OkKIP

Advances in High-Performance Computing, November, 2021
© 2021 Oklahoma International Publishing -OkIP

Initial GPU Optimization of Template Modeling Score (TM-score)

Hannah Johnson'!, Armon White?, Yogesh Kale*", Elijah MacCarthy'*

1.2 "Departments of Computer Science and Mathematics, Lane College, Jackson TN, 38301
3*Department of Computational Science and Engineering, NC A&T State University
1601 E Market St, Greensboro NC, 27411

ABSTRACT

Accuracy in the prediction of protein structures is key in
understanding the biological functions of different proteins.
Numerous measures of similarity tools for protein structures have
been developed over the years, and these include Root Mean Square
Deviation (RMSD), as well as Template Modeling Score (TM-
score). While RMSD is influenced by the length of the protein and
therefore the similarity between superimposed models can be
affected by divergent loops in the models, TM-score is rather a
robust and a more accurate method. TM-score, however, is much
slower than RMSD in terms of calculations for the optimal
superimposed model. Here, we present initial optimization work on
GPU-TM-score, a GPU accelerated Template Modeling Score for
fast and accurate measuring of similarity between protein structures.
Our optimization is based on OpenACC parallelization and
performance analysis of bottleneck regions and the KABSCH
algorithm for the calculation of optimal superimposition within
parallel architectures. Our initial results indicate an average 3.14x
speedup compared to original TM-score on a benchmark set of 20
protein structures. This speedup is recorded on an Nvidia Volta
V100 GPU compared to an AMD EPYC 7742 64-core processor.

Keywords: GPU, Optimization, OpenACC, Protein Structure, TM-
score.

I. INTRODUCTION

The accurate comparison of predicted protein structures
plays an important role not only in protein structure
modeling, but also in branches of structural biology such as
protein folding classifications (Yang & Jeffrey, 2005) and
structure-based protein function annotation (Ling-Hong &
Ram, 2012; Yang & Jeffrey, 2005; MacCarthy, Perry, & KC,
2019). These areas cover almost all branches of
contemporary structural biology (Yang & Jeffrey, 2005) and
this has become possible due to the increase in the number of
solved protein structures in the Protein Data Bank (PDB).
Though the usage of protein structure comparison tools has
become popular, the speed and accuracy of these algorithms
is very essential in keeping up with the ever-increasing gap
between known protein structures and sequences in the
UNIPROT protein library (MacCarthy, Perry, & KC, 2019;
MacCarthy, 2020; KC, 2017)

* Corresponding author E-mail: emaccarthy@]lanecollege.edu

Root Mean Square Deviation (RMSD) is one of the
earliest, simplest and most commonly used metric for
comparing protein structures (Kabsch, 1978; Yang & Jeffrey,
2005). When two protein structures are superimposed, the
measure of the average distance between their atoms is
referred to as Root Mean Square Deviation (RMSD)
(MacCarthy, 2020). It measures the root-mean-square
distance between corresponding residues after an optimal
rotation of one structure to another (Yang & Jeffrey, 2005).
This measure of similarity between two superimposed atomic
coordinates is quantitative and represented in equation (1)
below. Though RMSD is fast in terms of speed, it weights the
distances between all residue pairs equally, thus, a small
number of local structural deviations could result in a high
RMSD, even when the global topologies of the compared
structures are similar (Ling-Hong & Ram, 2012). Also,
RMSD is not only dependent on the overall goodness of fit
but also dependent on the length of compared structures,
which leaves the absolute magnitude of RMSD meaningless
(Yang & Jeffrey, 2005).

As aresult of the flaws of RMSD, several other algorithms
have been developed. These methods are based off the RMSD
and compute transformations that superimpose
corresponding atoms from one structure onto another
structure by reducing the root-mean-squared deviation
(RMSD) between the coordinates of superimposed structures
(Ling-Hong & Ram, 2012). Some of these methods include
Template Modeling Score (TM-score), Global Distance Test
(GDT) and the Longest Continuous Segment (LCS)
(MacCarthy, 2020).

TM-score (Yang & Jeffrey, 2005) which is represented in
equation (2) below uses a variation of Levitt—Gerstein’s (LG)
metric, (Levitt & Gerstein, 1998) that provides a length
independent measure and limits the impact of divergent pairs
of atoms in superimposed structures. TM-score is sensitive to
global topology because it weights small distances stronger
than larger ones.

Also, TM-score is normalized in a way that the magnitude
of scores of random structures is not dependent on the size of
the protein. Thus, an average pair of randomly related
structures have the value of 0.17 (Yang & Jeffrey, 2005). The
TM-score metric works by sampling different subsets of

XXX-X-XXXX-XXXX-X/XX/$XX.00

atoms and using the Kabsch algorithm in guiding their
superposition while evaluating the LG score over the entire
protein. The optimal superposition can then be obtained from
the several sampled atom subsets. Because of the numerous
local superpositions that must be sampled, the TM-score
algorithm is much slower than the calculations from the
RMSD algorithm.

RMSD =
(M

d; is the distance between the two atoms in the i-th pair an L
is the number of pairs of equivalent atoms.

I’ Lyji]
TM-score = Max =

| |
{ngu ,Zl | (Mﬁ)J)

L is the number of residues of the query sequence, L,); is the
number of aligned residues in a threading alignment. When L
and L,; are identical, then it implies the model is full length.
d; is the distance of the ith C, pair between model and native

after superposition, and dy, = 1.243YN — 15 — 1.8.

II. PROPOSED INNOVATION

Our proposed innovation to TM-score is to port bottleneck
regions of the algorithm to the GPU using OpenACC. Though
some optimization work on TM-score has been done in the
past (Hung, 2012), this targeted the porting from an OpenCL
approach. There is little or no work done with regards to
porting TM-score to the GPU using OpenACC. Thus, our
proposed innovation optimizes TM-score by using OpenACC
and ensures portability of GPU TM-score. This portability of
GPU TM-score refers to providing users the flexibility of
using GPU TM-score with any kind of accelerators, unlike
other GPU optimizations that tie ported applications to
specific architectures (Ford, 2009; Preis, Virnau, & Paul,
2009; Stantchev & Dorland, 2008; Gross & Janke, 2011).

From our performance analysis of the sequential
algorithm, we noticed that the KABSCH method for
calculating optimal superimposed models in the TM-score
algorithm is the most expensive. This accounts for close to
75% of the total computational time. Our focus therefore is
porting this region of the application to the GPU and
optimizing it for performance gain. We propose the usage of
OpenACC parallel and kernel regions to port hotspots within
this section of code to the GPU. Since the device cannot
access the host memory, our main task in this parallelization
is to optimize data transfers so we can begin seeing the effect
of our OpenACC acceleration on the speed.

III. METHODS

A. GPU and OpenACC Application Programming Interface

Recent generations of GPUs use a unified architecture
that is much suitable for scientific computing (Ford, 2009)
and these are referred to as General Purpose GPUs (GPGPU).
The general-purpose GPUs are used extensively in scientific
computing to optimize applications that are suitable for
parallel architectures. These GPUs are designed for compute-
intensive, highly parallel computations. By virtue of this, the
TM-score algorithm is a good candidate for porting to the
GPU since its calculations are compute-intensive.

The general-purpose GPU operations follow the
Single Instruction Multiple Data (SIMD) paradigm, and it
comprises several streaming multiprocessors. The GPU uses
these streaming multiprocessors to achieve high throughput
which is obtained through the local caches and on-chip
memory, thus, reducing bandwidth to external memory.
There are numerous transistors on the GPU compared to CPU
and these are for the purpose of data processing rather than
caching and flow control. This therefore results in the
compute-intensive and highly parallel computations of the
GPU (Block, Virnau, & Preis, 2010). Since the GPU
operation follows the SIMD paradigm, it is more suitable for
tasks that can be expressed as data-parallel computations. By
so doing, data elements are mapped to the numerous parallel
processing threads. There are thousands of threads on the
GPU and these are put into several batches/groups. In CUDA,
these group of threads are called thread block and in
OpenACC, they are referred to as a gang.

Open Accelerators (OpenACC) are a directive-based
Application Programming Interface (API) that optimizes and
accelerates work on GPUs. OpenACC enables developers to
write applications that offload codes with their associated
runtime data to GPUs from a host CPU. This is accomplished
by using preprocessor directives that work like the directives
in OpenMP. This prevents writing low level functions that
virtually change the original code.

B. OpenACC Implementation

Since the TM-score algorithm contains the KABSCH method
which is compute intensive, we port this region and other
bottleneck regions of code to the GPU using OpenACC.
Within this algorithm is the calculation of the optimal rotation
matrix as well as the covariance matrix. We split these
computations within the Kabsch algorithm on the GPU by
assigning each to a parallel region. By a parallel region, we
mean a gang of thread blocks.

We therefore insert OpenACC parallel directives that map
these regions of code to a gang of thread blocks executed in
parallel. This ensures a simultaneous execution of the
different regions. We also optimize the number of thread
blocks launched based on the amount of work to be
completed in each region. This way, not too many or too few
threads are launched, rather, an optimized number to ensure
a speedup. Also, the device (GPU) cannot access the host
memory, thus, we move data associated with these regions to
the GPU to ensure calculations are completed accurately.

The data movements are accomplished by using OpenACC
data regions in moving required data unto and from the
device. These data transfers introduce an enormous overhead
challenge within the optimization. From our initial
optimization, the enormous data transfers account for 73% of
the total GPU time. It is necessary therefore to optimize these
data transfers so we can begin seeing an influence on the
computational time.

We accomplish this by merging several small data copies
into single copies. Many small data copies happening at
different times take away from time that is supposed to be
used for computations. Thus, merging many small copies into
larger ones enables the device to be devoted to compute-
intensive operations. Also, results that are not immediately
required on the host after calculations on the device are kept
on the device without being transferred to the CPU. This way,
data movement time is split in half.

Also, regions that are not necessarily bottlenecks but
contain data that is needed on the GPU are moved to the
device to reduce data transfers. After optimizing data
transfers, we are able to reduce the data movement time to
27% of total GPU time.

IV. RESULTS

We present the results from our initial optimization efforts
in this section. An NVIDIA V100 GPU is used for the GPU
implementation whereas an AMD EPYC 7742 64-core
processor is used for sequential runs.

Execution Time/s
(4)]

0.5f

0 g i i i g i
400 500 600 700 800 900 1000 1100
Residue Lengths

Fig. . GPU and CPU execution time of proteins of varying residue
length.

On a benchmark dataset of 20 proteins obtained from the
PDB, we record an initial average speedup of 3.14% as
presented in Tab. 1. Also, from Tab. I, the peak recorded
speed-up is 4.57x for residues within the range, 1001 - 2000.
In Fig. 1, we present the GPU and CPU execution times
against the residue lengths of protein structures being
compared. It can be observed that the speedup is more
pronounced as the residue length becomes larger. This is
presented vividly in Fig. 2 where the residue ranges are
plotted against the average execution times.

This in part is due to the fact that as residue lengths become
larger, it takes considerably longer for the computations to be
completed. Thus, the effect of the GPU optimization is much
realized at this point. This means the efficiency of the
optimization is clearly seen as the problem size becomes
larger.

Average Execution Timefs

o L . L " L L L L L
401-500 501-600 601-700 701-800 801-900 1001-2000
Residue Range

Fig. 2. GPU and CPU Execution time of proteins of varying residue
length.

We have implemented an initial OpenACC optimized
GPU-TM-score algorithm which is currently 3.14x faster than
original TM-score. We hope to improve upon these results
after further targeted porting and optimization. This work
when completed, should help in comparing protein structures
a lot faster by using any kind of accelerators as OpenACC
works with all kinds of GPUs.

TABLE 1. Average Execution Time for Benchmark Data

Residue Range tcpu/s tgpu/s SpeedUp
401 - 500 0.55 (1) 0.33 1.67
501 - 600 0.715 (2) 0.305 2.34
601 - 700 0.86 (1) 0.35 2.46
701 - 800 1.25 (10) 0.411 3.04
801 - 900 1.53 (5) 0.458 3.34
1001 - 2000 2.88(1) 0.63 4.57
Average 1.298 0.414 3.14

V. FUTURE WORK

We aim to optimize the GPU-TM-score algorithm further
by targeting both the computations and the data transfers that
have been reduced currently to 27%. Though this optimization
is host-device memory bound, we are hoping to have the
average speedup improved.

ACKNOWLEDGMENT

The authors would like to thank Dr. Melanie Van Stry and
Dr. Aminah Gooch of Lane College for their input. This work

was supported in part by the NSF awards, HRD 2011938 and
DUE 1833960.

REFERENCES

Betancourt, M., & Skolnick, J. (2001). Universal similarity measure for
comparing protein structures. Biopolymers, 305-309.

Block, B., Virnau, P., & Preis, T. (2010). Multi-GPU accelerated multi-spin
Monte Carlo simulations of the 2D Ising model. Computer
Physics Communications, 1549-1556.

Ford, E. (2009). Parallel algorithm for solving Kepler’s equation on
Graphics Processing Units: Application to analysis of Doppler
exoplanet searches. New Astronomy, 406-412.

Gross, J., & Janke, W. &. (2011). Massively parallelized replica-exchange
simulations of polymers on GPUs. . Computer physics
communications., 1638-1644.

Hung, L. H. (2012). Accelerated protein structure comparison using TM-
score-GPU. Bioinformatics, 2191-2192.

Kabsch, W. (1978). A discussion of the solution for the best rotation to
relate two sets of vectors. Acta Crystallographica Section A:
Crystal Physics, Diffraction, Theoretical and General
Crystallography, 827 —828.

KC, D. (2017). Recent advances in sequence-based protein structure
prediction. Briefings in bioinformatics, 1021-1032.

Levitt, M., & Gerstein, M. (1998, May 26). A unified statistical framework
for sequence comparison and structure comparison. National
Academy of sciences, pp. 5913-5920.

Ling-Hong, H., & Ram, S. (2012). Accelerated protein structure
comparison using TM-score-GPU. Bioinformatics, 2191-2192.

MacCarthy, E. (2020, May). Gpu Parallelization of Replica Exchange
Monte Carlo Simulation and Application to Protein Structure
Prediction. In Doctoral dissertation, North Carolina
Agricultural and Technical State University. Greensboro:
Proquest.

MacCarthy, E., Perry, D., & KC, D. (2019). Advances in protein super-
secondary structure prediction and application to protein
structure prediction. In K. A, Protein supersecondary structures
(pp. 15-45). New York: Humana Press.

Murzin, A. G., Brenner, S. E., Hubbard, T., & & Chothia, C. (1995).
SCOP: a structural classification of proteins database for the
investigation of sequences and structures. . Journal of
Molecular Biology, 536 —540.

Preis, T., Virnau, P., & Paul, W. &. (2009). GPU accelerated Monte Carlo
simulation of the 2D and 3D Ising model. Journal of
Computational Physics., 4468-4477.

Stantchev, G., & Dorland, W. &. (2008). Fast parallel particle-to-grid
interpolation for plasma PIC simulations on the GPU. . Journal
of Parallel and Distributed Computing., 1339-1349.

Yang, Z., & Jeffrey, S. (2005). TM-align: a protein structure alignment
algorithm. Nucleic Acids Research, 2302-2309.

