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ABSTRACT  
Accuracy in the prediction of protein structures is key in 
understanding the biological functions of different proteins. 
Numerous measures of similarity tools for protein structures have 
been developed over the years, and these include Root Mean Square 
Deviation (RMSD), as well as Template Modeling Score (TM-
score). While RMSD is influenced by the length of the protein and 
therefore the similarity between superimposed models can be 
affected by divergent loops in the models, TM-score is rather a 
robust and a more accurate method. TM-score, however, is much 
slower than RMSD in terms of calculations for the optimal 
superimposed model. Here, we present initial optimization work on 
GPU-TM-score, a GPU accelerated Template Modeling Score for 
fast and accurate measuring of similarity between protein structures. 
Our optimization is based on OpenACC parallelization and 
performance analysis of bottleneck regions and the KABSCH 
algorithm for the calculation of optimal superimposition within 
parallel architectures. Our initial results indicate an average 3.14× 
speedup compared to original TM-score on a benchmark set of 20 
protein structures. This speedup is recorded on an Nvidia Volta 
V100 GPU compared to an AMD EPYC 7742 64-core processor. 
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I. INTRODUCTION  
The accurate comparison of predicted protein structures 

plays an important role not only in protein structure 
modeling, but also in branches of structural biology such as 
protein folding classifications (Yang & Jeffrey, 2005) and 
structure-based protein function annotation (Ling-Hong & 
Ram, 2012; Yang & Jeffrey, 2005; MacCarthy, Perry, & KC, 
2019). These areas cover almost all branches of 
contemporary structural biology (Yang & Jeffrey, 2005) and 
this has become possible due to the increase in the number of 
solved protein structures in the Protein Data Bank (PDB). 
Though the usage of protein structure comparison tools has 
become popular, the speed and accuracy of these algorithms 
is very essential in keeping up with the ever-increasing gap 
between known protein structures and sequences in the 
UNIPROT protein library (MacCarthy, Perry, & KC, 2019; 
MacCarthy, 2020; KC, 2017) 

 

Root Mean Square Deviation (RMSD) is one of the 
earliest, simplest and most commonly used metric for 
comparing protein structures (Kabsch, 1978; Yang & Jeffrey, 
2005). When two protein structures are superimposed, the 
measure of the average distance between their atoms is 
referred to as Root Mean Square Deviation (RMSD) 
(MacCarthy, 2020). It measures the root-mean-square 
distance between corresponding residues after an optimal 
rotation of one structure to another (Yang & Jeffrey, 2005). 
This measure of similarity between two superimposed atomic 
coordinates is quantitative and represented in equation (1) 
below. Though RMSD is fast in terms of speed, it weights the 
distances between all residue pairs equally, thus, a small 
number of local structural deviations could result in a high 
RMSD, even when the global topologies of the compared 
structures are similar (Ling-Hong & Ram, 2012). Also, 
RMSD is not only dependent on the overall goodness of fit 
but also dependent on the length of compared structures, 
which leaves the absolute magnitude of RMSD meaningless 
(Yang & Jeffrey, 2005).  

As a result of the flaws of RMSD, several other algorithms 
have been developed. These methods are based off the RMSD 
and compute transformations that superimpose 
corresponding atoms from one structure onto another 
structure by reducing the root-mean-squared deviation 
(RMSD) between the coordinates of superimposed structures 
(Ling-Hong & Ram, 2012). Some of these methods include 
Template Modeling Score (TM-score), Global Distance Test 
(GDT) and the Longest Continuous Segment (LCS) 
(MacCarthy, 2020).  

TM-score (Yang & Jeffrey, 2005) which is represented in 
equation (2) below uses a variation of Levitt–Gerstein’s (LG) 
metric, (Levitt & Gerstein, 1998) that provides a length 
independent measure and limits the impact of divergent pairs 
of atoms in superimposed structures. TM-score is sensitive to 
global topology because it weights small distances stronger 
than larger ones.   

Also, TM-score is normalized in a way that the magnitude 
of scores of random structures is not dependent on the size of 
the protein. Thus, an average pair of randomly related 
structures have the value of 0.17 (Yang & Jeffrey, 2005).  The 
TM-score metric works by sampling different subsets of 
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atoms and using the Kabsch algorithm in guiding their 
superposition while evaluating the LG score over the entire 
protein. The optimal superposition can then be obtained from 
the several sampled atom subsets. Because of the numerous 
local superpositions that must be sampled, the TM-score 
algorithm is much slower than the calculations from the 
RMSD algorithm.                                                                                                        

 

 

                     (1) 

 

𝑑𝑖 is the distance between the two atoms in the i-th pair an L 
is the number of pairs of equivalent atoms.  

 

                                                                                        

 

(2) 

 
L is the number of residues of the query sequence, 𝐿ali  is the 
number of aligned residues in a threading alignment. When L 
and  𝐿ali are identical, then it implies the model is full length. 
𝑑i is the distance of the ith 𝐶α pair between model and native 
after superposition, and      𝑑0 = 1.24√𝑁 − 15

3
− 1.8.                         

II. PROPOSED INNOVATION 
Our proposed innovation to TM-score is to port bottleneck 

regions of the algorithm to the GPU using OpenACC. Though 
some optimization work on TM-score has been done in the 
past (Hung, 2012), this targeted the porting from an OpenCL 
approach. There is little or no work done with regards to 
porting TM-score to the GPU using OpenACC. Thus, our 
proposed innovation optimizes TM-score by using OpenACC 
and ensures portability of GPU TM-score. This portability of 
GPU TM-score refers to providing users the flexibility of 
using GPU TM-score with any kind of accelerators, unlike 
other GPU optimizations that tie ported applications to 
specific architectures (Ford, 2009; Preis, Virnau, & Paul, 
2009; Stantchev & Dorland, 2008; Gross & Janke, 2011).    

From our performance analysis of the sequential 
algorithm, we noticed that the KABSCH method for 
calculating optimal superimposed models in the TM-score 
algorithm is the most expensive. This accounts for close to 
75% of the total computational time. Our focus therefore is 
porting this region of the application to the GPU and 
optimizing it for performance gain. We propose the usage of 
OpenACC parallel and kernel regions to port hotspots within 
this section of code to the GPU. Since the device cannot 
access the host memory, our main task in this parallelization 
is to optimize data transfers so we can begin seeing the effect 
of our OpenACC acceleration on the speed.  

III. METHODS 

A. GPU and OpenACC Application Programming Interface 
Recent generations of GPUs use a unified architecture 

that is much suitable for scientific computing (Ford, 2009) 
and these are referred to as General Purpose GPUs (GPGPU). 
The general-purpose GPUs are used extensively in scientific 
computing to optimize applications that are suitable for 
parallel architectures. These GPUs are designed for compute-
intensive, highly parallel computations. By virtue of this, the 
TM-score algorithm is a good candidate for porting to the 
GPU since its calculations are compute-intensive.   

The general-purpose GPU operations follow the 
Single Instruction Multiple Data (SIMD) paradigm, and it 
comprises several streaming multiprocessors. The GPU uses 
these streaming multiprocessors to achieve high throughput 
which is obtained through the local caches and on-chip 
memory, thus, reducing bandwidth to external memory. 
There are numerous transistors on the GPU compared to CPU 
and these are for the purpose of data processing rather than 
caching and flow control. This therefore results in the 
compute-intensive and highly parallel computations of the 
GPU (Block, Virnau, & Preis, 2010). Since the GPU 
operation follows the SIMD paradigm, it is more suitable for 
tasks that can be expressed as data-parallel computations. By 
so doing, data elements are mapped to the numerous parallel 
processing threads. There are thousands of threads on the 
GPU and these are put into several batches/groups. In CUDA, 
these group of threads are called thread block and in 
OpenACC, they are referred to as a gang.  

Open Accelerators (OpenACC) are a directive-based 
Application Programming Interface (API) that optimizes and 
accelerates work on GPUs. OpenACC enables developers to 
write applications that offload codes with their associated 
runtime data to GPUs from a host CPU. This is accomplished 
by using preprocessor directives that work like the directives 
in OpenMP. This prevents writing low level functions that 
virtually change the original code. 

B. OpenACC Implementation  
Since the TM-score algorithm contains the KABSCH method 
which is compute intensive, we port this region and other 
bottleneck regions of code to the GPU using OpenACC. 
Within this algorithm is the calculation of the optimal rotation 
matrix as well as the covariance matrix. We split these 
computations within the Kabsch algorithm on the GPU by 
assigning each to a parallel region. By a parallel region, we 
mean a gang of thread blocks.  

We therefore insert OpenACC parallel directives that map 
these regions of code to a gang of thread blocks executed in 
parallel. This ensures a simultaneous execution of the 
different regions. We also optimize the number of thread 
blocks launched based on the amount of work to be 
completed in each region. This way, not too many or too few 
threads are launched, rather, an optimized number to ensure 
a speedup.  Also, the device (GPU) cannot access the host 
memory, thus, we move data associated with these regions to 
the GPU to ensure calculations are completed accurately.  



The data movements are accomplished by using OpenACC 
data regions in moving required data unto and from the 
device. These data transfers introduce an enormous overhead 
challenge within the optimization. From our initial 
optimization, the enormous data transfers account for 73% of 
the total GPU time. It is necessary therefore to optimize these 
data transfers so we can begin seeing an influence on the 
computational time. 

We accomplish this by merging several small data copies 
into single copies. Many small data copies happening at 
different times take away from time that is supposed to be 
used for computations. Thus, merging many small copies into 
larger ones enables the device to be devoted to compute-
intensive operations. Also, results that are not immediately 
required on the host after calculations on the device are kept 
on the device without being transferred to the CPU. This way, 
data movement time is split in half.       

Also, regions that are not necessarily bottlenecks but 
contain data that is needed on the GPU are moved to the 
device to reduce data transfers. After optimizing data 
transfers, we are able to reduce the data movement time to 
27% of total GPU time.  

IV. RESULTS  
We present the results from our initial optimization efforts 

in this section. An NVIDIA V100 GPU is used for the GPU 
implementation whereas an AMD EPYC 7742 64-core 
processor is used for sequential runs. 

 

 
Fig. 1. GPU and CPU execution time of proteins of varying residue 
length.  

On a benchmark dataset of 20 proteins obtained from the 
PDB, we record an initial average speedup of 3.14× as 
presented in Tab. 1. Also, from Tab. I, the peak recorded 
speed-up is 4.57× for residues within the range, 1001 - 2000. 
In Fig. 1, we present the GPU and CPU execution times 
against the residue lengths of protein structures being 
compared. It can be observed that the speedup is more 
pronounced as the residue length becomes larger. This is 
presented vividly in Fig. 2 where the residue ranges are 
plotted against the average execution times. 

This in part is due to the fact that as residue lengths become 
larger, it takes considerably longer for the computations to be 
completed. Thus, the effect of the GPU optimization is much 
realized at this point. This means the efficiency of the 
optimization is clearly seen as the problem size becomes 
larger.     

 
Fig. 2. GPU and CPU Execution time of proteins of varying residue 
length.  

We have implemented an initial OpenACC optimized 
GPU-TM-score algorithm which is currently 3.14× faster than 
original TM-score. We hope to improve upon these results 
after further targeted porting and optimization. This work 
when completed, should help in comparing protein structures 
a lot faster by using any kind of accelerators as OpenACC 
works with all kinds of GPUs.   

TABLE 1. Average Execution Time for Benchmark Data   

Residue Range tcpu/s tgpu/s SpeedUp 

401 - 500 0.55 (1) 0.33 1.67 

501 - 600 0.715 (2) 0.305 2.34 

601 - 700 0.86 (1) 0.35 2.46 

701 - 800 1.25 (10) 0.411 3.04 

801 - 900 1.53 (5) 0.458 3.34 

1001 - 2000 2.88(1) 0.63 4.57 

Average 1.298 0.414 3.14 

 

V. FUTURE WORK 
We aim to optimize the GPU-TM-score algorithm further 

by targeting both the computations and the data transfers that 
have been reduced currently to 27%. Though this optimization 
is host-device memory bound, we are hoping to have the 
average speedup improved.  
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