
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 2, FEBRUARY 2022 639

SMIV: A 16-nm 25-mm2 SoC for IoT With Arm
Cortex-A53, eFPGA, and Coherent Accelerators
Sae Kyu Lee , Member, IEEE, Paul N. Whatmough , Member, IEEE, Marco Donato , Member, IEEE,

Glenn G. Ko, Member, IEEE, David Brooks , Fellow, IEEE, and Gu-Yeon Wei, Senior Member, IEEE

Abstract— Emerging Internet of Things (IoT) devices necessi-
tate system-on-chips (SoCs) that can scale from ultralow power
always-on (AON) operation, all the way up to less frequent
high-performance tasks at high energy efficiency. Specialized
accelerators are essential to help meet these needs at both ends
of the scale, but maintaining workload flexibility remains an
important goal. This article presents a 25-mm2 SoC in 16-nm
FinFET technology which demonstrates targeted, flexible accel-
eration of key compute-intensive kernels spanning machine
learning (ML), DSP, and cryptography. The SMIV SoC includes
a dedicated AON sub-system, a dual-core Arm Cortex-A53 CPU
cluster, an SoC-attached embedded field-programmable gate
array (eFPGA) array, and a quad-core cache-coherent accelera-
tor (CCA) cluster. Measurement results demonstrate: 1) 1236×
power envelope, from 1.1 mW (only AON cluster), up to 1.36 W
(whole SoC at maximum throughput); 2) 5.5–28.9× energy
efficiency gain from offloading compute kernels from A53 to
eFPGA; 3) 2.94× latency improvement using coherent memory
access (CCA cluster); and 4) 55× MobileNetV1 energy per
inference improvement on CCA compared to the CPU baseline.
The overall flexibility-efficiency range on SMIV spans measured
energy efficiencies of 1× (dual-core A53), 3.1× (A53 with SIMD),
16.5× (eFPGA), 54.9× (CCA), and 256× (AON) at a peak
efficiency of 4.8 TOPS/W.

Index Terms— Deep neural networks (DNNs), embedded
field-programmable gate array (eFPGA), hardware accelerators,
Internet of Things (IoT), machine learning (ML), system-on-chip
(SoC).

Manuscript received March 23, 2021; revised June 14, 2021, July 25, 2021,
and September 20, 2021; accepted September 20, 2021. Date of publication
October 11, 2021; date of current version January 28, 2022. This article
was approved by Associate Editor Vivek De. This work was supported in
part by the U.S. Government, through the Defense Advanced Research
Projects Agency (DARPA), the Circuit Realization at Faster Timescales
(CRAFT), and the Power Efficiency Revolution for Embedded Computing
Technologies (PERFECT) Programs, in part by the NSF under Award
1551044 and Award 1718160, in part by Arm Inc., and in part by Intel
Corporation. (Sae Kyu Lee and Paul N. Whatmough contributed equally to
this work.) (Corresponding author: Paul N. Whatmough.)

Sae Kyu Lee was with the School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02138 USA. He is now with IBM
Research, NY 10598 USA (e-mail: saekyu.lee@ibm.com).

Paul N. Whatmough is with Arm Research, Boston, MA 02451 USA, and
also with the School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138 USA (e-mail: pwhatmough@eecs.harvard.edu).

Marco Donato is with the Department of Electrical and Com-
puter Engineering, Tufts University, Medford, MA 02155 USA (e-mail:
marco.donato@tufts.edu).

Glenn G. Ko, David Brooks, and Gu-Yeon Wei are with the School
of Engineering and Applied Sciences, Harvard University, Cambridge,
MA 02138 USA (e-mail: gko@seas.harvard.edu; dbrooks@eecs.harvard.edu;
gywei@g.harvard.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2021.3115466.

Digital Object Identifier 10.1109/JSSC.2021.3115466

I. INTRODUCTION

INTERNET of Things (IoT) devices have rapidly become
ubiquitous and are shaping new use cases in both consumer

and industrial markets. Machine learning (ML) inference on
data arising from various sensor modalities often constitutes
the key functionality, enabling detection of interesting or
anomalous events capture in situ, in real time. ML also
takes an increasingly important role in enabling evolved user
interfaces (UIs) driven by simple speech commands or hand
gestures, which are tailored to small and cheap IoT device
form factors with limited physical controls. IoT devices are
typically battery-powered, and therefore, hardware accelera-
tors have become a key enabling technology to provide the
energy efficiency required for not only ML inference, but also
DSP, cryptography, and a host of other demanding algorithms.
They also often demand a very wide performance range, with
a large proportion of the time typically spent idle, periodically
performing low-complexity tasks such as data logging.

CPUs have by far the greatest flexibility and the most widely
supported programming model. However, CPU throughput
and energy efficiency on compute-intensive tasks are limited,
even with single-instruction multiple-data (SIMD) instruction
extensions. In contrast, dedicated memory-mapped accelera-
tors offer orders of magnitude higher throughput and energy
efficiency for a more narrow range of workloads. Some of the
optimizations implemented by deep neural network (DNN)
accelerators include small data types (e.g., 1–8 bits [1]),
aggressive reuse of operands in local SRAM [2], [3], and
exploiting sparsity [4]. Other circuit techniques previously
reported include mixed-signal datapaths [5], in-memory archi-
tectures [6], and timing error tolerance [7]. Industry activity
is also proliferating [8]–[12].

Nonetheless, the limited flexibility of specialized acceler-
ators introduces an elevated risk of hardware obsolescence.
This is a particular concern with DNNs, which have evolved
rapidly [13]. In addition to this, accelerators inflate software
development cycles, as the programming model is inflexible
with a limited set of semantics and often requires explicit
memory management. Therefore, we seek to better understand
the flexibility–efficiency trade-offs, in order to understand how
to build efficient system-on-chips (SoCs) comprising hetero-
geneous accelerators.

In this article, we describe SMIV [14], [15], a heterogeneous
SoC for IoT devices (Fig. 1). The SoC comprises four main
compute clusters: more specifically, a mobile-class CPU and

0018-9200 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:57:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7155-704X
https://orcid.org/0000-0002-1865-6492
https://orcid.org/0000-0002-9354-3447
https://orcid.org/0000-0002-0662-7889

640 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 2, FEBRUARY 2022

three distinct accelerators. The three accelerators together
support a broad range of target compute kernels, albeit with
a little overlap, while representing very distinct trade-offs in
terms of programmability and efficiency, which we enumerate.
The main contributions of this work are summarized below.

1) Embedded field-programmable gate array (eFPGA)
cluster: We demonstrate the utility of small eFPGAs of a
few mm2 integrated into an IoT SoC, through offloading
common compute kernels (both arithmetic and bit-wise
dominant) from the CPU to eFPGA (Section II).

2) Cache-coherent datapath accelerators (CCA): Data
movement is a key consideration in accelerator design.
We propose the CCA approach, which provides opti-
mized DNN compute primitives via a cache-coherent
interface to reduce the data-movement cost and provide
a coherent programming model (Section III).

3) Always-on (AON) subsystem: IoT devices typically
spend the vast majority of the time in an inactive or
partially active state. We propose an ultralow-power
AON subsystem which provides enough performance
to carry out small control and DNN inference tasks
independently, while the rest of the SoC is powered
down, including main memory (Section IV).

In the remainder of this article, we first highlight two
of the key compute clusters integrated in SMIV : the
eFPGA (Section II) and the cache-coherent accelerator (CCA)
(Section III). The SoC organization and main compute and
memory system components are described in Section IV,
while Sections V and VI present the chip implementation
and measurement result, respectively. Finally, Section VII
concludes the article.

II. EMBEDDED FPGA

FPGAs are a well-established semiconductor product,
widely used in prototyping, military, and telecommunica-
tions [16]. Traditional standalone FPGAs occupy an interesting
middle ground between CPUs and application-specific inte-
grated circuits (ASICs), with more performance and efficiency
than the former. FPGAs can be effective for bit-level opera-
tions implemented using lookup tables (LUTs), and with the
addition of MAC datapaths, algorithms such as DSP filters and
transforms also map well.

A. eFPGA in SoCs

In this work, we incorporate an eFPGA macro [17] as
an accelerator resource on the SoC. This occupies the mid-
dle ground between the fully software programmable CPUs
(A53) and the specialized hardware accelerators (AON and
CCA). The eFPGA can potentially implement a huge range
of functions within the SoC, including IO multiplexing,
direct memory access (DMA) engines, compression, encryp-
tion/decryption, sorting, and so on. Compared to implementing
such tasks on a CPU in software, eFPGA may offer improved
performance and efficiency at the cost of a longer development
time. Fig. 2(a) illustrates the FlexLogix eFPGA, in a 2 × 2
array, with two logic tiles and two DSP tiles. The logic tile
[Fig. 2(a)] includes 2.5 K six-input LUTs arranged into logic

Fig. 1. SMIV SoC block diagram, showing main components.

compute elements (CEs) and interconnected with a boundary-
less mixed-radix interconnect [17]. The DSP tiles include 40×
22-bit DSP datapaths with less programmable logic (1.88 K
six-input LUTs).

B. Array Size and Tile Mix

The array size determines the peak performance available.
For example, Fig. 2(b) shows simulated throughput for three
MAC-dominant workloads (Section VI-C) increasing fairly
linearly with array size. In addition to this, place and route
tools often struggle to achieve high utilization on small arrays
of one or two tiles. Nonetheless, large arrays are expensive in
terms of silicon area, as each tile is ∼1 mm2 in 16 nm.

The mix of DSP and logic tiles is also important. Designs
with predominantly combinational logic favor an array of
logic tiles, which have more LUTs than DSP tiles. However,
designs with integer arithmetic datapaths greatly benefit from
hardware DSP tiles, because implementing the datapaths in
LUTs is expensive. Therefore, the ratio of logic and DSP
tiles should ideally match the intended workload mix. For
example, the finite-impulse response (FIR) and fast Fourier
transform (FFT) designs [Fig. 2(b)] are simple pipelines with
streaming data, and hence, a single logic tile is sufficient to
achieve close to 100% DSP utilization as we add more DSP
tiles. However, the generic matrix multiplication (GEMM)
design is based on a systolic array with more complex data
movement, and hence, the number of logic tiles must be
increased as more DSP tiles are added.

In this work, we implemented an array with two DSP tiles
and two logic tiles, as a reasonable compromise between
throughput on datapath-dominated designs [Fig. 2(b)], while
providing an abundance of LUTs to explore other use cases.

C. Programming Latency

Naturally, the compelling feature of an eFPGA is that
it can be reconfigured on demand; either throughout the
device lifetime or even during different phases of execution.
However, in the latter case, there may be a balance between

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:57:46 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SMIV: 16-nm 25-mm2 SoC FOR IoT 641

Fig. 2. eFPGA: (a) array with two logic and two DSP tiles, with details of DSP compute, logic compute, and interconnection network, (b) simulated
throughput for three typical workloads (Section VI-C), showing pareto-optimal logic/DSP mix (dashed lines) varies by workload, and (c) programming time
and silicon area increases with array size.

achievable throughput and programming latency, since the
time required to program the array is proportional to the array
size. Fig. 2(c) shows how programming latency and silicon
area increase with throughput for the FFT, FIR, and GEMM
kernels, assuming that the bitstream data is stored in DRAM
and accessed via the synthesizable interface to off-chip main
memory (Section IV-G).

D. eFPGA Programming Effort

Compute functions can be implemented using either an
overlay architecture,1 or a fixed function design [19]. The
designs in Fig. 2 were coded using two different approaches.
The FIR design was implemented in hand-optimized RTL,
designed to achieve maximum DSP utilization. While the
GEMM systolic array was implemented as a modular RTL
implementation, with scalable resource usage. In these two
cases, the number of lines of Verilog (Table III) is actually
close to the C/C++ implementations. For the FFT RTL
implementation, we used a Verilog IP generator [20], which
generates fairly verbose RTL. There is also significant interest
in using high-level synthesis (HLS) from C++/SystemC [21],
potentially making eFPGA more accessible to software devel-
opers.

III. CACHE COHERENT ACCELERATORS

Accelerator integration is an oft neglected aspect of accel-
erator research, but is essential to achieving good system
performance. Many accelerator test chips implement stand-
alone hardware, tested in isolation. However, in real systems,
accelerator transactions always begin on a host CPU executing
an application software thread. The approach taken to syn-
chronize the data and control flow handover between CPU and
accelerator impacts both the data movement efficiency and the
ease of programming. As we continue to leverage heteroge-
neous hardware specialization to increase energy efficiency,
data movement can quickly become a bottleneck to achieving
practical gains in throughput and/or energy efficiency.

1Essentially a programmable accelerator implemented on the eFPGA [18].

A. Non-Coherent Accelerator Attach

Very simple baremetal systems with only physical address-
ing place the burden of manual data movement on the pro-
grammer. Since the CPU is often moving and manipulating
relevant data prior to initiating an accelerator task, the data
required by the accelerator may well be resident in dirty cache
lines. The CPU cache is not visible to the rest of the system,
and the programmer must be careful to flush the cache to
main memory before a non-coherent accelerator can access it.
A missing cache flush software bug can be very difficult to
diagnose, resulting in subtly unpredictable behavior. Hence,
software development for such SoCs containing numerous
heterogeneous hardware accelerators is extremely challenging.

The cache flush/invalidate operations incur latency and are
wasteful in terms of the data movement round trip from the
CPU to main memory and eventually back on chip again.
This obviously increases the cost of moving data to and from
an accelerator and also makes it more difficult to implement
composable accelerators, which require frequent fine-grained
data movement in cooperation with the CPU.

B. Coherent Accelerator Attach

In a coherent system, additional on-chip bus signaling is
implemented to ensure that any transactions will return fresh
data, even if it is resident in a dirty cache line elsewhere in the
system. However, this obviously incurs additional complexity,
logic, and wires. These overheads can represent a significant
cost for an accelerator block and may compound as the num-
ber of accelerators grows. Subsequently, coherent accelerator
attach is not that common in research test chips.

C. Accelerator Coherency Port

In this work, we implement coherent accelerator attach with
minimal additional logic, by using an accelerator coherency
port (ACP) on the L2 cache in the A53 cluster. ACP essentially
allows coherent, physically addressed access to the CPU
L2 cache [22], [23], which is much faster compared to a
non-coherent programming model, where the cache must be
flushed to main memory before an accelerator can touch it. The
low data migration cost via ACP enables a flexible, compos-
able approach to accelerating individual kernels, orchestrated

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:57:46 UTC from IEEE Xplore. Restrictions apply.

642 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 2, FEBRUARY 2022

Fig. 3. Cache-coherent datapath accelerators top-level organization and
attachment to the CPU cluster and memory system.

by software running on the CPU, while sharing data in the
L2 cache. This also increases utilization of the large L2 cache
SRAM, which is otherwise typically idle while the accelerator
is executing and blocking the software execution path.

We implement CCAs connected to the ACP port using an
Arm NIC-400 segment with 64-bit data width, so they can
coherently collaborate jointly on data stored in the L2 cache,
as shown in Fig. 3. The CCAs are also attached (non-
coherently) to the main SoC interconnect, which is important
for data with low reuse which is therefore more efficiently
handled by a direct path, rather than through the cache sub-
system. The two paths (coherent and non-coherent) allow us to
compare the approaches. The CCA design itself is discussed
in Section IV-E.

IV. SOC ARCHITECTURE

In this section, we describe the 16-nm SoC architecture
(Fig. 1), consisting of: 1) AON subsystem; 2) dual-core Arm
Cortex-A53 CPUs; 3) 2 × 2 eFPGA array; and 4) quad-
core cache-coherent datapath accelerators (CCA). The memory
system includes an interconnect, a 4-MB four-bank software-
managed SRAM, and an off-chip interface to an FPGA board
for DRAM and other peripherals.

A. Accelerator Offload Overheads

The typical accelerator execution model begins with a CPU
thread, which writes setup/control registers and then transfers
input data to the accelerator. When the accelerator execution
is complete, an interrupt is raised and the CPU can retrieve the
output data from the accelerator. The hardware aspects of these
overheads are discussed in this article, however, we also note
that a full software stack with operating system and drivers
can also increase offload overheads.

B. AON Subsystem

The AON subsystem (Fig. 4) has the lowest power profile
on the SoC and can operate autonomously from its own
dedicated SRAM, while the remainder of the SoC is powered
down. AON is used to perform SoC housekeeping tasks and
autonomous continuous sensing, such as repeated inference
on small DNNs [24], [25]. For more complex tasks requiring
more compute or a rich feature set, AON boots the A53 CPUs.

The subsystem is based around an Arm Cortex-M0 micro-
controller, an AHB interconnect with 32-bit data width,

Fig. 4. Autonomous low-power AON subsystem.

a 128-KB SRAM for storing program binaries and data, simple
peripherals such as GPIOs for sensor interfaces and timers
to orchestrate wake-up events. It also includes a fully con-
nected DNN (FC-DNN) inference accelerator optimized for
sparsity and includes a self-contained 1 MB SRAM for storing
weights without requiring an off-chip memory interface [24].
An integrated digitally controlled oscillator (DCO) allows the
performance of the accelerator to be scaled to meet a range
of throughput requirements. The AON cluster implementation
is optimized for power consumption rather than energy, as it
is typically running most of the time.

C. Dual-Core Arm Cortex-A53 Cluster (A53)

A general-purpose CPU cluster is used to run the system
and application software. The Arm Cortex-A53 is widely used
in commercial mobile and IoT products and is significantly
more capable than the microcontroller in the AON subsystem.
It implements a rich 64-bit ISA with an in-order, eight-stage,
dual-issue pipeline, with wide 128-bit SIMD units, and a
floating point unit. The cluster has private 64 KB L1 caches,
a shared 2 MB L2 cache, and also includes multi-core debug
and a generic interrupt controller. The ACP on the cluster
provides direct (physically addressed) access into the large
L2 cache, which we use for attaching accelerators with low
offloading overhead.

D. eFPGA Cluster

The eFPGA (Section II) is integrated as a first-class citizen
on the SoC, via dedicated bus interfaces (Fig. 5). To save
resources on the eFPGA, these interfaces are mainly imple-
mented in logic on the SoC, with some simple minimal
interfacing and handshaking on the eFPGA side synthesized
into LUTs. The first of these interfaces is an AXI slave used for
programming the eFPGA bitstream. Programming is driven by
the A53, which reads the bitstream from the main memory and
writes it to the programming slave word-by-word, where a data
integrity checksum is performed, before it is driven onto scan
chains inside the eFPGA macro to configure the array. Once
programming is complete, A53 releases the resets and enables
the user clocks to the eFPGA, at which point the programmed
design is operational. Another slave interface attached to a
128-byte register file provides storage for user control and
status registers (CSRs). These registers are directly connected
to the eFPGA macro pins and save precious LUTs inside the
macro. Finally, a master and slave AXI interface pair provides

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:57:46 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SMIV: 16-nm 25-mm2 SoC FOR IoT 643

Fig. 5. SoC integration of the eFPGA cluster, with four interfaces: 1) slave
for programming the bitstream; 2) slave for CSRs; 3) slave for user data; and
4) master for user data.

128-bit data movement into and out of the SoC interconnect,
with support for bursts and other standard features. GPIO
pins are also provided for PCB interfacing flexibility via the
eFPGA, as well as some pins for external configuration, debug,
and power sequencing.

E. Quad-Core Cache Coherent Datapath Accelerators (CCA)

A very wide variety of hardware accelerators for DNN
inference have been published to date [8]–[12]. They typically
consist of large datapaths and large SRAMs, with relatively
simple control and data movement. The improvements in
throughput and energy efficiency compared to CPUs can be
multiple orders of magnitude. However, specialized hardware
has limited flexibility and can be prone to obsolescence.

In this work, we implement a CCA with composable kernel
primitives, a paradigm practical only due to the low-latency
coherent ACP interface (Section III). The CCA core (Fig. 3)
implements a datapath with three key atomic kernels of: 1) 2-D
convolution; 2) dot product; and 3) vector reduction. These are
arguably the most common fundamental operations in DNN
inference and can be composed together to implement specific
DNN layers, with the CPU implementing auxiliary processing
such as activation functions. The datapath for 2-D convolution
is shown in Fig. 6. The activations are streamed in via an
internal DMA engine, which provides native support for 1×1
convolution by loading activations channel-wise (red in Fig. 6)
or row-wise (denoted in blue) for 2-D convolutions. Parallel
MACs produce partial products that are stored in two 8×32-bit
register files. The MACs are organized into 2×4 parallel lanes
to allow the accelerator more parallelism in 2-D convolution
with smaller convolution kernels becoming more prevalent.
Finally, a merge stage optionally adds partial sums before
writeback to the local SRAM. Input operands are 16-bit, with
32-bit partial sums.

F. On-Chip SoC Interconnect and Memory System

The main on-chip SoC interconnect is an Arm NIC-400 with
a 128-bit data width, designed and configured using the Arm
Socrates tool [26]. To allow aggressive dynamic voltage and
frequency scaling (DVFS), each compute cluster operates on
an independent clock domain, with fully asynchronous clock
domain crossing (CDC). The interconnect is configured to
balance the data transfer bandwidth with the throughput of the
compute clusters. A 4-MB, four-bank on-chip SRAM memory

Fig. 6. Design of the three-stage flexible accelerator datapath optimized for
2-D convolution (blue) with native support for 1 × 1 convolution (red).

is attached to this interconnect and provides high-performance
on-chip software-managed scratchpad memory. For simple
tests, this SRAM is sufficient. However, for larger tests on
more representative workloads, as well as programming the
eFPGA, a much larger main memory is required. The test chip
does not include a DRAM main memory interface due to the
high cost, time, and risk this introduces. Instead, we interface
the test chip with a Xilinx KCU105 FPGA, which acts as
a dummy slave memory system. This allows the SoC to
initiate read and write transactions on the Xilinx FPGA, which
includes DRAM and other non-trivial peripherals such as a
PCIe interface.

G. Synthesizable Off-Chip Interface

We implemented a simple parallel off-chip interface
between the test chip and a Xilinx FPGA. Fig. 7 gives an
overview of the interface. The forward link (test chip to FPGA)
occupies 38 bits and consists of 32-bit data, control signaling,
source-synchronous clock, and a reset. The reverse link (FPGA
to test chip) is 71 bits, mainly due to a larger 64-bit data
payload. A simple token flow control is used to ensure that
buffers do not overflow on the FPGA side, which may be
very slow and blocking in the case of some low-performance
peripherals. The address, data, and control signaling from the
on-chip interconnect is then multiplexed down to the link
width.

The physical layer uses simple rail-to-rail source synchro-
nous signaling, with forwarded clocks and resets from the
SoC side. The PHY on the test chip side does not use any
custom cells or layout and simply consists of a set of launching
flip-flops and standard library IO pads. On the Xilinx FPGA
side, the per-pin de-skewing functionality is used to align the
incoming and outgoing data to correct for delay matching
between data bits and the forwarded clock. This can be done
automatically for the forward link. For the reverse link from
the Xilinx FPGA, we added a debug mode [denoted by debug
signal paths (DBG) in Fig. 7] using a loop-back on the FPGA
side, with logic to capture consecutive data words on the
test chip to allow implement automatic de-skew using the
A53 CPUs.

The synthesizable PHY achieves reliable error-free com-
munication up to around 200 MHz clock frequency in our
implementation. This gives a forward data rate of around
6.4 Gbps and reverse link data rate of 12.8 Gbps. However,
we typically operate the link at 157 MHz, which is an integer
ratio of the memory controller clock on the FPGA.

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:57:46 UTC from IEEE Xplore. Restrictions apply.

644 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 2, FEBRUARY 2022

Fig. 7. Synthesizable off-chip interface to off-chip Xilinx FPGA which provides DRAM main memory and other peripherals. Abbreviations: CDC—clock
domain crossing; PLL—phase-locked loop; DCO—digitally controlled oscillator; DBG—debug signal paths.

TABLE I

TEST CHIP SUMMARY

V. TEST CHIP IMPLEMENTATION

The 25-mm2 test chip was implemented in a TSMC 16-nm
FinFET technology (Table I). Each compute cluster on the test
chip operates on an independent voltage and clock domain,
as does the SoC fabric that includes the NIC-400 and 4-MB
on-chip SRAM. This provides the SoC with flexibility in
efficiency and throughput by enabling each compute cluster to
tailor its operating point to the workload needs, in exchange
for added design complexity. Annotated photographs of the
die and PCB are given in Fig. 8.

A. RTL Design and Validation

The IP integrated in SMIV falls into four categories.

1) In-House Soft IP (Verilog RTL): CCA and AON blocks.
2) In-House Hand-Mapped Cell Netlists: DCOs and PHY.
3) Commercial Soft IP (Verilog RTL): Arm Cortex-A53,

Cortex-M0, and CoreConnect interconnects.
4) Commercial Hard IP Macros (GDS): eFPGA.

A large portion of the SoC integration was performed using
Arm Socrates [26], which configures the NIC-400 intercon-
nect, and generates a top-level netlist for this portion. This
was then integrated by hand with the remainder of the design,
including the AON subsystem, the wide-IO interface, clocking
and reset circuits, and the top-level pad-ring.

Fig. 8. Photographs of (a) 25-mm2 SMIV test chip in 16-nm FinFET, and
(b) PCBs used for bring up and characterization. The test chip PCB shown
at the bottom of (b) interfaces to a Xilinx KCU105 development board (top)
via FMC connectors [27], which provides DRAM main memory.

The RTL implementation and validation of a non-trivial
SoC can quickly become an overwhelmingly time-consuming
task, so was developed simple automation tooling to aid in
developing and maintaining vital and common components
such as the pad ring, test circuits, memory maps, and memory-
mapped registers. The open-source CHIPKIT project [28]
provides a number of tools and IPs, including the VGEN tool
which was used extensively during the design process.

We also developed a comprehensive full-chip validation
methodology, which includes RTL and netlist validation steps,
as well as FPGA emulation. Particular validation effort was
spent on CDCs, clock and reset behavior, and chip boot up
sequencing. The eFPGA IP, in particular, requires a controlled
power up sequence to prevent crowbar current, which involved
additional validation effort. All the main functional blocks
(Fig. 1) include asynchronous CDCs on the bus interfaces to
allow DVFS flexibility.

B. Physical Design

Standard cell libraries and SRAM compilers from Arm and
TSMC were used, with a multi-vendor EDA flow based on
Synopsys Design Compiler for synthesis, Cadence Innovus for
place and route, and Synopsys PrimeTime for static timing
analysis (STA). The 25-mm2 test chip dictated that we use
a hierarchical physical implementation approach in order to
allow for faster respins of the design from RTL to timing
of extracted layout. The hierarchical approach also facilitates
implementation of the independent power domains, simplify-
ing the power specification required for SoC integration, while

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:57:46 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SMIV: 16-nm 25-mm2 SoC FOR IoT 645

Fig. 9. Measured SoC characterization results. (a) Power dissipation scales as compute clusters are activated, from sleep mode with only AON active up to
fully active SoC. (b) Energy and throughput across compute clusters for a matrix multiply workload. The curves are generated by optimal voltage/frequency
scaling. The total energy scales by 256× as we move from CPU programmed in software, through to eFPGA programmed with RTL and up to increasingly
fixed-function hardware accelerators (CCA and AON). The black markers represent the minimum energy point (V MEP), and the extremes of each line represent
V MAX and V MIN. All are processing dense matrix–matrix multiplication, except for AON which is performing multiplication of dense matrix and a sparse
vector. (c) Silicon area efficiency scales from the relatively low compute density of the CPUs, to eFPGA, and up to the CCA and AON accelerators. (a) Power.
(b) Energy. (c) Area.

Fig. 10. Measured FC accelerator in AON cluster executing neural network benchmarks, showing (a) throughput and (b) energy across the oper-
ating point range. Measured energy at VMEP and accuracy on the MNIST dataset (c) compared with previous measured silicon results, including:
Whatmough et al. [7], Lee et al. [24], Jia et al. [29], Ando et al. [30], Moons et al. [31], Kim et al. [32], and Merolla et al. [33]. VMEP: 0.5 V/142 MHz,
VNOM: 0.8 V/644 MHz, VMAX: 1.05 V/972 MHz.

keeping voltage domain requirements for each cluster man-
ageable. Implementation constraints encompassed a range of
power/performance points covering foundry process, voltage
and temperature (PVT) corners. The die was flip-chip bonded
to a custom 671-pin BGA package substrate, with dedicated
power delivery networks for each voltage island on the SoC.

C. Test and Measurement Setup

Fig. 8(b) shows the test setup. The test chip PCB uses
a high-performance membrane BGA socket to avoid signif-
icantly compromising signal and power integrity. The PCB
provides regulated supply voltages for each power domain, all
from a single 5-V dc connector. It also provides a power-on
reset signal and a 50-MHz system clock to the SoC, with
all other clocks and resets generated on-chip. Fast on-chip
clocks are generated using a simple open-loop DCO, which is
composed of only standard cells with no custom layout, but
does require calibration. A UART to USB transceiver chip on
the PCB is used to allow a laptop to be directly connected to
the PCB for communication with the test chip. This facility
is used to load binary programs and even remotely host the
SoC, which is very convenient for testing. The test chip PCB is
connected to the Xilinx KCU105 using the FPGA mezzanine
card (FMC) connectors [27].

TABLE II

AON FC BENCHMARK TASKS

VI. MEASUREMENT RESULTS

Measurements are for typical silicon at room temperature.

A. SoC Power Envelope

The measured 1236× power envelope [Fig. 9(a)] spans
1.1 mW (AON only, V MEP), through 36 mW (all clusters
active, V MEP), and up to 1.36 W (all clusters active, V MAX).

B. AON Cluster

The FC accelerator in the AON cluster is intended to
run continuously to detect wake up events, and therefore,

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:57:46 UTC from IEEE Xplore. Restrictions apply.

646 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 2, FEBRUARY 2022

Fig. 11. Measured results for the MobileNet workload. (a) Runtime benefits of coherent ACP interface on individual MobileNet layers, due to keeping the
data local in the L2 cache. (b) Cumulative runtime benefit for a single inference on the whole model. (c) Measured energy per inference on MobileNet at
three operating points across the different compute clusters. Note that the AON cluster has limited functionality and does not support a model of this size.

efficiency is critical. We implemented five relevant ML tasks
(Table II): face matching [34], keyword detection [35], two
different human activity recognition tasks [36], [37], and
handwritten digit classification [38]. The FC accelerator was
then measured in terms of throughput [Fig. 10(a)] and energy
[Fig. 10(b)], over three operating points spanning the full
dynamic range: from the minimum energy point (VMEP) at
0.5 V/142 MHz, through nominal (VNOM) at 0.8 V/644 MHz,
and up to the highest frequency at the highest voltage, VMAX

at 1.05 V/972 MHz. All five tasks are well below 1 uJ
per inference at a throughput of many thousands of infer-
ences per second. This ensures low power consumption in
AON operation, with plenty of headroom for high sample
rates.

A comparison of the AON FC accelerator measurements
with previously published full accelerator silicon measure-
ments is given in Fig. 10(c) for the MNIST benchmark. A wide
range of approaches have been presented, including spiking
neural networks (SNNs) [32], [33], [39] which tend to offer
efficiency but poor accuracy, and convolutional neural net-
works (CNNs) [31], [40] which tend to have a high accuracy,
but have a very high operation count which increases energy.
FC networks offer a good balance between model size and
compute for these AON tasks. Analog [39] and especially
analog in-memory compute [30], [41]–[43] approaches have
previously shown limited accuracy due to non-idealities, but
are improving rapidly. For example, Yin et al. [44] report
98.8% accuracy on the MNIST task, although their test chip
only implements the matrix–vector computation and does
not include activation storage and processing. Binary net-
works [43] are also a promising direction in digital too.

C. Compute Kernel Acceleration on eFPGA

We implemented eFPGA designs for common workloads
that span basic linear algebra subroutines (BLAS), digital
signal processing (DSP), and cryptography (crypto) (Table III).
The eFPGA designs include a custom 8-bit 10 × 8 systolic
array, 40-/80-tap non-symmetric FIR filters [45], 16-bit fixed-
point FFTs supporting 64- and 32-point transforms [20], and
128-bit AES encryption and decryption cores [46]. These are
compared against optimized software implementations on the
A53 cluster, based on the Ne10 library [47] for DSP, and

Eigen [48] for BLAS, both of which are optimized for Arm
SIMD. The crypto routines were based on Tiny-AES-C [49].

Table III shows the results of offloading the workloads to
the eFPGA, presenting energy efficiency and throughput gains
over the A53 cluster at nominal voltage (V NOM) of 0.8 V,
as well as the maximum frequency achievable by the eFPGA
at V MAX of 1.05 V. The energy efficiency and through-
put increase by 5.5× and 27×, respectively, for CONV-2D
offloaded to eFPGA. For an 80-tap direct-form FIR filter (FIR-
80) design with 100% DSP utilization, the energy efficiency
increases by 17.36× compared to the Ne10 software imple-
mentation. A 40-tap variant (FIR-40) leaves half of the DSPs
idle, and hence, the energy efficiency gain drops to 13.4×.
The largest FFT that fits (FFT-64) uses 75% of the DSPs
and achieves 47.6× throughput and 7.07× energy gains. The
AES128 ECB encryption/decryption kernel (AES-ENC/DEC)
emphasizes bit-wise operations, which can be efficiently
implemented in LUTs. The eFPGA implementation provides
up to 28.9× and 120× improvement for energy efficiency and
throughput, mainly due to the efficient use of LUTs by bit-
wise operations. Note that all of these designs allow pipelined
invocations: they accept new inputs consecutively, except for
AES which blocks new inputs until the current computation
is complete.

In summary, we were able to achieve very large improve-
ments in both throughput and energy from offloading compute
kernels to eFPGA. Although the programming effort is higher
than for CPU, eFPGA does still retain programmability.

D. CCA Offload on CCA

To demonstrate the CCA cluster in a typical application
scenario, we extensively characterized MobileNetV1 [13]
inference performance. This model represents a significant
reduction in operations and memory footprint, compared to
older image classification models, such as AlexNet [50]
and VGG [51]. The model is mainly composed of alternate
depth-wise and point-wise convolution layers, using strided
convolution rather than pooling, and a single FC layer.

Fig. 11(a) shows the measured runtime on the CCA cluster
for each layer in the model. Each line in the plot represents
a different offload model. The fastest is to use non-coherent
on-chip software-managed SRAM. However, this represents

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:57:46 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SMIV: 16-nm 25-mm2 SoC FOR IoT 647

TABLE III

MEASURED KERNELS ACCELERATED ON EFPGA

Fig. 12. Measured power consumption for four key application tasks executing at a fixed-throughput on specialized accelerators compared to a baseline of
A53 CPU only. Specialized hardware achieves more than an order of magnitude lower power consumption for all tasks. Each kernel is measured on the test
chip in isolation, with dotted lines between phases, indicating that the transition is not measured. For operating points, see Section VI-F. The CCA accelerator
is specialized for DNN workloads and cannot execute the DSP and Crypto workloads.

the most challenging programming model, as the software is
entirely responsible for allocating and moving buffers. For
larger models, the weights will not fit in on-chip SRAM,
and so they must be loaded from off-chip DRAM. With
non-coherent memory access, any data that is resident in the
CPU cache must be manually flushed to main memory.

The benefits of the ACP interface were previously explored
on FPGA in [22] and in ASIC simulation in [23]. Measured
results on silicon are given here. The CCA performance with
the ACP interface is shown by the green line in Fig. 11(a).
Here, we achieve a runtime that falls between non-coherent
SRAM and non-coherent DRAM. However, although not
quite as fast as non-coherent SRAM, it is much faster than
DRAM and at the same time is much easier to program
and does not require explicit L2 cache flushes. Fig. 11(b)
summarizes the runtime for the whole model, for the three
data movement schemes.

Fig. 11(c) gives energy per inference on the whole
MobileNetV1-128 model, for A53, eFPGA, and CCA clusters
(AON does not support CNNs). The energy per inference is
compared at the three operating points of minimum energy
point (V MEP), nominal (V NOM), and max frequency (V MAX).
Relative to the CPU baseline, we see an improvement of 3.1×
(SIMD), 22.7× (eFPGA), and 47.9× (CCA) at V NOM.

E. Compute Efficiency Across Clusters

GEMM is a key kernel in many compute-intensive work-
loads, including DNN inference. In this section, we benchmark
GEMM performance across all four of the compute clusters on
the SMIV test chip. Fig. 9(b) shows a comparison of GEMM

throughput and energy efficiency for all the compute clusters.
Each curve represents the range of operating points given by
the highest clock frequency at each functional supply voltage.
The black marker on each curve indicates the minimum energy
point (MEP) of the range for each design. The baseline
SIMD CPUs achieve 58.7 GOPS/W energy efficiency. Moving
to eFPGA, which still retains post-silicon programmability,
increases energy efficiency to 312.4 GOPS/W at a throughput
of around 100 GOPS, limited by the number of DSP blocks
available in the eFPGA. The CCA cluster achieves energy effi-
ciency of 1.04 TOPS/W from dedicated custom hardware, with
limited post-silicon flexibility and a more rigid, non-portable
programming model. Finally, the AON cluster includes a very
specialized accelerator that only supports FC DNN layers, but
is heavily optimized for energy efficiency [7] and achieves
4.88 TOPS/W.

The throughput normalized area efficiency is compared
in Fig. 9(c). Typically, CPUs have a low peak arithmetic
throughput relative to their area, and the A53 is no exception.
The eFPGA has fairly high throughput, even at moderate clock
frequencies and achieves more than an order of magnitude
higher area efficiency as a result. However, the highest area
efficiency is achieved by the most specialized hardware accel-
erators (CCA and AON). AON has lower area efficiency, as it
operates without the rest of the SoC and hence, requires a
dedicated 1 MB SRAM, increasing the area significantly.

F. Real-Time Application Acceleration

To demonstrate the power savings from a heterogeneous
SoC at fixed throughput, we use an application workload

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:57:46 UTC from IEEE Xplore. Restrictions apply.

648 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 2, FEBRUARY 2022

TABLE IV

COMPARISON WITH RELATED WORK

with four key compute phases. Between each major compute
task, application code runs on the host CPU. The first task
is a DNN audio keyword detection workload, which runs
continuously at the real-time audio rate, until a keyword is
detected, at which point the A53 is booted up. The second
task is an image classification CNN, which runs MobileNet at
100 image patches per second. The third is a DSP filtering
task, which runs a 40-tap FIR on a 1-D signal block at
10 MSamples/s. The fourth is a cryptograph task, which
applies AES encoding of a data block at 15 Mb/s. DVFS is
tuned optimally to meet the throughput requirement on each
compute cluster.

Fig. 12 compares the power consumption of these appli-
cation phases for: 1) an A53 CPU-only system and 2) the
full SMIV SoC, mapping each phase to one of the three
accelerators. Across the whole workload, the accelerators
demonstrate at least an order of magnitude lower power
consumption than the A53 alone, at the same fixed throughput.
The keyword detection DNN dissipates 13 µW on the AON
block at 0.5 V/1.6 MHz with the rest of the SoC powered
down. The MobileNet CNN dissipates 1.9 mW on the CCA
at 0.4 V/25 MHz. The DSP filtering task on eFPGA consumes
2.4 mW at 0.4 V/10 MHz. Finally, the Crypto AES encode
on eFPGA consumes 1.6 mW at 0.42 V/7.5 MHz.

In summary, we find that on this fixed-throughput real-
time workload, the gains achieved compared directly with
the A53 are different to the energy comparison at variable
throughput (Section VI-E), because A53 often struggles to
meet even modest real-time throughput requirements and
therefore requires higher supply voltage to increase frequency.
On the other hand, specialized hardware has much higher
performance headroom and can operate at VMIN to reduce
power while sustaining sufficient frequency.

G. Comparison With Previous Work

This article demonstrates a heterogeneous SoC with four
distinct compute clusters on a single SoC, highlighting the
relative trade-offs in throughput, efficiency, and program-
ming model. We are not aware of any similar heterogeneous
SoCs against which to compare our work, however, here
we briefly compare the four compute clusters individually
with corresponding state-of-the-art single-accelerator articles.

Hence, Table IV gives a high-level comparison with some
recent publications in the same 16-nm technology.

In terms of CPU-based accelerators, the Celerity 496-core
CPU array [52] and Hwacha [53] vector unit both achieve
higher throughput than we target for IoT applications. How-
ever, although both these chips demonstrate high throughput,
their energy efficiency is somewhat limited and lower than
achieved in our work by the eFPGA, CCA, and AON clusters.

Comparing the CCA (Section III and AON with a recent
16-nm DNN accelerator [54], the latter demonstrates higher
throughput (four TOPS) than we target here for IoT appli-
cations. However, the energy efficiency at nearly 1 TOPS/W
is similar to that of the CCA cluster in our work, and the
AON cluster significantly exceeds this at 4.84 TOPS/W, but is
heavily specialized for small FC models.

VII. CONCLUSION

This article describes a 16-nm SoC for IoT applications,
comprising four main compute clusters: an AON subsystem
with self-contained DNN accelerator, a dual-core Arm Cortex-
A53 cluster, an eFPGA cluster, and a cache-coherent data-
path accelerator. The range of compute specialization allows
for very low power consumption in AON mode (1.1 mW),
while providing both higher performance and broader work-
load support from activating the other compute clusters. The
eFPGA cluster demonstrates increases in energy efficiency
of 5.5–28.9× after offloading from the A53 CPUs. The
cache-coherent datapath accelerators operating in concert from
the A53 L2 cache via ACP increase energy efficiency on the
MobileNetV1 workload by 55× compared to A53. Finally,
the overall efficiency range for GEMM compared to the dual-
core A53 baseline spans 3.1× (A53 with SIMD), 16.5×
(eFPGA), 54.9× (CCA), and up to 256× (AON).

ACKNOWLEDGMENT

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Government. The authors are grateful to Arm and
FlexLogix for providing IP.

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:57:46 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SMIV: 16-nm 25-mm2 SoC FOR IoT 649

REFERENCES

[1] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
An energy-efficient deep neural network accelerator with fully variable
weight bit precision,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 173–185, Jan. 2019.

[2] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[3] H. Li, M. Bhargava, P. N. Whatmough, and H.-S.-P. Wong, “On-
chip memory technology design space explorations for mobile deep
neural network accelerators,” in Proc. 56th Annu. Design Autom. Conf.,
Jun. 2019, pp. 1–6.

[4] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo, “An energy-
efficient sparse deep-neural-network learning accelerator with fine-
grained mixed precision of FP8–FP16,” IEEE Solid-State Circuits Lett.,
vol. 2, no. 11, pp. 232–235, Nov. 2019.

[5] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann,
“An always-on 3.8 µJ/86% CIFAR-10 mixed-signal binary CNN proces-
sor with all memory on chip in 28-nm CMOS,” IEEE J. Solid-State
Circuits, vol. 54, no. 1, pp. 158–172, Jan. 2019.

[6] M. E. Sinangil et al., “A 7-nm Compute-in-Memory SRAM macro
supporting multi-bit input, weight and output and achieving 351
TOPS/W and 372.4 GOPS,” IEEE J. Solid-State Circuits, vol. 56, no. 1,
pp. 188–198, Jan. 2021.

[7] P. N. Whatmough, S. K. Lee, D. Brooks, and G.-Y. Wei, “DNN engine:
A 28-nm timing-error tolerant sparse deep neural network processor
for IoT applications,” IEEE J. Solid-State Circuits, vol. 53, no. 9,
pp. 2722–2731, Sep. 2018.

[8] J. Song et al., “7.1 An 11.5 TOPS/W 1024-MAC butterfly structure
dual-core sparsity-aware neural processing unit in 8 nm flagship mobile
SoC,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2019, pp. 130–132.

[9] Y. Jiao et al., “7.2 A 12 nm programmable convolution-efficient neural-
processing-unit chip achieving 825 TOPS,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 136–140.

[10] C.-H. Lin et al., “7.1 A 3.4-to-13.3 TOPS/W 3.6 TOPS dual-core deep-
learning accelerator for versatile AI applications in 7 nm 5G smartphone
SoC,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2020, pp. 134–136.

[11] J. Oh et al., “A 3.0 TFLOPS 0.62V scalable processor core for high
compute utilization AI training and inference,” in Proc. IEEE Symp.
VLSI Circuits, Jun. 2020, pp. 1–2.

[12] I. Bratt, “Arm’s first-generation machine learning processor,” in Proc.
IEEE/ACM SIGARCH Hot Chips A, Symp. High Perform. Chips,
May 2018.

[13] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[14] P. N. Whatmough et al., “A 16 nm 25 mm2 SoC with a 54.5x
flexibility-efficiency range from dual-core arm cortex-A53 to eFPGA and
cache-coherent accelerators,” in Proc. Symp. VLSI Circuits, Jun. 2019,
pp. C34–C35.

[15] P. N. Whatmough et al., “SMIV: A 16 nm SoC with efficient and flexible
DNN acceleration for intelligent IoT devices,” in Proc. IEEE/ACM
SIGARCH Hot Chips A, Symp. High Perform. Chips, 2018.

[16] D. Greenhill et al., “3.3 A 14 nm 1 GHz FPGA with 2.5D transceiver
integration,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2017, pp. 54–55.

[17] F.-L. Yuan, C. C. Wang, T.-H. Yu, and D. Marković, “A multi-granularity
FPGA with hierarchical interconnects for efficient and flexible mobile
computing,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 137–149,
Jan. 2015.

[18] J. Fowers et al., “A configurable cloud-scale DNN processor for real-
time AI,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2018, pp. 1–14.

[19] P. N. Whatmough, C. Zhou, P. Hansen, S. K. Venkataramanaiah, J. Seo,
and M. Mattina, “FixyNN: Efficient hardware for mobile computer
vision via transfer learning,” in Proc. 2nd SysML Conf., Palo Alto, CA,
USA, 2019.

[20] P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer genera-
tion of hardware for linear digital signal processing transforms,” ACM
Trans. Design Autom. Electron. Syst., vol. 17, no. 2, pp. 1–33, Apr. 2012.

[21] B. Khailany et al., “A modular digital VLSI flow for high-productivity
SoC design,” in Proc. 55th Annu. Design Autom. Conf. New York, NY,
USA: ACM, Jun. 2018, pp. 1–6, doi: 10.1145/3195970.3199846.

[22] M. Sadri, C. Weis, N. Wehn, and L. Benini, “Energy and performance
exploration of accelerator coherency port using Xilinx Zynq,” in Proc.
10th FPGAworld Conf. (FPGAworld). New York, NY, USA: ACM,
2013, pp. 1–8, doi: 10.1145/2513683.2513688.

[23] S. L. Xi, Y. Yao, K. Bhardwaj, P. Whatmough, G.-Y. Wei, and
D. Brooks, “SMAUG: End-to-end full-stack simulation infrastructure for
deep learning workloads,” ACM Trans. Archit. Code Optim., vol. 17,
no. 4, pp. 1–26, Nov. 2020, doi: 10.1145/3424669.

[24] S. K. Lee, P. N. Whatmough, D. Brooks, and G.-Y. Wei,
“A 16-nm always-on DNN processor with adaptive clocking and multi-
cycle banked SRAMs,” IEEE J. Solid-State Circuits, vol. 54, no. 7,
pp. 1982–1992, Jul. 2019.

[25] S. Kodali, P. Hansen, N. Mulholland, P. Whatmough, D. Brooks, and
G.-Y. Wei, “Applications of deep neural networks for ultra low power
IoT,” in Proc. IEEE Int. Conf. Comput. Design (ICCD), Nov. 2017,
pp. 589–592.

[26] Arm Socrates. Accessed: Sep. 1, 2021. [Online]. Available:
https://developer.arm.com/tools-and-software/ip-configuration-
tools/socrates

[27] R. Seelam. (2019). I/O Design Flexibility With the FPGA Mez-
zanine Card (FMC). [Online]. Available: https://www.xilinx.com/
support/documentation/white_papers/wp315.pdf

[28] P. N. Whatmough, M. Donato, G. G. Ko, S. K. Lee, D. Brooks, and
G.-Y. Wei, “CHIPKIT: An agile, reusable open-source framework for
rapid test chip development,” IEEE Micro, vol. 40, no. 4, pp. 32–40,
Jul. 2020.

[29] T. Jia, Y. Ju, and J. Gu, “A dynamic timing enhanced DNN accelerator
with compute-adaptive elastic clock chain technique,” IEEE J. Solid-
State Circuits, vol. 56, no. 1, pp. 55–65, Jan. 2021.

[30] K. Ando et al., “BRein memory: A single-chip binary/ternary reconfig-
urable in-memory deep neural network accelerator achieving 1.4 TOPs
at 0.6 W,” IEEE J. Solid-State Circuits, vol. 53, no. 4, pp. 983–994,
Apr. 2018.

[31] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst, “Binar-
Eye: An always-on energy-accuracy-scalable binary CNN processor with
all memory on chip in 28 nm CMOS,” in Proc. IEEE Custom Integr.
Circuits Conf. (CICC), Apr. 2018, pp. 1–4.

[32] J. K. Kim, P. Knag, T. Chen, and Z. Zhang, “A 640M pixel/s 3.65mW
sparse event-driven neuromorphic object recognition processor with on-
chip learning,” in Proc. IEEE Symp. VLSI Circuits Tech. Papers, Kyoto,
Japan, Jun. 2015, pp. C50–C51.

[33] P. A. Merolla et al., “A million spiking-neuron integrated circuit
with a scalable communication network and interface,” Science,
vol. 345, no. 6197, pp. 668–673, Aug. 2014. [Online]. Available:
http://science.sciencemag.org/content/345/6197/668

[34] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” Univ. Massachusetts, Amherst, Amherst, MA,
USA, Tech. Rep. 07-49, Oct. 2007.

[35] P. Price, W. M. Fisher, J. Bernstein, and D. S. Pallett, “The DARPA
1000-word resource management database for continuous speech recog-
nition,” in Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
vol. 1, Apr. 1988, pp. 651–654.

[36] R. Chavarriaga et al., “The opportunity challenge: A benchmark data-
base for on-body sensor-based activity recognition,” Pattern Recognit.
Lett., vol. 34, no. 15, pp. 2033–2042, Jan. 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865512004205

[37] J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita,
“Transition-aware human activity recognition using smartphones,”
Neurocomputing, vol. 171, pp. 754–767, Jan. 2016, doi: 10.1016/j.
neucom.2015.07.085.

[38] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[39] F. N. Buhler, P. Brown, J. Li, T. Chen, Z. Zhang, and M. P. Flynn, “A
3.43 TOPS/W 48.9 pJ/pixel 50.1 nJ/classification 512 analog neuron
sparse coding neural network with on-chip learning and classifica-
tion in 40 nm CMOS,” in Proc. Symp. VLSI Circuits, Jun. 2017,
pp. C30–C31.

[40] B. Moons and M. Verhelst, “A 0.3-2.6 TOPS/W precision-scalable
processor for real-time large-scale ConvNets,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Jun. 2016, pp. 1–2.

[41] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of
a machine-learning classifier in a standard 6T SRAM array,”
IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 915–924,
Apr. 2017.

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:57:46 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3195970.3199846
http://dx.doi.org/10.1145/2513683.2513688
http://dx.doi.org/10.1145/3424669
http://dx.doi.org/10.1016/j.neucom.2015.07.085
http://dx.doi.org/10.1016/j.neucom.2015.07.085

650 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 2, FEBRUARY 2022

[42] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient
SRAM with embedded convolution computation for low-power CNN-
based machine learning applications,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 488–490.

[43] T. Stadtmann, C. Latotzke, and T. Gemmeke, “From quantitative analysis
to synthesis of efficient binary neural networks,” in Proc. 19th IEEE Int.
Conf. Mach. Learn. Appl. (ICMLA), Dec. 2020, pp. 93–100.

[44] S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “XNOR-SRAM: In-memory
computing SRAM macro for binary/ternary deep neural networks,” IEEE
J. Solid-State Circuits, vol. 55, no. 6, pp. 1733–1743, Jun. 2020.

[45] Performance Benchmarking Embedded FPGAs. Accessed: Sep. 1, 2021.
[Online]. Available: https://flex-logix.com/wp-content/uploads/2019/04/
2018-05-performance-benchmarking-embedded-FPGAs-r1p2.pdf

[46] OpenCores. Accessed: Sep. 1, 2021. [Online]. Available:
https://opencores.org

[47] Ne10 Library. Accessed: Sep. 1, 2021. [Online]. Available:
https://projectne10.github.io/Ne10/

[48] Eigen Library. Accessed: Sep. 1, 2021. [Online]. Available:
https://gitlab.com/libeigen/eigen

[49] Tiny-AES-C Library. Accessed: Sep. 1, 2021. [Online]. Available:
https://github.com/kokke/tiny-AES-c

[50] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. 25th Int. Conf.
Neural Inf. Process. Syst. (NIPS), vol. 1. Red Hook, NY, USA: Curran
Associates, 2012, pp. 1097–1105.

[51] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Representation,
2015.

[52] A. Rovinski et al., “Evaluating celerity: A 16-nm 695 Giga-RISC-V
Instructions/s manycore processor with synthesizable PLL,” IEEE Solid-
State Circuits Lett., vol. 2, no. 12, pp. 289–292, Dec. 2019.

[53] C. Schmidt et al., “4.3 An eight-core 1.44 GHz RISC-V vector machine
in 16 nm FinFET,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2021, pp. 58–60.

[54] B. Zimmer et al., “A 0.32–128 TOPS, scalable multi-chip-module-
based deep neural network inference accelerator with ground-referenced
signaling in 16 nm,” IEEE J. Solid-State Circuits, vol. 55, no. 4,
pp. 920–932, Apr. 2020.

Sae Kyu Lee (Member, IEEE) received the B.S.
degree in electrical engineering from Seoul National
University, Seoul, South Korea, in 2006, the M.S.
degree in electrical and computer engineering from
The University of Texas at Austin, Austin, TX,
USA, in 2008, and the Ph.D. degree from Harvard
University, Cambridge, MA, USA, in 2016.

He was previously with Intel Corporation, Austin,
TX, and Advanced Micro Devices, Boxborough,
MA, where he worked on mobile microproces-
sor design. He is currently with IBM T.J. Watson

Research Center, Yorktown Heights, NY, USA. His research interests include
energy-efficient accelerator design for machine learning applications and very
large scale integration (VLSI) design for efficient on-chip power delivery
solutions.

Paul N. Whatmough (Member, IEEE) received the
B.Eng. degree (Hons.) from Lancaster University,
Lancaster, U.K., in 2003, the M.Sc. degree (with
distinction) from the University of Bristol, Bristol,
U.K., in 2004, and the Ph.D. degree from University
College London, London, U.K., in 2012.

From 2005 to 2008, he was with Philips/NXP
Research Laboratories, Redhill, U.K., researching
hardware architecture and signal processing for soft-
ware defined radio from 2005 to 2008. From 2008 to
2015, he was with the Silicon Research and Devel-

opment Group, ARM Ltd., Cambridge, U.K., working on topics including
DSP hardware accelerators, variation tolerance, and system-on-chip (SoC)
supply voltage noise. From 2015 to 2017, he was a Research Associate with
Harvard University, Cambridge, MA, USA. He currently leads research on
hardware for machine learning with Arm Research, Boston, MA, and is a
part-time Associate with the School of Engineering and Applied Sciences,
Harvard University. He has coauthored the book Deep Learning for Computer
Architects (Morgan & Claypool, 2017).

Dr. Whatmough is a member of the IET. He was a recipient of the IET
Student Project Award in 2003, the IEEE Communications Chapter Award
in 2004, and multiple best paper awards. He has served on the technical
program committees of numerous conferences in the fields of solid-state
circuits, computer architecture, and machine learning.

Marco Donato (Member, IEEE) received the B.S.
and M.S. degrees in electrical engineering from
the Università di Roma La Sapienza, Rome, Italy,
in 2008 and 2010, respectively, and the Ph.D. degree
in electrical sciences and computer engineering from
Brown University, Providence, RI, USA, in 2016.

From 2017 to 2020, he was a Post-Doctoral
Research Associate with the John A. Paulson School
of Engineering and Applied Sciences, Harvard Uni-
versity, Cambridge, MA, USA. He is currently an
Assistant Professor with the Department of Electri-

cal and Computer Engineering, Tufts University, Medford, MA. His research
interests include novel design methodologies targeting energy-efficient and
reliable circuits and architectures for emerging computing paradigms.

Glenn G. Ko (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electrical and com-
puter engineering from the University of Illinois
at Urbana-Champaign, Urbana, IL, USA, in 2004,
2006, and 2017, respectively.

He was previously with Samsung Electronics,
Suwon, South Korea, where he worked on mobile
application processor system-on-chips. He also spent
time with Qualcomm, San Diego, CA, USA,
and IBM T.J. Watson Research Center, Yorktown
Heights, NY, USA, working on machine learning

accelerator architectures and deep learning kernels. He is currently a Research
Associate with the Department of Electrical Engineering and Computer
Science, School of Engineering and Applied Sciences (SEAS), Harvard Uni-
versity, Cambridge, MA. He is also the CEO of Stochastic, Inc., Cambridge,
MA. His research interests include machine learning algorithms, computer
architecture, and integrated circuits.

David Brooks (Fellow, IEEE) received the B.S.
degree in electrical engineering from the University
of Southern California, Los Angeles, CA, USA, in
1997, and the M.A. and Ph.D. degrees in electrical
engineering from Princeton University, Princeton,
NJ, USA, in 1999 and 2001, respectively.

He is currently the Haley Family Professor of com-
puter science with the School of Engineering and
Applied Sciences, Harvard University, Cambridge,
MA, USA. His current research interests include
resilient and power-efficient computer hardware and

software design for high-performance and embedded systems.
Dr. Brooks was a recipient of several honors and awards including the ACM

Maurice Wilkes Award and ISCA Influential Paper Award.

Gu-Yeon Wei (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in electrical engineer-
ing from Stanford University, Stanford, CA, USA,
in 1994, 1997, and 2001, respectively.

He is a Robert and Suzanne Case Professor of
electrical engineering and computer science with the
Paulson School of Engineering and Applied Sciences
(SEAS), Harvard University, Cambridge, MA, USA.
His research interests span multiple layers of a
computing system: mixed-signal integrated circuits,
computer architecture, and design tools for efficient

hardware. His research efforts focus on identifying synergistic opportunities
across these layers to develop energy-efficient solutions for a broad range of
systems from flapping-wing microrobots to machine learning hardware for
Internet of Things (IoT) devices to large-scale servers.

Authorized licensed use limited to: Harvard Library. Downloaded on January 25,2023 at 15:57:46 UTC from IEEE Xplore. Restrictions apply.

