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Abstract—Control of an articulated spine is important for
humanoids’ dynamic and balanced motion. Although there have
been many spinal structures for humanoids, their actuation is
still limited due to the usage of geared-motors for joints. This
paper introduces position control of a distributed electrome-
chanical spine in a vertical plane. The spine dynamics model
is approximated as an open chain. Gravitational and spring
torques are compensated for the control. Moreover, torque-to-
current conversion for the actuator is developed. Experimental
results show the implemented control of the electromechanical
spine for undulatory motions.

I. INTRODUCTION

The spine and surrounding muscles make vertebrates flex-

ible, dynamic, balanced, and natural [1]–[4]. For example, a

cheetah’s ability to efficiently gallop has been attributed to

its elastic spine [5]. Humans also use their spine extensively

for energy-efficient locomotion and balance by actively con-

trolling the center-of-mass [6]. Bio-inspired robots have often

been envisioned to include an artificial spine. For example, a

differential actuated spine was contemplated for MIT Cheetah

[7]. Similarly, humanoids such as “Kojiro”, “Kenshiro”,

and “Kengoro” [8]–[10] used spine structures created us-

ing tendon-driven motors. Adding distributed springs within

these articulated spines further improved the supporting force

[11]. Conventionally, a motor-driven actuator has been one

of the most preferred approaches to create articulated spines

[12]–[14].

Instead of tendon-driven joint actuation with motors and

gears, an alternative gearless, bio-inspired electromechanical

actuation system for a spine was introduced in [15]. This

modular and distributed actuator combines the spine structure

along with its actuation mechanism, as shown in Fig. 1.

Each module consists of an E-shaped core and two coils.

The E-shaped core resembles a vertebra and two coils em-

ulate the surrounding muscles. The two coils in the module

produce antagonistic torques, an actuating principle found in

abundance in biological systems. Integration of mechanical

springs between two adjacent modules further improves the

actuator’s torque capability along with its ability to store

mechanical energy [16]. A system-level design methodology

for the distributed spine showed that the spine can produce

a total of 113.4 Nm torque while having a size that can

fit in a humanoid such as “THORMANG 3” [17]. One

of the remaining questions in this pursuit is—how can we

control such a bio-inspired, distributed actuation system to
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Fig. 1: The vertical electromechanical spine with distributed

springs.

achieve a desired trajectory? Unlike conventional motors,

the proposed distributed actuator’s torque characteristic is a

highly nonlinear function of position and coil current. The

nonlinearity gets further amplified due to the magnetic core

saturation and airgap fringing effect [18]. A dynamic model

of the spine and the actuator’s precise torque-to-current

conversion are necessary to create the control framework.

Additionally, closed-loop control with gravity compensation

is needed to operate the spine in a vertical plane with smooth

transient behavior [19], [20].

This paper presents the spine dynamics and closed-loop

position control of the electromechanical spine with dis-

tributed springs in a vertical plane. The position controller

includes PD control with on-line gravity and spring torque

compensations. The actuator’s torque-to-current conversion

gain is calculated using a finite-element based simulation

to account for the non-linearity. Stiffer springs are utilized

in lower modules to offset higher torque requirement while

operating in a vertical plane. Different combinations of linear

extension springs are utilized at each joint. The distributed

springs create a vertical equilibrium position for the spine.

This approach minimizes the input energy needed to keep

the spine vertically straight. Experimental results using the

prototype built in [15] show that the proposed actuator can

be controlled to achieve undulatory motions at 1 Hz for a

swing of 18 deg, from Joint 1 to Joint 6.

Section II presents the actuator’s module operation, spine

dynamics model approximation, torque-to-current conver-

sion, spine controller architecture, and distributed springs.

Simulation results for swing and phase-shifted motions of

the electromechanical spine are presented in Section III and

compared to its analytical model. Experimental results with

closed-loop control are provided in Section IV.
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Fig. 2: A single module rotates by selective excitation: (a)

The upper module rotates counter-clockwise when Coil 1 is

excited. (b) The upper module rotates clockwise when Coil

2 is excited.

II. VERTICAL ELECTROMECHANICAL SPINE WITH

SPRINGS

A. Actuation Principle

Adjacent modules work together to produce torque, as

shown in Fig. 2. The dashed line shows the magnetic flux

path when a coil is excited. When Coil 1 is excited, the upper

module rotates counter-clockwise, and when Coil 2 is excited,

it rotates clockwise with the pin being the axis of rotation.

Each joint allows ±4.5 deg from the straightened position.

Analytical model, module design procedure, mechanical de-

signs, multi-module operation, and force measurements of

the actuator were analyzed in [15].

B. Spine Dynamics

The electromechanical spine structure is a 6-link planar

open chain, as shown in Fig. 3. Only two joints are shown,

because all of the modules are identical. Since module 6 only

moves a small I-core, joint 6 is ignored for model simplicity.

The 5-link spine dynamics can be written as

τ = M(θ)θ̈ + c(θ, θ̇) + g(θ), (1)

where angular positions θ = [θ1, θ2, θ3, θ4, θ5]
T , mass

matrix M(θ), Coriolis and centripetal torque c(θ, θ̇), and the

gravitational torque g(θ) [21]. The spine’s zero configuration

is θ = [π
2
, 0, 0, 0, 0]T for vertically straight positions.

Unlike common multi-link open chain with motors at joints,

Fig. 3: The spine structure is 6-link planar open chain with

limited angular flexibility.

the distributed spine has a small angular flexibility at each

joint. Since each joint has only ±4.5 deg position range,

θ ≈ [π
2
, 0, 0, 0, 0]T can be used to approximate M(θ) as

a constant matrix M . Moreover, considering low angular ve-

locities, c(θ, θ̇) becomes negligible. Therefore, the dynamics

of the electromechanical spine becomes

τ = Mθ̈ + g(θ). (2)

The module’s rotational inertia matrix is obtained from Creo

CAD software. Using this rotational inertia matrix, the mass

matrix M is analytically computed at zero configuration and

is given by

M =













0.0236 0.0167 0.0104 0.0051 0.0015
0.0167 0.0123 0.0079 0.0040 0.0012
0.0104 0.0079 0.0054 0.0029 0.0009
0.0051 0.0040 0.0029 0.0018 0.0006
0.0015 0.0012 0.0009 0.0006 0.0003













. (3)

The relative error between the mass matrix at zero config-

uration and fully-rotated positions (all joints rotated by 4.5

deg) is negligible as shown below:

MRE =













0.75 0.71 0.87 1.24 1.80
0.71 0.48 0.46 0.65 1.05
0.87 0.46 0.26 0.27 0.50
1.24 0.65 0.27 0.10 0.15
1.80 1.05 0.50 0.15 0.00













%. (4)

Gravitational torque g(θ) is calculated with the Lagrangian

formulation using point mass of a module, expressed as

g(θ) = mg













σ5 + σ4 + σ3 + σ2 + σ1

σ4 + σ3 + σ2 + σ1

σ3 + σ2 + σ1

σ2 + σ1

σ1













,

where σ1 = lc cos(θ1 + θ2 + θ3 + θ4 + θ5),

σ2 = (L+ lc) cos(θ1 + θ2 + θ3 + θ4),

σ3 = (2L+ lc) cos(θ1 + θ2 + θ3),

σ4 = (3L+ lc) cos(θ1 + θ2),

σ5 = (4L+ lc) cos θ1.

(5)

L is the link length, lc is the center-of-mass distance from

joint, and m is the mass of a single module, which are

described in Fig. 3.

The spine dynamics model (2) and its approximated M
and g(θ) are used to calculate torque for the trajectories.

L = 42mm, lc = 22.08mm, and m = 0.31kg are used

for the model parameters. The spine dynamics is plotted

in Fig. 4(a) and 4(b) for its sinusoidal swing and phase-

shifted motions. Note that joint position changes from its zero

configuration are plotted in degrees. For the swing motion

as shown in Fig. 4(a), all joint position references are in

phase, resulting in sinusoidal joint torques in phase with

different magnitudes. The torque at Joint 1 is the highest,

since it has the longest moment arm. The magnitude of the
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Fig. 4: Spine dynamics with 4.5 deg amplitude at 2

Hz. Position changes from its zero configuration (θ =
[π
2
, 0, 0, 0, 0]T ) are shown: (a) Sinusoidal in-phase swing

motion (b) π/3 phase-shifted motion.

torque decreases as the module number increases. For the

phase-shifted motion shown in Fig. 4(b), each joint position

reference is phase-shifted by π/3. Although acceleration θ̈
is also phase-shifted, the Mθ̈ term is barely phase-shifted

between modules, because mass matrix M elements for Joint

1 dominates the weight of the mass matrix. The peak of the

gravitational torque g(θ) for the phase-shifted motion is lower

than the one for the swing motion since the joint positions

are not in phase. Overall the peak torque requirement for the

swing motion is greater than the one for phase-shifted motion

with greater Mθ̈ and g(θ) terms. The electromechanical spine

simulation results are compared with the spine dynamics in

Section III.

C. Torque, Current, and Position Relationship

Torque capability of the electromechanical actuator de-

pends on its angular position and coil current. The torque is

proportional to current squared when the core is not saturated

[22]. Figure 5 presents the actuator’s torque capability that

varies with position and current. The results are from finite-

element analysis using ANSYS Maxwell. The magnitude of

torque is shown for Coil 1 excitation only. The actuator

can produce significant amount of torque with high current.

However, it becomes highly nonlinear due to core saturation

when the current is high, especially when the joint position

is fully rotated to the 4.5 deg position. Core saturation

depending on current and position was discussed in [15].

Core saturation starts occurring above 3 A current and 1.5

Nm torque. Hence, the non-saturated region needs to be used

to generate accurate torque from coil current. The torque

Fig. 5: Torque capability of the actuator depends on coil

current and position.

curve when the coil current is at 1 A is selected to calculate

the reference current for a reference torque at a position.

Thus, the current can be expressed as

τref = τ(θ, 1A)× i2ref ,

iref =

√

τref
τ(θ, 1A)

.
(6)

The torque curve at 1A shown in Fig. 5 and (6) are used in

Section IV for torque-to-current conversion.

D. Position Control of the Spine

Position control of the spine with gravity and spring com-

pensations in a vertical plane is developed. Both gravitational

torque expressed in (5) and spring torque are compensated

for a joint torque:

τ = Kpθe +Kdθ̇e + g(θ) +Kθ, (7)

where Kp is proportional gain, Kd is derivative gain, K
is spring rate at a joint, and θ is in degrees. A look-up

table with linear-interpolation is used to compute a current

reference from a torque reference for a specific position. The

developed control framework for a module is shown in Fig.

6. Coil excitation is chosen based on the torque direction.

A PI controller is used for individual coil current control.

Coil current is limited to 3 A in order to operate in the

non-saturated region in the full angular range. Torque is also

limited to 1.5 Nm for the same reason.

Fig. 6: Control framework of the spine.



E. Selection of Distributed Springs

Figure 7(a) shows the non-linear torque capability of

the actuator, which reduces considerably for large airgaps.

Reference [16] proposed a parallel spring mechanism to be

used in conjunction with the actuator to reduce limitation.

The spring mechanism consists of a combination of linear

extension springs, which are attached to the upper and lower

modules’ coil holders, as shown in Fig. 8. The coil holder

has three spring slots with a steel pin mount and up to three

linear springs can be installed. The springs are pre-loaded.

From a modeling perspective, the linear springs on both sides

can be considered an equivalent torsional spring at the joint.

Figure 7(b) shows the improvement in the torque capability

by 5X for the maximum airgap position while sacrificing the

torque by 25 % at the minimum airgap position with a spring

rate of 0.1538 Nm/deg.

In vertical spine operation, the lower joints have a longer

moment arm, which leads to a higher torque requirement.

Depending on the module position, these variations in the

actuator torque capability require different spring designs.

The peak gravitational torque at the corresponding joint

determines the lower bound of a module’s spring rate.

This constraint maintains the vertical position as equilibrium

without an electrical torque. The upper bound of the module’s

spring rate is driven by the maximum torque requirement for

a desired trajectory and acceleration. Various spring rates are

chosen to counteract the gravity effect and meet the torque

requirements, as listed in Table I. Springs are not used at

Joint 6, since it requires small torque to move an I-shaped

core. The torque capability of the actuator with the distributed

springs is shown in Fig. 9.

(a)

(b)

Fig. 7: Torque capability of the actuator at 3 A coil current:

(a) Without springs (b) With spring rate of 0.1538 Nm/deg.

TABLE I: Combinations of different linear springs are used

on the coil holders to create equivalent torsion spring rates.

Joint 1 2 3 4 5 6

# of spring 1
14.2 [lbs/in]

1 1 0 0 0 0

# of spring 2
4.69 [lbs/in]

2 1 3 2 1 0

Equivalent
torsion spring

[Nm/deg]
0.1538 0.1232 0.0927 0.0612 0.0306 0

Fig. 8: Different combination of springs is used on each

module.

Fig. 9: Torque capability of the actuator at different joints

for 3 A current with distributed springs.

III. SIMULATIONS

Matlab Simscape Multibody is used to compare the torque

requirements between the analytical model and simulation.

Right and left full swing motion and phase-shifted motion

are simulated. The series-connected six modules, including

the top I-shaped core, are set up in the simulation. The bottom

module is fixed to ground. Joints 1-6 are located from the

bottom to the top link in order. The spine is in a vertical

plane.

Figure 10(a) and (b) compare the joint torques from

simulation with the one from the spine dynamics model

in Section II-B. The torque from the model at each joint

matches well with simulation results for both swing and

π/3 phase-shifted motions. The torque magnitude from the

spine dynamics is marginally lower than simulation. The

error is caused because the analytical model neglects the top

I-shaped core and assumes point mass for each module in

gravitational torque for model simplicity. The mass matrix is

also considered to be a constant matrix due to the small angle

changes at joints. For the swing motion, all joint torques

are in phase, so Fig. 10(a) has a linear shape for all joints.



(a) (b)

Fig. 10: Torque versus position for 4.5 deg amplitude at 2

Hz: (a) Swing motion (b) π/3 phase-shifted motion.

(a) (b)

Fig. 11: The required torque for the swing and phse-shifted

motions are within the torque capability of the actuator with

springs: (a) Swing motion (b) π/3 phase-shifted motion.

Joint 1 has the highest torque requirement because it has

the longest moment arm. The torque curve for the phase-

shifted motion in Fig. 10(b) presents tilted ellipses due to

the phase-shifted torques, as shown in Fig. 4(b). The phase-

shifted motion requires lower peak torques at –4.5 deg and

higher peak torques around 0 deg than the swing motion.

The higher torque requirements around 0 deg for the phase-

shifted motion need higher coil currents due to the torque,

position, and current relationship, as discussed in II-C.

These torque curves must stay within the actuator’s torque

capability to achieve the swing and phase-shifted motions.

Figure 11(a) and (b) show that the torques are under the

actuator’s capability with its distributed springs.

IV. EXPERIMENTS

Figure 12 shows the experimental setup for the spine’s

trajectory control. Figure 13 shows the system diagram. Six

modules are stacked and connected to form the electrome-

chanical spine in a vertical plane. The dimensions of the

spine are 0.07(L)× 0.03(W )× 0.262(H) m3, and the total

weight is 1.9 kg. The lowest module is fixed to ground. The

main 48 V power supply and auxiliary power supplies are

connected to the power electronics. Both power electronics

and the microcontroller (Texas Instruments F28379D) are

located under the spine. The coils and position sensor outputs

are connected to the power electronics board and controller.

The computer communicates with the microcontroller to

command and monitor joint positions and coil currents. The

Fig. 12: Experimental setup for the spine controls.

Fig. 13: System diagram of the electromechanical spine.

converter design is modular, so a total of twelve identical

buck converters are mounted on the power electronics board.

A magnetic encoder is attached at the pin on the front

side of the actuator to sense the position at each joint. The

sensor is placed above the revolute joint pin while it does

not touch the pin. A permanent magnet with a 3D-printed

magnet holder is attached at the joint providing reference

magnetic flux to the sensor. The position sensor outputs the

position information as a sinusoidal waveform. The magnet is

precisely located to utilize the linear region of the sinusoidal

waveform at zero-crossing point, since the angular rotation

is small. An operational amplifier circuit is used to amplify

the position sensor output signal. The amplifier circuit is

mounted on each module.

Figure 14(a) and 14(b) show the captured moments during

the spine’s swing motion with a 3 deg amplitude sinusoidal

position reference at 1 Hz. Notice that the position changes

from the spine’s zero configuration are shown. The measured

joint positions are shown in Fig. 15(a). All joint positions are

in phase for the swing motion, and reach 3 deg. The swing

(a) Left (b) Right (c) Phase-shifted

Fig. 14: Swing and phase-shifted motions captured during

vertical operation of the spine.



(a) Swing motion

(b) π/3 phase-shifted motion

Fig. 15: Measured joint positions during undulatory motions

with 3deg amplitude at 1 Hz.

Fig. 16: Measured coil currents for module 1 during swing

motion with 3 deg amplitude at 1 Hz.

motion makes 18 deg bending angle for the spine. Module

6 is not operated, since Joint 6 is fixed to 0 deg position.

Measured positions of π/3 phase-shifted motion with the

amplitude of 3 deg at 1 Hz is shown in Fig. 15(b). A captured

moment during phase-shifted motion is shown in Fig. 14(c).

Coil currents are also measured for the same swing motion

for Module 1 (Joint 1), as shown in Fig. 16. Since each

coil creates opposing torque, the excitation is alternative for

the sinusoidal waveform position reference. The actuator’s

torque capability at high angle is significantly higher than

the one at low angle for same current, as shown in Fig.

5. Therefore, the coil current level decreases around 3 deg

although its producing torque increases. The average input

power for the swing and phase-shifted motions are 10 W

and 15 W, respectively.

V. CONCLUSION

In this paper, position control of the distributed spine is de-

veloped. The spine dynamics is introduced as an open chain

and approximated with its limited rotation. Gravitational and

spring torques using measured positions are compensated.

Distributed springs are installed on the spine to counteract

gravity. In addition, electrical dynamics in the non-linear

region is utilized to convert torque into current with position

information. The controller is validated by the experimental

results on the electromechanical spine in a vertical plane.
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