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Abstract—Designing efficient medium access control protocols for underwater acoustic sensor networks (UW-ASNSs) is a major
challenge because of the spatial and temporal interference uncertainty caused by asynchronous transmissions and by the low
propagation speed of sound. To address these challenges, in this article we propose a new approach for distributed underwater
medium access based on lightweight and asynchronous distributed algorithms that optimize the access probability profile over a series
of time slots based on a new statistical physical interference model. The latter is based on measuring the level of interference at
multiple instants of time in each time slot in order to capture the effects of temporal uncertainty and of unaligned interference. At each
measurement instant, the statistical properties of time-varying interference are represented by a Gamma probability distribution. The
model is validated through extensive channel measurement experiments conducted with an underwater acoustic testbed in Lake
LaSalle. Based on this model, we formulate the problem of queue-aware stochastic channel access. The objective is to maximize the
sum throughput of a set of concurrent and mutually interfering source-destination pairs by letting the transmitters adjust their own
transmission probability profiles, without collaborating with each other, over a series of time slots based on a statistical characterization
of interference obtained through past observations. We propose an iterative distributed solution algorithm for this problem based on a
best-response strategy. At each iteration, each node individually solves a non-convex optimization problem of logarithmic complexity.
The performance of the proposed distributed algorithm is evaluated by comparing it with two alternative distributed schemes and with
the global optimum obtained through a newly-developed centralized globally optimal solution algorithm. Results indicate that by jointly
taking the queueing and multi-slot optimization into consideration considerable improvement in terms of sum-throughput can be

achieved by the proposed distributed algorithm.

Index Terms—Stochastic channel access, underwater acoustic networks, statistical interference model

1 INTRODUCTION

NE of the major challenges in Underwater Acoustic Sen-

sor Networks (UW-ASNs) [2] is to design an efficient
medium access control (MAC) protocol, mainly because of
the large propagation delay caused by the low propagation
speed of sound in aqueous media [3]. In addition to the tem-
poral uncertainty of interference caused by the asynchronous
transmissions of different nodes and the time-varying wire-
less channels, in UW-ASNSs the large (and distance-depen-
dent) propagation delay of acoustic signals generates spatial
uncertainty, i.e., it is hard to predict the current value of
interference because acoustic signals simultaneously trans-
mitted by different nodes located at different distances from
an intended receiver do not necessarily reach the receiver at
the same time [4]. As a result, in the presence of both tempo-
ral and spatial uncertainty, MAC protocols originally
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designed for radio-frequency (RF) in-air wireless communi-
cations cannot be efficiently applied to underwater environ-
ments directly. For example, it was shown that the benefits
of synchronization of slotted ALOHA are completely lost in
UW-ASNs because of the distance-dependent delay [5].
Moreover, the large propagation delay makes it challenging
for transmitters to adapt to the time-varying underwater
channels; since it is hard to acquire instantaneous channel
state information (CSI), which is usually obtained through
feedback from the receiver [6]. For the same reason, tradi-
tional carrier sensing also requires very long listen time in
underwater acoustic environments, and this may signifi-
cantly reduce the channel utilization [7]. Therefore, the large
propagation delay imposes major challenges on underwater
communications at both the transmitter and receiver sides.
Significant recent efforts have attempted to address these
challenges [5], [8], [9], [10], [11], [12], [13], [14]. For example,
Syed et al. showed in [5] that, for slotted ALOHA underwater
networks, the packet collision probability can be reduced by
adding a guard band to each time slot, hence limiting the neg-
ative effect of the spatial interference uncertainty.' In [8],
Peleato and Stojanovic proposed a distance-aware collision
avoidance protocol (DACAP), which uses different hand-
shake lengths for different receivers with a potential to

1. A user transmitting in a given time slot might interfere with
others in two consecutive time slots.
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minimize the average handshake duration and hence can
improve the throughput. In [9], Guo et al. further improved
the handshaking efficiency by using an adaptive propagation-
delay-tolerant collision-avoidance protocol (APCAP), which
allows a node to utilize its idle time while waiting for mes-
sages to propagate. In these protocols, nodes are either
required to cooperatively collect the network topology infor-
mation, or to exchange handshaking signals. This may cause
under-utilization of transmission time due to the inserted
time guard or low-speed sound propagation in the signaling
exchanges. Moreover, in heterogeneous environments, where
multiple UW-ASNs coexist sharing the same spectrum, e.g,,
the emerging cognitive UW-ASN [15], the envisioned under-
water Internet [16], and UW-ASN with jammers [17], [18], itis
not that easy to implement network-wide cooperation or
global synchronization for slotted channel sensing [14], espe-
cially, if the coexisting UW-ASNSs are deployed and operated
separately for different purposes. It is still not clear, to the best
of our knowledge, how to design light-weight MAC protocols
that require low signaling exchanges among competing trans-
missions, while considering both temporal and spatial uncer-
tainty of interference in the underwater environments.

This paper takes a significant step in this direction by
proposing a light-weight MAC that requires no signaling
exchange among concurrent communication sessions, and
achieves interference avoidance based on only limited local
information. To be specific, we study an optimized distrib-
uted access scheme based on explicit stochastic modeling of
the temporal and spatial uncertainty of interference. The
main contributions of the paper are as follows.

e  Statistical Interference Modeling. With spatial uncer-
tainty caused by the low-speed of sound in underwa-
ter, interference observed at an intended receiver at a
specific time slot may be caused by interfering trans-
missions originated in past time slots. This motivates
us to develop a medium access scheme in which each
transmitter dynamically optimizes a transmission
probability profile based on a statistical characterization
of interference obtained through its past observations,
and then based on the obtained profile it decides
whether to transmit or to enqueue its packets over a
series of time slots. Moreover, the originated interfer-
ing signals might reach the receiver at different
instants during a specific time slot. Therefore, it is
insufficient to characterize interference using a single
interference level for the whole time slot.

To address these challenges, we propose an L-mea-
surement method, which measures interference at mul-
tiple time points for each receiver in each time slot. At
each measurement point, the effects of temporal uncer-
tainty of interference, i.e., the asynchronous transmis-
sion times of different nodes or the time-varying
channels, on the interference level at each measurement
point are modeled using Gamma distribution functions.

o Light-weight Channel Access. Based on this statistical char-
acterization of interference, each node is able to adapt its
transmission strategy proactively to the time-varying
interference to minimize the resulting packet loss rate.
It is desirable for a node to transmit with high prob-
ability only in time slots when the corresponding
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interference levels are expected to be low, and transmit
with lower probability in time slots with high interfer-
ence. On the other hand, to reduce the probability thata
packet needs to wait for a long time in the queue and
thus becomes useless when received at the destination,
anode should transmit with high probability in all time
slots. By regulating the transmission probability, each
transmitter should find the optimal operating point
along the tradeoff between transmission and queueing
to minimize its packet loss rate (and therefore to maxi-
mize the expected throughput). The channel access
scheme is light weight because it requires zero signaling
exchanges among different communication pairs.

e  Channel Access Optimization. In the proposed light-
weight MAC framework, we present a mathematical
formulation of the problem of dynamic transmission
strategy optimization and propose an iterative dis-
tributed solution algorithm based on a best-response
strategy. At each iteration, each node individually
solves a nonconvex optimization problem, in which
the objective function can be transformed into a
quasi-convex function so that the global optimum
can be efficiently computed and solved in logarithmic
time with respect to the number of jointly considered
time slots. Then, the performance of the proposed dis-
tributed algorithm is evaluated by comparing it with
the global optimum scheme obtained by a newly-
developed centralized solution algorithm. We also
validate the proposed interference model using
actual underwater experiments in a lake and show
that the model can capture the statistical characteris-
tics of underwater interference well.

The core novelty of the paper lies in the formulation and anal-
ysis of a distributed MAC scheme that jointly considers the
temporal and spatial uncertainty of interference in UW-
ASNs. Specifically, (i) we propose the first interference model
that captures the low-speed of sound propagation and time-
variability of wireless underwater channels; (ii) we propose
and study a framework to optimize the transmission strategy
of each node based on the statistical characterization of inter-
ference while jointly considering the queueing behavior. It is
worth pointing out that, since the proposed distributed MAC
protocol handles the low-speed of sound in the time domain
directly, its performance can further be enhanced by integrat-
ing it with MAC protocols designed based on code-division
multiple access (CDMA) [19], [20], [21] and frequency-divi-
sion multiple access (FDMA) [11] techniques, or by taking the
routing into consideration in a cross-layer framework [22].

The rest of the paper is organized as follows. In Section 2,
the related work is discussed. In Section 3, we present the sys-
tem model. In Section 4, we describe the distributed solution
algorithm and in Section 5, we present the globally optimal
solution algorithm. In Section 6, we evaluate the proposed
algorithm through simulation results and in-field experi-
ments in Lake LaSalle, and finally we draw the main conclu-
sions in Section 7.

2 RELATED WORK

The objective of time scheduling in UW-ASNS is to separate
or align multiple interfering signals and hence to avoid
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interference [5], [10], [12], [23], [24], [25], [26], [27], [28], [29],
[30], [31],[32], [33], [34]. For example, in [5] Syed et al. proposed
a modified version of a slotted ALOHA protocol by adding a
guard band to each transmission slot, and showed that this
can considerably improve throughput in UW-ASNs with short
communication ranges and with global synchronization. In
[25], Kredo et al. proposed a staggered TDMA underwater
MAC protocol (STUMP), which is a scheduled, collision free
TDMA-based MAC protocol that leverages the low propaga-
tion speed of the underwater channel and node position
diversity. The protocol makes use of the propagation delay
information to overlap node communication and increase
channel utilization. In [26], Yun and Lim proposed a geometric
spatial reuse-TDMA (GSR-TDMA) MAC protocol for central-
ized, multihop UW-ASNs. The underwater nodes are periodi-
cally scheduled after determining their location information.
The GSR-TDMA scheme can increase the number of underwa-
ter nodes that send packets at the same time. Similarly, in [23]
Mandal and De investigated a RSS-ALOHA based slot reser-
vation protocol, with the objective of maximizing the network
utilization by considering centralized UW-ASNs with perfect
synchronization and propagation delay information from each
source node to the common gateway node. In our previous
work [12], we implemented and evaluated a hybrid MAC pro-
tocol in cluster-based multi-hop UW-ASNS. The protocol relies
on TDMA for intra-cluster centralized scheduling and on
CSMA /CA for inter-cluster distributed channel access. Differ-
ent from these MAC protocols, which mostly attempt to
mitigate the negative effect of the spatial uncertainty of inter-
ference, Chitre et al. pointed out in [10] that the large and dis-
tance-dependent propagation delay can be exploited through
interference alignment (IA) in the time domain to achieve
much higher throughput than achievable without spatial
uncertainty. This however largely relies on exact knowledge of
global location information of all nodes and on centralized
control, which is not easy to implement in practice. Similarly,
in our previous work [35] on underwater CDMA-based analog
network coding, we showed how interference can be lever-
aged to improve the channel utilization. Pan et al. proposed in
[27]1a MAC protocol based on slotted floor acquisition multiple
access (FAMA) for underwater acoustic WiFi networks. In [28],
the authors proposed an adaptive MAC protocol for TDMA-
based underwater acoustic sensor networks with dynamic
traffic, assuming perfect synchronization among the nodes. A
collision-free depth-based layering TDMA MAC protocol
called DL-MAC is proposed for UWSNs in [29]. Readers are
referred to [36], [37] for comprehensive surveys of the main
research developments in this field. Different from existing
work, which either requires perfect synchronization, signalling
exchange among the nodes or centralized coordination, this
paper focuses on distributed, asynchronous and light-weight
stochastic MAC protocols.

Several of the protocols discussed above also fall within
the class of stochastic underwater MAC protocols with a
focus on time-domain interference avoidance, e.g., [5], [12],
[23], [24]. Additional representative contributions can be
found in [12], [20], [38], [39], [40], [41], [42], [43] and referen-
ces therein. In [20], we proposed a hybrid UW-MAC that
jointly exploits the light weight property of ALOHA and the
robustness of CDMA for frequency selective fading chan-
nels, by considering Rayleigh fading shallow water channel
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Fig. 1. System model for underwater acoustic sensor networks.

and static multiuser access interference. In [39], Patil et al.
proposed a stochastic model for the performance evaluation
of depth based routing (DBR) protocol. In [40], Han et al. pro-
posed a stochastic MAC protocol with randomized power
control for UW-ASNSs, called SMARP. A randomized power
control is implemented based on the propagation loss model
of acoustic channels to improve the network throughput. In
[41], Rahmati and Pompili proposed a probabilistic MAC
based on space division multiple access (SDMA) for short to
medium distances that makes use of inherent position uncer-
tainty of the moving vehicles in underwater. In [42], Marina-
kis et al. proposed a stochastic transmission strategy based
on the ALOHA protocol. A stochastic scheduling is used
where time is slotted, and each network node broadcasts at
each time slot according to some probability. A distributed
heuristic based on local network density is presented and
evaluated using numerical simulations. In [43], Lu et al. pre-
sented a random access transmission scheme that takes into
consideration the physical-layer information of the channel.
In [44], Stefanov and Stojanovic analyzed the throughput
performance of ALOHA by characterizing the statistical
behavior of multiuser access interference with the objective
of providing a potential to tum the complex interference
uncertainty into an advantage for underwater communica-
tions. Sharing the same objective as in [44], in this work, we
design an underwater MAC protocol that jointly considers
statistical network interference, the asynchronous transmis-
sion behavior of each node, and the stochastic nature of ran-
dom traffic arrivals. We develop a cross-layer optimization
framework and accordingly design both distributed and cen-
tralized solution algorithms.

3 SysTeEm MODEL

We consider an underwater acoustic sensor network con-
sisting of a set A/ of parallel sessions that share a given por-
tion of the acoustic spectrum. As shown in Fig. 1, each
session n € N consists of a source-destination pair, ie.,
fransmitter n and its intended receiver, denoted as receiver
n accordingly. Different sessions do not share the same
transmitter or receiver node. The transmission time is
divided into consecutive time slots (aka packet slot, as one
packet can be transmitted in each slot), which are further
organized into consecutive frames each composed of a set I
of time slots with |K| = K. Each transmitter n € N decides
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its transmission strategy for each time slot in a frame while
using the same strategy for all frames. In the kth time slot of
each frame, transmitter n either transmits a packet with
probability of € [0, 1], or it stays silent with probability
1 — wf and enqueues its incoming packets in its buffer. We
denote the transmission probability profile as @, = («f ),
for usern € N and @ = (@,,),,c) for all users.

Consider finite buffer size for each node, then a packet
from user n € N may be lost either because of a transmission
error or overflow. If we denote the corresponding packet loss
rates of user n € N as P (w) and P°!(w,,), respectively, then
the overall packet loss rate of user n denoted as P/*(w) can
be represented as

P(@) = P(@) + Py (0n) = P (@) Py (@n). @

Next, we derive an explicit expression for P/(w) by describ-
ing the channel model, interference model and queueing
model in sequence.

Channel Model. Denote hy,, as the channel gain from
transmitter m to receiver n. Then, h;,, can be represented as

h*mﬂ = HmnPZ; (2)

where p represents the fading coefficient?, and H,., repre-
sents the transmission loss that a narrow-band-acoustic sig-
nal experiences over a given spectrum and can be described
by the Urick propagation model as [45]

Hypp = d-2 - 10250454, 3)

where a [dB/m] represents the medium absorption coeffi-
cient, A,,, [dB] is the transmission anomaly accounting for
degradation of the acoustic intensity caused by multiple
path propagation, refraction, diffraction, and scattering of
sound [46], [47], [48], [49], [50], and d,,, [m] represents the
distance between the mth transmitter to the nth receiver.’

The channel model in (2) is applicable to both shallow and
deep water environments. We focus on the former case, where
the acoustic channel is more affected by multipath. We there-
fore assume that the number of rays goes to infinity and there-
fore consider a worst-case scenario; then, we have A,,,,, € [5, 10]
form, n € N [46], [47] and the fading coefficient p can be mod-
eled using a unit-mean Rayleigh distributed random variable
with cumulative distribution function expressed as

2
P[PS$]=1—exp(—%). (4)

2. The fading coefficient is a function of time. We omit the depen-
dence on time to avoid confusion with the slotted structure of the
frame. Moreover, we assume the fading coefficients in different time
slots to be independent of each other, while the time correlation of fad-
ing coefficients will be studied in future work.

3.In (3) we consider spherical spreading model as an example.
However, it is worth pointing out that the stochastic channel access
scheme proposed in this work does not depend on any specific spread-
ing loss model. Since we focus on characterizing the aggregate interfer-
ence of multiple randomly deployed nodes in underwater acoustic
networks, both the resulting communication range and spreading loss
are random. We propose to fit the shaping parameters of Gamma distri-
bution function based on the first- and second-order moment informa-
tion of the aggregate interference and validate the effectiveness of this
approach using testbed experiments.
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Fig. 2. The received signal is sampled at three points during a time slot.
The signal at each sampling point consists of information signal, noise
and interfering signal. Information signal and noise keep the same for dif-
ferent sampling points.

The proposed distributed channel access scheme can also be
extended to the deep water case, where the acoustic channel
is less severely affected by multipath with A,,, € [0, 5],
m,n € N and p = 1.

Interference Model. Because of the distance-dependent
propagation delay, acoustic signals transmitted simulta-
neously by different devices in general do not arrive at an
intended receiver at the same time. As a result, the interfer-
ence observed at a receiver and hence its transmission behav-
ior is nontrivially coupled with the transmission strategy @,
which makes interference modeling rather challenging. To
the best of our knowledge, in the existing literature there is
no interference model that can characterize the statistical
behavior of interference in multiuser underwater networks.

We consider an L-measurement interference model, in
which each receiver n € A" measures the received signal at a
set L£F of time instants during the kth time slot of each
frame.* Then, the measured interference can be represented
as a vector, denoted as T}, = (If),.x, where I represents
the lth interference measurement. Fig. 2 shows an example
of the L-measurement method with L = 3. Denote g/, with
l € L', as the time slot in which user m € A\ n causes inter-
ference to user n at the /th measurement point of the kth
time slot in each frame. Then, the measured interference
power can be expressed as

Mw)= > P

meN\n

20 (G ), (5)

where P, [W] represents the transmission power of trans-
mitter m, and the indicator function e(g" ) = 1 if transmit-
ter m sent a packet that is received by receiver n at lth
interference sample of kth time slot, i.e., transmitter n sent a
packet at (g%, )th time slot, and a(g,) = 0 otherwise.

In this work, we use as in [51], [52] a Gamma distribution
function y¥(z, @) to characterize the probability density
function (pdf) of I defined in (5). Then we have,

(@)1 g—z/68 (w)
I (1 (@) (@)™ @

where 7/ () and 6% (w) are shaping parameters that can be
estimated online as explained later in Section 4, and gamma

pdf[I}! = 2] = Yi(z, @) = ©)

4. The optimal number of measurements during a time slot needs to
be determined through off-line measurement or can be estimated
through online learning techniques. We assume that the number of
measurements is known.
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function I'(n*(w)) = j;n:rﬂf(“)_le_zd:r. Later in Section 6,
we will validate the interference model based on testbed
channel measurements using Teledyne Benthos Telesonar
SM-75 underwater modems [53] - extensive experimental
results show that the model captures the statistical charac-
teristics of interference very accurately. Then, the cumula-
tive distribution function (cdf) of I¥, denoted as ¥ (z, w),
can be represented as

@(ﬁf(w):gg’(j)
I (78 (w))

where ¢(n¥(w), %) = ﬁfy(") sT(@-le=sds is the lower
incomplete gamma function.

If we let SINR¥ represent the signal-to-interference-plus-
noise ratio (SINR) at receiver n € A at the lth measurement
point in the kth time slot of each frame, then SINR¥ can be
expressed as

P[IM < 2] = 9 (2, @) = , (N

Prhon

NRH(@) = —ntmn__
SN ) = T+ 3

®
where & represents the noise power at receiver n € NV. For
given transmission strategies, i.e., transmission rate RY, mod-
ulation and coding schemes, a one-to-one mapping between
the resulting bit error rate (BER) before decoding denoted as
BER and the transmission rate can be established as [54]

R’ =log (1 + K*SINR¥(w)) 9
where

kl _¢n,l

= 10
" o (9 2BERY @) 1o

in which ¢,, and ¢,, are parameters depending on the
modulation schemes used by session n. Then, we have

44,1 SINRE! (a2)
kl e emn=1
BER} (@) = ————,
¢n,2
and the average BER of time slot k denoted as BER (@) can

be expressed as

(1)

L
BERf () = %Z BER"(w). (12)
=1

For a given channel coding scheme, denote BER;;, the max-
imum BER that a packet can successfully be decoded, and
Bt (@) represent the packet decoding success probability that
occurs when BERF < BERy,. Then, ¥ () can be expressed as

Bt (w) 2 P(BERF < BER,)
BERy, BERy,
= [T [ e
0 Eol

/BERH.
L-1
Ty

=1

(13)
BL(zyp) daydxs - - -dzy,
where g(z)) is the pdf of BER at the [th measurement point

in kth time slot of each frame, and for each 1 <[ < L can be
calculated as,

|IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 10, OCTOBER 2021

»62[(13{) = V:E(SINRE: 0)), (14)

with

lOg (f{ﬁﬁﬂ‘g)em -1

,1

SINRM = (15)
Then, the overall packet error rate of user n caused by trans-
mission errors, i.e., P5"(w) in (1), can be written as

P(@) = ——— 3 ok (1 — A (@)), (16)

ZkEIC @y kel
where g (@) is defined in (13).

Queueing Model. Consider a queue with finite buffer size
of Quax packets for each node. Whenever the queue length
reaches the maximum Qu.., newly incoming packets will
be dropped directly. The packet drop rate P! for session
n € N depends on the packet incoming process and the
packet service process.

We first define the packet service process for session n
based on the transmission profile @,. Let random variable
v, represent the number of consecutive time slots it takes
for user n € N to transmit a packet. Then, the pdf of v, can
be expressed as

Ti’z:ce;cﬂ’ﬁ: z=1,
%Zkexnggck(l —a)ﬂ)wﬁ, 1< z<K,

(Miex(t - @) Pha=13, 2> K,

Plv, =2 =

an
where z = | £|, Z = z— K - 7,and w9 represents the transmis-
sion probability of the gth time slot in a frame with KC;, repre-
senting the set of indices of the z — 1 consecutive time slots
before the kth time slot; for example, if z = 3 and each frame
consists of at least three time slots, i.e., K = 3, then we have
Ki={K-1, K—2} for k=K, and K, = {K, K — 1} for
k=1.

We observe from (17) that, the expression of P[v, = z]isa
complex function of the transmission profile w,. To facilitate
theoretical tractability, we approximate Py, = 2] in (17)
through an exponential distribution function

Plv, = 2] = ¢(@,)e * @), Vn e N, (18)

where the service rate parameter ¢(w,), which only
depends on @, (the transmission probability profile of user
n), is set to the average service rate in a frame according to
(17),ie., p(@n) = £ 3o k-

We assume that the incoming packets generated at each
user n € N follow a Poisson arrival process with average
packet arrival rate A, [packets/sec]. Then, the queue of each
user n € N can be modeled using a truncated M /M/1
queue with buffer size of Qunax packets, and the packet drop
rate of user n due to overflow can be represented as [55,
chap. 2] as follows:

1—

DI

o) =1 (g)

1
Tmaz+1’

Qw
(E::L“’ﬁ) , i A # ELﬁKJ w::a

otherwise.

(19
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Expected Throughput. Based on above formulations and
according to (1), the expected packet throughput of user
n € N, denoted as R, (w), can be expressed as

Ru(@) = M(1 = P (@) — P () + B (@) P (@),
(20)

and can be rewritten approximately by neglecting the sec-
ond-order term P°Y(w, )P (@) as

Ra(@) = M (1 — By (@) — P (@)). 21
Then, the ideal objective of our problem would be to maxi-
mize the sum throughput of all users in A" under certain
predefined fairness criterion, by adjusting the transmission
strategy w,, of each user n € N, i.e.,

P: dm'm N‘m Vm,neN
maxlmize : Ulw) = z log R, (w)

neN

Given :
(22)

subject to : Dgwﬁgl, Ve K, VneN,

where the logarithm operation is introduced to achieve pro-
portional fairness among the users.

However, this objective is clearly not achievable with dis-
tributed control. Furthermore, the centralized optimization
problem is not convex, which means that, in general, only
suboptimal solutions can be computed in polynomial time
even with centralized algorithms. With this understanding,
we first propose a low-complexity distributed solution algo-
rithm, and then present a centralized algorithm to compute
the globally optimal solution to provide a benchmark for
the performance of the proposed distributed algorithm.

4 DISTRIBUTED ALGORITHM DESIGN

Based on the system model developed in Section 3, we now
present a distributed problem formulation and a low-com-
plexity distributed algorithm. Then, we discuss several issues
related to the implementation of the algorithm. The distrib-
uted solution algorithm is designed based on a best-response
strategy, i.e., each node iteratively and asynchronously solves
the problem of dynamic queueing and transmission in UW-
ASNSs. At each iteration, each user individually maximizes its
own expected throughput based on the statistical characteri-
zation of the interference obtained through past observations
and based on its queue information.

We let @_, = (®m),,c\n, Tepresent the transmission
probability profile of all users in N except n. Then, the
expected throughput R,(w) in (21) can be equivalently
expressed as R, (w,, _), Le.,

Ro(@n, @) = M (1 — P (@,) — P (@, 0_n)), (23)
where P (@,,®_,) is the corresponding equivalent repre-
sentation of P (@) given in (16). Then, at each iteration,
each user n € N optimally chooses its transmission proba-
bility vector @, by solving the following optimization
problem,

3025
Given: P,, dun, 8%, A,
@_,), " (w_,), Yk e K, Wl € Lk
maximize : R, (@,, o_,) 24
@y
subject to: 0 Swﬁ <1, Vke Kk

where d,,, represents the distance between transmitter n
and receiver n, 82 is the noise power at receiver n, the objec-
tive function R,(w,, w_,) is defined through (16) and (19),
n(w_,) and 6"(w_,) are the shaping parameters in (6)
depending on the transmission strategies of all other users
in N\ n,ie, w_n
Individual Optimization. It is nontrivial for each user
n € N to determine its own optimal transmission strategy
w,, because the above optimization problem is in general
nonlinear and non-convex due to non-convexity of the
expression in (16). In the following, we propose an efficient
algorithm to search for the globally optimal solution by tak-
ing advantage of the special structure of the objective func-
tion R, (@, @—_,).
To maximize R,(®,, @_,) in (24), each user n € N only
needs to minimize its overall packet loss rate
P‘I'I:m (@) = P (wn, @) + ‘F)‘I{'l}ﬂ(mﬂ)! (25)
where P<™ (@, w_,,) and P¥(w,) are defined in (16) and (19),
respectively. To this end, we introduce a new intermediate
variable y, £ 3, of. Then, with given y,, P/*(w) in (25)
can be minimized over @, by solving a linear optimization
problem. Denote the resulting minimum as min P*(y,,
@®_p, ;). Then, the optimization problem formulated in (24)
can be equivalently expressed as, foreachn € N,

Given : Py, dm, Nn, An,
1 (@_), 6" (w_,), Yk K, VL € LF
minimize : ming, P'® (yn, @—n, @)
Yn
subject to: 1y, = 0 (26)
< K

0<ef <1, Vkek

zw:i > Y-

kel

We found experimentally that the objective function in (26),
i.e., ming, P (y,, @_,, ®,), is a quasi-convex function of y,
[56, Section 3.4] for a wide set of network settings. An example
verification of the quasi-convexity is shown in Fig. 3. This
implies that the globally optimal solution of y,, can be itera-
tively calculated in logarithmic time (which is less than poly-
nomial) by using the bisection method. At each iteration, the
optimal transmission probability vector w,, for a given y,, can
be obtained by simply solving a linear optimization problem.
The proposed distributed solution algorithm is summarized in
Algorithm 1, and the overall diagram of the stochastic channel
access scheme is illustrated in Fig. 4. It is worth pointing out
that the optimization algorithm causes only low communica-
tion overhead because there is no need to update the transmis-
sion probability profile frequently, e.g., it may be enough to
send an update once every 100 frames to adapt to the dynamic
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Fig. 3. Example verification of quasi-convexity of the objective function in
(26)-

interference environment, which accounts for all the interfer-
ing transmission activities during each update period.

Algorithm 1. Distributed Solution Algorithm

Data Input: Py, dnpn, Ny, foralln € N, vy, € = 0.01
1 Initialize: Set v =0, w,(v) = @), Vn € N
2 while ||w,(v) — @, (v —1)|| > k, ¥R € N Orv < vpe do
3 Eachuser n € N finds ’, to minimize P (y,,@_n, @n) by
searching for the optimal y,, through solving the optimi-
zation problem in (26).

4 Setw,(v) =w] foreachn e N.
5 Setv+—v+1.
6 end

Implementation Issues. In the proposed distributed access
scheme, each node n € N individually maximizes its own
throughput for a given transmission strategy of the interfer-
ing users @_,. However, in a fully distributed algorithm,
®_, is in general unavailable to user n. A nice property of
our proposed algorithm is that for practical implementation
each user n only needs to estimate the two shaping parame-
ters n*(@_,) and #*(w_,,) of the interference probability dis-
tribution based on the past observations of interference at
the receiver side.

For this purpose, let E[I¥] and D[¥] represent mean and
variance of I”, respectively. Then, we can derive them as

B[] =E

> Puhualat)|

meN\n

> Bt ol

meN\n

(27)

L=
ok
|

=D L;\ thnma(gfm)]

= 3 Pwf(Hum) DI,
meN\n

(28)

where E[p?] = 2and D[¢?] = £ according to (4).
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Fig. 4. Diagram of the stochastic channel access scheme.

According to the }i-lrobablhty density function of the inter-
ference I'™ in (6), E[I*'] and D[I*] can also be represented as

E[IM] = n (@) (@), (29)

D[Iy] = nf (@) 5 (@), 30)

where 1! (w) and 6% (w) are the two shaping parameters in
(6). Then, from (27), (28), 29, and (30), we have
() =

D[I¥]/E[1H], (31)

(@) = (E[L;])*/DIL], 32)

where E[I®] and D[I*] are given in (27), (28), respectively.

Therefore, it is sufficient for each user to fully character-
ize the statistical behavior of interference at its receiver, by
recording the observed interference levels and then calculat-
ing the mean and variance. In case of variations in the net-
work topology, e.g., when nodes join or leave the network,
1" (w) and 6 (w) need to be re-estimated, which might trig-
ger another round of transmission probability adaptation.
To measure the mean in (27) and variance in (28), as illus-
trated in Fig. 4, each receiver node can first estimate the
power of the received useful signal and then subtract it
from that of the overall signal. Given the transmission
power of the transmitter, this can be accomplished by let-
ting the transmitter send a predefined PN sequence. The
receiver can then estimate the channel state information
(CSD through PN sequence cross-correlation.

5 CENTRALIZED SOLUTION ALGORITHM

As discussed in Section 3, an ideal objective would be to maxi-
mize the sum throughput of all users in the network. The
objective can not be achieved trivially due to lack of
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centralized control and non-concavity of the utility function
R;i(w;,w_;) in (21). In this section, we develop a centralized
but globally optimal solution algorithm based on the combina-
tion of branch and bound framework [57], [58] and convex relaxation
techniques [59] to solve the social optimization problemin (22).

Algorithm Overview. The proposed algorithm searches for a
globally optimal solution that satisfies the predefined preci-
sion of optimality ¢ € (0,1). Denote the global optimum of the
objective function in (22) as R*, then the algorithm iteratively
searches for an s-optimal solution R such that R > ¢R*. The
optimality precision € can be set as close to 1 as we wish, at the
cost of higher computational complexity for larger . For this
purpose, the algorithm maintains a global upper bound UPyy,
and a global lower bound LRy, on sum-throughput R in (22),
then it must be

LR, < R* < UPg,. (33)

We use UPy, and LRy, to drive the branch and bound itera-
tion, and to check how close the obtained solution is to R* and
decide when to terminate the iteration. If LRy, = cUPyy,, the
algorithm terminates and sets the optimal objective value to
R = LR,

The algorithm also maintains a set of sub-domains
Q={Q,CQ v=12,..}, with Q; = {w} being the ini-
tial domain that includes all possible @ = (@), -, and vrep-
resenting the iteration index. At the beginning of iterations,
there is only one element in £}, i.e., {}. In each iteration, the
algorithm selects a sub-domain {2, from {} and partitions it
into two smaller ones through domain partition (as discussed
later), say Q. and (2Z.. For each of them, the algorithm calcu-
lates a local upper bound UP({2;.) and local lower bound
LR(£2.) on sum-throughput R over the sub-domain, with
v = 1,2, by relaxing the associated subproblem to be convex
(as discussed later). Then, if UP(£)}.) < LR,p, it implies that
it is impossible for the global optimal solution to be located
in £}., and hence the associated subproblem will not be con-
sidered any more in the following iterations. Otherwise, the
domain set €1 is updated as @ — QU Q7. and the global
lower and upper bounds can then be updated as

UP,p, = max UP(Q,), (34
0,60
LR, = Iax LR(%,). (35)

As the problem partition progresses, the gap between UP,,
and LR,y converges to 0, and from (33), they converge to
the globally maximal sum-throughput R*. An example
illustration of the algorithm is shown in Fig. 5, where the
global upper bound UP,y; is updated from UP(£) to
UP(£,), and the global lower bound LRy, is updated from
LR(£y) to LR(£),), and as a result, the two global bounds
get closer to the global optimum R*.

Convex Relaxation. To relax the objective function in (22)
to be convex, we only need to relax the individual utility
function of each user. It can be proven that, P%(w) defined
in (21), i.e., the packet loss rate due to exceeding the maxi-
mum delay, is a convex function of @. The proof is based on
the fact that the second derivative of PI¥(w) with respect to
@ is positive, and on the property that affine mapping pre-
serves convexity of functions [56, Section 3.2.2]. Then, we

3027

UP(9)

UP(),

Fig. 5. Example illustration of the solution algorithm.

only need to relax the transmission error probability P (@)
defined in (21) to be convex.

This can be done in different ways, and users are referred to
[59] for details of possible relaxation techniques. In this work,
we adopt a simple but effective relaxation method based on
the observation that P;"(w) monotonically decreases with
transmission probability profile of other sessions @_,. Denote
the current domain of the ¢th transmission probability variable
ok of w,, as [(wF )", (&F )V]. Then, based on the above observa-
tion, P<"(w) can be relaxed to P (w,,oV,) with @Y, =
((mﬁl)u)me\;\n‘ke i and finally we obtain a relaxation of R,(w)
that provides an upper bound on the individual objective func-
tionin (22), as illustrated by thered dash line in Fig. 5. Based on
the solution obtained through solving the relaxed social opti-
mization problem, we are able to obtain a lower-bound sum
throughput using the unrelaxed objective function (22). The
two local bounds are then used to update the global upper and
lower bounds as in (34) and (35), respectively.

Variable Partition. We select the subproblem that corre-
sponds to the highest local upper bound, and partition it
into two new subproblems by partitioning the associated
transmission probability variables. In favor of faster conver-
gence, hence lower computational complexity, we consider
the effects of variable partition on the level of mutual inter-
ference among concurrent sessions. That is, if a session
causes only very little interference to the others, the corre-
sponding transmission probability variables will be selected
for partition with lower priority, and vice versa. For this
purpose, we use the average distance from the source node
of a session to the receiver nodes of the other sessions as an
indicator, i.e., the smaller the distance, the lower the average
interference. Then, by jointly considering the current range
of variables, we select wt. for partition such that

1
dist(n)’
where dist(n) represents the average distance between

source node n and the receivers of other sessions. Finally, by

kKU kL
partitioning w¥. from the middle, i.e., (%)™ = (@) ;r(a: )t

we obtain two new subproblems corresponding to [(w:)",
(@k)M] and [(F)™, (0F.)"], respectively.

(36)

(n*,k") = argmax ((@})" - («})")
neN kel

6 PERFORMANCE EVALUATION

We first experimentally verify the effectiveness of the chan-
nel model, interference model and the queueing model
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Fig. 6. (a) Deployment of the six underwater acoustic modems in Lake LaSalle at the University at Buffalo; (b) Aerial view of the underwater acoustic
testbed.

adopted from Section 3. Then, we study the performance of
the channel access algorithms designed in Sections 4 and 5
in terms of achievable throughput.

In the throughput analysis, we consider an UW-ASN of
ocean-bottom sensor nodes deployed over an area of
3000 x 3000 m*. The number of source-destination pairs is
setto N =2, 4, 6, 8, 10. The positions of the nodes are gen-
erated randomly with the distance for each communicating
pair varying in [1000, 1500] meters in the simulation. In the
testbed validation of the interference model, the distances
between the transmitter and the receiver varies from 120 m
to 160 m. The number of jointly optimized time slots is set to
K =1 to 15 with a step of 2. The number of measurement
points in each time slotis set to L = 1, 2, 3 inthe L-measure-
ment-based interference modeling method. We consider a
narrow-band UW-ASN with bandwidth of 0.5 kHz at central
carrier frequency 10 kHz> The modulation scheme is set to
BPSK, raised-cosine filter with roll-off factor of f=0.5 is
used for pulse shaping, BCH(511, 259) is selected as the
channel coding corresponding to coding rate 0.5, and
CRC-161s adopted for parity check. PN sequences are used
for packet synchronization and interference estimation (as
discussed at the end of Section 4). Specifically, we consider
PN sequences of duration 25 ms. In the case of L > 1, i.e,
the interference is measured more than one time in each time
slot, L PN sequences need to be inserted into a time slot. This
results in a time slot duration of roughly 1+ 0.025L s and
raw data service rate of Ry, = 252 bits/s. The dataarrival
rate (in bits/s) is set to Ra = pRey. with pincreases from 0.1
to2 with a step of 0.2.

Four schemes are implemented for performance compari-
son: i) Centralized multi-slot channel access (Centralized Multi-
slot) as an upper bound, obtained using the developed central-
ized solution algorithm in Section 5 with optimality precision
& = 0.95 and maximum iteration number 5000; ii) Aloha with
centralized optimizer (Centralized Aloha) as a performance bot-
tom line, with transmission probability set tobe 1 in each time

5.In this work, we consider a narrow-band UW-ASN, so that the
resulting underwater channel is frequency-non-selective. In the case of
wideband channels, the spectrum can be divided into a set of subchan-
nels and the proposed stochastic channel access scheme can be applied
to the subchannels independently.

slot to highlight the effects of statistical interference—Aloha
with the optimal transmission probability is also considered
as a special case of the centralized solution algorithmy; iii) With-
out Queueing (wfo Queueing), which corresponds to the distrib-
uted solution algorithm without considering the queueing
behavior; and iv) Single Interference Measurement (Single Meas.),
which uses only one single measurement point to represent
the interference level for a whole time slot.

Interference Model Validation. We conducted underwater
interference measurement in Lake LaSalle at the University at
Buffalo using six Telesonar SM-75 SMART modems by Tele-
dyne Benthos [53]. The actual deployment of the six underwa-
ter acoustic modems is shown in Fig. 6a, with six orange buoys
floating on the surface of the lake, each attached to the Teleso-
nar SM-75 modem along with an anchor. The modem uses an
omnidirectional transducer that operates in the 9kHz—14kHz
low frequency (LF) band. The waveform-play feature of the
modem enables transmissions of baseband complex data with
a bandwidth of 5.120 kHz sampled at 10.240 kHz. The data
packets were generated offline using direct-sequence CDMA
(DS-CDMA) modulation scheme, and converted into a stereo
WAV file in 16 bit format, and uploaded on the modems
through the RS-232 interface. DS-=CDMA chip waveforms were
selected from the columns of a Sylvester-Hadamard matrix of
order L = 32. Pulse shaping was done using square-root
raised-cosine with roll-off factor = 0.5 and a chip rate of
R. = 2,048chips/s was generated. The six modems were
deployed at a depth of 2m above the lake floor in the locations
shown in Fig. 6b. The distances Alice-to-Dave, Bob-to-Dave,
Charlie-to-Dave, Erin-to-Dave and Frank-to-Dave were set to
appro)amately dap = 160m,dpp = 165m,dep = 170m,dgp =
156m and dpp = 120m, respectively. Each experiment was
repeated 20 times with fixed transmit power level of 9W.° It is
worth pointing out that, in the experimental setting considered

6. The histogram were plotted as follows. Using the received data
samples, we divide the magnitude of the received signal into 128 bins.
In this example, the first bin is from 0 to 0.0015, the second bin is from
0.0015 to 0.003, etc. To plot the histogram i.e., the probability density
function, we count the number of samples of the received data samples
magnitude that lie within each bin. The resulting plot is the histogram
of the received data samples. Since we have a large collection of data
samples from each experiment, we can plot even much denser histo-
gram i.e., using larger bin size with smaller bin separation.
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Fig. 7. Approximation of single user signal pdf using a Rayleigh distribu-
tion function in shallow water environment.

the resulting interference may be much higher than the noise.
Extending the interference model to underwater environments
where noise is dominant or comparable with the interference is
left for future work.

Initially, Alice was selected to transmit her packet to
Dave. Fig. 7 plots the probability density function (pdf) of
the received signal at Dave. We can observe that the pdf can
be accurately approximated by a Rayleigh distribution.

In the next set of experiments, Alice, Bob, Charlie, Erin and
Frank were selected to transmit their packets Py, Pg, FPc, Pg,
and Py to Dave, respectively, with a channel access probabil-
ity of 60 percent at each time slot with a duration of 10sec. At
each time slot on average Dave received three interfering
packets. A laptop, on an inflatable boat, was used to coordi-
nate the transmissions of the packets through a serial port
interface. Dave was equipped with a data recorder that has a
storage capacity of 64GBytes. The raw data were recorded
and analyzed offline. The average values are presented in the
plots. The pdf function of the superimposed interfering sig-
nals received at Dave is shown in Fig. 8. We can observe that
the sum interference signal pdf can be approximated using a
Gamma distribution function, which verifies the theoretical
results. It is worth pointing out that while we consider
Gamma distribution for the aggregate interference in this
work, the proposed stochastic channel access scheme is not
restricted to any specific channel models.
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Fig. 8. Approximation of multiuser interference pdf using a Gamma distri-
bution function in shallow water environment.

Queueing Model Verification. InFig. 9a, we compare the orig-
inal packet service time distribution Plv, = 2] with the expo-
nential distribution P[v, = z] based on (17) and (18). The
number of time slots in each frame is set to 15, with the trans-
mission probability profiles corresponding to average trans-
mission rate of 2.5 packets/frame, 5 packets/frame and
7.5 packets /frame. We can see that the exponential distribu-
tion gives an acceptable approximation of the original distri-
bution in the case of low average transmission rate (top
figure); as the transmission rate increases (middle and the bot-
tom figures), the service probability is more underestimated.
In the latter case, we further plot the resulting packet drop
rate by considering different buffer length in Fig. 9b, where p
is defined as the ratio of the incoming and outgoing packet
rate. We can see that the truncated M /M/1 fits the measured
packet drop rate very well. In Fig. 9¢, we further plot the accu-
mulative queue length achieved by the original queue model
and the truncated M /M /1 in 1000 time slots. We can see that
the two models coincide well with each other.

Throughput. Sum throughput against the number of jointly
optimized time slots is plotted in Fig. 10 with four source-
destination pairs. We observe that considerable improve-
ment can be achieved by jointly optimizing the transmission
strategy over a group of time slots. For example, in the case
of T'=5, 7, 9, i.e, when the number of jointly optimized
time slots is larger than the number of concurrent users (4 in
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Fig. 9. Queue approximation using a truncated A{/M /1 queueing model: (a) service rate, (b) packet drop rate, and (c) an example of accumulative

queue length.
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this simulation), a throughput around 25 packets/second can
be achieved by the proposed distributed solution algorithm,
which is 3.5 times higher than that of Aloha, and 80 percent of
the global optimum. In the case of T' = 1, the centralized opti-
mal solution algorithm reduces to Aloha with network-wide
optimized transmission probability (which is not easy to
determine in distributed manner). We also observe that a
throughput level very close to that of the optimized Aloha
can be achieved by distributed channel access, i.e., higher
than 95 percent with 9 time slots jointly considered. When
the queueing behavior of users is not considered, a notice-
able throughput gain can still be achieved compared to
Aloha when T' > 4. However, compared to queueing-aware
channel access, the throughput gain reduces from 3.5 times
to2forT = 5and to 2.5for T = 9, respectively.

In Fig. 11, we evaluate the performance of the proposed
distributed algorithm with number of users N varied from
2 to 10 while the number of jointly optimized time slots is
set to 5. We observe that the proposed distributed solution
algorithm consistently outperforms WoQ and Aloha. For
example, in the case of 4 users, a sum throughput of 25 can
be achieved by Distributed while only less than 15 and
around 7 can be achieved by WoQ and Aloha. In the case of 6
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Fig. 11. Sum throughput achieved in the case of different users.
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Fig. 12. Sum throughput achieved in the case of different traffic loads.

users, a sum throughput of 17 can be achieved by Distrib-
uted, which is around 3 times higher than the throughput
achieved by WoQ and Aloha. It is worth pointing out that,
unsurprisingly, as the number of users increases, the price
of anarchy caused by the lack of a centralized controller can
be very large, e.g., in the case of 10 users, only less than 10
percent of the global optimum can be achieved through dis-
tributed, uncoordinated algorithms with no message
exchange. This implies that the network becomes severely
congested with high number of concurrent users, and it is
not so effective any more to increase the number of jointly
optimized time slots only. Additional experiments consider-
ing 8 users and 8 time slots indicate that, the resulting sum
throughput only slightly increases (from 8 to 9.5) compared
to the case of 5 time slots. A possible solution is to introduce
partial cooperation among interfering users, e.g., design dis-
tributed solution algorithms based on pricing strategies [60];
this will be the subject of our future work.

In Fig. 12, the sum throughput of the proposed distributed
algorithm is reported with 4 users, 5 time slots, against differ-
ent offered traffic loads: light, moderate and heavy, corre-
sponding to average data arrival rate smaller than, comparable
to and higher than the data transmission rate, respectively. We
observe that a sum throughput close to the global optimum
can be achieved by the proposed distributed channel access in
the former two cases, while only 60 percent of the global opti-
mum can be achieved in the third case. Performance degrada-
tion is due to the fact that, with heavier traffic, each user
prefers to transmit more often to avoid high packet loss rates
due to violating the delay constraint, which results in higher
level of network interference overall. Again, in this case, partial
cooperation among interfering users might be helpful for effi-
cient MAC protocol design.

The advantages of the L-measurement-based interference
modeling method are illustrated in Fig. 13 through perfor-
mance comparison between Distributed and SM in the case of
four source-destination pairs, ie., N = 4 Much higher
throughput can be achieved by Distributed than SM with the
number of time slots larger than N. For example, with T' = 5,
a sum throughput close to 25 can be achieved by Distributed,
which is over three times as high as the sum-throughput of
SM. This verifies that, by representing the interference level
in each time slot based on multiple measurement points, the
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Fig. 13. Sum throughput achieved by Distributed and SM against the
number of jointly considered time slots.

statistical behavior of interference with both spatial and tem-
poral uncertainty can be modeled more precisely, and hence
each transmitter has more flexibility in optimally adapting
its own probabilistic transmission strategy profile to avoid
interference from other transmitters.

7 CONCLUSION

We have studied a stochastic, distributed and asynchronous
channel access scheme for underwater acoustic networks in
which each transmitter optimizes a transmission probability
profile based on which it decides whether to transmit or to
enqueue its packets over a series of time slots based on a sta-
tistical characterization of interference obtained from past
observations. To capture the effects of temporal uncertainty
of interference, we proposed an L-measurement method to
model the effect of unaligned interference at a receiver. At
each measurement, the multi-user interference is modelled
using a Gamma distribution function. We validated through
testbed experiments that the model can capture the statisti-
cal characteristics of interference in shallow water environ-
ments very well. We presented a mathematical formulation
and solution algorithms for the problem of dynamic trans-
mission strategy optimization. Results have shown that con-
siderable improvement in sum-throughput can be achieved
by jointly optimizing over multiple time slots. In future
research, we will study the distributed network control
problems based on noncooperative game theory [60], [61],
test the proposed stochastic channel access protocols in
terms of end-to-end throughput and delay over testbed
experiments. Another research direction is to compare the
proposed stochastic channel access protocol with existing
protocols through a comprehensive experimentation cam-
paign in real underwater environments.
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