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Abstract—Control of an articulated spine is important for
humanoids’ dynamic and balanced motion. Although there have
been many spinal structures for humanoids, their actuation is
still limited due to the usage of geared-motors for joints. This
paper introduces position control of a distributed electrome-
chanical spine in a vertical plane. The spine dynamics model
is approximated as an open chain. Gravitational and spring
torques are compensated for the control. Moreover, torque-to-
current conversion for the actuator is developed. Experimental
results show the implemented control of the electromechanical
spine for undulatory motions.

I. INTRODUCTION

The spine and surrounding muscles make vertebrates flex-
ible, dynamic, balanced, and natural [1]-[4]. For example, a
cheetah’s ability to efficiently gallop has been attributed to
its elastic spine [5]. Humans also use their spine extensively
for energy-efficient locomotion and balance by actively con-
trolling the center-of-mass [6]. Bio-inspired robots have often
been envisioned to include an artificial spine. For example, a
differential actuated spine was contemplated for MIT Cheetah
[7]. Similarly, humanoids such as “Kojiro”, “Kenshiro”,
and “Kengoro” [8]-[10] used spine structures created us-
ing tendon-driven motors. Adding distributed springs within
these articulated spines further improved the supporting force
[11]. Conventionally, a motor-driven actuator has been one
of the most preferred approaches to create articulated spines
[12]-[14].

Instead of tendon-driven joint actuation with motors and
gears, an alternative gearless, bio-inspired electromechanical
actuation system for a spine was introduced in [15]. This
modular and distributed actuator combines the spine structure
along with its actuation mechanism, as shown in Fig. 1.
Each module consists of an E-shaped core and two coils.
The E-shaped core resembles a vertebra and two coils em-
ulate the surrounding muscles. The two coils in the module
produce antagonistic torques, an actuating principle found in
abundance in biological systems. Integration of mechanical
springs between two adjacent modules further improves the
actuator’s torque capability along with its ability to store
mechanical energy [16]. A system-level design methodology
for the distributed spine showed that the spine can produce
a total of 113.4 Nm torque while having a size that can
fit in a humanoid such as “THORMANG 3” [17]. One
of the remaining questions in this pursuit is—how can we
control such a bio-inspired, distributed actuation system to
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Fig. 1: The vertical electromechanical spine with distributed
springs.

achieve a desired trajectory? Unlike conventional motors,
the proposed distributed actuator’s torque characteristic is a
highly nonlinear function of position and coil current. The
nonlinearity gets further amplified due to the magnetic core
saturation and airgap fringing effect [18]. A dynamic model
of the spine and the actuator’s precise torque-to-current
conversion are necessary to create the control framework.
Additionally, closed-loop control with gravity compensation
is needed to operate the spine in a vertical plane with smooth
transient behavior [19], [20].

This paper presents the spine dynamics and closed-loop
position control of the electromechanical spine with dis-
tributed springs in a vertical plane. The position controller
includes PD control with on-line gravity and spring torque
compensations. The actuator’s torque-to-current conversion
gain is calculated using a finite-element based simulation
to account for the non-linearity. Stiffer springs are utilized
in lower modules to offset higher torque requirement while
operating in a vertical plane. Different combinations of linear
extension springs are utilized at each joint. The distributed
springs create a vertical equilibrium position for the spine.
This approach minimizes the input energy needed to keep
the spine vertically straight. Experimental results using the
prototype built in [15] show that the proposed actuator can
be controlled to achieve undulatory motions at 1 Hz for a
swing of 18 deg, from Joint 1 to Joint 6.

Section II presents the actuator’s module operation, spine
dynamics model approximation, torque-to-current conver-
sion, spine controller architecture, and distributed springs.
Simulation results for swing and phase-shifted motions of
the electromechanical spine are presented in Section III and
compared to its analytical model. Experimental results with
closed-loop control are provided in Section IV.
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Fig. 2: A single module rotates by selective excitation: (a)
The upper module rotates counter-clockwise when Coil 1 is
excited. (b) The upper module rotates clockwise when Coil
2 is excited.
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II. VERTICAL ELECTROMECHANICAL SPINE WITH
SPRINGS

A. Actuation Principle

Adjacent modules work together to produce torque, as
shown in Fig. 2. The dashed line shows the magnetic flux
path when a coil is excited. When Coil 1 is excited, the upper
module rotates counter-clockwise, and when Coil 2 is excited,
it rotates clockwise with the pin being the axis of rotation.
Each joint allows +4.5 deg from the straightened position.
Analytical model, module design procedure, mechanical de-
signs, multi-module operation, and force measurements of
the actuator were analyzed in [15].

B. Spine Dynamics

The electromechanical spine structure is a 6-link planar
open chain, as shown in Fig. 3. Only two joints are shown,
because all of the modules are identical. Since module 6 only
moves a small I-core, joint 6 is ignored for model simplicity.
The 5-link spine dynamics can be written as

7= M(0)d+ c(0,0) + g(0), (D

where angular positions 6 = [0y, 02, 03, 04, 35]T, mass
matrix M (6), Coriolis and centripetal torque ¢(6, ), and the
gravitational torque g(#) [21]. The spine’s zero configuration
is 0 =[5, 0,0, 0, 0] for vertically straight positions.
Unlike common multi-link open chain with motors at joints,
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Fig. 3: The spine structure is 6-link planar open chain with
limited angular flexibility.

the distributed spine has a small angular flexibility at each
joint. Since each joint has only +4.5 deg position range,
0~ [%, 0, 0, 0, 0]” can be used to approximate M (6) as
a constant matrix M. Moreover, considering low angular ve-
locities, ¢(6,0) becomes negligible. Therefore, the dynamics
of the electromechanical spine becomes

=M+ g(0). )

The module’s rotational inertia matrix is obtained from Creo
CAD software. Using this rotational inertia matrix, the mass
matrix M is analytically computed at zero configuration and
is given by

0.0236 0.0167 0.0104 0.0051 0.0015
0.0167 0.0123 0.0079 0.0040 0.0012

M = 10.0104 0.0079 0.0054 0.0029 0.0009|. (3)
0.0051 0.0040 0.0029 0.0018 0.0006
0.0015 0.0012 0.0009 0.0006 0.0003

The relative error between the mass matrix at zero config-
uration and fully-rotated positions (all joints rotated by 4.5
deg) is negligible as shown below:

0.75 0.71 0.87 1.24 1.80
0.71 048 0.46 0.65 1.05
Mg = 1087 0.46 0.26 027 050 %. (@
1.24 0.65 0.27 0.10 0.15
1.80 1.05 0.50 0.15 0.00

Gravitational torque g(6) is calculated with the Lagrangian
formulation using point mass of a module, expressed as

05 +04+ 03+ 02+ 01
04 + 03+ 09+ 01

g(0) =mg 03+ 02+ 01 )
g9 + g1
01
where o1 = l.cos(01 + 02 + 05 + 04 + 05), )

o9 = (L + 1) cos(fy + 0 + 03 + 64),
o3 = (2L +1.) cos(01 + 02 + 03),

o4 = (3L + 1) cos(b1 + 62),

o5 = (4L + ;) cos 0;.

L is the link length, [. is the center-of-mass distance from
joint, and m is the mass of a single module, which are
described in Fig. 3.

The spine dynamics model (2) and its approximated M
and g(f) are used to calculate torque for the trajectories.
L = 42mm, [, = 22.08mm, and m = 0.31kg are used
for the model parameters. The spine dynamics is plotted
in Fig. 4(a) and 4(b) for its sinusoidal swing and phase-
shifted motions. Note that joint position changes from its zero
configuration are plotted in degrees. For the swing motion
as shown in Fig. 4(a), all joint position references are in
phase, resulting in sinusoidal joint torques in phase with
different magnitudes. The torque at Joint 1 is the highest,
since it has the longest moment arm. The magnitude of the
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Fig. 4: Spine dynamics with 4.5 deg amplitude at 2
Hz. Position changes from its zero configuration (@ =
[g, 0, 0, 0, 0]7) are shown: (a) Sinusoidal in-phase swing
motion (b) 7/3 phase-shifted motion.

torque decreases as the module number increases. For the
phase-shifted motion shown in Fig. 4(b), each joint position
reference is phase-shifted by 7/3. Although acceleration 0
is also phase-shifted, the M 6 term is barely phase-shifted
between modules, because mass matrix M elements for Joint
1 dominates the weight of the mass matrix. The peak of the
gravitational torque g(#) for the phase-shifted motion is lower
than the one for the swing motion since the joint positions
are not in phase. Overall the peak torque requirement for the
swing motion is greater than the one for phase-shifted motion
with greater M6 and g(6) terms. The electromechanical spine
simulation results are compared with the spine dynamics in
Section III.

C. Torque, Current, and Position Relationship

Torque capability of the electromechanical actuator de-
pends on its angular position and coil current. The torque is
proportional to current squared when the core is not saturated
[22]. Figure 5 presents the actuator’s torque capability that
varies with position and current. The results are from finite-
element analysis using ANSYS Maxwell. The magnitude of
torque is shown for Coil 1 excitation only. The actuator
can produce significant amount of torque with high current.
However, it becomes highly nonlinear due to core saturation
when the current is high, especially when the joint position
is fully rotated to the 4.5 deg position. Core saturation
depending on current and position was discussed in [15].
Core saturation starts occurring above 3 A current and 1.5
Nm torque. Hence, the non-saturated region needs to be used
to generate accurate torque from coil current. The torque

Angular position [deg]

Fig. 5: Torque capability of the actuator depends on coil
current and position.

curve when the coil current is at 1 A is selected to calculate
the reference current for a reference torque at a position.
Thus, the current can be expressed as

Tref = T(0,1A) x izef,

i o Tref (6)
T 7(0,14)

The torque curve at 1A shown in Fig. 5 and (6) are used in
Section IV for torque-to-current conversion.

D. Position Control of the Spine

Position control of the spine with gravity and spring com-
pensations in a vertical plane is developed. Both gravitational
torque expressed in (5) and spring torque are compensated
for a joint torque:

T =Ky, + Kqf. + g(0) + K0, (7)

where K, is proportional gain, Ky is derivative gain, K
is spring rate at a joint, and 0 is in degrees. A look-up
table with linear-interpolation is used to compute a current
reference from a torque reference for a specific position. The
developed control framework for a module is shown in Fig.
6. Coil excitation is chosen based on the torque direction.
A PI controller is used for individual coil current control.
Coil current is limited to 3 A in order to operate in the
non-saturated region in the full angular range. Torque is also
limited to 1.5 Nm for the same reason.
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Fig. 6: Control framework of the spine.



E. Selection of Distributed Springs

Figure 7(a) shows the non-linear torque capability of
the actuator, which reduces considerably for large airgaps.
Reference [16] proposed a parallel spring mechanism to be
used in conjunction with the actuator to reduce limitation.
The spring mechanism consists of a combination of linear
extension springs, which are attached to the upper and lower
modules’ coil holders, as shown in Fig. 8. The coil holder
has three spring slots with a steel pin mount and up to three
linear springs can be installed. The springs are pre-loaded.
From a modeling perspective, the linear springs on both sides
can be considered an equivalent torsional spring at the joint.
Figure 7(b) shows the improvement in the torque capability
by 5X for the maximum airgap position while sacrificing the
torque by 25 % at the minimum airgap position with a spring
rate of 0.1538 Nm/deg.

In vertical spine operation, the lower joints have a longer
moment arm, which leads to a higher torque requirement.
Depending on the module position, these variations in the
actuator torque capability require different spring designs.
The peak gravitational torque at the corresponding joint
determines the lower bound of a module’s spring rate.
This constraint maintains the vertical position as equilibrium
without an electrical torque. The upper bound of the module’s
spring rate is driven by the maximum torque requirement for
a desired trajectory and acceleration. Various spring rates are
chosen to counteract the gravity effect and meet the torque
requirements, as listed in Table I. Springs are not used at
Joint 6, since it requires small torque to move an I-shaped
core. The torque capability of the actuator with the distributed
springs is shown in Fig. 9.
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Fig. 7: Torque capability of the actuator at 3 A coil current:
(a) Without springs (b) With spring rate of 0.1538 Nm/deg.
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TABLE I: Combinations of different linear springs are used
on the coil holders to create equivalent torsion spring rates.

Joint 1 2 3 4 5 6
# of spring 1
14.2 [Ibs/in] ! ! 0 0 o |0
# of spring 2
4.69 [Ibs/in] 2 ! 3 2 Lo
Equivalent
torsion spring | 0.1538 | 0.1232 | 0.0927 | 0.0612 | 0.0306 | O
[Nm/deg]

Fig. 8: Different combination of springs is used on each
module.
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Fig. 9: Torque capability of the actuator at different joints
for 3 A current with distributed springs.

III. SIMULATIONS

Matlab Simscape Multibody is used to compare the torque
requirements between the analytical model and simulation.
Right and left full swing motion and phase-shifted motion
are simulated. The series-connected six modules, including
the top I-shaped core, are set up in the simulation. The bottom
module is fixed to ground. Joints 1-6 are located from the
bottom to the top link in order. The spine is in a vertical
plane.

Figure 10(a) and (b) compare the joint torques from
simulation with the one from the spine dynamics model
in Section II-B. The torque from the model at each joint
matches well with simulation results for both swing and
/3 phase-shifted motions. The torque magnitude from the
spine dynamics is marginally lower than simulation. The
error is caused because the analytical model neglects the top
I-shaped core and assumes point mass for each module in
gravitational torque for model simplicity. The mass matrix is
also considered to be a constant matrix due to the small angle
changes at joints. For the swing motion, all joint torques
are in phase, so Fig. 10(a) has a linear shape for all joints.
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Fig. 10: Torque versus position for 4.5 deg amplitude at 2
Hz: (a) Swing motion (b) /3 phase-shifted motion.
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Joint 1 has the highest torque requirement because it has
the longest moment arm. The torque curve for the phase-
shifted motion in Fig. 10(b) presents tilted ellipses due to
the phase-shifted torques, as shown in Fig. 4(b). The phase-
shifted motion requires lower peak torques at —4.5 deg and
higher peak torques around O deg than the swing motion.
The higher torque requirements around O deg for the phase-
shifted motion need higher coil currents due to the torque,
position, and current relationship, as discussed in II-C.

These torque curves must stay within the actuator’s torque
capability to achieve the swing and phase-shifted motions.
Figure 11(a) and (b) show that the torques are under the
actuator’s capability with its distributed springs.

IV. EXPERIMENTS

Figure 12 shows the experimental setup for the spine’s
trajectory control. Figure 13 shows the system diagram. Six
modules are stacked and connected to form the electrome-
chanical spine in a vertical plane. The dimensions of the
spine are 0.07(L) x 0.03(W) x 0.262(H) m?, and the total
weight is 1.9 kg. The lowest module is fixed to ground. The
main 48 V power supply and auxiliary power supplies are
connected to the power electronics. Both power electronics
and the microcontroller (Texas Instruments F28379D) are
located under the spine. The coils and position sensor outputs
are connected to the power electronics board and controller.
The computer communicates with the microcontroller to
command and monitor joint positions and coil currents. The
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Fig. 12: Experimental setup for the spine controls.
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Fig. 13: System diagram of the electromechanical spine.

converter design is modular, so a total of twelve identical
buck converters are mounted on the power electronics board.

A magnetic encoder is attached at the pin on the front
side of the actuator to sense the position at each joint. The
sensor is placed above the revolute joint pin while it does
not touch the pin. A permanent magnet with a 3D-printed
magnet holder is attached at the joint providing reference
magnetic flux to the sensor. The position sensor outputs the
position information as a sinusoidal waveform. The magnet is
precisely located to utilize the linear region of the sinusoidal
waveform at zero-crossing point, since the angular rotation
is small. An operational amplifier circuit is used to amplify
the position sensor output signal. The amplifier circuit is
mounted on each module.

Figure 14(a) and 14(b) show the captured moments during
the spine’s swing motion with a 3 deg amplitude sinusoidal
position reference at 1 Hz. Notice that the position changes
from the spine’s zero configuration are shown. The measured
joint positions are shown in Fig. 15(a). All joint positions are
in phase for the swing motion, and reach 3 deg. The swing

(c) Phase-shifted

(a) Left

(b) Right

Fig. 14: Swing and phase-shifted motions captured during
vertical operation of the spine.
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Fig. 16: Measured coil currents for module 1 during swing
motion with 3 deg amplitude at 1 Hz.

motion makes 18 deg bending angle for the spine. Module
6 is not operated, since Joint 6 is fixed to O deg position.
Measured positions of 7/3 phase-shifted motion with the
amplitude of 3 deg at 1 Hz is shown in Fig. 15(b). A captured
moment during phase-shifted motion is shown in Fig. 14(c).

Coil currents are also measured for the same swing motion
for Module 1 (Joint 1), as shown in Fig. 16. Since each
coil creates opposing torque, the excitation is alternative for
the sinusoidal waveform position reference. The actuator’s
torque capability at high angle is significantly higher than
the one at low angle for same current, as shown in Fig.
5. Therefore, the coil current level decreases around 3 deg
although its producing torque increases. The average input
power for the swing and phase-shifted motions are 10 W
and 15 W, respectively.

V. CONCLUSION

In this paper, position control of the distributed spine is de-
veloped. The spine dynamics is introduced as an open chain
and approximated with its limited rotation. Gravitational and
spring torques using measured positions are compensated.
Distributed springs are installed on the spine to counteract
gravity. In addition, electrical dynamics in the non-linear
region is utilized to convert torque into current with position
information. The controller is validated by the experimental
results on the electromechanical spine in a vertical plane.
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