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Abstract. We consider the multi-target detection problem of estimating a

two-dimensional target image from a large noisy measurement image that con-

tains many randomly rotated and translated copies of the target image. Mo-
tivated by single-particle cryo-electron microscopy, we focus on the low signal-

to-noise regime, where it is difficult to estimate the locations and orientations

of the target images in the measurement. Our approach uses autocorrela-
tion analysis to estimate rotationally and translationally invariant features of

the target image. We demonstrate that, regardless of the level of noise, our

technique can be used to recover the target image when the measurement is
sufficiently large.

1. Introduction. Let M be a noisy measurement image that contains p randomly
rotated and translated copies of a target image f . More precisely, suppose that
f : R2 → R is supported on the unit disc, and fφ is the rotation of f by angle
φ about the origin. Further, let Fφ : Z2 → R be the discretization of fφ defined
by Fφ(x) = fφ(x/n) for a fixed integer n. We assume that the measurement M :
{1, . . . ,m}2 → R has the form

M(x) =

p∑
j=1

Fφj (x− xj) + ε(x), (1)

where φ1, . . . , φp ∈ [0, 2π) are uniformly random rotations; x1, . . . , xp ∈ {n +
1, . . . ,m−n}2 are arbitrary translations; and ε(x) is i.i.d. Gaussian noise on {1, . . . ,
m}2 with mean zero and variance σ2, see the example in Figure 1.

We further impose a separation condition |xj1 − xj2 | ≥ 4n for j1 6= j2, which
ensures that the targets in the measurement are separated by at least the diameter
of their support. We also assume a density condition pn2/m2 := γ > 0 so that
the targets appear in the measurement at some minimal density. Moreover, it is
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necessary to assume that f has some regularity; we assume f is bandlimited (in the
harmonics on the disc); see 4.4.

(a) (b) (c)

Figure 1. An example of the measurement M defined in (1) with
(a) SNR = 102, (b) SNR = 1 and (c) SNR := 10−2, where SNR =
(πn2σ2)−1

∑
x F (x)2 .

Given the measurement M , the objective is to recover the function f . This
problem is called multi-target detection (MTD) with rotations [8, 22]. Motivated
by single-particle cryo-electron microscopy (cryo-EM), we focus on the low SNR
regime, see Figure 1(c), where estimating the unknown translations and rotations
is challenging [3, 7, 17]. We pose the following question.

Question. Suppose that M : {1, . . . ,m}2 → R is a measurement of the form
described in (1) for fixed signal radius n and density γ. If the variance of the
noise σ2 is fixed (but might be arbitrarily high), can the function f be estimated
from M to any fixed level of accuracy when m is sufficiently large?

In this paper, we develop a mathematical and computational framework for MTD
with rotations, and show empirically that the answer to the above question is af-
firmative. In particular, we describe an autocorrelation analysis algorithm for
recovering the function f from the measurement M and demonstrate its effective-
ness and numerical stability. Additionally, in Section 3, we consider a simplified
version of this statistical estimation problem in one dimension, where we are able
to establish a theoretical foundation for this algorithm.

2. Motivation and related work.

2.1. Motivation. Our interest in the MTD model arises from the structure de-
termination problem for biological molecules. In the past decade, cryo-EM has
emerged as a potent alternative to X-ray crystallography and nuclear magnetic res-
onance (NMR) spectroscopy to resolve the structures of proteins that either cannot
be crystallized or are too complex for NMR. In cryo-EM, a solution that contains
many copies of the target particle is rapidly cooled to form thin vitreous ice sheets
whose thickness is comparable to the single molecule size. These sheets are then im-
aged with an electron microscope. The measurements in cryo-EM can be modeled as
two-dimensional tomographic projections of identical biomolecules at unknown loca-
tions and orientations followed by some image distortion due to the imaging system.
The projection images are embedded in a large, noisy image, called a micrograph.
The crux of single-particle cryo-EM reconstruction is that, with sufficiently many
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micrographs, projection images of similar molecule orientations can be combined
to improve the SNR and, in turn, reconstruct the high-resolution three-dimensional
structure of the molecule.

The current computational pipeline for cryo-EM requires particle picking, the
extraction of the biomolecule projection images from the micrographs [11, 13, 16,
34, 39, 38]. Then, the three-dimensional structure is built from the extracted images
using a variety of algorithms [6, 14, 15, 27, 33, 36]. This approach is problematic
for small particles where the SNR of micrographs is low, and detection becomes
impossible [7, 17, 3]. As such, the difficulty of detection sets a lower bound on the
usable molecule size in the current analysis workflow of cryo-EM data.

Interest in signal recovery beyond the detection limit has prompted the realiza-
tion that the locations of the signal in the measurement are nuisance parameters;
the emerging claim is that signal recovery can be achieved directly from the mea-
surement [7]. Methodologies for direct image estimation have been inspired by
Zvi Kam’s introduction of autocorrelation analysis to the structure reconstruction
problem dealing with randomly oriented biomolecule projections [19]. The process
involves accumulating the “spatial correlations”, or autocorrelations, of signal den-
sity in the measurements in order to average out the noise without estimating the
rotations. These averages are then used for the reconstruction of the target image.
Following Kam’s seminal paper on autocorrelations, several procedures based on
correlations and moments have been proposed for cryo-EM and related modalities,
e.g., [5, 9, 1, 24, 26, 31, 32, 35, 18].

Remark 2.1 (Relation of model of this paper to cryo-EM). The model (1) con-
sidered in this paper involves a large noisy measurement M that contains many
instances of a 2D target image at arbitrary locations and random orientations.
This model is a simplified version of cryo-EM data that, informally speaking, con-
sists of a large noisy measurement that contains many tomographic projections of a
3D density at arbitrary locations and random orientations. While the 2D model we
study is not directly applicable to cryo-EM data, it does represent a step towards
understanding the application of invariant feature based approaches for cyro-EM
by building upon past work on multi-target detection [8, 20, 21, 22, 40]. Moreover,
the model considered in this paper corresponds to a degenerate case in cryo-EM
in which the molecule has a preferred orientation. Random conical tilt [28] is a
classical reconstruction method in cryo-EM that assumes a preferred orientation.
The model considered in this paper has recently been extended to random conical
tilt [23] which does have direct potential applications.

2.2. Related work. The problem addressed in this paper—with rotated and trans-
lated iterations of f within M—extends previous works on the MTD model [8, 22].
In particular, we extend [25] by providing new theoretical understanding of a 1-
dimensional model, and demonstrating empirically that reconstruction is possible
from a measurement M of the form (1). This is an important step toward the
reconstruction of molecules in the undetectable domain. More generally, it attests
to the possibility of direct image estimation from measurements so that limitations
on particle picking do not necessarily translate to limitations on structure determi-
nation.

We mention that our results were recently extended, after this paper appeared
online, to account for an arbitrary distribution of the target images [20]. In ad-
dition, an approximate expectation-maximization algorithm for the MTD model
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with rotations was developed in [22, 21], and a generalized method of moments
framework was designed in [40].

3. One-dimensional problem. Before considering the two-dimensional problem
(1), we introduce an analogous problem in one dimension. This simplified version
will allow us to develop intuition for the autocorrelation framework we devise for
the two-dimensional case.

3.1. Measurement. Let F : Z→ R be a one-dimensional target signal supported
on {−n, . . . , n− 1}, and Fτ : Z→ R be the result of cyclically rotating the support
of F . That is, Fτ (x) = F ((x + τ) mod 2n) for x ∈ {−n, . . . , n − 1}, where we
consider an integer modulo 2n to be an element of {−n, . . . , n− 1}, and Fτ (x) = 0
when x ∈ Z \ {−n, . . . , n− 1}. Here, we will work with a one-dimensional analogue
of the two-dimensional measurement defined in (1), where the measurement M :
{1, . . . ,m} → R is given by

M(x) =

p∑
j=1

Fτj (x− xj) + ε(x), (2)

where τ1, . . . , τp ∈ {−n, . . . , n− 1} are uniformly random cyclic shifts; x1, . . . , xp ∈
{n + 1, . . . ,m − n + 1} are arbitrary translations; and ε is i.i.d. Gaussian noise
on {1, . . . ,m} with mean zero and variance σ2. We plot an examples of the 1-
dimensional measure M with three different levels of noise in Figure 2.
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Figure 2. An example of the 1-dimensional measurement M de-
fined in (2) with SNR = ∞ (left), SNR = 102 (middle), and

SNR = 1 (right), where SNR := (2n)
−1∑

x F (x)2/σ2.

The circular shifts τ are the one-dimensional analogues of the two-dimensional
rotations φ in (1). To extend the previous assumptions about the target separation
and bounded density to this one-dimensional formulation, we assume that |xj−xk| ≥
4n for all k 6= j and that np/m = γ > 0. In Theorem 3.2, we will additionally impose
that the discrete Fourier transform (DFT) of F is non-vanishing.

As above, our objective is to estimate the function F from the measurement M
in the low SNR regime. In particular, we would like to show that F can be reli-
ably and accurately estimated from M at any fixed level of noise, which might be
arbitrarily high, as long as the size of the measurement m is sufficiently large. The
reliability and accuracy of this estimate will be quantified below. The approach
is based on seeking features of F that determine the function and are invariant to
translations F (x) 7→ F (x + x′) and circular shifts of the support F (x) 7→ Fτ (x).
The construction of these invariant features is based on autocorrelation analysis.
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3.2. Invariant features. Recall that F : Z→ R is supported on {−n, . . . , n − 1}
and Fτ is a rotated version of F . We can define features of F that are invariant to
rotations and translations. The most direct example is the mean of the function

TF =
1

2n

n−1∑
x=−n

F (x). (3)

Motivated by autocorrelation analysis, the mean above can also be interpreted as the
first-order autocorrelation. The rotationally-averaged second-order autocorrelation
UF : {−2n, . . . , 2n− 1} → R is defined by

UF (x1) =
1

2n

n−1∑
τ=−n

1

2n

n−1∑
x=−n

Fτ (x)Fτ (x+ x1).

Considering the sum geometrically (or by a change of variables) we observe that
UF (x1) is only a function of the magnitude |x1|, and so, cannot contain sufficient
information to recover F . Thus, the critical invariant is the rotationally-averaged
third-order autocorrelation VF : {−2n, . . . , 2n− 1}2 → R, which is defined by

VF (x1, x2) =
1

2n

n−1∑
τ=−n

1

2n

n−1∑
x=−n

Fτ (x)Fτ (x+ x1)Fτ (x+ x2). (4)

By construction, both UF (x1) and VF (x1, x2) are invariant under translations F (x)
7→ F (x − x′) and rotations F (x) 7→ Fτ ′(x). That is, UF = UG and VF = VG when
G(x) = Fτ ′(x+ x′) for any τ ′ ∈ {−n, . . . , n− 1} and x′ ∈ Z.

3.3. Estimation from measurement. The function VF : {−2n, . . . , 2n−1}2 → R
can be estimated from a measurement M : {1, . . . ,m} → R of the form described
in §3.1. For simplicity, let us extend the separation condition so that it also holds
periodically in the sense that |xk1 − xk2 − m| > 4n. We define the third-order
autocorrelation of the measurement AM : {−2n . . . , 2n− 1}2 → R by

AM (x1, x2) =
1

m

m∑
x=1

M(x)M(x+ x1 mod m)M(x+ x2 mod m), (5)

where an integer modulo m is taken as an element of {1, . . . ,m}.
The following lemma shows that VF can be estimated from AM (namely, from the

data) if m is much larger than σ6. Information theoretic results that were derived
for a closely related model called multi-reference alignment indicate that this is the
optimal estimation rate in the low SNR regime where m,σ →∞ while γ and n are
fixed [2, 5, 26].

Lemma 3.1. Suppose that |F | < Fmax everywhere for some constant Fmax > 0.
Under the one-dimensional model (2), we have:

E(AM (x1, x2)) =
γ

n
VF (x1, x2) + 2γTFσ

2(δ0(x1 − x2) + δ0(x1) + δ0(x2)),

and

Var (AM (x1, x2)) = O
( n
m

(
γF 6

max + σ6
))
,

where the expectation and variance are taken with respect to the random cyclic shifts
and the Gaussian noise, and δ0(x) = 1 when x = 0 and δ0(x) = 0 otherwise.

Proof. See Appendix A.
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The retrieval of F from VF , combined with Lemma 3.1, would result in the
extraction of F from the measurement M up to a rotation, given a sufficiently large
measurement.

3.4. Recovery from invariant features. The DFT of the function F : Z → R
considered as a function on its support {−n, . . . , n− 1} is defined by

ak :=
n−1∑
x=−n

F (x)e−2πikx/(2n), k ∈ {−n, . . . , n− 1}. (6)

We now show that VF determines F via a closed form when its DFT is non-vanishing.
We remark that such a non-vanishing condition is standard for problems related to
autocorrelation inversion, see for example [9, 26].

Theorem 3.2. Suppose that the DFT of F expressed in (6) is non-vanishing. Then,

F̃ can be determined from VF via a closed form expression (resulting from inverting

a linear system only depending on n) such that F̃ = Fτ for some τ ∈ {−n, . . . , n−1}.
That is, F can be recovered up to a circular shift.

Proof. Let AF : {−2n, . . . , 2n− 1}2 → R designate the third-order autocorrelation

AF (x1, x2) =
1

2n

2n−1∑
x=−2n

F (x)F ((x+ x1) mod 4n)F ((x+ x2) mod 4n), (7)

where an integer modulo 4n is taken to be element of {−2n, . . . , 2n− 1}. Observe
that we have

VF (x1, x2) =
1

2n

n−1∑
τ=−n

AFτ (x1, x2).

Indeed, since F is supported on {−n, . . . , n− 1}, taking it as a periodic function in
(7) does not change the result. Let bm denote the Fourier coefficients of F considered
as a periodic function on {−2n, . . . , 2n− 1}; that is,

bm :=
n−1∑
x=−n

F (x)e−2πimx/(4n).

By Fourier inversion on the interval {−2n, . . . , 2n− 1}, we have

F (x) =
1

4n

2n−1∑
m=−2n

bme
2πimx/(4n). (8)

Substituting the representation of F (x) in terms of the coefficients bm into AF and
summing over x yields

AF (x1, x2) =
1

2n

1

(4n)3
·

2n−1∑
m1,m2=−2n

bm1bm2b−m1−m2e
2πi(m1x1+m2x2)/(4n).

Next, by taking the two-dimensional DFT of AF (x1, x2) on {−2n, . . . , 2n− 1}2, we
can recover bm1bm2b−m1−m2 for m1,m2 ∈ {−2n, . . . , 2n− 1}:

bm =
n−1∑
j=−n

(
1

2n

n−1∑
k=−n

ake
2πikj/(2n)

)
e−2πimj/(4n) =

n−1∑
k=−n

γm,kak,
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where

γm,k :=
1

2n

n−1∑
j=−n

e2πikj/(2n)e−2πimj/(4n).

Observe that if m = 2k′ we have γm,k′ = 1 and γm,k = 0 if k 6= k′. It follows that

b2k1b2k2b−2k1−2k2 = ak1ak2a−k1−k2

for k1, k2 ∈ {−n, . . . , n − 1}. The quantity ak1ak2a−k1−k2 , called the bispectrum
of the function F , is invariant under cyclic shifts of the underlying function F and
determines F uniquely, up to a global cyclic shift [9, 30, 37]. More precisely, by tak-
ing the logarithm of the bispectrum we arrive at a linear system of equations which
is full rank after the cyclic shift ambiguity is removed, see [9, §IV.C]. Therefore,
for each n, there is a fixed linear transform that determines the Fourier coefficients
of F , up to a phase ambiguity. Since the reduction of VF to the bispectrum can
also be accomplished by a linear transform, for any fixed n composing these linear
transformations together with Fourier inversion gives a closed form expression for
determining F up to cyclic shift from VF . Thus, given VF , we can determine
F̃ = Fτ for some τ ∈ {−n, . . . , n− 1}, as desired.

Example 3.1. To illustrate the approximation result of Lemma 3.1 and Theo-
rem 3.2, we present a basic numerical example. We use the signal from Figure 2 with
SNR = 102. Next, we form a measurement of the form (2) with various numbers of
samples p of the given function. We use the identities described in the proof of The-
orem 3.2 to approximate the bispectrum ak1ak2a−k1−k2 for k1, k2 ∈ {−n, . . . , n−1}
of the given signal F . We plot the relative error of the bispectrum extracted from
the measurement compared to the ground truth, see Figure 3. The error decreases
as 1/

√
p, as expected by the law of large numbers. The function can be recovered

from the bispectrum using a variety of standard methods, see [9].

28 210 212 214 216 218
p

2−8
2−7
2−6
2−5
2−4
2−3
2−2

Figure 3. Relative error of bispectrum derived from measurement
M using various number of samples p averaged over 10 trials. The
error decreases as 1/

√
p, as expected by the law of large numbers.

Remark 3.3 (Discretization model). In the above model, we consider a function F
defined on a gird that is transformed by on grid translations. One potential exten-
sion of this model is to consider off grid translations by assuming that F represents
samples from an underlying function f defined on the real-line; more precisely, the
model (2) could be extended by introducing a shift parameter δ ∈ [0, 1/n) and
defining

F δ(x) = f(x/n+ δ),
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for a discretization parameter n ∈ Z>0 and an underlying function f : R→ R that
is supported on [−1, 1]. With this notation, the measurement model (2) could be
extended by defining M : {1, . . . ,m} → R by

M(x) =

p∑
j=1

F δjτj (x− xj) + ε(x),

where τj ∈ {−n, . . . , n− 1} is a random cyclic rotation, xj ∈ {n+ 1, . . . ,m−n+ 1}
are arbitrary translations, ε is i.i.d. Gaussian noise on {1, . . . ,m}, and δj ∈ [0, 1/n]
is a random shift. Under this model, the third-order autocorrelation AM (x1, x2)
defined in (5) would satisfy an analogous version of Lemma 3.1, where the features
TF and VF are replaced by quantities defined with appropriate integrals instead
of sums. Studying this extended model would require quantifying an additional
source of error when trying to determine f from its third-order autocorrelation; in
particular, it would be necessary to make assumptions justifying why the Fourier
inversion formula (8) approximately holds (for example, one could assume that f is
Lipchitz continuous, or assume that f and its derivatives are Lipchitz continuous
up to order k such that classical approximation theory results could be employed).

In this paper, we focus on translations on the discretization grid (for both the 1D
and 2D models we consider) to avoid dealing with this additional source of approx-
imation error. Our goal in considering on grid translations is to study the simplest
possible model that still captures the essence of the signal processing problem of
interest: MTD in a setting where there are two different types of random linear
actions. Extending the results of this paper to handle arbitrary shifts would be
a necessary extension if the presented approaches are adapted for an application
problem involving real data.

4. Two-dimensional problem. After having established the theoretical founda-
tion for the one-dimensional problem above, we aim to extend the recovery of the
underlying function f to two dimensions. In order to make this estimation tractable,
it is necessary to make regularity assumptions on the function f ; we build the foun-
dation for these assumptions below.

4.1. Invariant features in the continuous setting. As in §3.2, we define the
continuous two-dimensional analogues for the features of f that are invariant under
translations and rotations. As before, the first invariant is the mean of the function

qf :=

∫
R2

f(x)dx.

Letting fφ be the rotation of f by angle φ about the origin, we define rotationally-
averaged second-order autocorrelation rf : R2 → R by

rf (x1) :=
1

2π

∫ 2π

0

∫
R2

fφ(x)fφ(x+ x1)dxdφ.

Finally, to gain enough information for the recovery of f , the rotationally-averaged
third-order autocorrelation sf : R2 × R2 → R is

sf (x1, x2) :=
1

2π

∫ 2π

0

∫
R2

fφ(x)fφ(x+ x1)fφ(x+ x2)dxdφ.

In this case, observe that sf is a function of |x1|, |x2| and the angle θ(x1, x2) be-
tween x1 and x2. Geometrically, as a function of three variables, sf potentially
contains enough information to recover f .
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4.2. Invariant features in the discrete setting. As in the one-dimensional case,
we will focus on the recovery of some discretization of f from some discretization
of sf under similar assumptions to those in Theorem 3.2. Restricting our attention
to this problem is consistent with the fact that actual measurements are discretized
over a pixel grid. Conveniently, this also considerably simplifies the presentation of
the method.

We define the discretization Fφ : Z2 → R of fφ by

Fφ(x) = fφ(x/n), for x ∈ Z2,

where n is a fixed integer that determines the sampling resolution. We define the
discrete rotationally-averaged third-order autocorrelation Sf : Z2 × Z2 → R by

SF (x1, x2) :=
1

2π

∫ 2π

0

1

4n2

∑
x∈Z2

Fφ(x)Fφ(x+ x1)Fφ(x+ x2)dφ. (9)

Since fφ is supported on the open unit disc {x ∈ R2 : |x| < 1}, it follows that Fφ is
supported on {x ∈ Z2 : |x| < n}, and SF (x1, x2) is supported on

X := {−2n, . . . , 2n− 1}2 ⊂ Z2,

which contains (2n)2 points.

4.3. Estimation from measurement. Suppose that M : {1, . . . ,m}2 → R, a
measurement of the form in (1), is given. We define the third-order autocorrelation
of M as AM : Z2 × Z2 → R by

AM (x1, x2) :=
1

m2

∑
x∈Z2

M(x)M(x+ x1)M(x+ x2).

Recall that the measurement M : {1, . . . ,m}2 → R is defined by

M(x) =

p∑
j=1

Fφj (x− xj) + ε(x),

where φj are random angles, xj are translations, and ε is noise (see §1). As before,
we assume that images in M are separated by at least one image diameter according
to

|xj1 − xj2 | ≥ 4n, for j1 6= j2,

and that the density of the target images in the measurement is pn2/m2 = γ for a
fixed constant γ > 0. Under these assumptions, it is straightforward to show that
for any fixed level of noise σ2, fixed signal radius n and fixed γ,

AM (x1, x2)→ γ

2π
SF (x1, x2) +

γ

2π
σ2µF

(
δ(x1) + δ(x2) + δ(x1 − x2)

)
, (10)

as m→∞ (see for example [7]), where µF is the discrete mean of F defined by

µF =
1

4n2

∑
x∈Z2

Fφ(x).

As such, (10) relates the third-order autocorrelation of the measurement AM to the
invariant features SF and µF . In practice, σ2 and γµF can be estimated from M :
σ2 can be estimated by the variance of the pixel values of M in the low SNR regime,
while γµF can be estimated by the empirical mean of M . As a result, SF , a feature
of the image, can be estimated from AM , a feature of the measurement, up to a
constant factor.
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4.4. Band-limited functions on the unit disc. The Dirichlet Laplacian eigen-
functions on the unit disc D = {(x, y) ∈ R : x2 + y2 ≤ 1} are solutions to the
eigenvalue problem {

−∆ψ = λψ in D
ψ = 0 on ∂D,

where −∆ = −(∂xx + ∂yy) is the Laplacian, and ∂D is the boundary of the unit
disc. In polar coordinates (r, θ), these eigenfunctions are of the form

ψν,q(r, θ) = Jν (λν,qr) e
iνθ, (11)

where ν ∈ Z≥0, Jν is the ν-th order Bessel function of the first kind, and λn,q > 0 is
the q-th positive root of Jν . Recall that Jν is a solution to the differential equation

y′′(r) +
1

r
y′(r) +

(
1− ν2

r2

)
y(r) = 0.

Therefore, by writing the Laplacian −∆ in polar coordinates, we have

−∆ψν,q(r, θ) = −
(
∂rr +

1

r
∂r +

1

r2
∂θθ

)
ψν,q(r, θ) = λ2ν,qψν,q(r, θ),

and, as such, λ2ν,q is the eigenvalue corresponding to the eigenfunction ψν,q. There-
fore, the projection operator

Pλf =
∑

(ν,q):λν,q≤λ

〈f, ψν,q〉
‖ψν,q‖22

ψν,q

can be viewed as a low-pass filter for functions on the unit disc; we call functions
that are invariant under this projection operator band-limited functions.

4.5. Steerable bases. Recall that f : R2 → R is supported on the unit disc. Using
the notation from §4.4, the assumption that f is band-limited on its support can
be written as

f(r, θ) =
∑

(ν,q):λν,q≤λ

αν,qψν,q(r, θ), for r ≤ 1, (12)

where λ > 0 is the band-limit frequency, and αν,q are expansion coefficients. For
each ν, we define

gν(r, θ) =
∑

q:λν,q≤λ

αν,qψν,q(r, θ) =

 ∑
q:λν,q≤λ

αν,qJν (λν,qr)

 eiνθ,

so that we can write f by

f(r, θ) =
N∑

ν=−N
gν(r, θ), (13)

where N := max{ν : λν,1 ≤ λ}.
The advantage of expressing a function in terms of Dirichlet Laplacian eigenfunc-

tions is that the basis is steerable—the effect of rotations on expansion coefficients
of the images are expressed as phase modulation. Specifically, a steerable basis
diagonalizes the rotation operator so that the rotation fφ(r, θ) := f(r, θ + φ) of f
about the origin by angle φ can be computed by multiplying each term in the sum
in (13) by eiνφ:

fφ(r, θ) =
N∑

ν=−N
gν(r, θ)eiνφ. (14)
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From this point forward, we will switch between considering functions in po-
lar coordinates f(r, θ) or Cartesian coordinates f(x), where x = (r cos θ, r sin θ),
depending on which is more convenient.

4.6. Using the band-limited assumption. We now take advantage of the as-
sumption that f is band-limited on the unit disc. Let Ψν,q : X → C be the
discretization of the Dirichlet Laplacian eigenfunctions

Ψν,q(x) = ψν,q(x/n),

where ψν,q is supported on the unit disc, as in §4.4. With this notation,

Fφ(x) =
∑

(ν,q):λν,q≤λ

αν,qΨν,q(x)eiνφ.

By considering Fφ and SF as functions on X , we can express their DFT F̂φ : X → C
by

F̂φ(k) =
∑
x∈X

Fφ(x)e−2πix·k/(4n).

Finally, we let Ψ̂ν,q : X → C be the DFT of Ψν,q : X → C

Ψ̂ν,q(k) =
∑
x∈X

Ψν,q(x)e−2πix·k/(4n).

Then, by the linearity of the DFT it follows from the previous section that

F̂φ(k) =
∑

(ν,q)∈V

αν,qΨ̂ν,q(k)eiνφ,

where V = {(ν, q) : λν,q ≤ λ}.

4.7. Discrete Fourier transform of invariant features. The Fourier transform
defined in the previous section can now be related to the Fourier transform of SF .
We define ŜF : X × X → C by

ŜF (k1, k2) :=
∑
x1∈X

∑
x2∈X

SF (x1, x2)e−2πi(k1·x1+k2·x2)/4n, (15)

where addition is considered modulo 4n with −2n, . . . , 2n−1 as the representatives
of the different equivalence classes. Substituting (9) into (15) and simplifying gives

ŜF (k1, k2) =

∫ 2π

0

F̂φ(k1)F̂φ(k2)F̂φ(−k1 − k2)dφ.

This integral over φ can be replaced by a summation over the rotations at the
Nyquist rate so that the expression becomes:

ŜF (k1, k2) =
6N−1∑
j=0

F̂φj (k1)F̂φj (k2)F̂φj (−k1 − k2), (16)

where φj := 2πj/(6N). If N := max{ν : λν,1 ≤ λ}, then the products Fφ(x)Fφ(x+
x1)Fφ(x + x2) that appear in (16) are band-limited by N with respect to φ. Also,
note that the summand on the right hand side of (16) is the DFT of the third auto-
correlation of a function and is called the bispectrum [9, 30, 37]. We encountered the
one-dimensional analogue of the bispectrum at end of the proof to Proposition 3.2.
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4.8. Vector notation. Recall the enumeration V from §4.6, which consists of
(ν1, q1), . . . , (νd, qd) such that

F̂φ(k) =
d∑
j=1

ανj ,qj Ψ̂νj ,qj (k)eiνjφ,

for k ∈ X . For a fixed angle φ and k ∈ X , we define the vector u(φ, k) ∈ Rd by

uj(φ, k) = Ψ̂νj ,qj (k)eiνjφ.

Thus, each vector v ∈ Rd defines the DFT of a band-limited function by

F̂v,φ(k) =
n∑
j=1

vjuj(φ, k) = v>u(φ, k),

where v> is the transpose of v. The following lemma is immediate from (16) and
the product rule.

Lemma 4.1. We have

ŜFv (k1, k2) =
6N−1∑
j=0

v>u(φj , k1)v>u(φj , k2)v>u(φj ,−k1 − k2)

where φj := 2πj/(6N). Moreover, the d-dimensional gradient ∇vŜFv satisfies

∇vŜFv (k1, k2) =
6N−1∑
j=0

(
v>u(φj , k1)v>u(φj , k2)u(φj ,−k1 − k2)

+ v>u(φj , k1)v>u(φj ,−k1 − k2)u(φj , k2)

+ v>u(φj , k2)v>u(φj ,−k1 − k2)u(φj , k1)
)
.

In the next section, we describe how to estimate SF from a measurement M
and form an optimization problem to recover the target image F from the measure-
ment M .

4.9. Computational complexity. For some intuition regarding the computa-
tional complexity of computing ŜFv and ∇vSFv , recall that X = {−2n, . . . , 2n−1}2
so that, crudely, the image F has ∼ n2 pixels. In the following, we make the as-
sumption that the number of eigenfunctions used to expand the function F should
not exceed the number of pixels in the image. Notationally, |V| = O(n2).

Proposition 4.2. We can compute ŜFv (k1, k2) and ∇vŜFv (k1, k2) for all (k1, k2) ∈
X 2 in O(n5) operations.

Proof. First, we compute v>u(φj , k) for j = 0, . . . , 6N − 1 and k ∈ X . Each inner
product resolves to O(n2) operations for O(Nn2) total evaluations. Eigenvalue

asymptotics show that N is of the order of
√
|V| = O(n) so this computation

involves O(n5) operations.

After this pre-computation, it is straightforward to calculate ŜFv (k1, k2) for all

(k1, k2) ∈ X 2 in O(n5) operations. For ∇vŜFv (k1, k2), the key observation is that
the gradient is a linear combination of O(n3) vectors of length O(n2). First, we
compute the coefficients in O(n5) operations and then sum the vectors in O(n5)
operations.
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5. Algorithms and numerical results.

5.1. Optimization problem. We now delineate an optimization problem for the
estimation of F from SF . Recall that each vector v ∈ Rd defines the Fourier
transform of a band-limited function on the disc by

F̂v,φ(k) = v>u(φ, k),

as in §4.8. We define the least squares cost function g : Rd → R by

g(v) =
1

2

∑
(k1,k2)∈X 2

(
ŜFv (k1, k2)− ŜF (k1, k2)

)2
.

Using the chain rule, the gradient of ∇g is

∇g(v) =
∑

(k1,k2)∈X 2

(
ŜFv (k1, k2)− ŜF (k1, k2)

)
∇vŜFv (k1, k2),

where ŜFv and ∇vŜFv can be computed via the formulas in Lemma 4.1.

5.2. Recovery from invariant features. Given a cost function and a gradient,
there are a variety of optimization methods that can be used. For simplicity, we
use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which is a popular
gradient-based optimization method.

First, we consider the problem of recovering F from SF in the absence of noise.
We generate a band-limited image F by projecting a 65× 65 image of a tiger onto
the span of the first 600 Dirichlet Laplacian eigenfunctions as in Figure 4. Using

Figure 4. The projection of a 65 × 65 image of a tiger onto the
span of the first 600 Dirichlet Laplacian eigenfunctions on a disc.

the BFGS optimization algorithm, the image in Figure 4 can be recovered with
reconstruction error errorrecon = 5 × 10−12. This optimization takes 6.5 × 104

seconds parallelized over 100 CPUs in total.

Remark 5.1 (Computational limitations of implementation). We use 600 eigen-
functions for this example due to computational limitations. The method was im-
plemented as a CPU code, but is highly amiable to parallelization. Implementing
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the method described in this paper to support the use of GPUs would greatly in-
crease the number of images and eigenfunctions that could be considered; however,
since our goal is to present a proof-of-concept of the method, we choose not to
pursue this optimization of the code for our numerical results; however, creating a
GPU version of the method is an interesting potential extension of this work.

5.3. Using symmetry to average noise. Recall that SF (x1, x2) is a discrete
version of sf : R2 × R2 → R by

sf (x1, x2) :=
1

2π

∫ 2π

0

∫
R2

fφ(x)fφ(x+ x1)fφ(x+ x2)dxdφ,

which only depends on the three parameters: the magnitudes |x1|, |x2| and the
angle θ(x1, x2) between x1 and x2. Moreover, the Fourier transform ŝf of sf will

have these same symmetries. So, it follows that ŜF , which is a discrete version of
ŝf , will also approximately exhibit these symmetries.

However, since SF is sampled on a grid, the symmetry will not be exact. In order
to still take advantage of the expected symmetry when SF (x1, x2) is estimated from
a noisy measurement M , we introduce a “binning” function. Let b : X × X → Z3

be defined by

b(k1, k2) = (bb1|k1|c , bb1|k2|c , bb2θ(k1, k2)c) ,
for fixed parameters b1, b2 ∈ R and T ⊂ Z3 be the range of b. The corresponding
cost function gb : Rd → R is then

gb(v) =
1

2

∑
T∈T

 ∑
(k1,k2)∈IT

(
ŜFv (k1, k2)− ŜF (k1, k2)

)2

,

such that

∇gb(v) =
∑
T∈T

 ∑
(k1,k2)∈IT

ŜFv (k1, k2)− ŜF (k1, k2)

 · ∑
(k1,k2)∈IT

∇ŜFv (k1, k2),

where IT = {(k1, k2) ∈ X 2 : b(k1, k2) = T} is the pre-image of T under b. This is
the same as the cost function g(v) above except that the elements are now summed
within the same symmetric bin IT . For the numerical results reconstructing F from
a noisy measure, we report errors with binning.

Remark 5.2 (Estimating noise level). In the following numerical example, we as-
sume that the noise level is known. However, for applications it would be necessary
to estimate the noise level. In standard cryo-EM experiments, estimating the sta-
tistics of the noise is part of the standard computational pipeline [6]. If the noise
dominates the signal—which is the regime of interest of this paper—then it may be
easy to get a good initial guess of the noise level; see for example [13]. Afterwards,
the noise could be estimated iteratively, or the algorithm could be run at various
noise levels.

Remark 5.3 (Uniform in-plane rotation). In cryo-EM, the in-plane rotations are
uniformly distributed since the specific rotation of the micrograph is arbitrarily
chosen by the practitioner and there is no physics reason for bio-molecules to prefer
a given orientation. In contrast, the viewing directions distribution is typically non-
uniform due to several physic reasons, such as specimen adherence to the air-water
interface [4].
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5.4. Recovery from noisy micrographs. Returning to the original problem pre-
sented in §1, we recall the problem of recovering a band-limited image f from a
measurement M as the size m of the measurement tends to infinity. To approxi-
mate the behavior practically, for both computational purposes and reflecting the
applications to cryo-EM, we fix m = 1000 and call a 1000 × 1000 measurement
M a micrograph. The numerical experiments follow the model described in this
paper: we define each 1000 × 1000 micrograph by (1). We compute the third or-
der autocorrelation AM as defined by §4.3; we assume that γ and σ are known for
simplicity.

We report numerical results in terms of the number of independent micrographs
that are used. In particular, we report both the relative error in the invariant SF
and the recovery of the image F . The error for SF is summed over the bins while
the relative error in recovering F is calculated after running BFGS optimization
using the cost and gradient described in §5.3. In numerical experiments, we take
a target image with n = 17 and assume that the image is band-limited in the first
100 Dirichlet Laplacian eigenfunctions. The relative errors from these experiments
are displayed in Figure 5.

100 101 102 103 104

micrograph counts

10−5
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10−3

10−2

10−1

re
la
ti
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ro
r

binned invariant

reconstruction

Figure 5. Relative error in the binned invariant SF summed over
the bins and the reconstruction of F as a function of the number
of micrographs for an image with n = 17 with SNR = 102.

Note that the relative error in the binned invariant SF and reconstruction both
decrease at a consistent rate of one over the square root of the number of micro-
graphs (the expected estimation rate if the locations and rotations of the images
were known). Thus, with enough micrographs, these results indicate that the re-
covery is possible regardless of the level of noise. Moreover, this conclusion resolves
the initial question of this paper: we have presented an algorithm for the recovery
of an image f from a measurement of the form (1) that gives predictable results in
terms of the error in the invariant.

6. Discussion. This paper contributes to a series of works whose goal is to un-
derstand the limits of image recovery using an invariant-based approach to solve
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multi-target detection problems. After the challenges of particle picking were iden-
tified and a detection limit was proven, a promising direction recalled autocor-
relation analysis for image recovery that did not rely on first identifying signal
location within a measurement. This paper shows that the estimation of the tar-
get image is possible theoretically in one-dimension and builds on this intuition
to empirically demonstrate that direct recovery is possible regardless of noise level
in two-dimensional settings with in-plane translations and rotations of the target
signal.

Future work includes extending Theorem 3.2 to the two-dimensional case, study-
ing the high-dimensional regime where the size of the target image is large (see for
example [29, 12]), and exploring super-resolution limits in the MTD model [10].
Our ultimate goal is to complete the program outlined in [7] and devise a computa-
tional framework to recover a three-dimensional molecular structure directly from
micrographs.
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Appendix A. Technical lemmas.

Proof of Lemma 3.1 (Expectation). By the definition of AM and linearity of
expectation, we have

E (AM (y1, y2)) =
1

m

m∑
x=1

E (M(x)M(x+ y1)M(x+ y2)) .

Let y0 = 0 for notational purposes. By the definition of M , see (2), we have

E (AM (y1, y2)) =
1

m

m∑
x=1

E

 2∏
k=0

 p∑
j=1

Fτj (x− xj + yk) + ε(x+ yk)

 .

If the product in this expression is expanded, any terms with odd powers of the
noise term ε(x) will have expectation zero. So, we only need to consider terms
where ε does not appear, denoted T0(y1, y2), and terms where ε appears twice,
denoted T2(y1, y2). We have

T0(y1, y2) =
1

m

m∑
x=1

p∑
j1,j2,j3=1

(
E
(
Fτj1 (x+ xj1)Fτj2 (x+ y1 + xj2)Fτj3 (x+ y2 + xj3)

) )
.

By the separation condition, only terms where j1 = j2 = j3 are nonzero, so

T0(y1, y2) =
1

m

p∑
j=1

(
E

(
m∑
x=1

Fτj (x+ xj)Fτj (x+ y1 + xj)Fτj (x+ y2 + xj)

))
,
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with the sum over x moved inside the expectation. Using the fact that the circular
shifts τj are uniformly random and that F is supported on {−n, . . . , n− 1} gives

T0(y1, y2) =
p

m

1

2n

n−1∑
τ=−n

n−1∑
x=−n

(
Fτ (x)Fτ (x+ y1)Fτ (x+ y2) =

γ

m
VF (y1, y2)

)
,

where the final equality results from the definition of VF in (4) and the definition
of the density γ = np/m. It remains to consider the terms T2(y1, y2) where two of
the three noise terms ε(x), ε(x+ y1), and ε(x+ y2) appear. The product of two of
these terms only has nonzero expectation if y1 = 0, y2 = 0, or y1 = y2 so we have

T2(y1, y2) =
1

m

m∑
x=1

p∑
j=1

E
(
δ0(y1)ε(x)ε(x+ y1)Fτk(x+ xj + y2)+

δ0(y2)ε(x)ε(x+ y2)Fτk(x+ xj + y1)+

δy1(y2)ε(x+ y1)ε(x+ y2)Fτk(x+ xj)
)
,

where δx(y) = 1 when x = y and δx(y) = 0 otherwise. By the independence of the
noise and the random cyclic shifts we have

T2(y1, y2) =
p

m
σ22nTF (δ0(y1) + δ0(y2) + δy1(y2)) ,

where TF denotes the mean of F , see (3). Adding T0(y1, y2) and T2(y1, y2) gives
the desired result:

E(AM (x1, x2)) =
γ

n
VF (x1, x2) + 2γTFσ

2(δ0(x1 − x2) + δ0(x1) + δ0(x2)).

Proof of Lemma 3.1 (Variance). Let M̃ be an independent identically dis-

tributed copy of M . We can express the variance of AM (y1, y2) using M̃ as

Var (AM (y1, y2)) = E (AM (y1, y2) (AM (y1, y2)−AM̃ (y1, y2))) .

Expanding the right hand side gives

Var (AM (y1, y2)) =
1

m2

m∑
x,y=1

E
(
M(x)M(x+ y1)M(x+ y2)(

M(y)M(y + y1)M(y + y2)− M̃(y)M̃(y + y1)M̃(y + y2)
))

.

By construction, the expectation of the terms in the sum is zero when M(x)M(x+
y1)M(x+ y2) and M(y)M(y + y1)M(y + y2) are independent, which is the case if

x− y 6∈ {−n, . . . , n− 1}.
It follows that

Var (AM (y1, y2)) =
1

m2

x+n∑
y=x−n+1

m∑
x=1

E
(
M(x)M(x+ y1)M(x+ y2)(

M(y)M(y + y1)M(y + y2)− M̃(y)M̃(y + y1)M̃(y + y2)
))

.

By Cauchy-Schwarz, it follows that

Var (AM (y1, y2)) ≤ 1

m2

x+n∑
y=x−n+1

m∑
x=1

2E
(

(M(x)M(x+ y1)M(x+ y2))
2
)
.
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Given |F | < Fmax everywhere for some constant Fmax > 0, we can estimate

E
(

(M(x)M(x+ y1)M(x+ y2))
2
)

= O(γF 6
max + σ6)

where σ2 is the variance of the Gaussian noise. It follows that

Var (AM (y1, y2)) ≤ O
( n
m

(γF 6
max + σ6)

)
,

as was to be shown.
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