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ABSTRACT

Secondary indexes in relational database systems are traditionally built under the assumption that one
data record maps to one indexed value. Nowadays, particularly in NoSQL systems, single data records
can hold collections of values that users want to access efficiently in an ad-hoc manner. Multi-valued
indexes aim to give users the best of both worlds: (i) to keep a more natural data model of records
with collections of values, and (ii) to reap the benefits of a secondary index.

In this paper, we detail the steps taken to realize multi-valued indexes in AsterixDB, a Big Data
management system with a structured query language operating over a collection of documents.
This includes (a) creating the specification language for such indexes, (b) illustrating data flows for
bulk-loading and maintaining an index, and (c) discussing query plans to take advantage of multi-
valued indexes for use in predicates with existential and universal quantification. We conclude with
experiments that measure the impact of maintaining an AsterixDB multi-valued index and experiments
that compare the query performance our multi-valued indexes against similar indexes in MongoDB and
Couchbase Server’s Query Service.

Published by Elsevier Ltd. This is an open access article under the CCBY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Multi-valued fields, such as arrays and multisets, are a staple
in many (if not all) NoSQL systems. Secondary indexes are tra-
ditionally for single-valued fields, where a record in a database
maps to one entry in an index (e.g. a leaf node in a B+ tree index).
Here, we will refer to a secondary index on a single-valued field
for a collection of records as a single-field single-valued index,
while a secondary index over multiple single-valued fields will
be referred to as a composite single-valued index. A multi-valued
index is a secondary index on a multi-valued field. A multi-valued
index is distinct from a single-valued index, as the number of
values associated with the multi-valued field is not known a
priori.

Given a collection of records to index, this work focuses on
supporting secondary indexes for multi-valued fields in Apache
AsterixDB. Apache AsterixDB is a NoSQL-style Big Data manage-
ment system with a declarative query language (SQL++), a rule-
based query optimizer, a parallel dataflow execution engine, and
partitioned LSM-based storage and indexing. The main contribu-
tions of this paper are as follows:

1. An approach that separates the implementation of multi-
valued indexes from the low-level storage layer of a
database, yielding a clean architecture with the additional
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benefit of being able to accommodate index structures
other than B+ trees. We address the challenges of (a)
completeness (i.e. what information must be stored in a
multi-valued index) and (b) uniqueness (i.e. how should
duplicate items in a multi-valued field be handled).

. A multi-valued index specification language. We address

the challenge of defining a language that is neither am-
biguous with respect to structure nor verbose, motivated
by the absence of an existing language that satisfies both
properties.

. Foundations for bulk loading and maintaining multi-valued

indexes. We address the challenge of designing efficient
loading and maintenance strategies that must be transac-
tionally compliant.

. Details on query evaluation for two types of queries involv-

ing arrays and multisets: existential quantification and uni-
versal quantification. This includes join queries that probe
items in another dataset’s multi-valued field. We address
two main challenges here: (a) building query plans that
are transactionally compliant, and (b) finding a mapping
between the structure of a query and an applicable multi-
valued index, if any exist.

. Three sets of experiments: (a) one that measures the im-

pact of maintaining multi-valued indexes in AsterixDB, (b)
one that evaluates the efficacy of such indexes for ap-
plicable queries, and (c) and one that measures how our
implementation fares against those in two other document
databases: MongoDB and the Couchbase Query Service.

0306-4379/Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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The rest of this paper is structured as follows: Section 2 details
related work around multi-valued indexing. Section 3 reviews
Apache AsterixDB, the big data management system used for
this research. Section 4 describes the syntax for specifying multi-
valued index creation statements. Section 5 discusses various
data flows to realize multi-valued indexing. Section 6 evaluates
the maintenance impact and performance of such indexes. Sec-
tion 7 concludes the paper and details potential future work with
respect to multi-valued indexing.

2. Related work

The advent of nesting in data models for databases beyond
the flat relational era has brought with it a set of challenges
with respect to associative access. Related work can be grouped
into two general areas: (i) indexing in object-oriented databases,
and (ii) multi-valued indexing in modern document databases
(document stores, key-value stores with document extensions,
and relational stores with document extensions).

2.1. Indexing in object-oriented databases

We start our discussion with the object data model, with work
in this area dating back approximately 30 years. Here, objects
and their member objects are each first class citizens. In terms of
indexing, object-oriented databases must address the problem of
what exactly one should index when objects can reside in objects.

Fig. 1 depicts three classes: vehicle, Manufacturer, and Division.
A Vehicle is produced by d single Manufacturer, and a Manufacturer
can possess one Or more Division instances. Suppose we want
to index vehicles by the names of their vehicle manufacturers.
More specifically want to index the ManName attribute inside the
Manufacturer Object of a vehicle object. Bertino and Kim studied
three approaches to nested indexes in object databases [1]: (i)
nested indexes (which map ManName attribute values to the vehicle
objects), (ii) path indexes (which map Manname attribute values
to both Manufacturer and vehicle objects), and (iii) multi-indexes
(which first map the ManName attribute value to the Manufacturer
objects, then map the Manufacturer Objects to the vehicle ob-
jects). Under a relational lens, multi-indexes (item 2.1) can be
viewed as pair-wise join indexes, which have also been studied
by Valduriez [2]. Bertino and Foscoli address the problem of
incorporating the notion of inheritance (e.g. Mopeq, a child class of
vehicle) with indexing nested objects [3]. Kemper and Moerkotte
detail an approach based on indexing objects that are nested
in sets and lists [4]. As an example, suppose we now want to
index all pivname field values associated with all pivision objects
within the pivisions list of a Manufacturer object. Indexing piviName
field values here is multi-valued indexing with an object-oriented
twist, and support for such indexes can be found in many of the
object databases of this era [5-8]. Goczyla proposed an extension
to set indexing in object databases that not only handles set
membership, but also the more general cases of superset, subset,
and set equality [9].

2.2. Multi-valued indexing in document databases

Next we address the document model, where documents
themselves are self-describing (lending the model to weaker
type assumptions). Consider the XML document model, where
an element is composed of many sub-elements and there exists
no way to determine if a sub-element will be single-valued or
multi-valued. The XML extension for DB2 addresses the single-
valued vs. multi-valued problem with respect to indexing by
treating every element as a potential multi-valued attribute [10].
The JSON document model, in contrast to the XML document

Information Systems 113 (2023) 102144
Vehicle Manufacturer

Division
Color ManName DivName
Model Headquarters Function
Manufacturer Divisions* Location

Fig. 1. Object-oriented schema for an example vehicle-manufacturer.

model, does allow one to specify if a field is multi-valued or
not (making the single-valued vs. multi-valued problem a non-
issue). Modern JSON document stores such as Couchbase [11],
MongoDB [12], and Oracle’s NoSQL database [13] have support
for multi-valued indexing, but all had somewhat different design
goals than the multi-valued indexing approach studied here. The
array indexes of the Couchbase Index Service were designed with
the intent to fully cover certain queries (i.e., to use only the
index to satisfy a query), while AsterixDB’s multi-valued indexes
are designed to handle a larger set of queries at the cost of no
longer being covering. The Couchbase Index Service does also
offer non-covering multi-valued “Flex Indexes” [14], made with
the intent to handle a larger set of queries that can be answered
using an inverted index. In contrast, multi-valued indexes in
AsterixDB were designed to support the kinds of queries that
can be answered using a B+ tree. Finally, MongoDB'’s and Oracle’s
index specification syntax leave ambiguities for the user (in terms
of structure and needless repetition, as we will discuss later).

The document model is not exclusive to document databases;
the model has also found adoption in several key-value stores
and modern relational systems. ArangoDB and CockroachDB of-
fer array indexes, but only to satisfy membership queries (i.e.
no range predicates) on non-nested arrays [15,16]. Relational
databases with document extensions like MySQL [17] and Post-
greSQL [18] also support a limited form of multi-valued indexing,
but again only support membership queries. The multi-valued
indexes in AsterixDB, on the other hand, are designed to support
a much larger set of queries, such as joins with a value in-
side a multi-valued field, existential quantification, and universal
quantification.

3. Background

In this section we give an overview of Apache AsterixDB,
several example AsterixDB datasets, and single-valued B+ tree
indexes in AsterixDB.

3.1. AsterixDB system overview

AsterixDB is a big data management system (BDMS) designed
to be a highly scalable platform for information storage, search,
and analytics [19]. To scale outward it follows a shared-nothing
architecture, where each node independently accesses storage
and memory. Fig. 2 depicts the software stack, consisting of
AsterixDB and two data model independent layers (Algebricks
and Hyracks, also used for projects other than AsterixDB [20]). All
nodes in an AsterixDB cluster are managed by a central cluster
controller that both serves as an entry point for user requests
and coordinates work amongst the individual AsterixDB nodes.
After a request arrives at the cluster controller, the request is
first translated into a logical plan and subsequently given to a
rule-based optimizer (i.e. Algebricks) to produce an optimized
logical plan [21]. This optimized logical plan is then translated
into a job that is distributed by the Hyracks runtime engine
and executed across all nodes in the cluster [22]. Datasets in
AsterixDB are partitioned across the cluster on their primary
key into primary B+ tree indexes, where the data records reside,
with all secondary indexes being local to each node. Natively, all
datasets and indexes in AsterixDB use LSM (log-structured merge)
trees to efficiently ingest new data [23].
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SQL++ XQuery HiveQL Pregel Job Hadoop
M/R Job
Apache . . Apache
AsterixDB FHRYESEEr VXQuery
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| Algebricks I Pregelix M/R Layer
| Hyracks General-Purpose DAG Execution Engine

Fig. 2. Overview of the Asterix software stack. The components of interest are
Apache AsterixDB, Algebricks, and Hyracks.

Storage Library
(LSM B-Tree,
R-Tree, ...)

Operator Library
(Join, Sort,
Group-By, ...)

3.2, Inventory management example

To illustrate the topics mentioned in the following sections,
an inventory management example will be used. There are three
datasets associated with this example: (i) users, who use (ii)
Stores to purchase products using (iii) orders.

3.2.1. Users dataset

The users dataset represents customers of a shopping service
who want to place orders. A user is uniquely identified by their
user_id, having an optional emai1 field, having a name composed of
a first and 1ast part, and having zero or more phones (each phone
being composed of a kind and a number).

1 CREATE TYPE UsersType AS {

2 user_id: string,

3 email: string?,

4 name: { first: string,

5 last: string 7,
6 phones: [{ kind: string,
7

number string }] 1};

Listing 1: Type definition for the users dataset.

3.2.2. Stores dataset

The stores dataset represents stores that sell products to users
through orders. A store is uniquely identified by a store_ia and
contains a name, an address (composed of a street, city, state, and
a zip_code), and a list of categories describing what the store sells

categories).
g

1 CREATE TYPE StoresType AS {

2 store_id: string,

3 name: string,

4 address: { street: string,

5 city: string,

6 state: string,

7 zip_code: string },
8 categories: [stringl };

Listing 2: Type definition for the stores dataset.

3.2.3. Orders dataset

The orders dataset represents orders placed by users to some
store. An order is uniquely identified by an order_id and has
one-to-many relationships with users and stores (represented as
user_id and store_id). Each order has a list of line items, with each
line item being uniquely identified by its item_ia (with respect
to the containing order itself), a qty, a one-to-many relationship
with an unlisted dataset Products (represented as product_id), and
an array of user-specified tags.
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1 CREATE TYPE OrdersType AS {

2 order_id: string,

3 user_id: string,

4 store_id: string,

5 items: [{ item_id: string,

6 qty: integer,

7 product_id: string,
8 tags: [stringl }] };

Listing 3: Type definition for the orders dataset.

3.3. Single-Valued B+ tree indexing

AsterixDB provides a choice of several secondary index types
to accelerate queries: BTREE (the default), RTREE, KEYWORD, NGRAM, and
FULLTEXT. A CREATE INDEX Statement in AsterixDB consists of three
main parts: (1) the name of the index, (2) the dataset to build the
index on, and (3) an ordered list of paths to fields of the dataset to
index. A path is a dot-separated list of fields, where a dot denotes
that the field after the dot can be found inside the object field
before the dot. The complete syntax for a cREATE INDEX statement
is given in Fig. 3.

Suppose that we want to create a composite secondary B+
tree index for the users dataset on two fields: the name field
and the zip_code field inside of an object field address. To create
our desired index, we would issue the statement in Listing 4.
The name field is not nested inside any object, so we simply use
name in our index creation statement. zip_code however is nested
inside the address field, so we use the path address.zip_code. The
use of the dot to express nested fields here generalizes to all
types of single-valued (i.e. no arrays or multisets) object nesting
structures.

1 CREATE INDEX userNameZipIdx ON Users (
2 name, address.zip_code

3);

Listing 4: Example specification for a single-valued composite
secondary B+ tree index in AsterixDB.

Once an AsterixDB user issues the index creation statement in
Listing 4, users can expect queries that quantify over the name field
or the name and zip_code fields from the users dataset to utilize the
index in their evaluation.

4. Multi-Valued index specification

We itemize the requirements for a user-friendly multi-valued
index specification below:

1. Distinguish between single-valued and multi-valued fields.
Similar to single-valued indexes, users must be able to
describe the type and structure of the fields they want to
be indexed.

2. Allow fields within the same array/multiset field to be
indexed, but not fields that span across different multi-
valued fields. Consequently, we should abstain from spec-
ifying a multi-valued field more than once to improve
legibility.

3. Constrain the specification language. We are not inter-
ested in creating multi-valued indexes that act as the sole
data source for a few queries (i.e. covering indexes), so
we should not complicate the syntax by allowing general
expressions to be indexed.
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Identifier

(a) Syntax diagram for specifying an index field (FieldPath).

»—(CREATE)—(INDEXH IndexName

DatasetName
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FieldPath

(b) Syntax diagram for a typed version of FieldPath (TypedFieldPath).

l TypedFieldPath I

Yl

(c) General syntax diagram for a CREATE INDEX statement.

Fig. 3.

»—Q(UNNEST)—{ FieldPath

DDL syntax for creating a single-valued index in AsterixDB.

SELECT

TypedFieldPath

(a) Syntax diagram for a multi-valued element.

»—(CREATE)—(INDEXH IndexName

DatasetName

(b) General syntax diagram for a CREATE INDEX statement involving multi-valued elements.

Fig. 4. DDL syntax for creating a multi-valued index in AsterixDB.

1 CREATE INDEX storesCatIdx ON Stores (
2 UNNEST categories

3);

4

5 CREATE INDEX ordersItemIDIdx ON Orders (
6 UNNEST orderline

7 SELECT item_id

8 );

9

10 CREATE INDEX ordersTagldx ON Orders (
11 UNNEST orderline

12 UNNEST tags

13 );

Listing 5: Example specification for three multi-valued indexes.

4, Have an easy-to-read index specification. Ideally, users
should be able “debug” their index specification by issuing
a query that closely follows their index specification itself.

Our solution is to introduce two keywords into the CREATE
INDEX Statement, borrowed from the AsterixDB query language:
unnNesT and seLect. Users can then specify a multi-valued element in
lieu of a field or field path inside the existing crREATE INDEX gram-
mar. A multi-valued element starts with a series of UNNEST terms,
which describe the nesting structure of multi-valued field(s). If
the desired field to index is located within an array or multiset
of objects, then ‘seLecT’ followed by the desired field/field path
is specified. Lastly, if the type of the field is not specified with
the dataset DDL, then a user concludes with the type name. The
syntax for a multi-valued element is given in Fig. 4.

We demonstrate several examples in Listing 5 for the datasets
described in Section 3.2, some of which will also serve to guide
discussion in the following section. The first statement in Listing 5
indexes the categories associated with a store, where a category
is within a multi-valued field. The second statement creates an

CREATE INDEX userNumberKindIdx ON Users (
UNNEST phones
SELECT number, kind

N

CREATE INDEX userNameNumberIdx ON Users (
name ,
UNNEST phones
SELECT number

QOO NAOUTAWN =

[

)

Listing 6: Example specification for two composite multi-valued
indexes.

index on the item IDs within the orderlines of an order. This
statement demonstrates the use of ‘seLecT’ to specify fields of an
object inside of a multi-valued field. The third statement creates
an index on values inside of a multi-valued field of an object
that itself is located within a multi-valued field. Here, we exhibit
the use of multiple uvnnesT terms to identify deeper multi-valued
nested structures.

The two statements in Listing 6 specify composite indexes
that involve a multi-valued element. The first statement creates
a composite multi-valued index on two fields within an array
of objects. The first statement shows how our index specifica-
tion syntax avoids repeating the nesting structure (in this case,
the phones array) for multiple values inside the same array. The
second statement creates an index on the user name and phone
numbers associated with a given user, where a given phone
number is contained in an object within a multi-valued field.
Note that userNameNumberIdx iS a composite multi-valued index
where a single-valued field and a multi-valued field coexist in
the same index. Its statement also illustrates the benefits of not
altering the rest of the create 1nDEx grammar: the specification
for composite indexes containing both single-valued fields and
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1 { "store_id": "A34AD",

2 "name": "Raspberry Store",

3 "categories": ["Produce", "Snacks"] }
4 { "store_id": "1939D",

5 "name": "Raspberry Store",

6 "categories": ["Hardware", "Hardware"] }

Listing 7: Two sample documents from the stores dataset.

multi-valued fields is nearly identical to the specification for
composite single-valued indexes.

5. Index implementation

The implementation of multi-valued indexes can be broken
into four main sections: (i) what an index entry is, (ii) how we
bulk load an index, (iii) how we maintain an index, and (iv) how
we utilize indexes in queries.

5.1. Defining an index entry

We will describe the index entries for a multi-valued index of
type BTREE, but it is important to stress that this work is general
enough to also be applied to rTREE indexes in the future. A leaf
node in a B+ tree must minimally contain two items: (i) the field
value(s) that the tree is sorted on (i.e. the values of the sort key),
and (ii) the associated payload (i.e. the data record(s) or way(s)
to get to the data record(s)). For AsterixDB, item (ii) is a singular
unique field: the primary key associated with the record being
indexed. A total order on B+ trees in the presence of potentially
duplicate index field values is maintained by adding the record’s
primary key as a suffix to the sort key itself. Suppose that a single-
valued index on the name field of the stores dataset were built.
Given the two documents in Listing 7, the two resulting index
keys for this single-valued index would be <"Raspberry Store",
"a34AD" and <"Raspberry Store", "1939D">.

Leveraging the data model independence offered by both Alge-
bricks and Hyracks, an index entry in a multi-valued B+ tree index
is really no different physically than an index entry in an single-
valued B+ tree index. Multi-valued indexes are thus able to work
above the low-level storage layer in AsterixDB. For a multi-valued
field of an index, the sort key is drawn from the values inside
the multi-valued field (not the enclosing field value itself). Using
the index on the categories string array of the stores dataset as
an example, we differentiate between the individual items of the
categories aITay (e.g. "Produce", "Snacks", etc...) and the enclosing
multi-valued field itself, categories.

The approach of creating keys from values inside of a multi-
valued index introduces a new issue: how do we handle duplicate
values in a multi-valued field? A given primary key appears
at most once in an single-valued index. This is no longer true
with multi-valued indexes, as a primary key value can now be
associated with multiple index entries. We demonstrate this with
the resulting sort key + primary key pairs of the storesCatIdx index
for the documents in Listing 7: <"Produce", "A34AD">, <"Snacks",
"a34aD">, and two instances of <"Hardware", "1939D">. This non-
uniqueness leads to several issues, the most notable being con-
currency (discussed in Section 5.3.1). Given that multi-valued
covering indexes are not in the scope of this research, the ques-
tion arises: “Is it even necessary to store duplicate values for
a single record’s multi-valued field?” (e.g. the two instances of
the <"Hardware", "1939D"> above). Existential quantification queries
and universal quantification queries can be answered without
the inclusion of these duplicate keys, so the decision was made
to simply not store more than one distinct value per record’s
multi-valued field in the first place.
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l NO-OP SINK l NO-OP SINK

t t

LOAD (f, R.store_id)

LOAD (R.name, R.store_id)

storesNameIdx T storesCatIdx

DISTINCT (f, R.store_id)

f

ORDER (f, R.store_id)

1

(f) = UNNEST (R.categories)

1

(R) = SCAN

ORDER (R.name, R.store_id)

(R) = SCAN

Stores Stores

Fig. 5. Two separate data flows for bulk-loading an index. The left one is the
data flow for bulk-loading a single-valued index, while the right one is the data
flow for bulk-loading a multi-valued index.

5.2. Bulk loading an index

In AsterixDB, there are two cases where bulk-loading is per-
formed on an index: (i) when first building the index (i.e. ex-
ecuting the creATE INDEX statement), and (ii) when executing an
explicit Loap command. We will only detail the former in this
section, but the principles to realize multi-valued bulk-loading
are the same for both (for details on the latter, see [24]). Two
data flows for the creation of a secondary index are illustrated
in Fig. 5. The goal of a bulk-loading data flow in this context is
to feed a sorted sequence of records to the roap operator, which
will create the initial B+ tree. To establish a baseline, the left flow
describes the data flow to bulk-load a traditional single-valued
index on the field name inside the stores dataset. We start at the
bottom node scan, which will scan the primary index on stores to
extract the leading key value of our indeX, name, and the primary
key of the stores dataset, store_id. Next, we perform a sort using
the key fields we just extracted. Finally, we feed the sorted <name,
store_id> tuples to the Loap operator.

On the right side of Fig. 5 we show the data flow to bulk-
load a multi-valued index on the string values inside a categories
array of the stores dataset. There are two differences: (1) the
inclusion of the unnesT operator to extract the values inside the
multi-valued field (these values are bound to the variable £ in the
figure), and (2) the inclusion of the p1sTINCT Operator to remove
any duplicate B+ tree keys. More generally, any data flow to
bulk-load a multi-valued index must extract two sets of values:
the sort key values via a sequence of unnesT operators, and the
primary key values of the dataset associated with the index.
Duplicate B+ tree key values are then removed (performed after
the orDER SO as to execute a single-pass duplicate elimination)
before being handed off to the Loap operator. No changes are
required to the Loap operator itself.

5.3. Maintaining an index

Three types of dataset maintenance operations are offered by
AsterixDB: (a) 1nserT, (b) pELETE, and (c) upsert (to insert if the
document does not exist, and to update it otherwise).
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COMMIT (R.order_id) ] [ COMMIT (R.order_id) I

¥ L -  — — —J
[INSERT (R.user_id, R.order 1d)] INSERT (f.item_id, R.order_id) —T
T ordersUserIDIdx ordersItemIDIdx
l INSERT (R.order_id, R) | [ INSERT (R.order_id, R) |
T orders ? orders
[ (R) = TRANSLATE INPUT ] [ (R) = TRANSLATE INPUT ]

Fig. 6. Two separate data flows for performing an INSERT statement on a dataset.
The left describes the data flow for executing an 1nSERT on a dataset with one
single-valued index, while the right describes the data flow for executing an
INSERT on a dataset with one multi-valued index.

5.3.1. Realizing a INSERT statement

The 1nsert statement is one of three dataset maintenance
operations offered by AsterixDB (the other two being peLETE and
upserT). Before diving into the 1nsert data flow, we must first
address concurrency. The previous operation, bulk-loading, is
always performed as a single isolated transaction. In contrast,
queries and the aforementioned maintenance operations have no
such security. To set the scene, transactions in AsterixDB are (i) of
record-level granularity, (ii) local to each cluster node, and (iii) act
across a dataset’s primary and secondary indexes. Record-level
locks are acquired to handle write operations (e.g. maintenance
operations) on the primary index and they are held until the
transaction itself commits [25]. If the lock to some primary index
entry is granted to a transaction, no other operations from other
transactions can be performed on that primary index entry until
the former transaction commits. In contrast to primary indexes,
locks are not acquired when accessing secondary indexes. No
locking here means that a read operation on a secondary index
can potentially read uncommitted data. To prevent inconsisten-
cies between a data structure that requires locks (a primary
index) and a data structure that does not (a secondary index),
the index entries retrieved from the secondary index are first val-
idated by fetching their corresponding records from the primary
index before the entry itself is used by the rest of the transaction.

We will now describe the data flows to realize an InserT state-
ment, keeping these concurrency constraints in mind. The goal of
a maintenance operation on a dataset is two-fold: to update the
primary index of the dataset and to update all secondary indexes
associated with the dataset. Two data flows for performing an
INSERT statement are illustrated in Fig. 6.

The left data flow in Fig. 6 performs an INSERT statement on
the orders dataset with one traditional single-valued secondary
index on user_id. We again start at the bottom node, where we
will translate the documents given by the user into data records
(assigned the variable ‘&’ in our figure). Next, we extract the
primary key order_id associated with the dataset and insert the
tuple <R.order_id, R> into the primary index of orders. Primary
index maintenance operations are always performed before any
secondary index maintenance operations to prevent inconsisten-
cies that could stem from other transactions on the secondary
indexes themselves. After performing the primary index inser-
tion, we extract the leading key field user_id from the record and
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insert the secondary index entry. Once we are done with this
insert, we hand the primary key value to the comMiT operator,
that then releases the lock associated with that specific record.
In contrast to the data flows for bulk-loading, notice that there
are no blocking operators here. Once the primary index INSERT
operator is finished with a single record (more accurately, a frame
of records), it can hand the processed tuple(s) off to the following
operator which will carry out its computation and perform the
same hand off to its child operator. This compute + hand off
process is repeated until the tuples all reach the commiT. This
pipelined style of execution adheres to AsterixDB’s record-level
transaction semantics while releasing locks as early as possible
without loss of isolation.

On the right of Fig. 6, we detail a similar scenario: we are
performing an INSERT statement on the orders dataset with one
multi-valued secondary index on the item_id field inside objects
of the orderline array of the orders dataset. Similar to the single-
valued case, we perform the insertion on the primary index
before performing any secondary index insertions and conclude
our data flow with the same comMiT operator. The difference
between the two data flows lies is the inclusion of a subplan
attached to the secondary index 1nserT operator itself. A subplan
is an isolated DAG of operators that is used by the contain-
ing operator to perform some computation on a single value
and then utilize the DAG’s output for the containing operator’s
computation. For this particular subplan and containing operator
1nsert, the value given to the DAG is an orderline array, the
DAG'’s computation is extracting distinct item_id values from that
particular array instance, and the containing operator’s compu-
tation is pairing each item_id output with the record’s primary
key order_id and inserting this pair into the secondary index.
Instead of eliminating duplicates via an explicit pisTIncT (as was
the case for multi-valued index bulk loading), an implicit pisTincT
operation (denoted by the lack of shadow and dotted lines around
the pistincT operator node in the figure) is performed by the
storage layer via duplicate key rejection.

To motivate the use of subplans here, consider an alternative
to the right data flow of Fig. 6, where subplans are not used and
the unnesT operator is inline with the rest of the plan. The first
issue lies with the comMiT operator, which uses the primary key
of a record to conclude a transaction. UNNEST iS a one-to-many
operator, which will output one record for every item inside the
array/multiset being unnested. A scenario that might occur in this
alternative data flow using the pipelined execution mentioned
prior involves the primary key value reaching the comuit before
the maintenance itself is finished. This scenario would cause a
loss of transaction isolation, so in this alternative data flow we
would need to add some form of blocking operator (e.g. ORDER)
prior to the commit. Avoiding the inclusion of a blocking operator
is the primary advantage of using the subplan data flow in Fig. 6.
Compared to this alternative data flow, no blocking operators are
introduced, reducing the time for which record locks are held and
thus maximizing concurrency.

5.3.2. Realizing a DELETE statement

The next dataset maintenance operation we will discuss is the
DELETE statement. There are two phases associated with peLeTE: (i)
a search phase (to find all qualifying records), and (ii) a delete
phase. In AsterixDB, the storage-level API call to delete a tuple
from an index is nearly identical to the API call to insert a tuple
into an index. Consequently, the data flow for a pELETE statement
is identical to the data flow for an 1nNserT statement, bar the
inclusion of the search phase. To illustrate these similarities,
suppose the pELETE statement in Listing 8 was issued to AsterixDB.
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COMMIT (R.order_id)
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[ DELETE (R.order_id)
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SELECT (EQ(R.store_id,
"A3D5F"))

SEARCH
PHASE

l (R) = SCAN

Orders

Fig. 7. Data flow for performing a DELETE statement on a dataset with a
multi-valued index.

1 DELETE
2 FROM Orders 0
3 WHERE O.store_id = "A3D5F";

Listing 8: DELETE statement associated with Fig. 7.

The data flow in Fig. 7 realizes Listing 8’s deletion by first
scanning the orders dataset for records where the store_id is equal
to "a3psF". The primary key of a qualifying record (in our example,
order_id) is then used to delete a record from the primary index.
Next, the same subplan from Fig. 6 is used to extract distinct
item_id values from the record’s orderline array. Again, these
item_id values are paired with the record’s primary key and used
to perform our maintenance operation. When all index entries
associated with a qualifying record are deleted, the primary key
is then handed off to the commiT operator to release the lock
associated with that specific record.

5.3.3. Realizing an UPSERT statement

The third (and final) AsterixDB dataset maintenance opera-
tion is the upserT statement, where incoming records are either
inserted or updated if they already exist. Updates to a record
in AsterixDB are implemented by first deleting the old record,
then inserting the new record. These deletions and insertions
are performed at the storage-level, meaning that a data flow
implementing upsertT must now keep track of two values: the old
record and the new record.

The data flow in Fig. 8 realizes an upserT statement by first
translating the documents given by the user into data records
(assigned the variable ‘R_new’ in our figure). Similar to the data
flow for 1nserT, we then extract the primary key of the dataset we
are operating on to get the tuple <&_new.order_id, R_new>. We must
now perform the upsert operation for our primary index using
intra-operator-level actions (i.e. within the upserT operator block).
To determine if we need to perform a deletion, we search our
primary index using the primary key we just extracted. If we find
an existing entry in our index, then we (1) perform a deletion for
the old entry, (2) retrieve the old entry from our index (assigned
the variable ‘®_o1d’ in our figure) to pass along to the following
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UPSERT (f_new.item_id,
f_old.item_id, R_new.order_id)

? ordersItemIDIdx

R_old = UPSERT
(R_new.order_id, R_new)

T orders

[ (R_new) = TRANSLATE INPUT

Fig. 8. Data flow for performing a uPSERT statement on a dataset with a
multi-valued index.

operators, and (3) perform an insertion for the new entry. If we
do not find an existing entry in our index, then we just perform
an insertion for the new entry and assign a value of missing to
R_old.

The next operator in Fig. 8 data flow is the upserT for our multi-
valued index. If we find that r_o1d is M1ssing, then the remainder
of our data flow is identical to the data flow for 1nserT: (1) extract
item_id Values from R_new.orderline, (2) pair distinct item_id values
with the primary key R_new.order_id, (3) perform the insertion,
and (4) pass R_new.order_id to the comMIT operator to finish the
transaction for that specific record. If we find that r_o14 is not
MIssing, then we first extract distinct item_id values from r_o1d and
distinct item_id values from R_new using two separate subplans.
Similar to the data flow for 1nserT, the use of subplans here allow
us to exclude blocking operators from the upserT data flow. From
here we have four possible actions, conditioned on the orderline
field for both r_new and Rr_o1d:

1. If the field order1ine eXists in &_o1d but not &_new, then delete
all associated f_o1d entries from the index.

2. If the field orderline eXists in R_new but not in R_old, then
insert all associated £_new entries into the index.

3. If the field orderline exists in both R_new and R_o1d but R_new
# R_old, then delete all associated f_o1d entries and insert
all associated £_new entries.

4. If the field orderline exists in both R_new and &_o1d, and R_new
= R_old, then no operations are performed.

When our multi-valued index upserT operator is finished with
a record, the record’s primary key is then given to the commIT
operator to finish the transaction for that specific record.

5.4. Optimizing an indexable query

The goal of the AsterixDB query optimizer is to take an initial
data flow (henceforth referred to as a query plan) and transform
the query plan using a set of heuristics. The general heuristic
discussed here involves replacing full dataset scans with a more
selective search of the full dataset when applicable. This more
selective search is enabled through the use of a secondary index.

We will begin by describing how multi-valued indexes can be
utilized in query plans. Listing 9 describes an existential quan-
tification query that aims to find all users that have an office
phone.
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Fig. 9. Index leveraging plan to execute the existential quantification query in
Listing 9.

(user_id) = SEARCH ("office")

userNumberIdx

1 FROM User U
2 WHERE SOME P IN U.phones
3 SATISFIES P.kind = "office"

4 SELECT U;

Listing 9: A SQL++ existential quantification query.

If an applicable index exists (i.e., a multi-valued index on the
kind field inside the phones array of objects), then the query plan
in Fig. 9 would be generated. In this query plan, we divide the
utilization of our index into three phases:

1. Secondary index probe phase (s1px_PROBE)
2. Primary index search phase (PIDX_PROBE)
3. Validation phase (VALIDATE)

Starting from the bottom operator, we search our index for all
entries that have a sort key equal to "office". The output of this
search is the primary key of the indexed dataset: user_ia. We refer
to this operator as the secondary index probe phase.

As a consequence of non-locking secondary indexes, records
fetched by the probe phase may become invalid after the initial
secondary index lookup. To ensure that only valid records are
returned to the remainder of the plan after the index lookup, we
require two additional phases: the primary index search phase,
and the validation phase. In the primary index search phase, we
remove duplicate primary key values via the orpErR and DISTINCT
operators before using these values to search the primary index
for the records associated with users. The inclusion of the orber
operator has the added benefit of minimizing the number of
index lookups [26] (an orpEr operator exists in the same place for
single-valued index leveraging query plans for this same reason).
After fetching the qualifying records, we perform the validation
phase using the two following operators: the suBpLAN operator
and the seLect operator. The supLAN operator contains a subplan
to evaluate the indicator variable j, which is equal to 0 when a
record’s phones array does not contain an object whose kind field
is equal to "office" and 1 otherwise. j is then attached to each
record and handed off to the seLecT operator that will filter out
all results where j = 1 (i.e. records that satisfy the existential
quantification).

Utilization of a multi-valued index as described in Fig. 9 can
also be extended to queries with a join that requires the values
of a multi-valued field.
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Fig. 10. Non-index-leveraging query plan to execute the array-probing join
query in Listing 10.

FROM Items I
JOIN (
FROM Orders O
UNNEST O0O.orderline OL
SELECT OL.item_id AS item_id
) OL
oN OL.item_id /*+indexnl*/ = I.item_id
WHERE I.name LIKE "ny%"
SELECT DISTINCT I.i_id,

OO A WN =

I.name;

Listing 10: A join query that probes the inside of an multi-valued
field of another dataset.

Listing 10 describes one such query, where we aim to find all
items that start with "ny" and that are referenced in the orderline
array of a orders document. By default, AsterixDB will choose to
evaluate joins using a hybrid hash approach, so we annotate our
join predicate with ‘/x+indexn1x/’ to inform the optimizer that
we want to evaluate this join using an index if possible. If an
applicable index does not exist (i.e. a multi-valued index on the
item ID of an orderline), the plan illustrated in Fig. 10 is gen-
erated. Conceptually, we (a) scavn the 1tems dataset to search for
records that satisfy the Like predicate, (b) scan the orders dataset
to extract all item_id values from each document’s orderline array,
(c) perform an equi-join, and (d) deliver unique, qualifying Items
records back to the user. If there are only a few qualifying records
in our outer dataset Items and a massive amount of orderline
documents in our inner dataset orders, then the cost of this query
plan is dominated by the scan of our inner dataset.

Now suppose that we do have a qualifying index for the query
in Listing 10. The AsterixDB optimizer would recognize this and
generate the plan illustrated in Fig. 11, which logically performs
an index-nested loop join (INL]). We divide the join using the
same three phases from Fig. 9: a secondary index probe phase,
a primary index probe phase, and a validation phase. Starting
from the bottom two operators, we perform a search for quali-
fying records of the outer dataset 1tems. We then use the item_id
field from this outer dataset to perform an index search and
retrieve the primary key associated with our inner dataset orders.
These three operators compose the secondary index probe phase.
The primary index search phase is comprised of the following
three operators: an orDER operator and a DISTINCT operator to
remove duplicate primary key values, and then a searcH operator
to retrieve qualifying records. Finally, the validation phase is
performed by extracting the items from our multi-valued field
and evaluating the join predicate to filter out invalid records.
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Fig. 11. Index-leveraging query plan to execute the array-probing join query in
Listing 10.

Having described why the plans in Figs. 9 and 11 are trans-
actionally correct, we now describe our heuristic of replacing
dataset scans with index searches, implemented as a rule in As-
terixDB’s query optimizer. This rule is given in Algorithm 1, which
is repeatedly executed until the query plan itself does not change
(i.e., until the rule returns false). Following Algorithm 1 and using
Fig. 10 as the input Q, we start from the root DISTRIBUTE Operator,
and work our way down to the join operator (now bound to
the variable op). op_s here is the orders scan operator, and i is a
qualifying multi-valued index (in this case, i = orderItemIDIdx).
An index qualifies to be used in a query plan if there are variables
in op produced from op_s or its children that match the structure
defined in i. Given the orderItemInIdx index specification in Listing
5, we match the orderiine field inside the unnesT operator and the
consequent access to the item_id field in the join operator.

At this point in the rule, we can commit to modifying Q. We
extract the relevant conjuncts C from op that can be accelerated
with an index (R.item_id = f.item_id) and determine the primary
key variables px of our inner branch (order_id). Though we are
only describing the Join case, the seLEcT case can be reasoned
about in a similar fashion. For both cases, we aim to find three
subgraphs that correspond to the three phases from before. Re-
turning to Fig. 10 example, the s1px_proBE subgraph is composed
of the outer branch (1tems scan and the original seLEcT operator
for R.name), and a SEARCHgy,; With the relevant conjuncts C. The
PIDX_PROBE subgraph is composed of the orbegr, pisTincT, and the
SEARCH,px Operators with the primary key variables pk as the input
to all. The vaLipatE subgraph is composed of the inner branch
without the op_s (just the unNesT operator in this example) and a
new seLecT with the original join predicate. Finally, we replace the
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Algorithm 1: Process for modifying an existing query plan
to leverage an applicable multi-valued index.

Input: existing query plan Q, existing database indexes I
Output: true if Q has changed, false otherwise

for op := Preorder (root of Q) do

if op is neither a seLecT nor a join then
| continue;

end

op_s := first scan operator of Postorder (op) ;
i ;= FindQualifyingMultiValuedIndex (I, op, op_S);
if i is null then
| continue;
end

C := conjuncts from op that map to fields in i;

PK := primary key variables from op_s;

if op is a seLEcT then

SIDX_PROBE := (SEARCHgpx (C));

PIDX_SEARCH := (ORDER(PK) —> DISTINCT(PK) —>
SEARCHppx (PK) );

VALIDATE := (op);

replace (op_s) in Q with (SIDX_PROBE —> PIDX_SEARCH —>

VALIDATE);
end
else
SIDX_PROBE := (outer branch of op — SEARCHgy (C));
PIDX_PROBE := (ORDER(PK) —> DISTINCT(PK) —> SEARCHp1px (PK));
VALIDATE := (inner branch of op without op_s —
seLecT(predicate of op));
replace (op) in Q with (SIDX_PROBE — PIDX_SEARCH —>
VALIDATE);
end
return true;
end

return false;

original join operator op in our query plan with the appropriate
composition of all three subgraphs.

Listing 10 was an example of existential quantification, though
multi-valued indexes can also accelerate queries that involve
universal quantification. Currently we impose an additional con-
straint requiring that a non-emptiness clause on the array/mul-
tiset being universally quantified on must exist, as empty arrays
and multisets satisfy such predicates vacuously but will not be
indexed; this constraint could be relaxed in the future by storing
empty multi-valued fields in the index in some way and handling
the empty case separately. The approach we take to leverage a
multi-valued index for use in evaluating a universal quantification
predicate is exactly the same as the approach taken to leverage a
multi-valued index for use in evaluating an existential quantifica-
tion predicate: replace the dataset scan with a multi-valued index
search. We can easily prove that such a query plan transformation
is valid, starting with a universal quantification on a multi-valued
field F where |F| > 0:

U={VYfeF|P({f)} (1)

Given the predicate P in the universal quantification of Eq. (1),
a multi-valued index B+ tree search to evaluate P (e.g., the sec-
ondary index probe phase of an index-nested loop join query
plan) returns the primary keys of all records that would satisfy
the existential quantification:

E={3f eF|P(f)} (2)

All entries in U also exist in E, making U a subset of E itself. The
problem at this point is identical to the issue of removing invalid
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Fig. 12. Average response time for performing a Loap to populate several indexed
datasets. We compare executions that operate on a multi-valued indexed dataset
(denoted as “MuV”) and a single-valued indexed dataset (denoted as “SiV”).

records from the secondary index probe phase as a consequence
of other concurrent transactions accessing the same secondary
index. Hence, the following phases of primary index search and
validation serve two purposes in the case of universal quantifica-
tion: (i) remove invalid records that may have changed from the
initial secondary index search, and (ii) remove entries in E that
are not contained in U.

6. Evaluation

Our evaluation of multi-valued indexes is split into three
parts: (1) evaluating the loading and maintenance cost (when
compared to single-valued indexes), (2) evaluating multi-valued
index-leveraging plans (when compared to full dataset scan
plans), and (3) evaluating our implementation of multi-valued
indexes against similar indexes in MongoDB and the Couchbase
Query Service.

6.1. Index modification cost evaluation

In this section, we compare the cost of performing a modifi-
cation operation (L0OAD, INSERT, DELETE, OT UPSERT) on a dataset with
single-valued index(es) vs. the cost of performing a maintenance
operation on a dataset with multi-valued index(es).

6.1.1. Experimental setup

All experiment runs were performed on a single-node Aster-
ixDB instance, executed on an Intel Celeron J4125, 4 cores @
2.7 GHz CPU with 8 GB of RAM and a single NGFF M.2 SSD.
Each modification operation was executed on two separate in-
stances of the datasets in Section 3.2: one where the dataset
has only single-valued indexes, and another where the dataset
has only multi-valued indexes. To normalize the cost associated
with each storage layer write, the multi-valued fields in this
experiment were restricted to contain a single item. All datasets
used were larger than memory (users being 15 GB @ 100 million
records, stores being 20 GB @ 90 million records, and orders being
18 GB @ 65 million records), resulting in indexes that were larger
than memory as well. For the 1nserT and uPSERT experiment runs,
10,000 record chunks at a time were used until the dataset grew
0.5% in size. For the pELETE experiment runs, 10,000 record chunks
were deleted at a time until the dataset shrunk 0.5% in size.
To accelerate the search phase of the DELETE operation, a single-
valued index on a 10,000 record chunk identifier was used. The
response times shown will be for 10,000 record chunks. The data
generator and statements used in this experiment can be found
at https://github.com/glennga/ilima.
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Fig. 13. Average response time for performing a 10,000 record INSERT on several
indexed datasets.
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Fig. 14. Average response time for performing a 10,000 record DELETE on several
indexed datasets.

6.1.2. Results and analysis

Fig. 12 displays the average time to perform Loap statements
for the three datasets mentioned previously. The opaque (lower)
portions of each bar graph represent the time to perform the
LoAD statement without indexes (the insertion time is similar for
both datasets). There does exist a slight slowdown for multi-
valued indexes when compared to single-valued indexes, most
emphasized in the dataset with two indexes (i.e. orders). This
slight difference in response time comes from the inclusion of
the extra operators to extract the secondary key values and the
overhead of using subplans.

Fig. 13 displays the average time to perform INSERT statements
for all three datasets. The dotted black line represents a lower
bound on the time to perform an 1nserT statement, illustrating the
time to compile the 1nserT statement itself. The opaque (lower)
portions of each bar graph represent the time to perform the
INSERT Statement on a non-indexed dataset (the insertion time is
similar for both datasets). Again, there does exist a slight slow-
down for multi-valued indexes when compared to single-valued
indexes due to the secondary key value extraction.

Fig. 14 displays the average time to perform pELETE statements
for each of our datasets. We note that the increase from statement
execution time of milliseconds with 1nserT statements to seconds
with peELETE is due to the required search phase. The search phase
for the pELETES in this experiment involves (i) a secondary index
search for the records with the appropriate chunk identifier, (ii) a
primary index search for the 10,000 records from the secondary
index search, and (iii) the secondary index validation step. The
execution time difference between the single-valued indexed
dataset and the multi-valued indexed dataset is not significant
here, as the time to search for qualifying records outweighs the
time to perform the actual deletion. The large opaque bars for
each plot corroborate our observation. The cost of performing
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Fig. 15. Average response time for performing a 10,000 record UPSERT on several
indexed datasets.

a record deletion for an (LSM) index in AsterixDB consists of a
write to an in-memory data structure that will “reconcile” this
deletion in the future, meaning that we do not directly touch the
underlying index [23].

Fig. 15 describes the average time to perform uPSERT state-
ments for our three datasets. All records being vpserted consist of
new indexed fields, meaning that both an insertion and deletion
will occur. Again, the cost of searching outweighs the time to
perform the insertion and deletion. For both the 1nsERT and UPSERT
experiments, records in the evaluated DML statements were not
ordered by their primary key values. As noted in [26], sorting
a collection of primary keys before searching the primary index
potentially turns many small read operations into fewer and
larger more efficient read operations. The unsorted nature of the
records in the upserT statement explains the large deviation in
DELETE times but not upserT times. The large difference in upserT
times between the indexed and non-indexed instances (i.e. the
solid bars vs. the barely visible opaque bars) is explained by an
optimization AsterixDB takes: if there are no secondary indexes
on a dataset, the output from a primary index UPSERT operator
(r_o1d) is no longer used in the rest of the plan. Consequently,
there is no need to fetch the old record from the primary index,
massively accelerating the upserT operation.

6.2. Index vs. Full scan evaluation

In this section, we compare the performance of queries in
AsterixDB that do not utilize an index vs. queries in AsterixDB
that do utilize a multi-valued index.

6.2.1. Experimental setup

All experimental runs were performed on a single-node in-
stance of AsterixDB, executed on an AWS c5.xlarge node, 4 vC-
PUs @ 3.4 GHz with 8 GB of RAM and AWS gp2 SSDs. The
benchmark queries used here are from CH2 [27], a document-
oriented combination of TPC-C and TPC-H designed for a HOAP
(hybrid operational / analytical processing) workload. A total of
500 CH2 warehouses were generated for this experiment, result-
ing in three datasets larger than memory: orders (25 GB), stock
(25 GB), and customer (12 GB). Primary indexes were built on
each dataset’s primary key fields and one multi-valued index was
built on the delivery_d field inside the orderiine oObject array of
the orders dataset. For brevity, all fields in each query described
here have their dataset prefix removed (e.g. orderline refers to
o_orderline in the original set of queries). The full set of CH2
queries used in this experiment can be found in Appendix and
at https://github.com/glennga/aconitum.
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6.2.2. Results and analysis

Fig. 16 depicts the performance of several CH2 queries exe-
cuted using query plans with and without a multi-valued index
(i.e. a full dataset scan). We observe the median response times
of the queries on the y-axis, and the selectivity of the index-
applicable predicate (denoted as o) on the logarithmic x-axis.
o represents the fraction of the dataset for which the predicate
holds true. Beginning with the left of Fig. 16, we compare the
performance of queries that do not execute any joins (i.e. only
involve the orders dataset). Query plans that use the multi-valued
index achieve sub-second response times for o < 1.0e-5, while
query plans that perform a full scan of orders consistently run
longer than 4 min (a 350x speedup minimum). As o grows
larger and larger though, the response times for query plans that
use the multi-valued index increases faster than their full scan
counterparts. Beyond o > 1.7e-1, we are better off evaluating
queries 1, 6, and 12 using a full scan rather than using an index. As
expected, plans that perform a secondary index search followed
by a primary index search are vastly superior in response time to
plans that perform full dataset scans when the applicable query
predicate has a low selectivity [26].

The right graph in Fig. 16 tells a similar story with a multi-
join query, query 7 (illustrated in Appendix A.3). Four plots are
displayed here, varying the plan for CH query 7 in some way:

1. A query plan performing a full scan of orders and a primary
key index nested loop join (INL]) to evaluate every join.

2. A query plan performing a full scan of orders and a hash
join (HJ) to evaluate every join.

3. A query plan using the multi-valued index on orders and an
INL] to evaluate every join.

4. A query plan using the multi-valued index on orders and a
HJ to evaluate every join.

Starting with a comparison between plans (1) and (3) (using an
INLJ and varying the use of the multi-valued index), we can reach
the same conclusion as before: lower values of o enable larger
performance gains (i.e. speedup) when using a multi-valued in-
dex. However, when we compare plans (2) and (4) (using a HJ and
varying the use of the multi-valued index), the overall speedup at
low values of o is significantly smaller (x2.75 for HJ vs. x110 for
INLJ at o 1.0e-5). At low selectivity values for plan (4), the
total response time is dominated by the time to perform every
join (in particular, with the larger-than-memory datasets customer
and stock). Even if the relevant orders records can be retrieved
in sub-second time, if we cannot accelerate the time to perform
the joins then query 7 will always run longer than two minutes,
regardless of whether we use a multi-valued index or not.

The main takeaway from this experiment is that multi-valued
indexes can massively accelerate queries, but care should be
taken to avoid using indexes to satisfy predicates on non-small o
values. As with single-valued indexes, AsterixDB (at the time of
writing) does not vary its query plan based on different selectivity
values. If an index can satisfy some predicate in a seELECT operator,
AsterixDB will currently greedily default to integrate that index
into the query plan regardless of o unless a hint is provided to
do otherwise. In terms of join methods, AsterixDB will default
to hybrid-hash joins unless an index-nested loop join hint is
provided.

6.3. System comparison evaluation

In this section, we compare the performance of queries that
can benefit from multi-valued indexes running on AsterixDB,
MongoDB, and the Couchbase Query Service (shortened to
“Couchbase Query” for this section).
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Fig. 16. Median response time vs. selectivity for several queries on an AsterixDB instance. We compare executions that utilize an multi-valued index, perform a
full scan of the data, use INLJ to perform joins, and use hybrid-hash to perform joins.
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Fig. 17. Median response time vs. selectivity for two sets of queries across an AsterixDB instance (denoted as *DB), a MongoDB instance (denoted as MDB), and the

query service on a Couchbase instance (denoted as CBQ).

6.3.1. Experimental setup

All experimental runs were performed on single-node in-
stances of AsterixDB (version 0.9.7), MongoDB (version 4.4.6) and
Couchbase Server (version Enterprise 7.0.0-beta), executed on
an AWS c5.xlarge node, 4 vCPUs @ 3.4 GHz with 8 GB of RAM
and AWS gp2 SSDs. The same CH2 benchmark was used for this
experiment as well, using the same CH2 parameters (i.e. 500 total
warehouses). For all systems, primary indexes were built on each
dataset’s primary key fields and one multi-valued index was built
on the delivery_d field inside the orderiline object array of the
orders dataset. To aid in the evaluation of query 20, a secondary
index was also created for all systems on the i_iqa field of stock.
Each system was given 30 min maximum to execute each query
as ad-hoc (i.e. not prepared) with the system terminating the
query execution if it exceeded this maximum. All queries were
written to leverage the multi-valued index and to use INL]. The
full set of CH2 queries used in this experiment can be found
in Appendix and at https://github.com/glennga/aconitum.

6.3.2. Results and analysis

Fig. 17 depicts the selectivity vs. the response time of several
queries executed using multi-valued indexes on different docu-
ment databases. In the left graph, we have queries 1, 6, and 12
(the same queries used in the left graph of Fig. 16). At o < 1.0e-5,
we observe the following response time hierarchy: MongoDB <
Couchbase Query < AsterixDB. Query 1 on Couchbase Query ac-
tually has the smallest median response time with 13 ms at o =
7.0e-8, but queries 6 and 12 on Couchbase Query run roughly
3 ms slower than queries 6 and 12 on MongoDB at the same o.
At these low selectivity values, AsterixDB executes the slowest

12

with a minimum response time of 25 ms. Each system achieving
sub-second execution time for 0 < 3.5e-6 is not surprising,
given the similarity in execution plans to leverage multi-valued
indexes in each system. Take query 1, where each system starts
by searching their respective multi-valued index for primary keys
of orders such that the indexed delivery_d field is between the two
variables. Duplicate primary keys are then removed by consulting
the primary data source for orders documents. From here, the
orderline array undergoes an UNNEST operation. AsterixDB differs
from the remaining two here in that the secondary index entries
must be validated, so a filter is performed on delivery_d using
our two variables. Documents at this point for all plans are then
grouped by the number field of their orderiine document and the
aggregates are computed. Finally, the groups are sorted by their
number field.

Another observation we can draw from this experiment is how
resilient each system’s response time is (per query) to increasing
values of o. In particular, we are interested in finding the range of
selectivities each system supports for each query (i.e. how many
query executions that are below the 30 min timeout). Under this
light, a longer and flatter plot is more ideal. Couchbase Query was
able to execute queries 1, 6, and 12 up to o = 7.0e-3. MongoDB
has larger range here of selectivities here: query 6 up to o =
7.0e-2 and queries 1 and 12 up to o = 1.75e-1. We can conclude
here that AsterixDB is the most resilient to large selectivity values
for queries 1, 6, and 12, capping out at o = 5.25e-1.

In the right graph of Fig. 17, we show the median response
time vs. the selectivity for two multi-join queries, queries 15
and 20. To roughly describe the complexity of each query, we
list the joins each query contains. Query 15 includes two joins:
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Orders X Stock and Stock X Supplier. Query 20 includes four joins:
Orders X Stock, Item X Stock, Stock X Supplier, and Supplier X
Nation. In the face of these more complex queries (in contrast to
the single dataset queries 1, 6, and 12), how resilient are each
system'’s response times for increasing values of o? With query
15, both MongoDB and Couchbase Query were able to execute for
increasing values of o until o = 7.0e-7 before timing out, while
AsterixDB was able to execute up to ¢ = 3.5e-1. With query
20, we observe the smallest range of o values thus far across
any system for MongoDB: a maximum of ¢ = 7.0e-7 before
executing beyond 30 min. Couchbase Query comes in second: a
maximum of o = 7.0e-6 before exceeding the timeout. Finally,
AsterixDB again demonstrates the most resiliency in response
time, executing up to o = 7.0e-4 before the executing beyond
30 min.

7. Conclusion

We have described the various steps needed to support sec-
ondary indexes for multi-valued fields in AsterixDB. In short, this
consisted of: (i) detailing an approach that separated the im-
plementation of multi-valued indexes with the low-level storage
layer of a database, (ii) describing a multi-valued index specifica-
tion language that is neither ambiguous with respect to structure
nor verbose, (iii) explaining the foundations for bulk loading and
maintaining multi-valued indexes, (iv) illustrating the evalua-
tion for existential and universal quantification queries, and (v)
describing three sets of experiments that evaluated the mainte-
nance cost and efficacy of multi-valued indexes in AsterixDB. We
also like to stress that although this work was done in AsterixDB,
these concepts can easily be applied to other systems with data
flow and storage layers. We would also like to mention that
the Couchbase Analytics Service, which uses the Apache Aster-
ixDB query engine internally [28], now includes this version of
multi-valued indexes [29].

Potential future work with respect to AsterixDB multi-valued
indexes involves (a) applying these same concepts to accelerate
other types of indexes (e.g. R Trees), (b) storing nuLL values in
multi-valued indexes with composite keys to accelerate queries
that only involve a prefix of the sort key, and (c) storing empty
arrays and multisets in order to accelerate general universal
quantification queries (i.e. remove the need for a non-emptiness
clause).
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Appendix. CH2 queries

In this appendix, we show all of the CH2 queries that were
used for the experiments in Section 6.3. To modify the selectivity
for each experiment, the dates sp: and sp2 in each query below
were varied.
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A.1. Query 1

Report the total amount and quantity of all shipped order-lines
between dates sp: and sp2. Additionally report the average amount
and quantity, and the total count of all order-lines ordered by the
individual order-line number.

AsterizDB (SQL++)

FROM Orders 0, O.orderline OL

WHERE OL.delivery_d BETWEEN $D1 AND $D2
GROUP BY OL.number

SELECT OL.number ,

SUM(OL.quantity) AS sum_qty,
SUM(OL.amount) AS sum_amount,
AVG(OL.quantity) AS avg_qty,
AVG (OL.amount) AS avg_amount,
COUNT (%) AS count_order

ORDER BY OL.number;

CQWOWONOU DN WN =

—_

Couchbase Query Service (N1QL for Query)

FROM Orders 0

UNNEST O.orderline OL

WHERE OL.delivery_d BETWEEN $D1 AND $D2
GROUP BY OL.number

SELECT OL.number ,

SUM(OL.quantity) AS sum_qty,
SUM(OL.amount) AS sum_amount,
AVG(OL.quantity) AS avg_qty,
AVG (OL.amount) AS avg_amount,
COUNT (%) AS count_order

ORDER BY OL.ol_number;

— O WO NOUILA WN —

—_—

MongoDB (MQL Aggregate Pipeline)

1 { $match: {orderline: {

2 $elemMatch: {

3 delivery_d: {$gte: $D1, $lte: $D2}}}}},
4 { $unwind: {path: $orderline} },

5 { $group: {

6 _id: $orderline.number,

7 sum_qty: {$sum: $orderline.quantityl,
8 sum_amount: {$sum: $orderline.amount},
9 avg_qty: {$avg: $orderline.quantity},
10 avg_amount: {$avg: $orderline.amount},
11 count_order: {$sum: 1}}},

12 { $sort: {orderline.number: 1} }

A.2. Query 6

List the total amount of archived revenue from order-lines that
were delivered between so: and sp2 and with quantity between 1
and 100,000.

AsterixzDB (SQL++)

1 FROM Orders 0, O.orderline OL

2 WHERE OL.delivery_d BETWEEN $D1 AND $D2 AND
3 OL.quantity BETWEEN 1 AND 100000

4 SELECT SUM(OL.amount) AS revenue;

Couchbase Query Service (N1QL for Query)

FROM Orders 0

UNNEST 0.orderline OL

WHERE OL.delivery_d BETWEEN $D1 AND $D2 AND
OL.quantity BETWEEN 1 AND 100000

SELECT SUM(OL.amount) AS revenue;

U WN =
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MongoDB (ML Aggregation Pipeline)

1 { $match: {orderline: {

2 $elemMatch: {

3 delivery_d: {$gte: $Di1, $lte: $D2}}}}},
4 { $match: {orderline.quantity: {

5 $gte: 1,

6 $lte: 100000}}1},

7 { $group: {

8 _id: None,

9 revenue: {$sum: $orderline.amount}}}

A.3. Query 7

Show the bi-directional trade volume between Germany and
Cambodia within dates o1 and sz, sorted by the nation name and

the considered years.

AsterizDB (SQL++)

1 FROM

LET

WHERE

20 GROUP BY

22 SELECT

26 ORDER BY

Orders 0, O.orderline OL, Stock S,

Customer C, Supplier SU, Nation N1,

Nation N2

suppkey = ((S.s_w_id * S.s_i_id) % 10000),

nationkey = STRING_TO_CODEPOINT(
SUBSTR(C.state, 1, 1))[0]

S.w_id = OL.supply_w_id AND
S.i_id = OL.i_id AND

C.id = 0.c_id AND

C.w_id = 0.w_id AND

C.d_id = 0.d_id AND

SU.suppkey = suppkey AND
Ni.nationkey = SU.nationkey AND
N2.nationkey = nationkey AND

( ( Ni.name = ’Germany’ AND
N2.name = ’Cambodia’ ) OR
( Ni.name = ’Cambodia’ AND
N2.name = ’Germany’ ) ) AND

OL.delivery_d BETWEEN $D1 AND $D2
SU.nationkey, nationkey,
SUBSTR(O.entry_d, 0, 4)
SU.nationkey AS supp_nation,
nationkey AS cust_nation,
SUBSTR(O.entry_d, 0, 4) AS 1_year,
SUM(OL.amount) AS revenue
SU.nationkey, cust_nation, 1l_year;

Couchbase Query Service (N1QL for l]'u.e'r‘y)1

FROM
UNNEST
JOIN
oN

JOIN
oN

OOoONUT A WN =

10 JoIN
11 on
12 JoIn
13 on
14 JOIN
15 on
18 LET

20 WHERE

25 GROUP BY

27 SELECT

31 ORDER BY

Orders 0
O.orderline OL
Stock S
OL.supply_w_id = S.w_id AND
OL.i_id = §.i_id
Customer C
C.id = 0.c_id AND
C.w_id = 0.w_id AND
C.d_id = 0.d_id
Supplier SU
((s.w_id * S8.i_id) % 10000) = SU.suppkey
Nation N1
SU.nationkey = Nl.nationkey
Nation N2
(stringToCodepoint (
SUBSTR(C.state, 1, 1)))[0]
= N2.nationkey
nationkey = (stringToCodepoint (
SUBSTR(C.state, 1, 1)))[0]
OL.delivery_d BETWEEN $D1 AND $D2 AND

( ( Ni.name = ’Germany’ AND

N2.name = ’Cambodia’ ) OR
( Ni.name = ’Cambodia’ AND
N2.name = ’Germany’ ) )

SU.nationkey, nationkey,
SUBSTR(O.entry_d, 0, 4)
SU.nationkey AS supp_nation,
nationkey AS cust_nation,
SUBSTR(O.entry_d, 0, 4) AS 1_year,
SUM(0.amount) AS revenue
SU.nationkey, cust_nation, 1l_year;
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MongoDB (ML Aggregation Pipeline)

1 { $match: {orderline: {
$elemMatch: {delivery_d
$gte: $D1,

$lte: $D233}3}}},

{ $lookup: {
from: Stock,

foreignField: i_id,
as: stock} },

{ $match: {$expr: {

$stock.w_id]}}},
{ $lookup: {
from: Customer,
localField: id,
foreignField: id,
as: customer} },

[ e T S N T T
QWOWOUOUNAOAUEA WN=OWLWLNO U N WN

21 { $match: {$expr: {

{

{ $unwind: {path: $orderline] },

localField: orderline.i_id,

{ $unwind: {path: $stock} },

$eq: [$orderline.supply_w_id,

{ $unwind: {path: $customer} I},

22 $and: [{$eq: [$customer.w_id,
23 $w_idl},

24 {$eq: [$customer.d_id,
25 $d_1d1}1}}},

26 { $addFields: {

27 supplier_no: {$mod: [

28 {$multiply: [$stock.w_id,
29 $stock.i_idl}, 10000]1}}},
30 { $lookup: {

31 from: Supplier,

32 localField: supplier_no,

33 foreignField: suppkey,

34 as: supplier} 1},

35 { $unwind: {path: $supplier} 3},

36 { $lookup: {

37 from: Nation,

38 localField: supplier.nationkey,
39 foreignField: nationkey,

40 as: nationil} 1},

41 { $unwind: {path: $nationi} 1},

42 { $addFields: {

43 nationkey: {$function:

44 body: ’function(inputString)

45 { return inputString.codePointAt (0); }’,
46 args: [{$substr: [$customer.state, 1, 11}],

47 lang: js}}}},

48 { $lookup: {

49 from: Nation,

50 localField: nationkey,

51 foreignField: nationkey,

52 as: nation2} 1},

53 { $unwind: {path: $nation2}

54 { $match: {$expr: {

55 $or: [

56 {$and: [

57 {$eq: [$nationl.name, ’Germany’l},

58 {$eq: [$nation2.name, ’Cambodia’]l}]},
59 {$and: [

60 {$eq: [$nationl.name, ’Cambodia’]l},
61 {$eq: [$nation2.name, ’Germany’]1}1}1}}},
62 { $group: {

63 _id: {

64 supp_nation: $supplier.nationkey,

65 cust_nation: $nationkey,

66 1_year: {$substr: [entry_d, 0, 41}},
67 revenue: {$sum: $orderline.amountl}}},

68 { $sort: {supp_nation: 1,

cust_nation: 1, 1l_year: 1} }

A.4. Query 12

Count the number of high and low priority orders between
dates sp1 and sp2, grouped by the number of order-lines in each

order.

1 The function stringToCodepoint epresents an external user-defined function
that returns the code-point for the first character of a string.
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AsterizDB (SQL++)

1 FROM Orders 0, O.orderline OL

2 WHERE O.entry_d <= OL.delivery_d AND

3 OL.delivery_d BETWEEN $D1 AND $D2

4 GROUP BY 0.o0l_cnt

5 SELECT 0.0l_cnt,

6 SUM(CASE WHEN O.carrier_id = 1 OR

7 O.carrier_id = 2

8 THEN 1 ELSE O END) AS high_line_count,
9 SUM(CASE WHEN O.carrier_id <> 1 OR

10 O.carrier_id <> 2

11 THEN 1 ELSE 0 END) AS low_line_count

12 ORDER BY 0.o0l_cnt;

Couchbase Query Service (N1QL for Query)

1 FROM Orders 0

2 UNNEST 0.orderline OL

3 WHERE O.entry_d <= OL.delivery_d AND

4 OL.delivery_d BETWEEN $D1 AND $D2
5 GROUP BY 0.ol_cnt

6 SELECT 0.ol_cnt,

7 SUM(CASE WHEN 0.carrier_id = 1 OR
8 O.carrier_id = 2

9 THEN 1 ELSE 0 END)

10 AS high_line_count,

11 SUM(CASE WHEN O.carrier_id <> 1 OR
12 O.carrier_id <> 2
13 THEN 1 ELSE 0 END)

14 AS low_line_count

15 ORDER BY 0.o0l_cnt;

MongoDB (MQL Aggregation Pipeline)
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12 R.total_revenue = (

13 FROM Revenue

14 SELECT VALUE MAX(total_revenue)
15 ) [0]

16 SELECT SU.suppkey ,

17 SU.name,

18 SU.address,

19 SU.phone,

20 R.total_revenue

21 ORDER BY SU.suppkey;

Couchbase Query Service (N1QL for Query)

1 WITH Revenue AS (

2 FROM Orders 0

3 UNNEST 0.orderline OL

4 JOIN Stock S

5 oN OL.i_id = S.i_id AND

6 OL.supply_w_id = S.w_id

7 WHERE OL.delivery_d BETWEEN $D1 AND $D2
8 GROUP BY ((S.w_id % S.i_id) % 10000)

9 SELECT ((S.w_id * S.i_id) % 10000)

10 AS supplier_nmo,

11 SUM(OL.amount) AS total_revenue
12 )

13 FROM Revenue R

14 JoIn Supplier SU

15 on SU.suppkey = R.supplier_no

16 WHERE R.total_revenue = (

17 FROM Revenue M

18 SELECT VALUE MAX (M.total_revenue)

19 ) (o]
20 SELECT SU.suppkey, SU.name, SU.address, SU.phone,
21 R.total_revenue

22 ORDER BY SU.suppkey;

1 { $match: {orderline: {

2 $elemMatch: {

3 delivery_d: {$gte: $D1, $1lte: $D2}}}} I},
4 { $match: {$expr: {

5 $1te: [$entry_d,

6 $orderline.delivery_dl}} },

7 { $project: {

8 ol_cnt: $0l_cnt,

9 high_line: {

10 $switch: {

11 branches: [

12 {case: {$in: [$carrier_id, [1, 211},
13 then: 1}],

14 default: 0}},

15 low_line: {

16 $switch: {

17 branches: [

18 {case: {$in: [$carrier_id, [1, 211},
19 then: 0}],
20 default: 1}}} },
21 { $group: {
22 _id: $ol_cnt,
23 high_line_count: {$sum: high_line},
24 low_line_count: {$sum: low_linel}} },

25 { $sort: {ol_cnt: 1} }

A.5. Query 15
Find the top supplier or suppliers who contributed the most
to the overall revenue for items shipped between dates sp: and

$D2.

AsterizDB (SQL++)

1 WITH Revenue AS (

2 FROM Stock S, Orders 0, O.orderline OL
3 WHERE OL.i_id = S.i_id AND

4 OL.supply_w_id = S.w_id AND

5 OL.delivery_d BETWEEN $D1 AND $D2
6 GROUP BY ((S.w_id * S.i_id) % 10000)

7 SELECT ((s.w_id * S.i_id) % 10000) AS supplier_no,
8 SUM(OL.amount) AS total_revenue
9

0 FROM Supplier SU, Revenue R

1 WHERE SU.suppkey = R.supplier_no AND

—_—

15

MongoDB (ML Aggregation Pipeline)

1 { $match: {orderline: {

2 $elemMatch: {delivery_d: {
3 $gte: $D1,

4 $1lte: $D23}}}} ¥,

5 { $unwind: {path: $orderline} },
6 { $lookup: {

7 from: Stock,

8 localField: orderline.i_id,
9 foreignField: i_id,

10 as: stock} },

11 { $unwind: {path: $stockl} },
12 { $match: {$expr: {

13 $eq: [$orderline.supply_w_id,

14 $stock.w_id1}} },

15 { $project: {

16 supplier_no: {$mod: [{$multiply:
17 [$stock.w_id, $stock.i_idl}, 100001},
18 amount: $orderline.amount} },

19 { $group: {

20 _id: $supplier_nmo,

21 total_revenue: {$sum: $amountl}} 1},
22 { $lookup: {

23 from: Supplier,

24 localField: _id,

25 foreignField: suppkey,

26 as: supplier} 1},

27 { $unwind: {path: $supplier} },
28 { $group: {

29 _id: None,
30 data: {$push: $$ROOT},
31 max_revenue: {$max: $total_revenuel}} 1},

32 { $unwind: $data },
33 { $match: {$expr: {

34 $eq: [$data.total_revenue,

35 $max_revenuell}} },

36 { $project: {

37 suppkey: $data.supplier.suppkey,

38 name: $data.supplier.name,

39 address: $data.supplier.address,

40 phone: $data.supplier.phone,

41 total_revenue: $data.total_revenuel} },

42 { $sort: {suppkey: 1} }
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A.6. Query 20

Find suppliers in Germany having selected parts (whose data
has a prefix >co>) that may be candidates for a promotional offer if
the quantity of these items is more than 50% of the total quantity
which has been ordered between so: and sp2.

AsterizDB (SQL++)

1 FROM Supplier SU, Nation N

2 WHERE SU.suppkey IN (

3 FROM Stock S, Orders 0, 0.orderline OL
4 WHERE S.i_id IN (

5 FROM Item I

6 WHERE I.data LIKE ’co%’

7 SELECT VALUE I.id

8 ) AND

9 OL.i_id = S.i_id AND

10 OL.delivery_d BETWEEN $D1 AND $D2
11 GROUP BY S.i_id, S.w_id, S.quantity

12 HAVING (100 * S.quantity) >

13 SUM(OL.quantity)

14 SELECT  VALUE ((S.w_id * S.i_id) % 10000)
15 ) AND

16 SU.nationkey = N.nationkey AND

17 N.name = ’Germany’

18 SELECT SU.name,

19 SU.address

20 ORDER BY SU.name;

Couchbase Query Service (N1QL for Query)

1 WITH SupplierKeys AS (

2 FROM Orders 0

3 UNNEST 0.orderline OL

4 JOIN Stock S

5 USE HASH (BUILD)

6 oN OL.i_id = S.i_id

7 JOIN Item I

8 oN I.id = S.i_id

9 WHERE I.data LIKE ’co%’ AND

10 OL.delivery_d BETWEEN $D1 AND $D2
11 GROUP BY S.i_id, S.w_id, S.quantity
12 HAVING (100 * S.quantity) >

13 SUM(OL.quantity)

14 SELECT VALUE ((S.w_id * S.i_id) % 10000)
15 )

16 FROM SupplierKeys SK

17 JoIn Supplier SU

18 on SU.suppkey = SK

19 JoIin Nation N

20 oxn N.nationkey = SU.nationkey

21 WHERE N.name = ’Germany’

22 SELECT SU.name, SU.address
23 ORDER BY SU.name;

MongoDB (ML Aggregation Pipeline)

1 { $match: {orderline: {

2 $elemMatch: {delivery_d: {

3 $gte: $D1,

4 $lte: $D2}}3}} 1},

5 { $unwind: {path: $orderline} },
6

7

8

9

{ $lookup: {
from: Stock,
localField: orderline.i_id,
foreignField: i_id,
10 as: stock} },
11 { $unwind: {path: $stock} I},
12 { $lookup: {

13 from: Item,
14 localField: stock.i_id,
15 foreignField: id,

16 as: item} 1},

17 { $unwind: {path: $item} },

18 { $match: {item.data: {$regex: ~“col}} },
19 { $group: {

20 _id: {

21 i_id: $stock.i_id,

22 w_id: $stock.w_id,

23 quantity: $stock.quantityl,
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24 total_quantity: {

25 $sum: $orderline.quantityl}} },

26 { $match: {$expr: {

27 $gt: [{$multiply: [100, $_id.quantityl},

28 $total_quantityl}} 3,

29 { $project: {

30 supplier_no: {$mod:

31 [{$multiply: [$_id.w_id, $_id.i_idl},

32 1000013} 1,

33 { $lookup: {

34 from: Supplier,

35 localField: supplier_no,

36 foreignField: suppkey,

37 as: supplier} 1},

38 { $unwind: {path: $supplier} },

39 { $lookup: {

40 from: Nation,

41 localField: nationkey,

42 foreignField: nationkey,

43 as: nation} 1},

44 { $unwind: {path: $nation} },

45 { $match: {name: ’Germany’} },

46 { $project: {

47 name: $supplier.name,

48 address: $supplier.address} 1},

49 { $sort: {name: 1} }
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