taking into account area constraints, designers must decide which parts of an application to accelerate in hardware

and which to leave in software. Moreover, applications in domains such as Extended Reality (XR) ofer opportunities for

various forms of parallel execution, including loop level, task level and pipeline parallelism. To assist the design process and

expose every possible level of parallelism, we present Trireme, a fully automated tool-chain that explores multiple levels of

parallelism and produces domain speciic accelerator designs and conigurations that maximize performance, given an area

budget. FPGA SoCs were used as target platforms and Catapult HLS [7] was used to synthesize RTL using a commercial 12nm

FinFET technology. Experiments on demanding benchmarks from the XR domain revealed a speedup of up to 20×, as well as

a speedup of up to 37× for smaller applications, compared to software-only implementations.

CCS Concepts: · Computer Aided Design Tools for Embedded Systems; · Compilers, Code Synthesis, Parallelization

Techniques for Embedded Applications;

Authors’ addresses: Georgios Zacharopoulos, georgios@seas.harvard.edu, Harvard University, P.O. Box 1212, Cambridge, MA, USA, 43017-

6221; Adel Ejjeh, aejjeh@illinois.edu, University of Illinois at Urbana-Champaign, 201 N Goodwin Ave, Champaign, IL, USA; Ying Jing,

yingj4@illinois.edu, University of Illinois at Urbana-Champaign, 201 N Goodwin Ave, Champaign, IL, USA; En-Yu Yang, enyu_yang@g.

harvard.edu, Harvard University, P.O. Box 1212, Cambridge, MA, USA, 43017-6221; Tianyu Jia, tjia@g.harvard.edu, Harvard University, P.O.

Box 1212, Cambridge, MA, USA, 43017-6221; Iulian Brumar, ibrumar@g.harvard.edu, Harvard University, P.O. Box 1212, Cambridge, MA,

USA, 43017-6221; Jeremy Intan, jintan2@illinois.edu, University of Illinois at Urbana-Champaign, 201 N Goodwin Ave, Champaign, IL, USA;

Muhammad Huzaifa, huzaifa2@illinois.edu, University of Illinois at Urbana-Champaign, 201 N Goodwin Ave, Champaign, IL, USA; Sarita Adve,

sadve@illinois.edu, University of Illinois at Urbana-Champaign, 201 N Goodwin Ave, Champaign, IL, USA; Vikram Adve, vadve@illinois.edu,

University of Illinois at Urbana-Champaign, 201 N Goodwin Ave, Champaign, IL, USA; Gu-Yeon Wei, guyeon@seas.harvard.edu, Harvard

University, P.O. Box 1212, Cambridge, MA, USA, 43017-6221; David Brooks, dbrooks@eecs.harvard.edu, Harvard University, P.O. Box 1212,

Cambridge, MA, USA, 43017-6221.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/1-ART $15.00

https://doi.org/10.1145/3580394

ACM Trans. Embedd. Comput. Syst.

HTTPS://ORCID.ORG/0000-0002-6644-5200
https://orcid.org/0000-0002-6644-5200
https://doi.org/10.1145/3580394
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580394&domain=pdf&date_stamp=2023-01-17


2 • Georgios Zacharopoulos, et al.

Additional Key Words and Phrases: accelerators, ASICs, compiler techniques and optimizations, design tools, heterogeneous

systems parallelism

1 INTRODUCTION

The breakdown of Dennard scaling [9], and the seemingly inescapable end of Moore’s law [30], present new
challenges for computer architects striving to achieve increased performance in modern computing systems.
Heterogeneous Computing has emerged to address these issues, but the complexity of heterogeneous systems,
consisting of software (SW) processors and hardware (HW) accelerators, has also increased dramatically. Hardware
designers assigned with accelerating a certain application domain are required to have a deep knowledge and
understanding of both the software applications and the underlying platform characteristics. Additionally, a
great deal of manual efort is required to identify and extract the information that is necessary to explore various
possible optimizations for every design.

These optimizations include exploiting application level parallelism, in the form of Instruction Level (ILP), Loop
Level (LLP), Task Level (TLP) and Pipeline Parallelism (PP). The use of such parallelism has been limited in tools
for designing hardware accelerators, in two ways. First, in the few tools [19, 27] that accommodate application
level parallelism, it is limited to TLP and LLP. Second, these approaches do not usually perform Design Space
Exploration (DSE) in early design stages. We call early DSE the software analysis and estimation of performance
that take place before implementing a particular hardware design, for instance using a High Level Synthesis
(HLS) tool, in order to explore a broad range of possible designs and combinations of optimisations, including
diferent types of parallelism.

A hardware DSE low for a System on Chip (SoC) with hardware accelerators, that automatically extracts and
uses parallelism information, requires three main components: a) A program representation that captures and
exposes various levels of parallelism in an application, and also potential data movement requiring communication
or memory system demands. b) An analysis tool that explores various HW/SW partitioning options, while taking
into account not only the execution time and area, but also SoC interconnect bandwidth and communication
latency. c) An integration of (a) and (b), such that (a) can provide the information that (b) requires, and (b) can
use this information to build eicient performance and cost models to apply in the DSE process.

Spatial [13] is a tool that performs early DSE focusing on parallelism, but it has a number of limitations. First,
Spatial aims to support hardware designers by providing a hardware-centric design language, and does not
support applications written in high level languages (e.g., C,C++). Second, it is restricted to modeling performance
on FPGAs and CGRAs, and cannot be used to efectively perform DSE for SoCs. In particular, communication
latency and memory bandwidth are not taken into account during DSE. Finally, the parts of the computation to
be accelerated need to be speciied by the user and no automatic exploration of acceleration candidates takes
place, which is the primary goal of our work.
To address these issues we present Trireme,1 an automated tool-chain that integrates the AccelSeeker [36]

and Heterogeneous Parallel Virtual Machine (HPVM) [14] tools. AccelSeeker ofers automatic identiication and
selection of HW accelerators based on models of performance, and HPVM is a parallel program representation
for heterogeneous systems that exposes all the major forms of parallelism (loop level, task level and pipeline
parallelism) relevant to accelerator design. We extend Trireme with novel models of parallel performance
evaluation (described below) to enable early DSE that accounts for various forms of parallelism. Moreover,
Trireme is able to account for SoC interconnect bandwidth and latency, which enables strong synergy with the
explicit datalow information captured in the HPVM parallel representation (a hierarchical datalow graph). The

1Trireme was an ancient Greek/Roman boat having three main rows of oars (similar to the three types of parallelism that we explore) and

requiring parallel work to low. A lightweight, quick boat, taking advantage of parallelism is ideal for explorations, hopefully also for early

Design Space Exploration.
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integration of the two thus ofers the basis for an extensive exploration of multiple levels of parallelism, provides
an early estimation of performance, and outputs HW/SW designs that maximize speedup within speciic area
budgets.
For each type of potential parallelism that Trireme extracts (LLP, TLP, PP, and combinations of them), we

introduce novel models of performance (in terms of latency) and area demands (in terms of hardware resources).
With the aid of these models, we carry out comprehensive early DSE that selects combinations of parallel
accelerator designs with increasing area budgets. Additionally, we study a variety of architectural conigurations
of target SoCs to distinguish the impact of every type of parallelism in accordance with the characteristics and
complexity of novel benchmarks from the Extended Reality (XR) domain.2 Trireme achieves speedups of up to
20× for complex XR application components (e.g., audio decoder) and up to 37× for single-kernel applications (e.g.,
gemm-blocked). FPGA SoCs serve as target platforms for our experiments and High Level Synthesis (Catapult
HLS [7]) is used during the validation stage of our experimental section. For the latter, RTL was synthesized,
placed and routed by ASIC EDA tools utilizing a commercial 12nm FinFET technology.

Our contributions are as follows:
• We present Trireme, a fully-automated tool integrating HPVM [14] and AccelSeeker [36], that ofers
identiication, estimation of performance and selection of hardware accelerators that exploit task level,
loop level, and pipeline parallelism (Section 3).
• We introduce novel models for estimating performance and resource demands (area) for task level, loop
level, and pipeline parallelism (Section 4).
• We demonstrate Trireme’s HW/SW partitioning choices while sweeping area budgets and varying the
coniguration of memory latency and accelerator invocation overhead, thereby covering a wide range of
possible designer scenarios (Sections 5 and 6).
• We evaluate our tool using a broad spectrum of applications, spanning from smaller, single-kernel applica-
tions, to complex and demanding state-of-the-art application components from the XR domain (derived
from a recently released XR testbed [12]) (Section 6).

The rest of the document is organized as follows. Section 2 ofers a description of AccelSeeker and HPVM
basic characteristics. Section 3 presents Trireme and its main features. In Section 4 the performance and area
models are formally deined. Section 5 provides the experimental setup and Section 6 showcases experimental
results using Extended Reality applications and targeting FPGA SoCs, as well as generating RTL using Catapult
HLS. In Section 7 recent research literature is reviewed and compared to our methodology. Finally in Section 8
we ofer our closing thoughts and in Section 9 limitations of our tool-chain and future endeavors are discussed.

2 BACKGROUND

Trireme performs extensive early DSE of potential parallelism possibilities for HW acceleration, in comparison
to tools such as TAPAS [19] and Peruse [15] that ofer limited or late DSE. Furthermore, our tool explores a
number of diferent platform conigurations, with respect to memory latency and overhead due to the invocation
of the accelerators, that can drastically afect the performance of a HW/SW design.
Achieving such a thorough and early DSE, while investigating the diferent parallelism opportunities, is a

challenging endeavor because it requires both: a) automatic extraction of any parallelism-related information from
the applications to be accelerated and b) automatic identiication and early evaluation of potential accelerators.
HPVM and AccelSeeker, both developed within the LLVM [17] infrastructure, support the former and the latter
requirements respectively, and hence, serve as the basis of the Trireme tool-chain.

AccelSeeker is a tool that performs automatic identiication and selection of hardware accelerators, and HPVM
is a parallel program representation for heterogeneous systems. Trireme uses components of AccelSeeker to

2Extended Reality combines Augmented, Virtual and Mixed Reality.
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Fig. 1. Task Graph for edge detection.

perform an initial estimation of performance and an estimation of area requirements. We use HPVM to analyze
the applications and collect required information regarding the three types of parallelism (TLP, LLP, PP) that we
can exploit. In the following sections, we provide detailed background of both tools.

2.1 AccelSeeker

AccelSeeker is an LLVM-based tool, comprised of analysis passes, that analyzes applications represented by the
LLVM Intermediate Representation (IR). It can be used in the early stages of the HW/SW partitioning process and
can reveal the most promising parts of an application for HW acceleration. The tool has three main phases: a)
Candidate Identiication for HW acceleration, b) Performance and Area Estimation and c) Selection of Candidates
for acceleration that maximize speedup under a user-deined area constraint.
Candidate Identiication. The granularity of the candidates for acceleration is deined as that of a subgraph

of the call-graph of an application that satisies two properties: It has a root and there are no outgoing edges.
Efectively this translates to a candidate that is a function/task, whose calls to other functions included in it (if
any) are part of its computation as a potential HW accelerator. As an example, in Figure 1, every one of edge
detection Task Graph nodes, which corresponds to a function in the call graph, can be a candidate for acceleration.
Candidates that contain system calls, as well as any non-synthesizable constructs, such as dynamic memory
allocation, many levels of indirection (pointer chasing), are excluded.
Performance and Area Estimation. AccelSeeker uses models that estimate speedup (merit) and area usage

(cost). Through LLVM static analysis and dynamic proiling [38], these models assess software and hardware
latency, area, and I/O data transfer requirements for every identiied candidate. A default Zynq Programmable
System-on-Chip target platform is assumed for the architectural characterization, though it can be conigured
to adapt to diferent platforms. The HW accelerators are designed as loosely coupled Ð their implementations
exploiting ILP within the boundaries of a Basic Block (BB). This type of accelerator, exploiting parallelism within
the BB granularity, will be referred to as Basic Block Level Parallelism (BBLP) accelerators in Section 6.

Selection of Candidates. Having assigned a speciic speedup estimation (merit) and HW resource requirement
(cost) to every identiied candidate, the selection phase takes place. For a given area budget (which can be varied
from small to large) a subset of the initial candidate list is selected that maximizes speedup. The tool’s output is
the design of a heterogeneous system that distinguishes the part of the computation that stays in software from
the part that is accelerated by hardware.

ACM Trans. Embedd. Comput. Syst.
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2.2 HPVM

Heterogeneous Parallel Virtual Machine (HPVM) [14] is a parallel program representation for heterogeneous
systems, designed to be a virtual ISA, compiler Intermediate Representation (IR) and run-time representation.

Designed as an extension of LLVM IR[17], HPVM exploits all the optimization and code generation potential of
LLVM, both for scalar and vector code, while adding support for parallel computation and heterogeneous systems.
This is achieved by representing programs using a hierarchical Data Flow Graph (DFG). An HPVM program
consists of host code together with one or more DFGs. The DFGs can also be seen as Directed Acyclic Graphs
(DAGs). All code suitable for acceleration is contained in the DFG nodes. A DFG node can either contain a part of
the computation (called a leaf node) or an entire nested data low graph. This hierarchical representation enables
multiple levels of nested parallelism. Every DFG node has a node function associated with it, and node functions
for leaf nodes contain ordinary scalar and vector LLVM IR. Every DFG edge represents an explicit, logical data
transfer between two nodes. Each static node in the graph can have multiple, independent dynamic instances
speciied as a replication factor (similar to the grid of threads for a CUDA or OpenCL kernel). Put together, this
structure allows HPVM to capture loop level data parallelism (via the dynamic instances of a node), ine-grain
data parallelism (via LLVM vector instructions within a leaf node), task parallelism between concurrent nodes
(via pairs of subgraphs that are not connected by any path), and pipelined streaming parallelism (via streaming
datalow edges), all in a single parallel program representation.
The HPVM representation promotes optimizations such as node fusion, data mapping to local accelerator

memory (e.g., GPU scratchpads), and memory tiling. So a number of transformations can be performed on
the HPVM IR to optimize execution on speciic target devices. The HPVM code generator traverses the DFG,
translating each DFG node into code for one or more processing elements in the target system. The HPVM
design is able to leverage LLVM’s well-tuned back-ends, such as NVIDIA PTX, Intel AVX and X86-64. The HPVM
run-time, invoked by the host code, interfaces with the corresponding device run-time to launch a kernel and
copy needed data to and from the device.

3 TRIREME

An overview of the entire methodology of the Trireme tool-chain is depicted in Figure 2. Boxes C, D and E in the
igure represent new components developed for this work, while the other boxes represent existing AccelSeeker
and HPVM components. The source code (C,C++) of every application, annotated using the HPVM front-end
language (HeteroC++) is used as input. The HeteroC++ annotations are hardware-agnostic annotations, similar in
nature to OpenMP, which are used to mark parallel tasks and loops in the program. No manual optimizations or
other modiications of the initial source code are performed. As such, any manual, hand-tuned implementations,
would only improve the performance that is presented in the experimental section (Section 6). Therefore, in
terms of performance, Trireme results can be viewed as the lowest bound of expected outcome. With the aid of
AccelSeeker, we analyze its IR to identify candidates for acceleration (Box A). Next we estimate the SW and HW
latency, area and the amount of data required for every identiied candidate. Their potential performance gain
(speedup) is estimated and attached to them as Merit, as well as the Cost required in terms of HW resources (Box
B).

The list of candidates and the DFG of the application, automatically generated by HPVM from the source code,
are then passed as input to a tool that extracts all necessary information regarding potential parallel execution,
as detailed in Subsection 3.1 (Box C). With the aid of novel models for loop level (LLP), task level (TLP) and
pipeline parallelism (PP), described in the following sections, we estimate potential speedup (Merit) and area
(Cost), including through combination of parallel approaches wherever applicable, i.e., task level+loop level
parallelism (TLP-LLP) and pipeline parallelism+task level parallelism (PP-TLP) (Box D). Figure 3 shows the DFG
of the edge detection benchmark and its respective parallelism opportunities.

ACM Trans. Embedd. Comput. Syst.
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level (TLP) and pipeline parallelism (PP) opportunities.

We update the list of accelerators with the newly formed candidates for acceleration that can exploit any (or all)
of the three extracted types of parallelism (LLP, TLP, PP), and combinations of them (Box E). Finally, a selection
algorithm provides the HW/SW design that maximizes the potential speedup within a given area budget (Box F).

3.1 AccelSeeker-HPVM Integration

We have integrated AccelSeeker and HPVM to exploit any parallelism information that can be provided by the
latter and guide the selection process. In particular, we developed a C++ tool within the HPVM infrastructure
that receives a list of the most promising candidates (functions) for acceleration, as evaluated by AccelSeeker,
along with their corresponding estimated software (�� ), and hardware (�ℎ) execution times. In addition, the
HPVM bitcode ile of the application being analyzed is provided as input. The tool builds the DFG of the
provided application and creates a mapping between the DFG leaf nodes and the respective input functions
from AccelSeeker, such that each input function corresponds to a leaf node. For the scope of this work, we only
consider candidate functions that correspond to leaf nodes in the HPVM DFG. Any functions called within a leaf

ACM Trans. Embedd. Comput. Syst.
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node are accounted for as part of the leaf node’s analysis, and not analyzed separately. The tool then performs a
set of HPVM DFG analyses that extract the diferent types of parallelism, as described below.

First, a node-reachability analysis is performed (Algorithm 2) that queries the HPVM DFG to determine whether
each of the candidate DFG nodes has a path connecting it to any of the other candidates. We consider nodes that
belong to separate DFGs to be sequential. For every node � , we build a list of nodes that are parallel to it, such
that any node � that is found to be unreachable to/from � is added to that list. The output of this analysis is the
set of nodes that can run in parallel with each candidate.

Second, a critical-path analysis is performed to calculate the Earliest Start Time (��� ) and Earliest Finish Time
(��� ) of each candidate node. Two full traversals through the DFG are performed: a) calculating the times while
the entire run-time is in SW and b) calculating the times while the computation is implemented in HW. In each
traversal, the ��� , ��� , and Duration (�) of a leaf node (� ) are calculated as follows:
� (� ) = �� or �ℎ depending on the current traversal.
��� (� ) = ��� (��� (���� (� ))) where ���� (� ) is the list of � ’s predecessors in the graph.
��� (� ) = ��� (� ) + � (� ).

Algorithm 1 Algorithm of edge detection

// Gaussian Smoothing
for ��� ← 1 to� do

for ��� ← 0 to � do

parallel computation
end for

end for

// Laplacian Estimate
for ��� ← 1 to� do

for ��� ← 0 to � do

parallel computation
end for

end for

// Compute Zero Crossings
for ��� ← 1 to� do

for ��� ← 0 to � do

parallel computation
end for

end for

// Compute Gradient
for ��� ← 1 to� do

for ��� ← 0 to � do

parallel computation
end for

end for

// Compute Max Gradient
for � ← 1 to� ∗ � do

parallel computation
end for

// Reject Zero Crossings
for ��� ← 1 to� do

for ��� ← 0 to � do

parallel computation
end for

end for

Algorithm 2 Node reachability analysis for task parallelism

for � ∈ Nodes do
for � ∈ Nodes do

if !����������������ℎ� (�, �) and !����������������ℎ( �, �) then

mark � parallel to �
end if

end for

end for

ACM Trans. Embedd. Comput. Syst.
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For cases with separate DFGs, we set ��� of the irst node in a DFG � to be the ��� of the last node in the
previous DFG � − 1. The output of this analysis is the software and hardware ��� s for each candidate function.
This information is used in conjunction with the reachability analysis results at a later stage to determine task
level parallelism (Section 4.2).
Finally, a third round of analysis detects for every candidate node whether or not it has dynamic replication.

Its output is a table containing the nodes that have dynamic replication, along with the number of dimensions
they are replicated on. Additionally, if the replication factors of a node are constants, those factors are included
as well. This information is used at a later stage to determine loop level parallelism (Section 4.1).

3.2 Tool-chain Features

Accelerator Granularity.We consider the granularity of the candidates to be within the boundaries of a function,
as identiied by an LLVM-based analysis. Furthermore, under the scope of our work, and in order to integrate
AccelSeeker analysis with HPVM, HW accelerators correspond to leaf nodes in the HPVM DFG, as seen in the
example of Figure 1. In this instance, every (indexed) node of the DFG of edge detection serves as a potential
candidate for acceleration.
Software, Hardware Latency and Area Estimation. We perform estimation of software and hardware

latency for every identiied candidate both by static analysis at the IR level and dynamic, by extracting run-time
proiling information for cases where the application is input dependant (e.g. a loop trip count that is not statically
resolved and may depend on an input parameter). Furthermore, an estimation of LUTs and��2 is carried out
in order to account for the hardware resource requirements of every accelerator. The former is estimated with
AccelSeeker and its characterization of area in LUTs, by synthesizing a number of micro-benchmarks on a Zynq
Programmable System-on-Chip (PSoC). The latter is retrieved by employing the Aladdin [28] area characterization
in��2. Our method, however, is not constrained to a speciic platform and it can easily be adapted for diferent
computing systems (e.g., FPGA boards, ASIC implementations, etc.). In accordance to the limitations of HLS tools,
dynamic memory allocations are not supported.

I/O Communication Estimation. The amount of data required by each candidate is also extracted by static
analysis and by parsing its dynamic trace, when the latter is available. This data requirement is subsequently used
to estimate latency due to communication between an accelerator and memory (e.g., DRAM, last level cache, etc.).

Merit and Cost Estimation. Given the characteristics of the platform for which we are going to implement
HW accelerators, we estimate potential speedup (Merit) for every acceleration candidate and the hardware
resources required (Cost) to achieve that speedup. To obtain an accurate estimate, we use the AccelSeeker model
for Merit, which translates to cycles saved, and its model for Cost, which accounts for the area budget in terms of
LUTs (Section 2.1).
Automatic Extraction of Parallelism. Using the tool developed for AccelSeeker-HPVM integration (3.1)

we automatically extract information about the potential for loop level, task level and pipeline parallelism. This
serves as input, along with AccelSeeker’s list of candidates for (BBLP) acceleration, for the novel performance
models of multiple levels of parallelism explored by Trireme. These models are presented in detail in Section 4.
Selection Algorithm/HW-SW Partitioning. The updated list of candidates for acceleration is generated,

including both the Basic Block Level Parallelism (BBLP) accelerators from AccelSeeker and the candidates that
exploit all types of parallelism explored by our tool-chain. The selection algorithm recursively explores the
subsets of the updated list of candidates, in a similar manner to the Bron-Kerbosch algorithm [2]. The output
returned is the set with the highest speedup (cumulative Merit) that stays within the user deined area budget
(Cost).

ACM Trans. Embedd. Comput. Syst.
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(PP) in edge detection provided a 40 × 103 LUTs area budget. The size of the black rectangles represents area usage.

4 MERIT AND COST MODELS

As mentioned in the previous section, we introduce novel models for estimation of speedup, which we denote
as Merit, and an estimation of the area required for every HW accelerator implementation, denoted as Cost.
These models, inspired by the respective ones from RegionSeeker [37] and AccelSeeker [36], are introduced to
accommodate the estimation of loop level, task level and pipeline parallelism extracted by HPVM. Having an
early estimation of speedup and area budget needs, for every possible design exploiting any, or a combination, of
these three types of parallelism can lead to better design choices and signiicantly less engineering efort.

4.1 Loop Level Parallelism (LLP)

With the aid of the tool described in 3.1, information regarding the DFG nodes loop-level parallelism is retrieved.
As shown in the example of Figure 3, the marked DFG nodes of edge detection are identiied as nodes that contain
a fully-parallelizable loop and, thus, are analyzed further so that multiple versions of the same functions are
generated with an increasing LLP factor. For each factor, the loop is parallelized by replicating its body, and

ACM Trans. Embedd. Comput. Syst.
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the corresponding speedup and cost estimates are computed. To simplify the estimation we assume an equal
workload for every iteration of the loop.

LLP Merit and Cost Estimation. Let � = {�1, �2, . . . , �� } be a set of parallelizable loop candidates, with associated
SW latency (��� ), HW computation latency (������� ), HW communication latency (������ ), invocation
overhead (����� ) and area cost (�� ). Also let LLP factor � = 1 . . . , � | � =��� (���� ���� �����) be the factor
by which we parallelize each loop. To simplify the analysis, we assume that the loop is perfectly load-balanced,
and communication latency is constant, independent of � .

Under these simplifying assumptions, for every loop candidate {�� � | � = 1, . . . , � , � = 1, . . . , �}, we compute

the merit � (�� � ) = ��� −
�������

�
− ������ − ����� , and the loop candidate area cost � (�� � ) = �� × � ,

respectively.
As anticipated, by increasing the replication factor, better performance is achieved with the higher cost of area

required. LLP, where applicable, can yield tremendous speedup beneits but at a high area budget cost, as seen in
Figure 4 (LLP vs software-only implementations) and discussed in greater extent in Section 6.

4.2 Task Level Parallelism (TLP)

To compute the potential speedup of a number of tasks that can be run in parallel we need irst to extract all
possible sets of independent candidates, i.e., all candidates that have no data low dependencies. As depicted in
the example in Figures 1 and 3, edge detection candidates indexed {2,4} and {3,5} are independent sets and can
therefore be invoked in parallel. The same applies for candidates {2,5} and {3,4}. For this analysis, we use the
SW and HW estimated times, as well as the Earliest Start Time (EST) provided from the tool described in 3.1 as
described below.
Merit and Cost Deinition/Estimation of TLP. Let � = {�1, �2, . . . , �� } be a set of independent candidates

(tasks), with associated SW latency (��� ), HW computation latency (������� ), HW communication latency
(������ ), invocation overhead (����� ) and area cost (�� ). In the best case, all candidates in the set will
be able to start execution at the same time, and the total HW latency of this set of candidates � would be
��� (���

) =��� (������� + ������ +����� ) | � = 1, . . . , � .
In practice, some candidates may have varying starting times (e.g., {2,5}) because of dependencies on previous

tasks that may not exist in the candidate set (e.g., node 5 must wait for node 4 to complete). To account for
these delays, we add an extra overhead based on the diference of ESTs of the nodes in the candidate set:
���_���� =��� (���� ) −���(���� ) |�, � = 1, . . . , � , where N is equal to the number of tasks. The � index can
vary independently hence all possible pairs estimates are taken into account. Intuitively, the overhead allows us
to mark the candidate set {2,4} as a better candidate for acceleration compared to {2,5}.

We denote the merit of set � , by� (�) =
∑
�∈[1,� ] ���−��� (���

)−���_���� andwe denote the cumulative
cost of set � in area by � (�) =

∑
�∈[1,� ] �� .

Task level parallelism, in applications that have independent tasks, can ofer signiicant speedup compared to,
for instance, sequential accelerators exploiting only Basic Block level parallelism (BBLP) that require the same
HW resources. Figure 4 provides a comparison between TLP and BBLP when accelerating the edge detection
application. The example of edge detection (Figure 3) shows instances of two tasks running in parallel at any
given time, however the estimations above can be applied to any � number of tasks that may be executed in
parallel. The Merit and Cost estimation formulas remain the same and no further modiication is required.

4.3 Pipeline Parallelism (PP)

An illustration of the pipeline parallelism is shown in Figure 5. We assume that the pipeline has � stages, �1, �2,
... �� , and the time needed on stage � is �� . We also assume that the stage that requires the longest time is � � (i.e.,
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∀� ∈ {1, 2, ..., �},�� ≥ �� ). Now we will prove that the total execution time for pipeline parallelism, where � is

the number of iterations, is ������ =
∑�
�=1�� +�� × (� − 1).

The irst term
∑�
�=1�� is the time spent on the irst iteration. The second term max� �� × (� − 1) is the timing

overhead caused by the following (� − 1) iterations. We prove the second term in two steps: (1) For iteration �, it
can inish at �� later than the inishing time of iteration (� − 1); (2) For iteration �, it cannot inish at time � later
than the inishing time of iteration (� − 1) if � < �� .

S1 S2 ... Sj S(j+1) S(K-1) SK

S1 S2 ... Sj S(j+1) S(K-1) SK

S1 S2 ... Sj S(j+1) S(K-1) SK
.
.
.

...

...

...

Fig. 5. An illustration for the pipeline parallelism. It has � iterations and � stages per iteration.

Step 1. Provided that the inter-stage dependencies are not considered (e.g., �2 cannot start before �1 inishes,
etc.), the earliest starting time for each stage is the ending time of the same stage in the previous iteration. This is
shown in Figure 6.

S1 S2 ... Sj S(j+1) S(K-1) SK...

S1 S2 Sj
S(j+1)

S(K-1)
SK

Fig. 6. The earliest starting point of each stage in the second iteration.

If we start the second iteration after �� , since �� ≥ �� ,∀� ∈ {1, 2, ..., �}, the starting time of every stage in the
second iteration will be no later than the ending time of the same stage in the previous iteration. In other words,
there should not be any idle time. Thus, the ending time for the second iteration is �� later than the irst iteration.
For the third iteration, the ending time is �� later than the second iteration. Thus, based on mathematical

induction, we can prove that at iteration �, execution is completed �� later than the previous iteration.
Step 2.We prove that iteration � cannot inish at time � later than the previous iteration, if � < �� . Provided

that the ending time of the second iteration is � later than the irst iteration, the ending time of stage �� in the
second iteration is � later than the one in the irst iteration. Therefore, the starting time of stage �� in the second
iteration is � later than the one in the irst iteration. Due to the inter-stage correlation, the ending time of stage
��−1 in the second iteration should be no more than time � later than the one in the irst iteration.

Hence, if we trace back to � � , we can say that the ending time of � � in the second iteration should be no more
than time � later than the one in the irst iteration. However, since � < �� , the starting time of � � in the second
iteration will be �� − � earlier than the ending time of � � in the irst iteration. In other words, there will be an
overlap between two consecutive iterations on stage � � (Figure 7).

S1 S2 ... Sj S(j+1) S(K-1) SK

S1 S2 ... Sj S(j+1) S(K-1) SK

...

...

t

Fig. 7. Overlap on stage � � .

Merit and Cost Deinition/Estimation of PP. Based on the previous illustration, let � = {�1, �2, . . . , �� } be a
set of pipelined candidates (tasks) and � be the number of iterations, with associated SW latency (��� ), HW
computation latency (������� ), HW communication latency (������ ), invocation overhead (����� ), HW
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latency ��� = ������� + ������ + ����� and area cost (�� ). We compute the HW latency, using the

previous proof, as ������� =

∑�
�=1��� +max� ��� × (� − 1). This formula can be applied to both a balanced

pipeline and an unbalanced pipeline.
We denote the merit of set S, by� (�) =

∑
�∈[1,� ] ��� −������� and we denote the cumulative cost of set S

in area by � (�) =
∑
�∈[1,� ] �� .

5 EXPERIMENTAL SETUP

For our experiments, we assume a heterogeneous system constituted by a single SW processor and multiple
loosely coupled HW accelerators. The processor invokes the accelerators via a memory-mapped interface. DMA is
used to transfer data frommain memory to accelerator scratchpads and vice versa in order to store the accelerators
output to main memory and be available to the SW processor. As AccelSeeker, used as a baseline, targets by
default an FPGA SoC (Zynq UltraScale SoC), we also use FPGA SoCs in our experiments.
Benchmarks. We evaluated the Trireme tool-chain in a variety of applications, spanning from smaller,

single-kernel ones, to larger and more demanding ones. The type of potential parallelism extracted from every
benchmark, as expected, also varies. The kernels from Parboil [31] and MachSuite [25] ofer opportunities for
loop level parallelism only. Medium and large size applications from the XR domain, such as 3D spatial audio
encoder from a recently released XR testbed [12] and Camera Vision Pipeline cava[34], where both loop level
parallelism and pipelining would be feasible, and visual inertial odometry (VIO), often referred to as SLAM, where
70% of its run-time is evaluated and loop level and task level parallelism opportunities are present. Larger and
more complex applications, where all types of parallelism can be retrieved (as well as combinations of them), are
also rigorously evaluated. These include 3D spatial audio decoder (XR domain) from the XR testbed [12] and
edge detection, a six stage image processing pipeline used in [14].

Parallelism Strategies.We evaluate and compare the following parallelism strategies for HW acceleration:
a) Basic Block Level Parallelism (BBLP). Function (Task) accelerators that exploit Instruction Level Parallelism
within a Basic Block. It corresponds to the accelerators selected by AccelSeeker [36].
b) Loop Level Parallelism (LLP). Replication and parallel execution of fully parallelizable loops, represented in
HPVM as leaf nodes with multiple dynamic instances.
c) Task Level Parallelism (TLP). Sets of two or more tasks (HPVM leaf nodes) that have no data low depen-
dencies between them (i.e., no path in the HPVM datalow graph connecting any pair of nodes in the set) and can
therefore all run in parallel with each other.
d) Pipeline Parallelism (PP). Sequences of HPVM nodes (tasks) connected by streaming datalow edges, and
therefore can be pipelined.
e) Task and Loop Level Parallelism (TLP-LLP). Sets of tasks that can be either executed as parallelizable
loops or run as parallel tasks or both. The inal design may have any of these forms of parallelism applied.
f) Pipeline and Task Level Parallelism (PP-TLP). Sets of pipelined tasks that can also be run in parallel.
This setting supports the execution of pipelines (two or more) in parallel. (e.g. In the case that there are two
independent pipelines, then they can be computed in parallel.

Validation. For the validation of our models we evaluated HW acceleration with Aladdin [28] HW accelerator
simulator. The run-time of the non-accelerated part was measured using gem5 [1]. The processor modelled is an
ARMv8-A processor of issue width of 1, having an atomic model, in-order execution and clocked at 100 MHz.
It is interfaced with a separate data cache (64 KB) and instruction cache (16 KB), where the access latency is
one clock cycle. This setup is realistic for resource-constrained embedded systems, however it is conservative
for high-performance systems, as an L1 cache that never incurs in any misses places SW execution at a slight
advantage. Additionally, we used Catapult HLS[7] to synthesize the HW accelerators for further validation. The
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Fig. 8. Speedup obtained for applications from Parboil [31] and MachSuite [25] benchmark suites, varying the area budget

constraint. We evaluate AccelSeeker [36] (BBLP) and LLP, while the baseline is a SW-only implementation.

latter, i.e., synthesis performed by Catapult HLS in order to perform validation was carried out manually, as
Trireme does not support automatic HLS.

6 EXPERIMENTAL RESULTS

In the following subsections, we showcase the speedup achieved from the hierarchical multi-level parallelism
strategies explored by our tool-chain. We group the results by diferent types of parallelism exploited by Trireme.
First, the performance beneits in single-kernel applications that solely exploit LLP are presented. Then, we
investigate XR applications with pipelines (audio encoder, cava) and independent tasks (SLAM), where both
LLP/PP or LLP/TLP can be applied. Finally, we study larger ones (audio decoder, edge detection), where
LLP/TLP/PP and combinations of them can be used, such as TLP-LLP and PP-TLP, as described in the previous
section. We evaluate the above against SW-only implementations, and against state-of-the-art AccelSeeker. As
such, we target FPGA SoCs in all our experiments.
We validate the designs selected by our tool, given increasing area constraints, irst using Aladdin [28] (for

the latency of HW accelerators) and gem5 [1] (for the software latency), and second using Catapult HLS for
real hardware measurements. Finally, we study the efects of varying the bandwidth of data transfers between
host and accelerator, and the overhead of accelerator invocation, on the audio decoder and edge detection

benchmarks.

6.1 Loop Level Parallelism

Trireme, extracting information exposed by HPVM, identiies the application kernels that contain a fully paral-
lelizable loop or loop nest. Subsequently, the Merit/Cost estimation models for loop level parallelism, as described
in Section 4, are used to estimate the speedup and hardware resource utilization for varying LLP factor. Figure 8
shows the speedup obtained on six benchmarks from Parboil (sgemm, lbm, spmv) andMachSuite (gemm-blocked,
md-grid, stencil), compared to a SW-only baseline.
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All applications beneit signiicantly from replicating their loop-bodies and running them in parallel, and the
parallelism enables the designs to take advantage of larger area resources to achieve greater speedups than is
possible without loop level parallelism. For an area budget of 3× 103 LUTs, sgemm and gemm-blocked reach a 16×
and 25× speedup respectively, compared to the baseline, and a 3× and ~2× speedup compared to BBLP, which
corresponds to state-of-the-art AccelSeeker selections.
Kernels such as spmv and stencil realize a 4.7× and 3.4× speedup compared to a SW-only implementation

respectively, for a budget of 5 × 103 LUTs, whereas lbm having a smaller loop body, i.e., fewer instructions and
less computation time within the loop body compared to the previous ones, has little beneit from extra area
resources and LLP. Finally, md-grid requires more area compared to the previous kernels and, having a large
potential for loop level parallelism, reaches a 27× speedup compared to the SW baseline and 5.4× compared to
state-of-the-art BBLP accelerators. Overall, Trireme is able in many cases to achieve substantial performance
improvements for given hardware resources by exploiting loop level parallelism alone.

6.2 Loop vs. Pipeline and Loop vs. Task Parallelism

Richer applications, such as components from the XR testbed [12], contain a variety of opportunities to exploit
parallelism. For audio encoder and cava, in addition to parallelizable loops, the DFG nodes can also be pipelined.
For SLAM, apart from LLP, independent tasks are present as well. Trireme automatically generates designs
exploiting this information.

Figure 9 shows the speedup obtained from applying LLP and PP on audio encoder and cava, for a number of
increasing area budgets. For a budget of 5 × 103 LUTs audio encoder achieves an 8× (for LLP) and 9× (for TLP)
speedup compared to SW-only baseline, as the entire pipeline its the budget. Additionally, a slight improvement
over BBLP (AccelSeeker selection) is achieved. Nonetheless, more area is required to parallelize the loops within
the selected accelerators, which is evident by the increasing trend line for LLP.
For the same area budget in cava, the pipeline does not it. Thus, the speedup gain for PP is the same as

for BBLP (10× over the baseline). LLP on the other hand beneits from loop parallelization and achieves a 20×
speedup.

For larger budgets, we can observe signiicant beneits in speedup for LLP, both in audio encoder and cava.
With 15× 103 LUTs audio encoder achieves a ~17× speedup compared to baseline, and with 10× 103 LUTs cava
attains a 33× speedup. These are respectively about 2× and 3× the speedup achieved with BBLP alone.
Figure 9 shows that SLAM beneits from LLP, reaching up to 7× speedup, as the area budget allows for more

loop level parallelism. On the other hand, since only two tasks Ð with small latency relative to the total run-time
Ð can be parallelized, TLP ofers no performance gain.

For audio encoder and cava, PP produces little improvement in performance. This is due to the unbalanced
pipelines in these workloads. One of the functions (DFG nodes) in each application dominates the computation
time, therefore applying the PP strategy yields little beneit. However, as demonstrated in the following round of
experiments, this is not the case for the next two applications evaluated: audio decoder and edge detection.

6.3 Loop/Task/Pipeline Parallelism

In the previous subsection we encountered applications that could only exploit LLP and PP, whereas audio
decoder, a state-of-the-art XR application component, and edge detection, a six-stage image processing
pipeline, can ofer LLP, TLP, PP, as well as combinations of them. Such applications are ideal candidates to employ
Trireme and unlock their full parallelism potential. Figure 10 presents the speedup achieved by multiple levels of
parallelism explored by our tool-chain, for increasing area budgets.
On audio decoder, Figure 10 (left) and Table 1, for an area budget of 12 × 103 LUTs, LLP and PP reach a

13.2× and 13.7× speedup respectively, compared to a SW-only baseline. This budget is enough to it one of the
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Fig. 9. Speedup obtained over the entire run-time of audio encoder [12], cava [34] and OpenVINS algorithm for SLAM

[12], varying the area constraint. We evaluate AccelSeeker [36] (BBLP), LLP, PP and TLP, while the baseline is a SW-only

implementation.

two audio decoder pipelines, and since the workloads are fairly balanced, we see the beneit obtained from
this strategy. TLP and TLP-LLP achieve the same 15.1× speedup, as not enough area is available to beneit from
parallelizing the loops, while the selected independent tasks are accelerated in parallel.
Increasing the budget to 14 × 103 LUTs, almost equivalent to Xilinx Artix Z-7007S PSoC [33], we can see

that LLP and TLP-LLP are making use of the larger area and increase their respective speedups to 14.21× and
15.74×. Conversely, BBLP, TLP and PP extract no beneit, using only 85% of the available resources, as their
potential candidate choices require more area to be selected (Table 1 - row 2). A budget of 15× 103 LUTs, however,
accommodates all available tasks to be parallelized (TLP-16.7×), as well as the pipelines (PP-16.5×), including the
possibility to parallelize the independent pipelines (PP-TLP-18.31×), yielding the maximum possible speedup for
these strategies.
The latter point can also be seen in the last row of Table 1. A larger area budget, almost equivalent to Xilinx

Artix Z-7012S PSoC [33], allows LLP and TLP-LLP to beneit from increased parallelization of the loop bodies of
their accelerators. TLP, PP and PP-TLP show no beneit from the doubling of the hardware resources as they
have already reached their better-performing designs. An interesting aspect is that PP-TLP, the strategy that
achieves the best speedup, along with TLP and PP require fewer hardware resources to reach their maximum
speedup compared to LLP and TLP-LLP, the latter achieving an almost equivalent speedup to PP-TLP but for
much larger area. Also BBLP is consistently outperformed by all parallelism strategies explored.
Similar trends can be seen in edge detection while investigating its potential for parallelism (Figure 10

ś right). For a 14 × 103 LUTs area budget TLP (3.2×), PP (3.4×) and PP-TLP (4.4×) can accommodate all their
respective HW/SW designs and reach their top speedups compared to the SW-only baseline. For the same budget,
LLP and TLP-LLP can achieve 2.5× and 3.2× respectively, requiring more area to reach better performance. An
area budget of 40 × 103 LUTs, equivalent to Artix Z-7014S PSoC, would allow for more parallelization of the loop
bodies for LLP an TLP-LLP, the latter reaching an equivalent of the PP-TLP maximum speedup (4.4×).

For even larger area budgets, such as 100 × 103 LUTs, we notice that LLP reaches a 4× speedup and TLP-LLP
surpasses the highest-performing PP-TLP design by achieving 4.7× speedup compared to the baseline. This is
because, unlike audio decoder, all of the accelerated functions in edge detection have parallelizable loops,
which allows for increasing speedup as the area increases.

6.4 Aladdin/gem5 and Catapult HLS

To validate the selection of the HW/SW designs for every parallelism strategy explored and evaluated by our
tool-chain, we use Aladdin [28], a HW accelerator simulator, and the gem5 [1] simulator. Aladdin was chosen as
a faster, yet accurate, alternative to commercial HLS tools that ofer latency and area results. For audio decoder,
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Fig. 10. Speedup over the entire runtime for diferent versions of audio decoder (let) and edge detection (right), varying the

area constraint. We evaluate AccelSeeker [36] (BBLP), TLP [13, 21], PP, a combination between PP and TLP (PP-TLP), LLP

[8, 15] and a combination between TLP and LLP (TLP-LLP), while the baseline is a SW-only implementation.

Benchmark Parallelism Area Budget Area Used Speedup

Version (LUTs) (LUTs) vs. SW

audio decoder BBLP 12 000 11916 (99%) 12.65

LLP 11655 (97%) 13.2

TLP 11916 (99%) 15.1

TLP-LLP 11916 (99%) 15.1

PP 11916 (99%) 13.7

PP-TLP 11916 (99%) 12.65

BBLP 14 000 11916 (85%) 12.65

LLP Artix Z-7007S 13889 (99%) 14.21

TLP [33] 11916 (85%) 15.1

TLP-LLP 13889 (99%) 15.74

PP 11916 (85%) 13.7

PP-TLP 13861 (99%) 14.09

BBLP 15 000 14166 (94%) 13.62

LLP 14722 (98%) 14.7

TLP 14166 (94%) 16.7

TLP-LLP 14471 (96%) 16.9

PP 14166 (94%) 16.5

PP-TLP 14166 (94%) 18.31

BBLP 30 000 14166 (47%) 13.62

LLP Artix Z-7012S 29773 (99%) 16.3

TLP [33] 14166 (47%) 16.7

TLP-LLP 29773 (99%) 18.24

PP 14166 (47%) 16.5

PP-TLP 14166 (47%) 18.31

Table 1. Area Budget and Area Used for audio decoder.

we gather the HW latency and area of the available candidates for acceleration with Aladdin, and their respective
SW latency with gem5, as well as the run-time of the application as detailed in Section 5.

Figure 11 shows the speedup over increasing area budgets. For every area budget, the outputs of applying the
parallelism strategies explored in this work match the ones generated by the Aladdin/gem5 simulations. This
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Fig. 11. Speedup obtained for audio decoder varying the area constraint using Aladdin [28] for the HW acceleration parts

and gem5 [1] for the SW-only implementation.

reinforces our expectation that our tool-chain selects the most promising designs with respect to performance
and area usage.

As expected, speedup absolute values for audio decoder (Figures 10 and 11) difer. This is due to two factors:
A) Our performance and area models are not based on cycle-accurate estimations, but aim to enable the selection
of high-performance HW/SW choices automatically, and faster than performing demanding simulations or RTL
synthesis. B) The characterization of latency for Aladdin is performed targeting OpenPDK 45nm technology,
which is diferent to the characterization of our tool targeting a Zynq Programmable SoC.

Benchmark Parallelism Area Used Speedup vs.

Version (��2) state-of-the-art

AccelSeeker (BBLP)

audio encoder BBLP 3854 1

LLP 5415 2

LLP 8578 4

LLP 15072 8

LLP 27491 16

audio decoder BBLP 92 738 1

LLP 85 602 1.5

TLP-LLP 85 602 2

BBLP 125 865 1

LLP 171 385 2

TLP 125 865 3

TLP-LLP 125 865 3

TLP-LLP 251 641 6

Table 2. Trireme vs. AccelSeeker [36] by Catapult HLS [7].

To further evaluate our tool low, we designed accelerator prototypes using SystemC, guided by Trireme. To
gather HW latency and area requirements, the accelerators were synthesized using Catapult HLS [7]. The RTL
was then synthesized, placed and routed by ASIC EDA tools using a commercial 12nm FinFET technology. The
accelerators were clocked at 500MHz frequency and cycle-accurate Catapult simulations were used to measure
the HW latency.
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Fig. 12. HLS design of audio decoder guided by Trireme.

Table 2 shows the HW latency comparison of Trireme (LLP, TLP, TLP-LLP) to AccelSeeker (BBLP). For audio
encoder, LLP designs guided by Trireme achieve impressive performance gains at the expense of more HW
resources. In audio decoder, LLP designs achieve smaller speedup and require the same or more resources
compared to TLP-LLP. The latter can be up to six times faster compared to the respective AccelSeeker design for
a large area budget (~252 × 103��2). A medium area budget of ~126 × 103��2 can yield signiicant speedup for
TLP and TLP-LLP where accelerators Rotate 1-3 are operating in parallel. Figure 12 shows the physical layout of
this design for audio decoder.

6.5 Configurations of the Target Platform

To gain better intuition on how diferent platform conigurations afect potential speedup in HW accelerated
systems, we apply a round of experiments varying the bandwidth of the data transfers to and from the HW
accelerators (afecting memory latency), and the overhead of invoking them. Note that for Subsections 6.1, 6.2 and
6.3 we have been assuming a coniguration of 1 GBps bandwidth and 1�s overhead per accelerator invocation.

Figure 13 (left) shows the audio decoder speedup due to varying the bandwidth over 100 MBps, 1 GBps and
10 GBps, and the area budgets over 12, 15 and 30×103 LUTs. We observe that low bandwidth (100 MBps), even
when the area budget is increased, ofers little speedup from BBLP, LLP, TLP, TLP-LLP and PP. This reveals the
limitation of platforms where communication to memory can severely afect the speedup of a HW/SW design.
Overall, as expected, all parallelism strategies reach greater speedup when both bandwidth and area are

increased. Nonetheless, LLP and TLP-LLP are favored, compared to the rest of the strategies, when bandwidth
is increased for a given area budget. This result is even more evident for edge detection compared to audio

decoder, as seen in Figure 13 (right), as it has more parallelizable loops than the latter. For the largest area budget
of 100 × 103 LUTs we notice that the second and fourth bars increase vastly reaching 4.2× and 4.9× speedup
respectively, as bandwidth increases, surpassing the previous better performing strategy (PP-TLP) for a smaller
budget of 15× 103. We can also notice this for audio decoder for the largest area budget of 30× 103 LUTs where
TLP-LLP reaches the maximum speedup (20×), compared to the rest of the parallelism approaches.

Finally, we evaluated the efect of both latency due to communication between the accelerators and memory,
as well as the invocation overhead of the accelerators, on edge detection. In Figure 14, we observe that even for
a low bandwidth, such as 100 MBps, a high speedup can be obtained if the invocation overhead remains low.
For a low overhead of 300 ns per invocation, the speedup reached by parallelizing the pipelines (PP-TLP) almost
doubles (5×) compared to the same bandwidth and a higher invocation overhead of 2 × 103 ns per invocation.
A similar trend is observed for all evaluated bandwidths, where a low invocation overhead with a 1 GBps

bandwidth can yield better speedups compared to a higher invocation overhead with a 10 GBps bandwidth. For
instance, all the parallelization strategies with a 1 GBps bandwidth and a 500 ns invocation overhead achieve
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Fig. 13. Speedup of audio decoder (let) and edge detection (right), for increasing bandwidth and area. Baseline is SW-only.

We evaluate all parallelism strategies explored by Trireme, while the baseline is a SW-only implementation.
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Fig. 14. Speedup obtained of edge detection for diferent bandwidth and invocation overhead values. All parallelism strategies

are evaluated for an area budget of 15 × 103 LUTs.

better performance compared to all the respective conigurations that have a 10 GBps bandwidth with a higher
invocation overhead.

7 RELATED WORK

We classify related research literature across ive dimensions, as shown in Table 3. The types of parallelism
supported by each piece of research vary from ILPwithin Basic Block boundaries [36, 37], to loop level [8, 13, 15, 21],
task level parallelism [19, 22] and Tensor level [18]. Early DSE, one of the most important aspects of Trireme,
is in many instances not supported by tools developed to expose and exploit parallelism in HW acceleration
[15, 18, 19, 23, 27].

FCUDA [23] is a source-to-source tool that translates CUDA code to FPGA accelerators, however ofers no DSE
or estimation of HW acceleration performance. On the other hand, Spatial [13] is an early DSE infrastructure
that uses Hypermapper 2.0 [21] in order to apply early DSE, however the parts to be accelerated need to be
user-deined and high level languages are not supported as input. Aetherling [8] applies early DSE as well and
can be conigured onto FPGAs, but it is restricted to loop level parallelism only and it does not support high level
languages (C/C++). Spatial [13] also employs early DSE using Hypermapper 2.0 [21], however the parts to be
accelerated need to be user-deined and high level languages are not supported as input. Early DSE that serves
the purpose of merging accelerators has been explored in [3].
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Methodologies that combine static analysis and machine learning have been used in Peruse [15], in [10, 11]
and in [35] to predict the potential speedup of loop accelerators. TAPAS [19] is a tool-chain focusing on loop and
task level parallelism by leveraging the TAPIR [27] Parallel IR representation of the code. Although TAPIR is able
to generate parallelism at arbitrary granularities, HPVM is able to expose nested parallelism which is leveraged
by Trireme.
HeteroCL [16], developed within a Python-based domain speciic language, performs early DSE and ofers

estimations on performance and area targeting FPGAs. It uses parallel processing pipelines and shifts towards
tensor-related computations, used in Linear Algebra, Computer Vision and Machine Learning. Since HeteroCL is
domain speciic, it uses the domain expertise to trade accuracy for performance aggressively by reducing the
bitwidth for key functional units.
High Level Synthesis (HLS) tools have improved substantially in recent years [20]. Commercial tools like

Xilinx Vivado HLS [32] and Cadence Stratus HLS [4], and academic tools like Bambu [24] and Legup [6], carry
out the design of computation-heavy accelerators from application source code. They achieve performance on a
par with that of hand-crafted implementations written in low level hardware description languages like VHDL
and Verilog. But these HLS tools provide no DSE or early estimation of accelerator performance; hence, they are
complementary to Trireme in an application-driven hardware-design worklow.

Feature FCUDA Spatial Peruse TAPAS CIRCT Aether Accel Trireme

ling Seeker

[23] [13, 21] [15] [19] [18] [8] [36]

Levels of Loop Loop Loop Loop Tensor Loop Intra-BB Intra-BB
Parallelism Task Task Task ILP Loop

Task
Pipeline

Early ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓

DSE
Performance
Estimation ✗ ✓ ✓ ✗ N/A ✓ ✓ ✓

Automated ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Conigurations
of Target
SoCs ✗ ✗ ✗ ✗ N/A ✗ ✗ ✓

Table 3. Taxonomy Table. DSE Methodologies and tools comparison.

Tools that performHW acceleration simulation and can be used for DSE such as Aladdin [28], gem5-aladdin [29]
and gem5-SALAM [26] can achieve high cycle and power accuracy, comparable to that of commercial HLS tools.
Furthermore optimizations, such as loop unrolling and loop pipelining, can be applied. However, a considerable
amount of manual work is required and the simulation process is fairly time-consuming, even though signiicantly
less than the time required by commercial HLS tools. Finally, frameworks used for automatic binary parallelization
[39] and for automatic parallelization of non-numerical applications [5] by decoupling communication from
computation, in order to avoid the overhead due to synchronization, have also been proposed.

8 CONCLUSIONS

Early DSE in modern applications, along with the extraction of critical information about parallelism, can be
crucial to the outcome of a inal HW/SW design and its respective performance on SoCs. Trireme leverages
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information automatically retrieved by HPVM and applies it to accelerators automatically identiied and evaluated
by AccelSeeker. Using novel performance models, Trireme is able to thoroughly explore a variety of parallelism
strategies and select the highest performing HW/SW design as output for area budgets of increasing size. We have
explored multiple SoC conigurations, varying the data transfer bandwidth between memory and accelerators, as
well as accelerator invocation overhead. Application of Trireme to the XR domain yields substantial speedup
gain with ixed resources when compared with state-of-the-art tools (e.g., AccelSeeker [36]) that do not consider
loop level, task level and pipeline parallelism.

9 FUTURE WORK

Our tool-chain, in its current state, does not ofer automatic code generation for HW accelerators. Therefore, we
plan to extend Trireme’s capabilities by either adding a High Level Synthesis step for automatic code generation
or linking it to tools that already ofer RTL synthesis, such as Catapult HLS [7]. Also, apart from SW CPUs
coupled with HW accelerators, we wish to target more complex heterogeneous systems that may have GPUs,
TPUs, DPUs etc. and formulate their respective evaluation/cost models. Finally, more optimizations (e.g. loop
transformations, custom memory bufers etc.) can be considered, so that they can be implemented automatically,
apart from the various forms of parallelism that are explored and studied in this work.
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