Check for
Updates

Trireme: Exploration of Hierarchical Multi-Level Parallelism for
Hardware Acceleration

GEORGIOS ZACHAROPOULOS, Harvard University, USA
ADEL EJJEH, University of Illinois at Urbana-Champaign, USA
YING JING, University of Illinois at Urbana-Champaign, USA
EN-YU YANG, Harvard University, USA

TIANYU JIA, Harvard University, USA

IULIAN BRUMAR, Harvard University, USA

JEREMY INTAN, University of Illinois at Urbana-Champaign, USA
MUHAMMAD HUZAIFA, University of Illinois at Urbana-Champaign, USA
SARITA ADVE, University of Illinois at Urbana-Champaign, USA
VIKRAM ADVE, University of Illinois at Urbana-Champaign, USA
GU-YEON WEI, Harvard University, USA

DAVID BROOKS, Harvard University, USA

The design of heterogeneous systems that include domain specific accelerator
While taking into account area constraints, designers must decide which

ing and time-consuming process.
ication to accelerate in hardware
¢d Reality (XR) offer opportunities for
various forms of parallel execution, including loop level, task level . 1ism. To assist the design process and

parallelism and produces domain specific accelerator design tions that maximize performance, given an area
budget. FPGA SoCs were used as target platforms and Catapu 5 used to synthesize RTL using a commercial 12nm
FinFET technology. Experiments on demanding bench
a speedup of up to 37x for smaller applicatiogs

CCS Concepts: « Computer Aided Design T
Techniques for Embedded Applications;

dded Systems; « Compilers, Code Synthesis, Parallelization

Authors’ addresses: Georgios Zach:
6221; Adel Ejjeh, aejjeh@illinois.e:

os, georgios@seas.harvard.edu, Harvard University, P.O. Box 1212, Cambridge, MA, USA, 43017-
iversity of Illinois at Urbana-Champaign, 201 N Goodwin Ave, Champaign, IL, USA; Ying Jing,
t Urbana-Champaign, 201 N Goodwin Ave, Champaign, IL, USA; En-Yu Yang, enyu_yang@g.
Cambridge, MA, USA, 43017-6221; Tianyu Jia, tjla@g.harvard.edu, Harvard University, P.O.
21; Iulian Brumar, ibrumar@g.harvard.edu, Harvard University, P.O. Box 1212, Cambridge, MA,
illinois.edu, University of Illinois at Urbana-Champaign, 201 N Goodwin Ave, Champaign, IL, USA;
du, University of Illinois at Urbana-Champaign, 201 N Goodwin Ave, Champaign, IL, USA; Sarita Adve,
Tllinois at Urbana-Champaign, 201 N Goodwin Ave, Champaign, IL, USA; Vikram Adve, vadve@illinois.edu,

sadve@illinio
University of
University, P.O.
Cambridge, MA, U

ambridge, MA, USA, 43017-6221; David Brooks, dbrooks@eecs.harvard.edu, Harvard University, P.O. Box 1212,
43017-6221.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/1-ART $15.00

https://doi.org/10.1145/3580394

ACM Trans. Embedd. Comput. Syst.

HTTPS://ORCID.ORG/0000-0002-6644-5200
https://orcid.org/0000-0002-6644-5200
https://doi.org/10.1145/3580394
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580394&domain=pdf&date_stamp=2023-01-17

2+ Georgios Zacharopoulos, et al.

Additional Key Words and Phrases: accelerators, ASICs, compiler techniques and optimizations, design tools, heterogeneous
systems parallelism

1 INTRODUCTION

The breakdown of Dennard scaling [9], and the seemingly inescapable end of Moore’s law [30], present new
challenges for computer architects striving to achieve increased performance in modern computing systems.
Heterogeneous Computing has emerged to address these issues, but the complexity of heterogeneous systems,
consisting of software (SW) processors and hardware (HW) accelerators, has also increased dramatically. Hardware
designers assigned with accelerating a certain application domain are required to have a deep knowledge and
understanding of both the software applications and the underlying platform characteristics: Additionally, a
great deal of manual effort is required to identify and extract the information that is necessary slore various
possible optimizations for every design.

These optimizations include exploiting application level parallelism, in the form of Ins
Level (LLP), Task Level (TLP) and Pipeline Parallelism (PP). The use of such parallelis een limited in tools
for designing hardware accelerators, in two ways. First, in the few tools [19, 27] th :
level parallelism, it is limited to TLP and LLP. Second, these approaches do no
Exploration (DSE) in early design stages. We call early DSE the software analy
that take place before implementing a particular hardware design, fori
(HLS) tool, in order to explore a broad range of possible designs
different types of parallelism.

A hardware DSE flow for a System on Chip (SoC) with h.
uses parallelism information, requires three main compo:

rm Design Space

sing a High Level Synthesis
s of optimisations, including

latency. ¢) An integration of (a) and (b),
use this information to build efficient pe
Spatial [13] is a tool that performs early focusing on parallelism, but it has a number of limitations. First,

y providing a hardware-centric design language, and does not

support applications written in high level languages (e g., C,C++). Second, it is restricted to modehng performance
on FPGAs and CGRAs, and

! el Virtual Machine (HPVM) [14] tools. AccelSeeker offers automatic identification and
selection of HW accelerators based on models of performance, and HPVM is a parallel program representation
for heterogenepus systems that exposes all the major forms of parallelism (loop level, task level and pipeline
parallelism) relevant to accelerator design. We extend Trireme with novel models of parallel performance
evaluation (described below) to enable early DSE that accounts for various forms of parallelism. Moreover,
Trireme is able to account for SoC interconnect bandwidth and latency, which enables strong synergy with the
explicit dataflow information captured in the HPVM parallel representation (a hierarchical dataflow graph). The

ITrireme was an ancient Greek/Roman boat having three main rows of oars (similar to the three types of parallelism that we explore) and
requiring parallel work to flow. A lightweight, quick boat, taking advantage of parallelism is ideal for explorations, hopefully also for early
Design Space Exploration.

ACM Trans. Embedd. Comput. Syst.

Trireme: Exploration of Hierarchical Multi-Level Parallelism for Hardware Acceleration « 3

integration of the two thus offers the basis for an extensive exploration of multiple levels of parallelism, provides
an early estimation of performance, and outputs HW/SW designs that maximize speedup within specific area
budgets.

For each type of potential parallelism that Trireme extracts (LLP, TLP, PP, and combinations of them), we
introduce novel models of performance (in terms of latency) and area demands (in terms of hardware resources).
With the aid of these models, we carry out comprehensive early DSE that selects combinations of parallel
accelerator designs with increasing area budgets. Additionally, we study a variety of architectural configurations
of target SoCs to distinguish the impact of every type of parallelism in accordance with the characteristics and
complexity of novel benchmarks from the Extended Reality (XR) domain.? Trireme achieves speedups of up to
20x for complex XR application components (e.g., audio decoder) and up to 37x for single-kernel@pplications (e.g.,
gemm-blocked). FPGA SoCs serve as target platforms for our experiments and High Level Synthesis (Catapult
HLS [7]) is used during the validation stage of our experimental section. For the latter, RTL was s
placed and routed by ASIC EDA tools utilizing a commercial 12nm FinFET technology.

Our contributions are as follows:

e We present Trireme, a fully-automated tool integrating HPVM [14]
identification, estimation of performance and selection of hardware a
loop level, and pipeline parallelism (Section 3).

e We introduce novel models for estimating performance and resou;
level, and pipeline parallelism (Section 4).

o We demonstrate Trireme’s HW/SW partitioning choices area budgets and varying the
configuration of memory latency and accelerator invocation, ead, thereby covering a wide range of
possible designer scenarios (Sections 5 and 6).

e We evaluate our tool using a broad spectrum of ap

ining from smaller, single-kernel applica-
components from the XR domain (derived
from a recently released XR testbed [12]) (Section 6)..

The rest of the document is organizet llows;Section 2 offers a description of AccelSeeker and HPVM
basic characteristics. Section 3 presents
models are formally defined. Section 5 p
results using Extended Reality applications
HLS. In Section 7 recent resez

we offer our closing though

ind targeting FPGA SoCs, as well as generating RTL using Catapult
iterature is reviewed and compared to our methodology. Finally in Section 8
n Section 9 limitations of our tool-chain and future endeavors are discussed.

sarly DSE of potential parallelism possibilities for HW acceleration, in comparison
and Peruse [15] that offer limited or late DSE. Furthermore, our tool explores a
form configurations, with respect to memory latency and overhead due to the invocation
of the acceler , that can drastically affect the performance of a HW/SW design.

Achieving such a thorough and early DSE, while investigating the different parallelism opportunities, is a
challenging endeavor because it requires both: a) automatic extraction of any parallelism-related information from
the applications to be accelerated and b) automatic identification and early evaluation of potential accelerators.
HPVM and AccelSeeker, both developed within the LLVM [17] infrastructure, support the former and the latter
requirements respectively, and hence, serve as the basis of the Trireme tool-chain.

AccelSeeker is a tool that performs automatic identification and selection of hardware accelerators, and HPVM
is a parallel program representation for heterogeneous systems. Trireme uses components of AccelSeeker to

to tools,su
number of

2Extended Reality combines Augmented, Virtual and Mixed Reality.

ACM Trans. Embedd. Comput. Syst.

4 « Georgios Zacharopoulos, et al.

Gaussian Smoothing

2

E] Compute Zero Crossings
Reject Zero Crossings

Laplacian Estimate

Compute Gradient

Fig. 1. Task Graph for edge detection.

We use HPVM to analyze
lelism (TLP, LLP, PP) that we

perform an initial estimation of performance and an estimation of area re
the applications and collect required information regarding the three type¢
can exploit. In the following sections, we provide detailed background

2.1 AccelSeeker

, analyzes applications represented by the

ages of the HW/SW partitioning process and
celeration. The tool has three main phases: a)
e and Area Estimation and c) Selection of Candidates
d area constraint.

Candidate Identification for HW acceler
for acceleration that maximize speedup t

any) are part of its computatioas a potential HW accelerator. As an example, in Figure 1, every one of edge
°h corresponds to a function in the call graph, can be a candidate for acceleration.
alls, as well as any non-synthesizable constructs, such as dynamic memory

/O data transfer requirements for every identified candidate. A default Zynq Programmable
 target platform is assumed for the architectural characterization, though it can be configured
to adapt to different platforms. The HW accelerators are designed as loosely coupled — their implementations
exploiting ILP within the boundaries of a Basic Block (BB). This type of accelerator, exploiting parallelism within
the BB granularity, will be referred to as Basic Block Level Parallelism (BBLP) accelerators in Section 6.

Selection of Candidates. Having assigned a specific speedup estimation (merit) and HW resource requirement
(cost) to every identified candidate, the selection phase takes place. For a given area budget (which can be varied
from small to large) a subset of the initial candidate list is selected that maximizes speedup. The tool’s output is
the design of a heterogeneous system that distinguishes the part of the computation that stays in software from
the part that is accelerated by hardware.

ACM Trans. Embedd. Comput. Syst.

Trireme: Exploration of Hierarchical Multi-Level Parallelism for Hardware Acceleration « 5

22 HPVM

Heterogeneous Parallel Virtual Machine (HPVM) [14] is a parallel program representation for heterogeneous
systems, designed to be a virtual ISA, compiler Intermediate Representation (IR) and run-time representation.
Designed as an extension of LLVM IR[17], HPVM exploits all the optimization and code generation potential of
LLVM, both for scalar and vector code, while adding support for parallel computation and heterogeneous systems.
This is achieved by representing programs using a hierarchical Data Flow Graph (DFG). An HPVM program
consists of host code together with one or more DFGs. The DFGs can also be seen as Directed Acyclic Graphs
(DAGs). All code suitable for acceleration is contained in the DFG nodes. A DFG node can either contain a part of
the computation (called a leaf node) or an entire nested data flow graph. This hierarchical representation enables
multiple levels of nested parallelism. Every DFG node has a node function associated with it, and node functions
for leaf nodes contain ordinary scalar and vector LLVM IR. Every DFG edge represents an explicit,;logical data
namlC"'nstances

transfer between two nodes. Each static node in the graph can have multiple, independent
specified as a replication factor (similar to the grid of threads for a CUDA or OpenCL k
structure allows HPVM to capture loop level data parallelism (via the dynamic insta
data parallelism (via LLVM vector instructions within a leaf node), task para
(via pairs of subgraphs that are not connected by any path), and pipelined strez
dataflow edges), all in a single parallel program representation.

The HPVM representation promotes optimizations such as node fusi m ppmg to local accelerator
memory (e.g., GPU scratchpads), and memory tiling. So a numb
the HPVM IR to optimize execution on specific target devices.]
translating each DFG node into code for one or more pr
design is able to leverage LLVM’s well-tuned back-ends, su¢
run-time, invoked by the host code, interfaces with
copy needed data to and from the device.

e generator traverses the DFG,
he target system. The HPVM
X, Intel AVX and X86-64. The HPVM
espo dmg device run-time to launch a kernel and

3 TRIREME

An overview of the entire methodology of t e tool-chain is depicted in Figure 2. Boxes C, D and E in the
figure represent new components developed for this work, while the other boxes represent existing AccelSeeker
and HPVM components. Th ++) of every application, annotated using the HPVM front-end

language (HeteroC++) is us put. The HeteroC++ annotations are hardware-agnostic annotations, similar in

urce code are performed. As such, any manual, hand-tuned implementations,
nce that is presented in the experimental section (Section 6). Therefore, in

its IR to identify candidates for acceleration (Box A). Next we estimate the SW and HW
latency, area’and the amount of data required for every identified candidate. Their potential performance gain
(speedup) is estimated and attached to them as Merit, as well as the Cost required in terms of HW resources (Box
B).

The list of candidates and the DFG of the application, automatically generated by HPVM from the source code,
are then passed as input to a tool that extracts all necessary information regarding potential parallel execution,
as detailed in Subsection 3.1 (Box C). With the aid of novel models for loop level (LLP), task level (TLP) and
pipeline parallelism (PP), described in the following sections, we estimate potential speedup (Merit) and area
(Cost), including through combination of parallel approaches wherever applicable, i.e., task level+loop level
parallelism (TLP-LLP) and pipeline parallelism+task level parallelism (PP-TLP) (Box D). Figure 3 shows the DFG
of the edge detection benchmark and its respective parallelism opportunities.

ACM Trans. Embedd. Comput. Syst.

Georgios Zacharopoulos, et al.

TRIREME

Application
Source Code

Platform
Configuration

Architectural
Characterization

A

Perform SW, HW, Area Estimations
Merit (M) and Cost (C) Estimation for

A

Candidate
Identification

Basic Block Level Parallelism (BBLP) List of BBLP
Candidates
ACCELSEEKER with respective

Mand C

Extract Independent
Tasks, Parallelizable
Loops, Pipelined Tasks

M and C Estimation for Loop
-> Level (LLP), Task Level (TLP) and
Pipeline Parallelism (PP)

I AccelSeeker

Fig. 2. Overview of the Trireme metho

We have integrated AccelSeeker and HPVM to exploit any parallelism information that can be provided by the
latter and guide the selection process. In particular, we developed a C++ tool within the HPVM infrastructure

that receives a list of the most promising candidates (functions) for acceleration,
along with their corresponding estimated software (T), and hardware (T}) execution times. In addition, the
HPVM bitcode file of the application being analyzed is provided as input. The tool builds the DFG of the
provided application and creates a mapping between the DFG leaf nodes and the respective input functions
from AccelSeeker, such that each input function corresponds to a leaf node. For the scope of this work, we only
consider candidate functions that correspond to leaf nodes in the HPVM DFG. Any functions called within a leaf

ACM Trans. Embedd. Comput. Syst.

Area

Update List of
Candidates with
LLP, TLP and PP

M and C

Selection Algorit|

as evaluated by AccelSeeker,

Trireme: Exploration of Hierarchical Multi-Level Parallelism for Hardware Acceleration « 7

node are accounted for as part of the leaf node’s analysis, and not analyzed separately. The tool then performs a
set of HPVM DFG analyses that extract the different types of parallelism, as described below.

First, a node-reachability analysis is performed (Algorithm 2) that queries the HPVM DFG to determine whether
each of the candidate DFG nodes has a path connecting it to any of the other candidates. We consider nodes that
belong to separate DFGs to be sequential. For every node i, we build a list of nodes that are parallel to it, such
that any node j that is found to be unreachable to/from i is added to that list. The output of this analysis is the
set of nodes that can run in parallel with each candidate.

Second, a critical-path analysis is performed to calculate the Earliest Start Time (EST) and Earliest Finish Time
(EFT) of each candidate node. Two full traversals through the DFG are performed: a) calculating the times while
the entire run-time is in SW and b) calculating the times while the computation is implemented:in HW. In each
traversal, the EST, EFT, and Duration (D) of a leaf node (N) are calculated as follows:
D(N) = T; or Ty depending on the current traversal.

EST(N) = MAX(EFT(Pred(N))) where Pred(N) is the list of N’s predecessors in the
EFT(N) = EST(N) + D(N).

Algorithm 1 Algorithm of edge detection

// Gaussian Smoothing end for
for row «— 1tomdo
for col < 0tondo
parallel computation
end for
end for

// Laplacian Estimate
for row < 1tomdo

for col «— 0tondo
parallel computation

end for
end for

/I Compute Zero Crossin

for row <« 1tomdo
for col — Oton
parallel

end for

Compute Max Gradient
ori«— ltom#ndo
parallel computation
end for
// Reject Zero Crossings
for row < 1tomdo
for col < 0tondo
parallel computation
end for
end for

Algorithm 2 Node reachability analysis for task parallelism

for i € Nodes do
for j € Nodes do

if lexistsForwardPathP(i, j) and lexistsForwardPath(j,i) then

mark j parallel to i

end if
end for
end for

ACM Trans. Embedd. Comput. Syst.

8 « Georgios Zacharopoulos, et al.

For cases with separate DFGs, we set EST of the first node in a DFG i to be the EFT of the last node in the
previous DFG i — 1. The output of this analysis is the software and hardware EST's for each candidate function.
This information is used in conjunction with the reachability analysis results at a later stage to determine task
level parallelism (Section 4.2).

Finally, a third round of analysis detects for every candidate node whether or not it has dynamic replication.
Its output is a table containing the nodes that have dynamic replication, along with the number of dimensions
they are replicated on. Additionally, if the replication factors of a node are constants, those factors are included
as well. This information is used at a later stage to determine loop level parallelism (Section 4.1).

3.2 Tool-chain Features
ies of a function,
er to integrate
DEG, as seen in the
es as a potential

Accelerator Granularity. We consider the granularity of the candidates to be within the |

AccelSeeker analysis with HPVM, HW accelerators correspond to leaf nodes i
example of Figure 1. In this instance, every (indexed) node of the DFG of edg
candidate for acceleration.

Software, Hardware Latency and Area Estimation. We perfor ‘of software and hardware
lynamic, by extracting run-time
profiling information for cases where the application is input depe trip count that is not statically

resolved and may depend on an input parameter). Furthermo

atform and it can easily be adapted for different
ins, etc.). In accordance to the limitations of HLS tools,

nt'of data required by each candidate is also extracted by static
the latter is available. This data requirement is subsequently used
mnication between an accelerator and memory (e.g., DRAM, last level cache, etc.).
iven the characteristics of the platform for which we are going to implement

to estimate latency due to co

Merit and Cost Estima
HW accelerators, we es "
resources required
for Merit, which tran
LUTs (Segtion 2

Autom n of Parallelism. Using the tool developed for AccelSeeker-HPVM integration (3.1)
we automat ct information about the potential for loop level, task level and pipeline parallelism. This
serves as input, along with AccelSeeker’s list of candidates for (BBLP) acceleration, for the novel performance
models of mult///fple levels of parallelism explored by Trireme. These models are presented in detail in Section 4.

Selection Algorithm/HW-SW Partitioning. The updated list of candidates for acceleration is generated,
including both the Basic Block Level Parallelism (BBLP) accelerators from AccelSeeker and the candidates that
exploit all types of parallelism explored by our tool-chain. The selection algorithm recursively explores the
subsets of the updated list of candidates, in a similar manner to the Bron-Kerbosch algorithm [2]. The output
returned is the set with the highest speedup (cumulative Merit) that stays within the user defined area budget
(Cost).

ACM Trans. Embedd. Comput. Syst.

Trireme: Exploration of Hierarchical Multi-Level Parallelism for Hardware Acceleration « 9

[2 T 38 T & g

-nn-ﬁﬂ P 14k LuTs

W 14K LUTs

><

40K LUTs

40K LUTs

40K LUTS
BUDGET

Fig. 4. Designs exploiting BaS|c
(PP) in edge detection pr

level (BBLP -"AccelSeeker [36]), loop level (LLP), task level (TLP), and pipeline parallelism
3 LUTs area budget. The size of the black rectangles represents area usage.

4 MERIT AND

by the respective ones from RegionSeeker [37] and AccelSeeker [36], are introduced to
accommodate the estimation of loop level, task level and pipeline parallelism extracted by HPVM. Having an
early estimatioft of speedup and area budget needs, for every possible design exploiting any, or a combination, of
these three types of parallelism can lead to better design choices and significantly less engineering effort.

4.1 Loop Level Parallelism (LLP)

With the aid of the tool described in 3.1, information regarding the DFG nodes loop-level parallelism is retrieved.
As shown in the example of Figure 3, the marked DFG nodes of edge detection are identified as nodes that contain
a fully-parallelizable loop and, thus, are analyzed further so that multiple versions of the same functions are
generated with an increasing LLP factor. For each factor, the loop is parallelized by replicating its body, and

ACM Trans. Embedd. Comput. Syst.

10 - Georgios Zacharopoulos, et al.

the corresponding speedup and cost estimates are computed. To simplify the estimation we assume an equal
workload for every iteration of the loop.

LLP Merit and Cost Estimation. Let S = {S1, S, ..., Sn'} be a set of parallelizable loop candidates, with associated
SW latency (SW;), HW computation latency (HWcomp;), HW communication latency (HWcom;), invocation
overhead (OVHD;) and area cost (A;). Also let LLP factor j =1...,K | K = max(Loop Trip Count) be the factor
by which we parallelize each loop. To simplify the analysis, we assume that the loop is perfectly load-balanced,
and communication latency is constant, independent of j.

Under these simplifying assumptions, for every loop candidate {S;; | i=1,...,N, j=1,...,K}, we compute
the merit M(S;;) = SW; — HWeomp; _ HWcom; — OVHD;, and the loop candidate area cost C(S;;) = A; X j,
respectively.

As anticipated, by increasing the replication factor, better performance is achieved with the higher cost of area
required. LLP, where applicable, can yield tremendous speedup benefits but at a high area budget cost; as seen in
Figure 4 (LLP vs software-only implementations) and discussed in greater extent in Se ‘

4.2 Task Level Parallelism (TLP)

To compute the potential speedup of a number of tasks that can be run i
possible sets of independent candidates, i.e., all candidates that have n¢
the example in Figures 1 and 3, edge detection candidates indexed {2

eed first to extract all
dencies. As depicted in
re independent sets and can
. For this analysis, we use the
from the tool described in 3.1 as
described below.
Merit and Cost Definition/Estimation of TLP. Let S ,Sn} be a set of independent candidates
(tasks), with associated SW latency (SW;), HW comput cy (HWcomp;), HW communication latency
(HWcom;), invocation overhead (OVHD;) and .
be able to start execution at the same time, HW latency of this set of candidates S would be
...N.
1g starting times (e.g., {2,5}) because of dependencies on previous
(e.g., node 5 must wait for node 4 to complete). To account for

In practice, some candidates may have v:
tasks that may not exist in the candidate
these delays, we add an ex
EST_OVHD = max(EST;)
vary independently he
to mark the candidate

1 accelerators exploiting only Basic Block level parallelism (BBLP) that require the same
HW resources. Figure 4 provides a comparison between TLP and BBLP when accelerating the edge detection
application. The example of edge detection (Figure 3) shows instances of two tasks running in parallel at any
given time, however the estimations above can be applied to any N number of tasks that may be executed in
parallel. The Merit and Cost estimation formulas remain the same and no further modification is required.

4.3 Pipeline Parallelism (PP)

An illustration of the pipeline parallelism is shown in Figure 5. We assume that the pipeline has K stages, Si, Sz,
... Sk, and the time needed on stage i is T;. We also assume that the stage that requires the longest time is S; (i.e.,

ACM Trans. Embedd. Comput. Syst.

Trireme: Exploration of Hierarchical Multi-Level Parallelism for Hardware Acceleration « 11

Vie{1,2,..,K},T; > T;). Now we will prove that the total execution time for pipeline parallelism, where N is
the number of iterations, is Ty = Zlel Ti+T;x (N-1).

The first term Zﬁl T; is the time spent on the first iteration. The second term max; T; X (N — 1) is the timing
overhead caused by the following (N — 1) iterations. We prove the second term in two steps: (1) For iteration n, it
can finish at T; later than the finishing time of iteration (n — 1); (2) For iteration n, it cannot finish at time ¢ later
than the finishing time of iteration (n — 1) if t < T;.

[s1 [s2 [..] Sj tS(j+1)\ .. | S(K1) [SK]
[s1] s2 [..] Sj [SG+N) [.. [S(K-1) [SsK]
[s s2 [..] Sj [s@+)[.. [S(K-1) [SK
Fig. 5. An illustration for the pipelin lism. It has N iterations and K stages per it

fore S; finishes,
etc.), the earliest starting time for each stage is the ending time of the same sta ioys iteration. This is

shown in Figure 6.

of the
ime fo

tage in the previous iteration. In other words,
there should not be any idle time. Thus, the second 1terat10n is T; later than the first 1terat10n.

For the third iteration, the ending t
induction, we can prove that at iteration
ish at time ¢ later than the previous iteration, if t < T;. Provided

t later than the first iteration, the endmg time of stage Sk in the

iteration is ¢ later than t e first iteration. Due to the 1nter stage correlation, the ending time of stage
Sk-1 in the second iterat no more than time ¢ later than the one in the first iteration.

n the first iteration. However, since ¢ < T;, the starting time of S; in the second
lier than the ending time of S; in the first iteration. In other words, there will be an
sonsecutive iterations on stage S; (Figure 7).

[s1 [s2 [..] Sj [S{+1) [... | S(K-1) [SK] .

[s1 [s2 [..] s [SG1) | .. | S(K-1) |SK]

Fig. 7. Overlap on stage S;.

Merit and Cost Definition/Estimation of PP. Based on the previous illustration, let S = {S1,S,,..., Sk} be a
set of pipelined candidates (tasks) and N be the number of iterations, with associated SW latency (SW;), HW
computation latency (HWcomp;), HW communication latency (HW com;), invocation overhead (OVHD;), HW

ACM Trans. Embedd. Comput. Syst.

12« Georgios Zacharopoulos, et al.

latency HW; = HWcomp; + HWcom; + OVHD; and area cost (A;). We compute the HW latency, using the
previous proof, as HWrorar = Z,K:l HW; + max; HW; X (N — 1). This formula can be applied to both a balanced
pipeline and an unbalanced pipeline.

We denote the merit of set S, by M(S) = X;c(1,x] SWi — HWroraL and we denote the cumulative cost of set S
in area by C(S) = X;c[1k] Ai

5 EXPERIMENTAL SETUP

For our experiments, we assume a heterogeneous system constituted by a single SW processor and multiple
loosely coupled HW accelerators. The processor invokes the accelerators via a memory-mapped interface. DMA is
used to transfer data from main memory to accelerator scratchpads and vice versa in order to sto - accelerators
output to main memory and be available to the SW processor. As AccelSeeker, used as a b
default an FPGA SoC (Zynq UltraScale SoC), we also use FPGA SoCs in our experimen

single-kernel ones, to larger and more demanding ones. The type of potentia
benchmark, as expected, also varies. The kernels from Parboil [31] and Mach§ fer opportunities for
loop level parallelism only. Medium and large size applications from the

tunities are present. Larger and
1 as combinations of them), are

70% of its run-time is evaluated and loop level and task level p
more complex applications, where all types of parallelism can
also rigorously evaluated. These include 3D spatial audi
edge detection, a six stage image processing pipel

a) Basic Block Level Parallelism (BBL
within a Basic Block. It corresponds to tk
b) Loop Level Parallelism (LLP). Repli

c) Task Level Parallelism |
dencies between them (i.e., n in the HPVM dataflow graph connecting any pair of nodes in the set) and can
therefore all run in parallely her.

d) Pipeline Paralleh es of HPVM nodes (tasks) connected by streaming dataflow edges, and
therefore can be pi

independent pipelines, then they can be computed in parallel.

Validation. For the validation of our models we evaluated HW acceleration with Aladdin [28] HW accelerator
simulator. The run-time of the non-accelerated part was measured using gem5 [1]. The processor modelled is an
ARMv8-A processor of issue width of 1, having an atomic model, in-order execution and clocked at 100 MHz.
It is interfaced with a separate data cache (64 KB) and instruction cache (16 KB), where the access latency is
one clock cycle. This setup is realistic for resource-constrained embedded systems, however it is conservative
for high-performance systems, as an L1 cache that never incurs in any misses places SW execution at a slight
advantage. Additionally, we used Catapult HLS[7] to synthesize the HW accelerators for further validation. The

ACM Trans. Embedd. Comput. Syst.

Trireme: Exploration of Hierarchical Multi-Level Parallelism for Hardware Acceleration

13

BBLP -© LLP = BBLP © LLP ¢ BBLP © LLP ¢
sgemm spmv Ibm
12 B T T T 42 B T T T /j 42 B T ‘, NI 3
o 141 4 | T - 4
S 12 35 |- / 35 | .
g 10r Bpo 22 -
s | i 5]
Q o’ 2.5 2]
N 21/ . 15 |- §
4 15 | 1 [L1 | |
27 ‘ ‘ ‘ ‘ 1 ‘ ‘ ‘ ‘ 0 61015202530 40 50
0 500 1000 15002000 25003000 0 1000 2000 3000 4000 5000 3
Area (10° LUTs)
Area (LUTs) Area (LUTs)
BBLP © LLP % BBLP € LLP %
gemm-blocked stencil
g% 111 JUB— 3.‘51 [
a .
> 25 |- . o S _ 3|
8 20| f_’/ 25 |
o 15 2
@ 19 15|
S ! 1
0 2345 10 15 0

Area (10% LUTs) Area (10° LUTS)
Fig. 8. Speedup obtained for applications from Parboil [31] and MachSui
constraint. We evaluate AccelSeeker [36] (BBLP) and LLP, while the bag

latter, i.e., synthesis performed by Catapult HLS in or
Trireme does not support automatic HLS.

6 EXPERIMENTAL RESULTS
vachieved from the hierarchical multi-level parallelism
esults by different types of parallelism exploited by Trireme.
el applications that solely exploit LLP are presented. Then, we
, dio encoder, cava)and independent tasks (SLAM), where both
ed. Finally, we study larger ones (audio decoder, edge detection), where
vcan be used, such as TLP-LLP and PP-TLP, as described in the previous
SW-only implementations, and against state-of-the-art AccelSeeker. As
il our experiments.

ected by our tool, given increasing area constraints, first using Aladdin [28] (for

strategies explored by our tool-chain. We
First, the performance benefits in single-

easurements. Finally, we study the effects of varying the bandwidth of data transfers between
ator, and the overhead of accelerator invocation, on the audio decoder and edge detection

real hardwart
host and acce
benchmarks. .,

6.1 Loop Level Parallelism

Trireme, extracting information exposed by HPVM, identifies the application kernels that contain a fully paral-
lelizable loop or loop nest. Subsequently, the Merit/Cost estimation models for loop level parallelism, as described
in Section 4, are used to estimate the speedup and hardware resource utilization for varying LLP factor. Figure 8
shows the speedup obtained on six benchmarks from Parboil (sgemm, 1bm, spmv)and MachSuite (gemm-blocked,
md-grid, stencil), compared to a SW-only baseline.

ACM Trans. Embedd. Comput. Syst.

14 « Georgios Zacharopoulos, et al.

All applications benefit significantly from replicating their loop-bodies and running them in parallel, and the
parallelism enables the designs to take advantage of larger area resources to achieve greater speedups than is
possible without loop level parallelism. For an area budget of 3 x 10* LUTs, sgemm and gemm-blocked reach a 16x
and 25x% speedup respectively, compared to the baseline, and a 3x and ~2x speedup compared to BBLP, which
corresponds to state-of-the-art AccelSeeker selections.

Kernels such as spmv and stencil realize a 4.7X and 3.4X speedup compared to a SW-only implementation
respectively, for a budget of 5 x 10° LUTs, whereas 1bm having a smaller loop body, i.e., fewer instructions and
less computation time within the loop body compared to the previous ones, has little benefit from extra area
resources and LLP. Finally, md-grid requires more area compared to the previous kernels and, having a large
potential for loop level parallelism, reaches a 27X speedup compared to the SW baseline and 5:4x compared to
state-of-the-art BBLP accelerators. Overall, Trireme is able in many cases to achieve substantial performance
improvements for given hardware resources by exploiting loop level parallelism alone.

6.2 Loop vs. Pipeline and Loop vs. Task Parallelism

Richer applications, such as components from the XR testbed [12], contain a ¥ariéty ities to exploit
parallelism. For audio encoder and cava, in addition to parallelizable loops, the n also be pipelined.
For SLAM, apart from LLP, independent tasks are present as well. Trirg| lly generates designs
exploiting this information.

Figure 9 shows the speedup obtained from applying LLP and PP on.a
increasing area budgets. For a budget of 5 x 10° LUTs audio enc
speedup compared to SW-only baseline, as the entire pipeline
over BBLP (AccelSeeker selection) is achieved. Nonetheless,
the selected accelerators, which is evident by the inc

dditionally, a slight improvement
s required to parallelize the loops within

for BBLP (10X over the baseline). LLP o
speedup.
For larger budgets, we can observe signi

attains a 33X speedup. These

Figure 9 shows that SLAM
loop level parallelism. O
— can be parallelized,
For audio enco

, reaching up to 7X speedup, as the area budget allows for more
, since only two tasks — with small latency relative to the total run-time
ormance gain.

P produces little improvement in performance. This is due to the unbalanced

6.3 Loop/Task/Pipeline Parallelism

In the previous subsection we encountered applications that could only exploit LLP and PP, whereas audio
decoder, a state-of-the-art XR application component, and edge detection, a six-stage image processing
pipeline, can offer LLP, TLP, PP, as well as combinations of them. Such applications are ideal candidates to employ
Trireme and unlock their full parallelism potential. Figure 10 presents the speedup achieved by multiple levels of
parallelism explored by our tool-chain, for increasing area budgets.

On audio decoder, Figure 10 (left) and Table 1, for an area budget of 12 x 103 LUTs, LLP and PP reach a
13.2x and 13.7X speedup respectively, compared to a SW-only baseline. This budget is enough to fit one of the

ACM Trans. Embedd. Comput. Syst.

Trireme: Exploration of Hierarchical Multi-Level Parallelism for Hardware Acceleration « 15

BBLP © LLP % PP & BBLP ©- LLP % PP & BBLP © LLP = TLP &
audio encoder cava slam
1 T 1 T 1T 1T T T T T T 35 T T

—_—
l\)#c’)mol\)-‘kmm

Speedup

- NDNWArOTO N

| | \ \7”\ \ 7\” \” | | | | |
123456789101112131415 1 23 456 7 8 9 10 0 10 20 30 40 50 60 70 80 90100
Area (10 3 LUTs) Area (10 3 LUTs) Area (10 3 LUTs)

Fig. 9. Speedup obtained over the entire run-time of audio encoder [12], cava [34] and OpenVINS alg i
[12], varying the area constraint. We evaluate AccelSeeker [36] (BBLP), LLP, PP and TLP, while the basel
implementation.

two audio decoder pipelines, and since the workloads are fairly balanced
this strategy. TLP and TLP-LLP achieve the same 15.1X speedup, as not eno

parallelizing the loops, while the selected independent tasks are accelerated i

Increasing the budget to 14 X 10° LUTs, almost equlvalent to Xilinx 175 PSoC [33], we can see

hei ctive speedups to 14.21x and

15.74X%. Conversely, BBLP, TLP and PP extract no benefit, using available resources, as their

potential candidate ch01ces require more area to be selected (Tal

these strategies.

The latter point can also be seen in the last row
Artix Z-7012S PSoC [33], allows LLP and/FLF
their accelerators. TLP, PP and PP-TLP nefit from the doubling of the hardware resources as they
have already reached their better-perforr

LP-LLP, t
much larger area. Also BBL s sistently outperformed by all parallelism strategies explored.

in edge ‘detection while investigating its potential for parallelism (Figure 10
budget TLP (3.2x), PP (3.4x) and PP-TLP (4.4X) can accommodate all their
ch their top speedups compared to the SW-only baseline. For the same budget,

atter achieving an almost equivalent speedup to PP-TLP but for

respective HW/SW
LLP and TLP-L1

LLP, the latter reaching an equivalent of the PP-TLP maximum speedup (4.4X).

area budgets, such as 100 x 10° LUTs, we notice that LLP reaches a 4x speedup and TLP-LLP
surpasses thehighest-performing PP-TLP design by achieving 4.7x speedup compared to the baseline. This is
because, unlike audio decoder, all of the accelerated functions in edge detection have parallelizable loops,
which allows for increasing speedup as the area increases.

6.4 Aladdin/gem5 and Catapult HLS

To validate the selection of the HW/SW designs for every parallelism strategy explored and evaluated by our
tool-chain, we use Aladdin [28], a HW accelerator simulator, and the gem5 [1] simulator. Aladdin was chosen as
a faster, yet accurate, alternative to commercial HLS tools that offer latency and area results. For audio decoder,

ACM Trans. Embedd. Comput. Syst.

16 « Georgios Zacharopoulos, et al.

BBLP & PP & LLP - BBLP © PP & LLP -
TLP % PP-TLP TLP-LLP TLP % PP-TLP TLP-LLP
audio decoder edge detection
20 T T T 5 T T
18
16
s 0 s
° 12 |- °
d 10 3
Q. Q.
o 8 %)
6
4
2 e i ! i L 1
5000 10000 15000 20000 25000 30000 20000 40000 60000 80000
Area (LUTs) Area (LUTs)

Fig. 10. Speedup over the entire runtime for different versions of audio decoder (left) and edge detecti
area constraint. We evaluate AccelSeeker [36] (BBLP), TLP [13, 21], PP, a combination betwee

Benchmark | Parallelism | Area Budget
Version (LUTs)

audio decoder BBLP 12 000
LLP
TLP

TLP-LLP

PP
PP-TLP
BBLP
LLP

1916 (85%) | 12.65
13889 (99%) | 14.21
11916 (85%) 15.1
13889 (99%) | 15.74
11916 (85%) 13.7
13861 (99%) | 14.09
14166 (94%) | 13.62
14722 (98%) 14.7
14166 (94%) 16.7
14471 (96%) 16.9
14166 (94%) 16.5
14166 (94%) | 18.31

BBLP 30 000 14166 (17%) | 13.62
LLP Artix Z-7012S | 29773 (99%) 16.3
TLP [33] 14166 (47%) 16.7

TLP-LLP 29773 (99%) | 18.24
PP 14166 (47%) 16.5
PP-TLP 14166 (47%) | 18.31

Table 1. Area Budget and Area Used for audio decoder.

we gather the HW latency and area of the available candidates for acceleration with Aladdin, and their respective
SW latency with gemb5, as well as the run-time of the application as detailed in Section 5.

Figure 11 shows the speedup over increasing area budgets. For every area budget, the outputs of applying the
parallelism strategies explored in this work match the ones generated by the Aladdin/gem5 simulations. This

ACM Trans. Embedd. Comput. Syst.

Trireme: Exploration of Hierarchical Multi-Level Parallelism for Hardware Acceleration « 17

BBLP -©- PP & LLP %
TLP % PP-TLP TLP-LLP

audio decoder

Speedup

5000 10000 15000 20000 25000 30000
Area (LUTSs)

Fig. 11. Speedup obtained for audio decoder varying the area constraint using Aladdin [28] f
and gem5 [1] for the SW-only implementation.

'W accéleration parts

reinforces our expectation that our tool-chain selects the most promising desi ithirespect to performance
and area usage.

As expected, speedup absolute values for audio decoder (Figures 1
A) Our performance and area models are not based on cycle-accu

iffer. This is due to two factors:
but aim to enable the selection

Benchmark | Parallelis ' Speedup vs.
i state-of-the-art
AccelSeeker (BBLP)

audio encoder 1
5415 2

8578 4

LLP 15072 8

LLP 27491 16

BBLP 92 738 1
LLP 85 602 1.5

TLP-LLP 85 602 2

BBLP 125 865 1

LLP 171 385 2

TLP 125 865 3

TLP-LLP 125 865 3

TLP-LLP 251 641 6

Table 2. Trireme vs. AccelSeeker [36] by Catapult HLS [7].

To further evaluate our tool flow, we designed accelerator prototypes using SystemC, guided by Trireme. To
gather HW latency and area requirements, the accelerators were synthesized using Catapult HLS [7]. The RTL
was then synthesized, placed and routed by ASIC EDA tools using a commercial 12nm FinFET technology. The

accelerators were clocked at 500MHz frequency and cycle-accurate Catapult simulations were used to measure
the HW latency.

ACM Trans. Embedd. Comput. Syst.

18 « Georgios Zacharopoulos, et al.

350um

Rotate 3

wnose

10 & Peripheral 125.865 x 103 uM?

Fig. 12. HLS design of audio decoder guided by Trireme.

Table 2 shows the HW latency comparison of Trireme (LLP, TLP, TLP-LLP) to Acce
encoder, LLP designs guided by Trireme achieve impressive performance gai
resources. In audio decoder, LLP designs achieve smaller speedup and req
compared to TLP-LLP. The latter can be up to six times faster compared to th

TLP and TLP-LLP where accelerators Rotate 1-3 are operating in parallé
this design for audio decoder.

6.5 Configurations of the Target Platform

systems, we apply a round of experiments varyi of the data transfers to and from the HW
accelerators (affecting memory latency), and the o voking them. Note that for Subsections 6.1, 6.2 and
6.3 we have been assuming a configurati idth and 1us overhead per accelerator invocation.
Figure 13 (left) shows the audio deco e to varying the bandwidth over 100 MBps, 1 GBps and
10 GBps, and the area budgets over 12, 15 LUTs. We observe that low bandwidth (100 MBps), even
when the area budget is increased, offers little speedup from BBLP, LLP, TLP, TLP-LLP and PP. This reveals the
limitation of platforms whe 1 to memory can severely affect the speedup of a HW/SW design.
Overall, as expected, all lism strategies reach greater speedup when both bandwidth and area are
" _LP are favored, compared to the rest of the strategies, when bandwidth

of 100 hat the second and fourth bars increase vastly reaching 4.2x and 4.9x speedup

respecti increases, surpassing the previous better performing strategy (PP-TLP) for a smaller
budget of 15 . We can also notice this for audio decoder for the largest area budget of 30 x 10° LUTs where
TLP-LLP reaches the maximum speedup (20x), compared to the rest of the parallelism approaches.

Finally, wes#valuated the effect of both latency due to communication between the accelerators and memory,

as well as the invocation overhead of the accelerators, on edge detection. In Figure 14, we observe that even for
a low bandwidth, such as 100 MBps, a high speedup can be obtained if the invocation overhead remains low.
For a low overhead of 300 ns per invocation, the speedup reached by parallelizing the pipelines (PP-TLP) almost
doubles (5x) compared to the same bandwidth and a higher invocation overhead of 2 x 10% ns per invocation.
A similar trend is observed for all evaluated bandwidths, where a low invocation overhead with a 1 GBps
bandwidth can yield better speedups compared to a higher invocation overhead with a 10 GBps bandwidth. For
instance, all the parallelization strategies with a 1 GBps bandwidth and a 500 ns invocation overhead achieve

ACM Trans. Embedd. Comput. Syst.

Trireme: Exploration of Hierarchical Multi-Level Parallelism for Hardware Acceleration « 19

BBLP TLP —— PP BBLP TLP T PP &
LLP == TLP-LLP === PP-TL LLP == TLP-LLP === PP-TLI

audio decoder edge detection

18 B

Speedup

7, 7
e, M
s

Bandwidth - Area (10% LUTs)

TLP ——3 TLP-LLP ==—=9
edge detection

777777

Speedup
o = N W A OO N

better performance compare
invocation overhead.

7 RELATED WORK

arch vary from ILP within Basic Block boundaries [36, 37], to loop level 8, 13, 15, 21],
19,722] and Tensor level [18]. Early DSE, one of the most important aspects of Trireme,
is in many i ot supported by tools developed to expose and exploit parallelism in HW acceleration
[15, 18, 19, 23, 27].

FCUDA [23}is a source-to-source tool that translates CUDA code to FPGA accelerators, however offers no DSE
or estimation of HW acceleration performance. On the other hand, Spatial [13] is an early DSE infrastructure
that uses Hypermapper 2.0 [21] in order to apply early DSE, however the parts to be accelerated need to be
user-defined and high level languages are not supported as input. Aetherling [8] applies early DSE as well and
can be configured onto FPGAs, but it is restricted to loop level parallelism only and it does not support high level
languages (C/C++). Spatial [13] also employs early DSE using Hypermapper 2.0 [21], however the parts to be
accelerated need to be user-defined and high level languages are not supported as input. Early DSE that serves

the purpose of merging accelerators has been explored in [3].

ACM Trans. Embedd. Comput. Syst.

20 .« Georgios Zacharopoulos, et al.

Methodologies that combine static analysis and machine learning have been used in Peruse [15], in [10, 11]
and in [35] to predict the potential speedup of loop accelerators. TAPAS [19] is a tool-chain focusing on loop and
task level parallelism by leveraging the TAPIR [27] Parallel IR representation of the code. Although TAPIR is able
to generate parallelism at arbitrary granularities, HPVM is able to expose nested parallelism which is leveraged
by Trireme.

HeteroCL [16], developed within a Python-based domain specific language, performs early DSE and offers
estimations on performance and area targeting FPGAs. It uses parallel processing pipelines and shifts towards
tensor-related computations, used in Linear Algebra, Computer Vision and Machine Learning. Since HeteroCL is
domain specific, it uses the domain expertise to trade accuracy for performance aggresswely by reducing the
b1tw1dth for key functlonal units. ¢

Xilinx Vivado HLS [32] and Cadence Stratus HLS [4], and academic tools like Bambu [24]
out the design of computation-heavy accelerators from application source code. They a
par with that of hand-crafted implementations written in low level hardware descrip
and Verilog. But these HLS tools provide no DSE or early estimation of accele
complementary to Trireme in an application-driven hardware-design work{l

Feature FCUDA |Spatial | Peruse | TAPAS Trireme
[23] |[13,21]| [15]
Levels of Loop | Loop | Loop Intra-BB | Intra-BB
Parallelism Task | Task ILP Loop
Task
Pipeline
Early X
DSE
Performance
Estimation X N/A
Automated
Configurations
of Target
N/A X X

' can achieve high cycle and power accuracy, comparable to that of commercial HLS tools.
Furthermore o izations, such as loop unrolling and loop pipelining, can be applied. However, a considerable
amount of mapual work is required and the simulation process is fairly time-consuming, even though significantly
less than the time required by commercial HLS tools. Finally, frameworks used for automatic binary parallelization
[39] and for automatic parallelization of non-numerical applications [5] by decoupling communication from
computation, in order to avoid the overhead due to synchronization, have also been proposed.

8 CONCLUSIONS

Early DSE in modern applications, along with the extraction of critical information about parallelism, can be
crucial to the outcome of a final HW/SW design and its respective performance on SoCs. Trireme leverages

ACM Trans. Embedd. Comput. Syst.

Trireme: Exploration of Hierarchical Multi-Level Parallelism for Hardware Acceleration « 21

information automatically retrieved by HPVM and applies it to accelerators automatically identified and evaluated
by AccelSeeker. Using novel performance models, Trireme is able to thoroughly explore a variety of parallelism
strategies and select the highest performing HW/SW design as output for area budgets of increasing size. We have
explored multiple SoC configurations, varying the data transfer bandwidth between memory and accelerators, as
well as accelerator invocation overhead. Application of Trireme to the XR domain yields substantial speedup
gain with fixed resources when compared with state-of-the-art tools (e.g., AccelSeeker [36]) that do not consider
loop level, task level and pipeline parallelism.

9 FUTURE WORK

Our tool-chain, in its current state, does not offer automatic code generation for HW accelerator!
plan to extend Trireme’s capabilities by either adding a High Level Synthesis step for automati¢
or linking it to tools that already offer RTL synthesis, such as Catapult HLS [7]. Also, ap
coupled with HW accelerators, we wish to target more complex heterogeneous syste

herefore, we

transformations, custom memory buffers etc.) can be considered, so that they
apart from the various forms of parallelism that are explored and studied i

This work was supported in part by the “Software Analysis for Heterogeneous/Computing Architectures’ (grant
no. 191497) project funded by the Swiss National Science Foundatioy he National Science Foundation

REFERENCES
[1] Nathan Binkert, Bradford Beckmann, Gabrie yen K Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower,
Tushar Krishna, Somayeh Sardashti, et al. 2011. em5 simulator. ACM SIGARCH Computer Architecture News 39, 2 (Feb. 2011), 1-7.

[3] Iulian Brumar, Georgios Zach:

Generation of Coarse Grained
[4] Cadence. 2016. Stratus Hi
high-level-synthesis.ht

los, Yuan Yao, Saketh Rama, Gu-Yeon Wei, and David Brooks. 2022. Early DSE and Automatic
d Accelerators. ACM Trans. Embed. Comput. Syst. (jun 2022). https://doi.org/10.1145/3546070

01, Blair Fort, Ruolong Lian, Qijing Huang, Nazanin Calagar, Marcel Gort, Jia Jun Qin, Mark Aldham, Tomasz
om software to accelerators with LegUp high-level synthesis. In Proceedings of the International Conference on
ectures, and Synthesis for Embedded Systems. IEEE, 18.
atapult High-Level Synthesis. https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-verification-
platform/. %/
[8] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly, Gilbert Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat
Hanrahan. 2020. Type-directed scheduling of streaming accelerators. 408-422. https://doi.org/10.1145/3385412.3385983
[9] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and Doug Burger. 2011. Dark silicon and the end of
multicore scaling. In ACM SIGARCH Computer Architecture News, Vol. 39. 365-376.
[10] Lorenzo Ferretti, Andrea Cini, Georgios Zacharopoulos, Cesare Alippi, and Laura Pozzi. 2021. A Graph Deep Learning Framework for
High-Level Synthesis Design Space Exploration. arXiv preprint arXiv:2111.14767 (2021).
[11] Lorenzo Ferretti, Andrea Cini, Georgios Zacharopoulos, Cesare Alippi, and Laura Pozzi. 2022. Graph Neural Networks for High-Level
Synthesis Design Space Exploration. ACM Transactions on Design Automation of Electronic Systems (2022).

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1145/3546070
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-verification-platform/
https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-verification-platform/
https://doi.org/10.1145/3385412.3385983

22 .« Georgios Zacharopoulos, et al.

[12] Muhammad Huzaifa, Rishi Desai, Samuel Grayson, Xutao Jiang, Ying Jing, Jae Lee, Fang Lu, Yihan Pang, Joseph Ravichandran, Finn
Sinclair, Boyuan Tian, Hengzhi Yuan, Jeffrey Zhang, and Sarita V. Adve. 2021. ILLIXR: Enabling End-to-End Extended Reality Research.
In 2021 IEEE International Symposium on Workload Characterization (IISWC). 24-38. https://doi.org/10.1109/IISWC53511.2021.00014

[13] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan

Pedram, Christos Kozyrakis, et al. 2018. Spatial: A language and compiler for application accelerators. In Proceedings of the 39th ACM

SIGPLAN Conference on Programming Language Design and Implementation. 296-311.

Maria Kotsifakou, Prakalp Srivastava, Matthew D Sinclair, Rakesh Komuravelli, Vikram Adve, and Sarita Adve. 2018. HPVM: Heteroge-

neous parallel virtual machine. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

68-80.

[15] Snehasish Kumar, Vijayalakshmi Srinivasan, Amirali Sharifian, Nick Sumner, and Arrvindh Shriraman. 2016. Peruse and profit: Estimating

the accelerability of loops. In Proceedings of the 2016 International Conference on Supercomputing. 1-13.

Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason Cong, and Zhiru Zhang. 2019. eroCL: A multi-

paradigm programming infrastructure for software-defined reconfigurable computing. In Proceedings of the 2019 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. 242-251.

[17] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Trans
of the 2nd International Symposium on Code Generation and Optimization. 75-88.

[18] LLVM/CIRCT. [n.d.]. llvm/circt. https://github.com/llvm/circt

[19] Steven Margerm, Amirali Sharifian, Apala Guha, Arrvindh Shriraman, and Gilles Pokam. 2018,
from parallel programs. In 2018 51st Annual IEEE/ACM International Symposium on Microarc

[20] Wim Meeus, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk Stroobandt. 2012. An
Design Automation for Embedded Systems 16, 3 (Sept. 2012), 31-51. .

[21] Luigi Nardi, Artur Souza, David Koeplinger, and Kunle Olukotun. 2019. HyperMappet: a Prac esign Space Exploration Framework.
In 2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulati ecommunication Systems (MASCOTS).
IEEE, 425-426.

[14

=

(16

[l

[23] Alexandros Papakonstantinou, Karthik Gururaj, John A St

(24

flas’
(@)
=n
=
w
=
=
S
=]
o]
=
1)
=3
(=]
o
=]
(=9
o)
15
o
2.
N
=.
(=]
s}
o
=
=
o
=
o
=
)
f=1
—
)
joe]
1)
3
o
=1
>
lzs)

r the High Level Synthesis of Complex Applications. In 2013
tions.

, and David Brooks. 2014. Machsuite: Benchmarks for accelerator
mal Symposium on Workload Characterization (ISWC). IEEE, 110-119.
aharani, and Hamed Tabkhi. 2020. gem5-SALAM: A System Architecture for
nual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,

23rd International Conference on Field progra
[25] Brandon Reagen, Robert Adolf, Yakun Sophiz
design and customized architectures. In 2014 II
[26] Samuel Rogers, Joshua Slycord, Mohammadre
LLVM-based Accelerator Mo
471-482.
[27] Tao B Schardl, William S M Charles E Leiserson. 2017. Tapir: Embedding fork-join parallelism into LLVM’s intermediate
representation. In Proce,
[28] Yakun Sophia Shao, Br:
simulator enabling
on Computer Archit

ore’s Law is Dead. Now What? MIT Technology Review, May 13 (2016), 40-41.
hristopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu.

7 (2012).

Xilinx. 2017. Vivado High-Level Synthesis. www.xilinx.com/products/design-tools/vivado/integration/esl-design.html.

Xilinx. 2017. Xilinx All Programmable SoC portfolio. www.xilinx.com/products/silicon-devices/soc.html.

Yuan Yao and Saketh Rama. [n.d.]. yaoyuannnn/cava. https://github.com/yaoyuannnn/cava

Georgios Zacharopoulos, Andrea Barbon, Giovanni Ansaloni, and Laura Pozzi. 2018. Machine Learning Approach for Loop Unrolling

Factor Prediction in High Level Synthesis. 2018 IEEE International Conference on High Performance Computing & Simulation (HPCS)

(2018), 91-97.

[36] Georgios Zacharopoulos, Lorenzo Ferretti, Giovanni Ansaloni, Giuseppe Di Guglielmo, Luca Carloni, and Laura Pozzi. 2019. Compiler-
Assisted Selection of Hardware Acceleration Candidates from Application Source Code. Proceedings of the International Conference on

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1109/IISWC53511.2021.00014
https://github.com/llvm/circt
www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
www.xilinx.com/products/silicon-devices/soc.html
https://github.com/yaoyuannnn/cava

Trireme: Exploration of Hierarchical Multi-Level Parallelism for Hardware Acceleration « 23

Computer Design (2019), 1-9.

[37] Georgios Zacharopoulos, Lorenzo Ferretti, Emanuele Giaquinta, Giovanni Ansaloni, and Laura Pozzi. 2019. RegionSeeker: Automatically
Identifying and Selecting Accelerators from Application Source Code. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 38, 4 (April 2019), 741-754.

[38] Georgios Zacharopoulos and Laura Pozzi. 2017. ClrFreqCFGPrinter: A Tool for Frequency Annotated Control Flow Graph Generation.
Technical Report. European LLVM Developers Meeting.

[39] Ruoyu Zhou and Timothy M Jones. 2019. Janus: statically-driven and profile-guided automatic dynamic binary parallelisation. In 2019
IEEE/ACM International Symposium on Code Generation and Optimization (CGO). IEEE, 15-25.

ACM Trans. Embedd. Comput. Syst.

	Abstract
	1 Introduction
	2 Background
	2.1 AccelSeeker
	2.2 HPVM

	3 Trireme
	3.1 AccelSeeker-HPVM Integration
	3.2 Tool-chain Features

	4 Merit and Cost Models
	4.1 Loop Level Parallelism (LLP)
	4.2 Task Level Parallelism (TLP)
	4.3 Pipeline Parallelism (PP)

	5 Experimental Setup
	6 Experimental Results
	6.1 Loop Level Parallelism
	6.2 Loop vs. Pipeline and Loop vs. Task Parallelism
	6.3 Loop/Task/Pipeline Parallelism
	6.4 Aladdin/gem5 and Catapult HLS
	6.5 Configurations of the Target Platform

	7 Related Work
	8 Conclusions
	9 Future Work
	10 Acknowledgements
	References

