

1 **Autophagic degradation of membrane-bound organelles in plants**

2 Jiaojiao Wang^{1,#}, Qian Zhang^{1,#}, Yan Bao^{1,*}, Diane C Bassham^{2,*}

3 ¹School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China

4 ²Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA

5 50011, United States of America

6 [#]These authors have contributed equally.

7 ^{*}Correspondence: yanbao@sjtu.edu.cn; bassham@iastate.edu

8 **Abstract:**

9 Eukaryotic cells have evolved membrane-bound organelles, including the endoplasmic reticulum
10 (ER), Golgi, mitochondria, peroxisomes, chloroplasts (in plants and green algae) and
11 lysosomes/vacuoles, for specialized functions. Organelle quality control and their proper
12 interactions are crucial both for normal cell homeostasis and function and for environmental
13 adaption. Dynamic turnover of organelles is tightly controlled, with autophagy playing an
14 essential role. Autophagy is a programmed process for efficient clearing of unwanted or
15 damaged macromolecules or organelles, transporting them to vacuoles for degradation and
16 recycling and thereby enhancing plant environmental plasticity. The specific autophagic
17 engulfment of organelles requires activation of a selective autophagy pathway, recognition of the
18 organelle by a receptor, and selective incorporation of the organelle into autophagosomes. While
19 some of the autophagy machinery and mechanisms for autophagic removal of organelles is
20 conserved across eukaryotes, plants have also developed unique mechanisms and machinery for
21 these pathways. In this review, we discuss recent progress in understanding autophagy regulation
22 in plants, with a focus on autophagic degradation of membrane-bound organelles. We also raise
23 some important outstanding questions to be addressed in the future.

24 **Keywords:** Autophagosome; degradation; organelle; receptor; selective autophagy; stress.

26 **Introduction**

27 Autophagy is a fundamental process that is unique to eukaryotes, during which cellular cargoes
28 are targeted for degradation or recycling via the vacuole (yeast and plants) or lysosome (animals)
29 [1,2]. Two types of autophagy are conserved across most eukaryotic species, macroautophagy
30 and microautophagy [3]. During macroautophagy, endoplasmic reticulum (ER)-derived double
31 membrane-bound vesicles called autophagosomes engulf targeted substrates (e.g. dysfunctional
32 proteins or damaged organelles) and deliver them to vacuoles or lysosomes via membrane
33 fusion; while in microautophagy, vacuoles or lysosomes can take up cytosolic substrates directly
34 (Figure 1) [4]. A third type of autophagy has also been described in plants, termed mega-
35 autophagy, during which the vacuole lyses, releasing vacuolar hydrolases into the cytoplasm,
36 resulting in degradation of cellular components and cell death [5]. Activation and progression of
37 autophagy involves many core AuTophagy (ATG) components and receptors, with multiple
38 distinct steps identified, and has been extensively reviewed [1,2].

39 Cellular homeostasis requires tight regulation and coordination of various organelles [6]. When
40 homeostasis is disrupted, damaged macromolecules or organelles can be efficiently removed via
41 autophagy [7]. Here, unless otherwise specified, autophagy refers to macroautophagy, as in
42 plants degradation of membrane-bound organelles, the focus of this review, generally occurs via
43 macroautophagy. Selective autophagy of organelles in plants includes ER-phagy, mitophagy,
44 pexophagy and chlorophagy, and requires specific recognition between receptors and their cargo
45 [8]. ATG8 (called LC3 in mammals) is a critical factor that is recruited to and tethered on the
46 membrane of autophagosomes via covalent conjugation to the membrane lipid
47 phosphatidylethanolamine. Binding of cargo receptors to ATG8 then recruits the receptor and
48 cargo into the autophagosome for transport and degradation. Multiple ATG8 isoforms (9 copies
49 in *Arabidopsis*) are present in plants, potentially allowing distinct regulatory mechanisms for
50 autophagy during growth and stress responses [9]. ATG8 proteins interact with receptor proteins
51 through specific motifs, and an ATG8-interacting motif (AIM) is present in most ATG8-
52 interacting proteins involved in organellar autophagy [10,11].

53 **ER-phagy**

54 *ER-phagy and ER stress*

55 The ER is a dynamic and continuous membrane system in eukaryotic cells. It is a highly
56 expanded structure, with multiple morphologies, including the nuclear envelope, rough ER
57 (RER) sheets with ribosomes, and smooth ER (SER) tubules connected by three-way junctions
58 [12]. These different structures facilitate distinct ER functions, including RER-mediated protein
59 synthesis, folding and vesicle transport, SER-mediated lipid production, and communication
60 with other organelles. Meanwhile, the ER is continuously undergoing highly dynamic
61 morphological remodeling in response to different environmental stimuli, allowing stress
62 adaptation and recovery [13]. When the processing and protein folding capacity of the ER is
63 overloaded, it will cause unfolded protein accumulation, a situation termed ER stress [14].
64 Organisms have evolved strategies to deal with ER stress, including ER-associated degradation
65 (ERAD), the unfolded protein response (UPR), and ER-phagy, an important pathway that
66 degrades ER fragments or ER-associated components. ER-phagy is a selective process that
67 involves the autophagic machinery and corresponding receptors to accomplish the vacuolar
68 degradation of ER [15].

69 In plants, ER stress-mediated ER-phagy is triggered by the accumulation of misfolded proteins in
70 the ER [16]. ER fragments were observed in autophagic bodies upon treatment with the ER
71 stress agent tunicamycin (Tm), and the ER stress sensor IRE1b (inositol-requiring enzyme 1b) is
72 required for this process [17]. IRE1b has two major activities, non-conventional splicing of the
73 mRNA of the transcription factor bZIP60 (basic region/leucine zipper motif 60) that in turn
74 activates ER stress-response gene transcription, and Regulated IRE1-dependent mRNA decay
75 (RIDD), a general mRNA degradation pathway that reduces production of ER proteins and
76 therefore relieves ER stress. The ribonuclease activity of IRE1b was found to be critical for
77 IRE1b-mediated autophagy during ER stress [18,19], and this was due to RIDD activity rather
78 than *bZIP60* splicing, demonstrating RIDD-dependent and *bZIP60*-independent regulation of
79 ER-phagy [19].

80 Other regulators of autophagy during ER stress have been identified. SnRK1 (SNF1-related
81 protein kinase 1) is a protein kinase that senses the energy status of the cell [20] and is required
82 for activation of autophagy under many stress conditions, including ER stress [21]. How energy
83 status and ER stress are linked, how autophagy activation is triggered by SnRK1, and how
84 IRE1b and SnRK1 activities are coordinated is unknown. Sulfide has also been shown to

85 negatively regulate ER-phagy, via persulfidation of the autophagy core factor ATG18a [22].
86 While ATG18a is required for bulk autophagy under various stress conditions, its regulation by
87 persulfidation seems to be restricted to ER stress conditions. Persulfidation increases binding of
88 ATG18a to phosphatidylinositol 3-phosphate, which then controls the number and size of
89 autophagosomes produced upon ER stress. Other *Arabidopsis* ER-associated proteins are
90 potentially involved in ER-phagy, such as NAP1 (Nck-associated protein 1). NAP1 was found to
91 be involved in autophagosome biogenesis by affecting actin nucleation [23]; a potential role for
92 NAP1 in ER-phagy regulation is an interesting topic for future investigation.

93 *ER-phagy receptors during ER stress*

94 ER-phagy relies on specific receptor-adaptor interactions to facilitate engulfment of ER
95 fragments by autophagosomes or direct delivery to the vacuole. To date, many ER-phagy
96 receptors were identified and characterized in eukaryotes, including FAM134, Sec62, RTN3,
97 CCPG1, ATL3, TEX264, CALCOCO1 and C53 in mammals [13]; Atg39, Atg40, and Epr1 in
98 yeast [13]; and ATI1, ATI2, ATI3, RTN1, RTN2, AtSEC62, C53 and RHD3 in plants [13,24].
99 Different receptors can perceive distinct signals to control the degradation of ER fragments
100 (**Figure 2**), indicating their functional diversification in ER-phagy.

101 SEC62 is a component of the translocon complex, and was initially identified in mammals as an
102 ER-phagy receptor during stress recovery [25]. *Arabidopsis* AtSEC62 has translocon domains
103 but only shares 12% and 15% protein sequence similarity with its counterparts in yeast and
104 animals, respectively, and has a unique membrane topology, suggesting potential functional
105 differences. AtSEC62 is ER membrane-associated and interacts with ATG8 through its AIM
106 motif during ER stress triggered by Tm or dithiothreitol (DTT) [26]. Interestingly, ring-like
107 structures marked by YFP-AtSEC62 and the autophagosome marker mCherry-ATG8e were
108 observed upon ER stress induction. *atsec62* null alleles were sensitive to Tm, whereas
109 overexpression of AtSEC62 enhances stress tolerance [26], raising the hypothesis that AtSEC62
110 can act as a receptor in ER stress-regulated autophagy.

111 Reticulons (RTNs) are ER-localized transmembrane proteins with a highly conserved reticulon
112 homology domain [27]. In mammals, two reticulon domain-containing proteins, FAM134B and
113 RTN3 were characterized as ER-phagy receptors in mediating ER turnover [28,29]. In plants,

114 maize RTN1 and RTN2 proteins were reported to be ER-phagy receptors, containing four AIM
115 motifs, and the interactions between RTN and ATG8 were enhanced upon ER stress treatment
116 [30]. In endosperm cells of maize *rtn2* mutants, autophagy induction and up-regulation of ER
117 stress-responsive chaperones were detected, suggesting that ER homeostasis was disrupted, and
118 therefore indicating a crucial role of maize RTN1- and RTN2-controlled ER-phagy in ER
119 homeostasis and stress [30].

120 Arabidopsis ROOT HAIR DEFECTIVE (RHD) 3 is an atlastin GTPase previously reported to be
121 involved in root development [31], and more recently identified as an ER-phagy receptor [24].
122 The orthologs of RHD3 in mammals, atlastin 2 (ATL2) and 3 (ATL3), were reported to play an
123 important role in ER-phagy [32,33]. ATL2 is required for FAM134B-mediated ER-phagy [32]
124 and ATL3 functions as a receptor for ER-phagy, interacting with the ATG8-related protein
125 GABARAP to promote tubular ER degradation upon starvation [33]. Two distinct AIM sites
126 were identified on RHD3, but interestingly, only AIM2 is involved in the interaction with ATG8,
127 and ER stress treatments enhance the interaction between RHD3 and ATG8. Sun et al. [24]
128 further showed that an *rhd3* mutant is sensitive to ER stress and deficient in ER-phagy.

129 C53 is a unique ER-phagy receptor conserved in both plants and animals. Firstly, it is a cytosolic
130 protein, unlike most other ER-phagy receptors, which are ER membrane-localized. Secondly, it
131 interacts with ATG8 via a shuffled ATG8 interacting motif (sAIM), rather than a conventional
132 AIM site. Thirdly, it forms a tripartite receptor complex with the ER-associated ufmylation
133 ligase UFL1 and its membrane adaptor DDRGK1 to sense the proteotoxic level in the ER lumen;
134 the complex is activated by stalled ribosomes at the ER surface [34]. This discovery suggests that
135 ER-phagy receptors can have diverse cellular localizations, that the motif for interacting with
136 ATG8 is not necessarily conserved, and that helper proteins can be recruited to form complexes
137 to mediate ER-phagy.

138 *ER-phagy receptors during other types of stress*

139 Beyond ER stress [35], dark-induced starvation [36], phosphate starvation [37] and viral
140 infection [38] were also reported to induce ER-phagy in plants. In many cases, the specific
141 receptor that recognizes the ER is unknown.

142 ATI1 (ATG8-interacting 1) and ATI2 are plant-specific ATG8-binding transmembrane proteins
143 that were found to be involved in ER-phagy [36,38]. ATI proteins contain two putative AIM
144 sites [39], located in the long intrinsically disordered regions (IDRs) at the N-terminus [40].
145 During dark-induced carbon starvation, ER-localized ATI proteins associate with ER-derived
146 bodies and sequester these bodies for autophagic degradation in the vacuole. In addition, ATI
147 proteins can interact with MSBP1 (membrane steroid-binding protein 1) and facilitate its
148 degradation through ER-phagy during carbon starvation [36]. The ATI proteins also interact with
149AGO1 (argonaute 1) protein on the ER, leading to its vacuolar degradation, playing a critical role
150 in plant-virus interactions [41]. ATI3 is a dicot-specific protein that was initially isolated as an
151 ATG8-interacting protein from a yeast-two-hybrid screen [42,43]. ATI3 interacts with ER-
152 localized UBAC2 (Ubiquitin-associated protein 2) protein, leading to its vacuolar degradation in
153 an autophagy-dependent manner.

154 **Mitophagy**

155 Mitochondria are double membrane-bound organelles within eukaryotic cells that serve as the
156 powerhouse by generating adenosine triphosphate (ATP). Many additional biochemical activities
157 are carried out in mitochondria, including de novo fatty acid synthesis, amino acid biosynthesis,
158 and iron-sulfur biosynthesis [44]. Mitochondria are also major sources of reactive oxygen
159 species (ROS) that can result in oxidative damage, and this ROS production increases when
160 mitochondria are damaged. Therefore, maintaining a healthy mitochondrial population is
161 important for plant cells, ensuring energy supply and multiple biochemical activities, and
162 preventing excess ROS production [45]. To maintain cell homeostasis, autophagic clearance of
163 damaged or superfluous mitochondria (mitophagy) is critical.

164 Based on the mechanism of recognition of mitochondria for degradation, mitophagy can be
165 classified into the three types: (1) ubiquitin-dependent, (2) receptor-dependent and (3) lipid-
166 dependent [45]. Mitophagy is best described in mammals, where ubiquitylation (e.g. via the E3
167 ubiquitin ligase PARKIN and PTEN-induced kinase 1, PINK1), receptors [such as FUN14
168 domain-containing protein 1 (FUNDC1), BCL2 Interacting Protein 1 (BNIP1) and NIX] and
169 lipids (cardiolipin and ceramide) can be the selective signals to mark damaged mitochondria and
170 recruit LC3 to allow autophagic degradation [45]. In yeast, the mitophagy receptor ATG32 is

171 activated by casein kinase 2 via phosphorylation, binds ATG11 and then interacts with ATG8
172 [46,47]. Compared with the studies in yeast and animals, mechanisms of selective mitophagy in
173 plants are still largely unknown (**Figure 3**). In addition, very few of the major participants of
174 mitophagy in animals and yeast mentioned above have clear orthologs in plants.

175 *Regulation of mitophagy in plants*

176 A variety of environmental stimuli, including senescence, carbon or nitrogen starvation, or UV-B
177 stress, can trigger mitophagy in plants. For instance, the number of mitochondria and amount of
178 mitochondrial protein decreased significantly in senescent leaves of wild-type (WT) *Arabidopsis*
179 plants but were stabilized in the autophagy deficient mutants *atg7* and *atg11*. When leaves were
180 pretreated with the vacuolar H⁺-ATPase inhibitor concanamycin A (ConcA), mitophagic bodies
181 marked by Mito-YFP and mCherry-ATG8a became visible in individually darkened leaves of
182 WT *Arabidopsis* plants, but were absent from the leaves of *atg7* or *atg11* mutants [48]. ATG11 is
183 an autophagy adaptor that can interact with ATG8 through its AIM motif and, together with
184 ATG7, participate in senescence-induced mitophagy in *Arabidopsis* [48]. In another study,
185 autophagic bodies containing mitochondria were found in roots under nitrogen starvation upon
186 ConcA treatment, but were not seen in the autophagy deficient mutant *atg4a atg4b* [49]. A high
187 dosage UV-B stress can cause mitochondria to be inactivated and fragmented, and mitophagy
188 was reported to play an important role in autophagic clearance of damaged mitochondria through
189 vacuolar degradation [50,51].

190 Mitophagy can also be triggered by a range of mitochondrial inhibitors, such as doxycycline
191 (Dox, inhibits translation on mitochondrial ribosomes), MitoBlockCK-6 (MB, inhibits
192 mitochondrial protein import), and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone
193 (FCCP) and 2,4-dinitrophenol (DNP), uncouplers which depolarize mitochondria [52,53]. Of
194 note, adding those inhibitors to the growth medium leads to a more pronounced mitophagy flux
195 than spraying on plants. In addition, as an uncoupler, FCCP was more potent than DNP,
196 depolarizing almost all mitochondria at a lower concentration, making it very challenging to
197 monitor mitophagy dynamics. For this reason, DNP is the more widely used uncoupler because
198 its slower action facilitates the observation of mitophagy flux via cell biological and biochemical
199 assays [53,54].

200 Kacprzak et al. [52] established a new system to monitor mitophagy levels in plants by
201 generating a stable *Arabidopsis* transgenic line expressing GFP fused with the mitochondrial
202 matrix-localized isocitrate dehydrogenase 1 (IDH1) or mitochondrial outer membrane localized
203 Translocase of Outer Membrane 20 (TOM20). With these new reporter lines, they found that
204 dark-induced carbon starvation, natural senescence, and specific mitochondrial stresses (long
205 term exposure to uncoupling agents or inhibitors of mitochondrial protein import/translation) are
206 key triggers of mitophagy in plants, while nitrogen starvation, hydrogen peroxide, heat, UV-B
207 and hypoxia did not appear to trigger substantial mitophagy [52]. These findings provide new
208 tools to detect mitophagy in plants and demonstrate effective inducing conditions or treatments.

209 *Recognition of mitochondria for degradation*

210 Ma et al. [53] recently reported that Friendly (FMT), a member of the clustered mitochondria
211 protein family, translocates to damaged mitochondria to mediate uncoupler-induced mitophagy.
212 Upon treatment with the uncoupler DNP, *fmt* mutants have more depolarized mitochondria and
213 fewer mitophagosomes, indicating that FMT is critical for mitophagy [53]. Defects were also
214 observed in mitophagy during cotyledon greening, identifying a physiological role for FMT in
215 development. However, how Friendly promotes autophagosome formation with its potential
216 binding partners require additional research.

217 Independent of whether mitophagy is activated in response to environmental or physiological
218 cues, for example during pollen tube growth [55], the mechanism for distinguishing damaged
219 mitochondria from the functional population is crucial for selective autophagic degradation.
220 TraB1, an uncharacterized mitochondrial outer-membrane protein, was identified as a novel
221 ATG8-interacting component in mitophagy. Interestingly, the ER-localized protein VAP27-1
222 (Vesicle-Associated Protein 27-1), can directly interact with TraB1 and regulate its ER-
223 mitochondrial tethering and turnover through mitophagy [54], indicating that distinct
224 mechanisms exist for control of mitophagy in plants.

225 **Pexophagy**

226 Peroxisomes are small, single membrane organelles with diameters around 0.1~1 μm . Despite
227 their simple structure and small size, peroxisomes contain over 200 proteins, involved in diverse

228 metabolic functions [56]. In seeds, glyoxysomes, a specialized form of peroxisomes, function in
229 β -oxidation and the glyoxylate cycle, converting lipids into sucrose to support post-germination
230 growth of seedlings. In leaves, peroxisomes are involved in photorespiration, ROS catabolism,
231 and production of hormones, including auxin, jasmonic acid and salicylic acid, which are
232 essential phytohormones for plant growth and stress responses. Autophagic degradation of
233 peroxisomes, termed pexophagy (Figure 4), is required for the conversion of the population of
234 peroxisomes from seed glyoxysomes to leaf peroxisomes, and for their quality control to remove
235 damaged peroxisomes [57].

236 *Pexophagy in development and stress responses*

237 Glyoxysomes are directly transformed into leaf peroxisomes during the greening of etiolated
238 cotyledons for seedling peroxisome remodeling [58], along with the degradation of obsolete
239 glyoxysomal proteins such as isocitrate lyase (ICL) and malate synthase (MLS), two marker
240 enzymes of the glyoxylate cycle [59]. In the autophagy-deficient mutants *atg5* and *atg7*, more
241 peroxisomes and endogenous glyoxysomal proteins (such as ICL and MLS) accumulate in the
242 hypocotyls of developing seedlings. Furthermore, when the seedlings were treated with ConCA,
243 peroxisomes were found in the vacuole of WT hypocotyls but not in that of the *atg7* mutant,
244 indicating that pexophagy participates in the degradation of glyoxysomal proteins [60]. During
245 this functional transition of peroxisomes, unnecessary proteins are degraded by both LON2
246 (LON protease 2)- and autophagy-dependent pathways. LON2 belongs to the AAA+ (ATPases
247 associated with various cellular activities) superfamily, and can act as both an ATP-dependent
248 protease and a chaperone. *lon2* mutants have defects in peroxisomal number and metabolism and
249 in protein import, and these defects are suppressed by *atg* mutants, indicating that pexophagy and
250 LON2 cooperate in peroxisome quality control [61,62].

251 Under normal growth conditions, plants maintain a basal level of pexophagy, as autophagy-
252 deficient mutants have increased numbers of peroxisomes compared to WT plants [57,60].
253 Treatment of tobacco BY2 cells with the autophagy inhibitor 3-methyladenine (3-MA) led to
254 accumulation of peroxisomes and peroxisomal proteins [63]. Pexophagy is also involved in plant
255 responses to various stressful conditions. In BY2 cells, the number of peroxisomes dropped
256 substantially during sucrose starvation, and 3-MA delayed peroxisome degradation, indicating

257 that carbon starvation effectively triggers autophagic degradation of peroxisomes [63]. Under
258 high glucose treatment (3%), the autophagy-deficient mutants *atg5* and *atg7* accumulate more
259 peroxisomes in root cells than do WT plants, indicating that high glucose-promoted peroxisome
260 degradation in roots requires a functional autophagy pathway [64].

261 Peroxisomes generate ROS, which need to be removed by antioxidant enzymes such as catalase.
262 When ROS accumulation in peroxisomes causes oxidative damage of peroxisomal proteins or
263 other peroxisomal components, the resulting dysfunctional peroxisomes need to be removed.
264 Although the signals that trigger plant pexophagy have not yet been well characterized, oxidative
265 changes seem to be a key factor. Using unusual positioning of peroxisomes as a criterion,
266 Shibata et al [65] identified several peroxisome unusual positioning (*peup*) *Arabidopsis* mutants,
267 which were found to be mutated in *ATG2*, *ATG18a* and *ATG7* genes. In *peup/atg* mutants,
268 oxidized peroxisomes accumulated in large aggregates and contained inactive catalase; these
269 aggregates were also found in a catalase mutant. Damaged and aggregated peroxisomes are
270 therefore degraded by autophagy as a quality control mechanism [65]. Even under normal
271 growth conditions, peroxisomes in leaf cells of autophagy mutants contained increased levels of
272 catalase in an insoluble and inactive aggregate form, and these accumulated abnormal
273 peroxisomes were selectively recognized and delivered to vacuoles for degradation upon
274 restoration of autophagy function [57]. Similarly, exposure of *Arabidopsis* plants to cadmium
275 induces oxidative stress, and oxidation of peroxisomal proteins such as catalase is likely a trigger
276 for pexophagy [66].

277 *Identification of pexophagy machinery*

278 The mechanistic understanding of pexophagy has been increasing over the last few years. In
279 yeast, the major players for recognition of peroxisomes for degradation are Atg36 and Atg30,
280 while mammals use p62/SQSTM1 or NBR1 as pexophagy receptors [67]. Plants have no clear
281 counterparts of Atg36 or Atg30, but may use the conserved component NBR1 as a peroxisome
282 receptor. In cadmium-induced pexophagy in *Arabidopsis*, NBR1 co-localizes with ATG8 and
283 catalase, suggesting that NBR1 may function as a pexophagy receptor [66]. However, Young et
284 al. [68] showed that NBR1 is not required for pexophagy in the *lon2* mutant, and overexpression
285 of NBR1 is not sufficient to trigger pexophagy, suggesting that an NBR1-independent

286 mechanism for pexophagy also exists in Arabidopsis. Through bioinformatics approaches, Xie et
287 al. [69] identified nine peroxisomal PEX proteins in Arabidopsis that contain high fidelity AIMs
288 (hfAIMs), among which AtPEX6 and AtPEX10 interact with ATG8 in vivo as validated by
289 bimolecular fluorescence complementation (BiFC). Moreover, mutations occurring within or
290 near hfAIMs in PEX6 and PEX10 cause defects in the growth and development of various
291 organisms, indicating that the conserved hfAIMs are important for their functions [69]. In
292 addition, an independent yeast two-hybrid screen also identified PEX10 as an ATG8-interacting
293 protein [70], suggesting that PEX10 is a promising candidate for a pexophagy receptor.

294 ABCD1/PXA1 (ATP-binding cassette D1; Formerly PXA1/peroxisomal ABC transporter 1) is a
295 peroxisomal transmembrane protein, and plays multiple roles in plant lipid metabolism and
296 signaling, including the transport of indole-3-butyric acid (IBA) for subsequent conversion via β -
297 oxidation into the active auxin indole-3-acetic acid (IAA) [56]. The Walker B motif of
298 ABCD1/PXA1 physically interacts with ATG8e in vitro and in vivo, as verified by yeast two-
299 hybrid and coimmunoprecipitation assays [64]. In addition, overexpression of ABCD1 partially
300 rescues the glucose-associated phenotypes of the *atg* mutants. Therefore, ABCD1/PXA1 is
301 another possible receptor for pexophagy. The ubiquitin-binding protein DSK2 (dominant
302 suppressor of KAR2) was proposed as another pexophagy receptor/adaptor candidate in plants
303 [71–73]. DSK2 functions in autophagy by interacting with ATG8 through its AIM sites [72].
304 DSK2 also interacts with the RING (really interesting new gene) finger domain of two
305 peroxisomal membrane proteins, PEX2 and PEX12 [71]. However, DSK2 is not a peroxisome-
306 associated protein, and there is no clear evidence that PEX2 or PEX12 recruit DSK2 to
307 peroxisomes. Thus, the role of DSK2 in plant pexophagy needs to be verified. Finally, ARP2/3
308 (Actin Related Protein 2/3 complex) is a heteroheptameric protein that participates in actin
309 reorganization at the plasma membrane (PM) and at PM-ER contact sites. Martinek et al. [74]
310 recently found that ARP2/3 complex-containing dots associate exclusively with peroxisomes in
311 plant cells, and co-localize with the autophagosome marker ATG8f under autophagy-inducing
312 conditions. Moreover, ARP2/3 subunits co-immunoprecipitate with ATG8f, and mutants lacking
313 functional ARP2/3 complex have more peroxisomes than do WT plants. ARP2/3 may therefore
314 function as a receptor or adaptor in pexophagy [74].

315 **Chlorophagy**

316 Chloroplasts are specialized plastids found in plants and algae in which photosynthesis converts
317 light and CO₂ into chemical energy and carbohydrates to support their photoautotrophic
318 lifecycle. Mature chloroplasts contain two envelope membranes (outer and inner), a soluble
319 stroma and a thylakoid membrane system. Starch granules are often present in the stroma as a
320 product of photosynthesis, and chloroplasts also contain numerous proteins and metabolites [75].

321 Turnover of chloroplasts must be tightly controlled to maintain photosynthetic function and
322 alleviate cell damage. Chloroplasts are degraded during leaf senescence to remobilize their
323 contents, and also upon environmental stress, as removing damaged chloroplasts is critical in
324 maintaining cell viability [76]. Photo-oxidative damage of chloroplasts is frequently
325 encountered, caused by photosynthesis-related superoxide (O²⁻), hydrogen peroxide (H₂O₂) and
326 singlet oxygen (¹O₂) or ROS produced upon exposure to UV-B or high light (HL) [76].
327 Chloroplasts are highly sensitive to different stresses, including carbon starvation, salt stress and
328 the combination of abnormal light with low or high temperature. Senescence or stress often
329 causes changes to chloroplast morphology along with the decrease in photosynthetic efficiency.
330 Chloroplasts in senescing leaves often have more and bigger plastoglobules (lipoprotein
331 particles), collapsed thylakoid membranes and disrupted envelope [77]. Upon strong UV-B
332 exposure for a short period, chloroplasts become smaller but have larger plastoglobules, and the
333 number of chloroplasts decreases significantly [78]. The structure of the thylakoid system in
334 particular is dynamic in response to different light intensities [75]. These features indicate that
335 quality control of chloroplasts is essential to maintain normal plant growth and development.

336 *Pathways for chloroplast turnover*

337 Chloroplast components, or even entire chloroplasts, can be degraded by both plastidic and
338 extraplastidic pathways. The extraplastidic degradation of chloroplasts includes autophagy-
339 dependent mechanisms, including entire chloroplast degradation and piecemeal degradation
340 (**Figure 5**), and autophagy-independent mechanisms, including senescence-associated vacuoles
341 (SAVs) and CHLOROPLAST VESICULATION (CV)-containing vesicles [79]. Using electron
342 microscopy, entire chloroplasts were found in the vacuoles of senescing leaves [80], and
343 accumulation of chloroplast-associated components (stroma, chlorophyll pigments, and Rubisco-
344 containing bodies (RCBs)) was also observed in the vacuoles of WT *Arabidopsis* cells, but not in

345 *atg* mutants, suggesting that the autophagy machinery is involved in chloroplast degradation
346 [81]. A distinct pathway was seen upon disrupting microtubules via silencing tubulin genes or
347 treating with microtubule-depolymerizing agents; autophagosome formation was suppressed, and
348 plastidic starch degradation was impaired. An autophagy-related pathway for clearing these
349 disorganized chloroplasts was observed, in which selective transport of chloroplasts into the
350 vacuole occurred, independent of ATG6, ATG5 and ATG7 [82]. The details of this mechanism
351 are still unclear.

352 Upon extensive photodamage, entire chloroplasts can be surrounded by autophagosomal
353 structures in the cytoplasm and transported into the central vacuole, which was directly observed
354 using GFP-ATG8a as a marker to label autophagosomal membranes [78]. This degradation of
355 chloroplasts under UV-B or high light intensities is dependent on core ATG proteins (ATG2,
356 ATG5, ATG7), indicating an essential role of chlorophagy in whole chloroplast clearance.
357 Interestingly, in the presence of ConcA to block vacuolar degradation, the GFP-ATG8a
358 fluorescence was more intense on one side of the autophagosomes, suggesting that additional
359 unknown structures are associated with the sequestration of the entire chloroplast [78]. Entire
360 chloroplasts can also be degraded by microautophagy. In high visible light, autophagy-deficient
361 mutants accumulate abnormal swollen chloroplasts [83]. These swollen chloroplasts were
362 partially encapsulated by GFP-ATG8a-marked membrane and then directly engulfed by the
363 vacuole [83]. Intriguingly, this kind of chlorophagy can be suppressed by applying exogenous
364 mannitol to increase the osmolarity outside the chloroplast, or by improving the integrity of the
365 chloroplast envelope via overexpressing VESICLE INDUCING PROTEIN IN PLASTID1
366 (VIPP1) [83], a protein essential for envelope and thylakoid membrane maintenance [84–86].
367 The underlying basis for this regulation warrants further investigation.

368 *Role of ubiquitination in chlorophagy*

369 How chloroplasts are recognized for degradation is still unclear. Chloroplast membrane integrity
370 is affected by various stresses, during which starch levels and granule structure is also changed,
371 and the structure and shapes of chloroplasts are significantly altered, forming excessive
372 stromules or plastoglobules [78,81–83]. How those ultrastructural changes can be recognized by
373 autophagy for subsequent degradation is in most cases unknown. In yeast cells, selective

374 autophagic degradation of mitochondria involves ubiquitination, but whether a similar
375 mechanism can lead to chlorophagy in plants is not clear [78,83]. Genetic screening identified an
376 E3 ubiquitin ligase, PLANT U-BOX4 (PUB4), as required for ubiquitination of chloroplasts,
377 thus mediating their selective degradation [87]. However, several recent studies have in contrast
378 suggested that chlorophagy does not require PUB4-mediated ubiquitination [88,89], and the
379 relevant component(s) for ubiquitination-mediated chlorophagy is therefore yet to be confirmed.

380 *Rubisco-containing body (RCB)-mediated chlorophagy*

381 Chloroplasts are large and complex organelles, and in addition to degradation of entire
382 chloroplasts, chlorophagy pathways often function in degradation of parts of chloroplasts via the
383 transfer of bodies containing chloroplast components into the vacuole. RCBs were first identified
384 via immunoelectron microscopy in naturally senescent leaves of wheat (*Triticum aestivum* L.)
385 labeled with antibodies against the large subunit (LSU) of Rubisco. Small spherical bodies
386 containing Rubisco were observed with double membranes [90], and were named RCBs. RCBs
387 contain proteins derived from the chloroplast envelope and stroma, but not from the thylakoid
388 [90]. They usually accumulate in senescent leaves [90–92] or plants under carbon starvation [93]
389 or salt stress [94]. ATG8 co-localized with RCBs upon formation of autophagosomes, indicating
390 that RCBs are delivered to the vacuole by macroautophagy [91]. RCB production is very
391 sensitive to sugar levels [93], and starch content and C/N balance probably affects RCB
392 production in vivo. A recent study [95] showed that RCB-mediated chlorophagy is involved in
393 tolerance of Pi starvation, and autophagy-deficient mutants which are unable to form RCBs are
394 extremely sensitive to Pi starvation.

395 CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A and B), a component of
396 Endosomal Sorting Complex Required for Transport (ESCRT)-III [96], plays an important role
397 in phagophore maturation and efficient delivery of RCBs to the vacuole during chlorophagy. In a
398 *chmp1* mutant, abundant abnormal phagophores, RCB-like bodies and stromal proteins over
399 accumulate [96]. The chloroplasts in *chmp1* contained large starch granules, long extended
400 stromules and interconnecting bridges, which were also found in *atg5* and *atg7* mutants [96].
401 *chmp1* mutants also over-accumulate peroxisomal and mitochondrial proteins, suggesting that
402 ESCRT mediates autophagic routes for multiple organelles in plants.

403 *ATI1-plastid associated body (ATI1-PS)-mediated chlorophagy*

404 ATI1 functions in ER-phagy via interaction with the ER, as described above, but also localizes to
405 distinct plastid-associated autophagic structures, termed ATI1-plastid associated bodies (ATI1-
406 PS), of ~50 to 100 nm diameter [97], containing chloroplast stroma, envelope, and thylakoid
407 membranes. Similar to its role in ER-phagy, ATI1 interacts with ATG8 [38,98] and the core
408 autophagy machinery to mediate partial chloroplast degradation in the vacuole. Under carbon
409 starvation, two distinct bodies, ATI1-ER bodies and ATI1-PS bodies are thus formed, both of
410 which end up in the central vacuole, playing a crucial role in selective turnover of ER and
411 chloroplast proteins, respectively. ATI1-PS bodies also form during heat stress, and plants with
412 reduced *ATI1* expression are hypersensitive to salt stress, indicating a role for ATI1 in salt
413 tolerance [97].

414 *Small starch granule-like structure (SSGL)-mediated chlorophagy*

415 Finally, an autophagy-related pathway for degradation of plastid starch has been demonstrated.
416 In leaves, plastid transitory starch is the main photosynthetic carbon reservoir, reaching high
417 levels at the end of the day and hydrolyzed into sugars to support plant growth at night [99].
418 Mutants with abnormal chlorophagy typically also have altered starch levels [93,96,100].
419 Besides the well-documented plastidic degradation pathway [99], extraplastidic starch
420 degradation can also occurs through formation of small starch granule-like structures (SSGLs) in
421 the cytoplasm [100]. SSGLs were found outside of the chloroplast, and localized to CFP-ATG8f-
422 labeked autophagosomes in the cytoplasm and the central vacuole [100]. Moreover, autophagy-
423 deficient mutants have excess starch and a reduction in vacuole-localized SSGLs, indicating that
424 autophagic turnover is an independent and parallel route for degradation of leaf starch [100].

425 **Future perspectives**

426 It is now becoming clear that plant cell organelles can be selectively degraded by autophagy and
427 autophagy-related processes. These pathways typically require recognition of the organelle, or
428 components of the organelle, to allow selective packaging into autophagosomes for delivery to
429 the vacuole for degradation. Organelle degradation must be tightly regulated to allow disposal of
430 damaged and unneeded organelles, while restraining the pathway from complete organelle

431 degradation, which would lead to cell death. Many unanswered questions remain that will be
432 interesting topics for future research. Why does such a diversity of receptors exist for recognition
433 of some organelles such as the ER? Is this linked to different types of cargo or different stress
434 conditions? Are there as yet unidentified selective autophagy receptors that recognize
435 organelles? Does nucleophagy occur in plants, and if so, what receptor and mechanism is
436 involved? How is the extent of organelle degradation controlled to prevent death of the cell?
437 Answering these questions will provide further insight into the mechanisms of organelle quality
438 control during normal growth and development, and in response to environmental stresses.

439

440 **Author contributions**

441 D.C.B. conceived of the topic of this review with Y.B.; J.J.W. and Y.B. drafted the manuscript
442 with Q.Z.; D.C.B. and Y.B. revised the manuscript; all authors contributed to the article and
443 approved the submitted manuscript.

444 **Funding:** Research in the lab of Y.B. was supported by the National Natural Science Foundation
445 of China (32170282) and China Agriculture Research System of MOF and MARA. Research in
446 the lab of D.C.B. was supported by the National Science Foundation (MCB-2040582).

447

448 **References**

449 1. Marshall, R.S.; Vierstra, R.D. Autophagy: The Master of Bulk and Selective Recycling. *Annu
450 Rev Plant Biol* **2018**, *69*, 173–208, doi:doi: 10.1146/annurev-arplant-042817-040606.

451 2. Vargas, J.N.S.; Hamasaki, M.; Kawabata, T.; Youle, R.J.; Yoshimori, T. The Mechanisms and
452 Roles of Selective Autophagy in Mammals. *Nat Rev Mol Cell Biol* **2022**,
453 doi:10.1038/s41580-022-00542-2.

454 3. Oku, M.; Sakai, Y. Three Distinct Types of Microautophagy Based on Membrane Dynamics
455 and Molecular Machineries. *Bioessays* **2018**, *40*, e1800008, doi:10.1002/bies.201800008.

456 4. Abdurakhmanov, A.; Gogvadze, V.; Zhivotovsky, B. To Eat or to Die: Deciphering Selective
457 Forms of Autophagy. *Trends Biochem Sci* **2020**, *45*, 347–364,
458 doi:10.1016/j.tibs.2019.11.006.

459 5. Su, T.; Li, X.; Yang, M.; Shao, Q.; Zhao, Y.; Ma, C.; Wang, P. Autophagy: An Intracellular
460 Degradation Pathway Regulating Plant Survival and Stress Response. *Front Plant Sci* **2020**,
461 *11*, 164, doi:10.3389/fpls.2020.00164.

462 6. Cohen, S.; Valm, A.M.; Lippincott-Schwartz, J. Interacting Organelles. *Curr Opin Cell Biol*
463 **2018**, *53*, 84–91, doi:10.1016/j.ceb.2018.06.003.

464 7. Anding, A.L.; Baehrecke, E.H. Cleaning House: Selective Autophagy of Organelles. *Dev Cell*
465 **2017**, *41*, 10–22, doi:10.1016/j.devcel.2017.02.016.

466 8. Luong, A.M.; Koestel, J.; Bhati, K.K.; Batoko, H. Cargo Receptors and Adaptors for Selective
467 Autophagy in Plant Cells. *FEBS Lett* **2022**, *596*, 2104–2132, doi:10.1002/1873-3468.14412.

468 9. Signorelli, S.; Tarkowski, Ł.P.; Ende, W.V. den; Bassham, D.C. Linking Autophagy to Abiotic
469 and Biotic Stress Responses. *Trends in Plant Science* **2019**, *24*, 413–430,
470 doi:10.1016/j.tplants.2019.02.001.

471 10. Liu, W.; Liu, Z.; Mo, Z.; Guo, S.; Liu, Y.; Xie, Q. ATG8-Interacting Motif: Evolution and
472 Function in Selective Autophagy of Targeting Biological Processes. *Front. Plant Sci.* **2021**, *0*,
473 doi:10.3389/fpls.2021.783881.

474 11. Bu, F.; Yang, M.; Guo, X.; Huang, W.; Chen, L. Multiple Functions of ATG8 Family Proteins
475 in Plant Autophagy. *Front. Cell Dev. Biol.* **2020**, *0*, doi:10.3389/fcell.2020.00466.

476 12. Shibata, Y.; Voeltz, G.K.; Rapoport, T.A. Rough Sheets and Smooth Tubules. *Cell* **2006**, *126*,
477 435–439, doi:10.1016/j.cell.2006.07.019.

478 13. Gubas, A.; Dikic, I. ER Remodeling via ER-Phagy. *Mol Cell* **2022**, *82*, 1492–1500,
479 doi:10.1016/j.molcel.2022.02.018.

480 14. Howell, S.H. Endoplasmic Reticulum Stress Responses in Plants. *Annual Review of Plant
481 Biology* **2013**, *64*, 477–499, doi:10.1146/annurev-arplant-050312-120053.

482 15. Molinari, M. ER-Phagy Responses in Yeast, Plants, and Mammalian Cells and Their
483 Crosstalk with UPR and ERAD. *Developmental Cell* **2021**, *56*, 949–966,
484 doi:10.1016/j.devcel.2021.03.005.

485 16. Yang, X.; Srivastava, R.; Howell, S.H.; Bassham, D.C. Activation of Autophagy by Unfolded
486 Proteins during Endoplasmic Reticulum Stress. *The Plant Journal* **2016**, *85*, 83–95,
487 doi:10.1111/tpj.13091.

488 17. Liu, Y.; Bassham, D.C. Autophagy: Pathways for Self-Eating in Plant Cells. *Annu. Rev. Plant
489 Biol.* **2012**, *63*, 215–237, doi:10.1146/annurev-arplant-042811-105441.

490 18. Deng, Y.; Srivastava, R.; Howell, S.H. Protein Kinase and Ribonuclease Domains of IRE1
491 Confer Stress Tolerance, Vegetative Growth, and Reproductive Development in
492 *Arabidopsis*. *Proceedings of the National Academy of Sciences* **2013**, *110*, 19633–19638,
493 doi:10.1073/pnas.1314749110.

494 19. Bao, Y.; Pu, Y.; Yu, X.; Gregory, B.D.; Srivastava, R.; Howell, S.H.; Bassham, D.C. IRE1B
495 Degrades RNAs Encoding Proteins That Interfere with the Induction of Autophagy by ER
496 Stress in *Arabidopsis Thaliana*. *Autophagy* **2018**, *14*, 1562–1573,
497 doi:10.1080/15548627.2018.1462426.

498 20. Baena-González, E.; Rolland, F.; Thevelein, J.M.; Sheen, J. A Central Integrator of
499 Transcription Networks in Plant Stress and Energy Signalling. *Nature* **2007**, *448*, 938–942,
500 doi:10.1038/nature06069.

501 21. Soto-Burgos, J.; Bassham, D.C. SnRK1 Activates Autophagy via the TOR Signaling Pathway
502 in *Arabidopsis Thaliana*. *PLoS One* **2017**, *12*, e0182591, doi:10.1371/journal.pone.0182591.

503 22. Aroca, A.; Yruela, I.; Gotor, C.; Bassham, D.C. Persulfidation of ATG18a Regulates
504 Autophagy under ER Stress in *Arabidopsis*. *Proc Natl Acad Sci U S A* **2021**, *118*,
505 e2023604118, doi:10.1073/pnas.2023604118.

506 23. Wang, P.; Richardson, C.; Hawes, C.; Hussey, P.J. *Arabidopsis* NAP1 Regulates the
507 Formation of Autophagosomes. *Curr Biol* **2016**, *26*, 2060–2069,
508 doi:10.1016/j.cub.2016.06.008.

509 24. Sun, J.; Wang, W.; Zheng, H. ROOT HAIR DEFECTIVE3 Is a Receptor for Selective Autophagy
510 of the Endoplasmic Reticulum in *Arabidopsis*. *Frontiers in Plant Science* **2022**, *13*.

511 25. Fumagalli, F.; Noack, J.; Bergmann, T.J.; Cebollero, E.; Pisoni, G.B.; Fasana, E.; Fregno, I.;
512 Galli, C.; Loi, M.; Soldà, T.; et al. Translocon Component Sec62 Acts in Endoplasmic
513 Reticulum Turnover during Stress Recovery. *Nat Cell Biol* **2016**, *18*, 1173–1184,
514 doi:10.1038/ncb3423.

515 26. Hu, S.; Ye, H.; Cui, Y.; Jiang, L. AtSec62 Is Critical for Plant Development and Is Involved in
516 ER-Phagy in *Arabidopsis Thaliana*. *Journal of Integrative Plant Biology* **2020**, *62*, 181–200,
517 doi:10.1111/jipb.12872.

518 27. Yang, Y.S.; Strittmatter, S.M. The Reticulons: A Family of Proteins with Diverse Functions.
519 *Genome Biol* **2007**, *8*, 234, doi:10.1186/gb-2007-8-12-234.

520 28. Khaminets, A.; Heinrich, T.; Mari, M.; Grumati, P.; Huebner, A.K.; Akutsu, M.; Liebmann, L.;
521 Stolz, A.; Nietzsche, S.; Koch, N.; et al. Regulation of Endoplasmic Reticulum Turnover by
522 Selective Autophagy. *Nature* **2015**, *522*, 354–358, doi:10.1038/nature14498.

523 29. Grumati, P.; Morozzi, G.; Hölder, S.; Mari, M.; Harwardt, M.-L.I.; Yan, R.; Müller, S.;
524 Reggiori, F.; Heilemann, M.; Dikic, I. Full Length RTN3 Regulates Turnover of Tubular
525 Endoplasmic Reticulum via Selective Autophagy. *eLife* **2017**, *6*, e25555,
526 doi:10.7554/eLife.25555.

527 30. Zhang, X.; Ding, X.; Marshall, R.S.; Paez-Valencia, J.; Lacey, P.; Vierstra, R.D.; Otegui, M.S.
528 Reticulon Proteins Modulate Autophagy of the Endoplasmic Reticulum in Maize
529 Endosperm. *Elife* **2020**, *9*, e51918, doi:10.7554/Elife.51918.

530 31. Chen, J.; Stefano, G.; Brandizzi, F.; Zheng, H. *Arabidopsis* RHD3 Mediates the Generation of
531 the Tubular ER Network and Is Required for Golgi Distribution and Motility in Plant Cells. *J
532 Cell Sci* **2011**, *124*, 2241–2252, doi:10.1242/jcs.084624.

533 32. Liang, J.R.; Lingeman, E.; Ahmed, S.; Corn, J.E. Atlastins Remodel the Endoplasmic
534 Reticulum for Selective Autophagy. *J Cell Biol* **2018**, *217*, 3354–3367,
535 doi:10.1083/jcb.201804185.

536 33. Chen, Q.; Xiao, Y.; Chai, P.; Zheng, P.; Teng, J.; Chen, J. ATL3 Is a Tubular ER-Phagy Receptor
537 for GABARAP-Mediated Selective Autophagy. *Curr Biol* **2019**, *29*, 846–855.e6,
538 doi:10.1016/j.cub.2019.01.041.

539 34. Stephani, M.; Picchianti, L.; Gajic, A.; Beveridge, R.; Skarwan, E.; Sanchez de Medina
540 Hernandez, V.; Mohseni, A.; Clavel, M.; Zeng, Y.; Naumann, C.; et al. A Cross-Kingdom
541 Conserved ER-Phagy Receptor Maintains Endoplasmic Reticulum Homeostasis during
542 Stress. *Elife* **2020**, *9*, e58396, doi:10.7554/elife.58396.

543 35. Liu, Y.; Burgos, J.S.; Deng, Y.; Srivastava, R.; Howell, S.H.; Bassham, D.C. Degradation of the
544 Endoplasmic Reticulum by Autophagy during Endoplasmic Reticulum Stress in Arabidopsis.
545 *Plant Cell* **2012**, *24*, 4635–4651, doi:10.1105/tpc.112.101535.

546 36. Wu, J.; Michaeli, S.; Picchianti, L.; Dagdas, Y.; Galili, G.; Peled-Zehavi, H. ATI1 (ATG8-
547 Interacting Protein 1) and ATI2 Define a Plant Starvation-Induced Reticulophagy Pathway
548 and Serve as MSBP1/MAPR5 Cargo Receptors. *Autophagy* **2021**, *17*, 3375–3388,
549 doi:10.1080/15548627.2021.1872886.

550 37. Naumann, C.; Müller, J.; Sakhonwasee, S.; Wieghaus, A.; Hause, G.; Heisters, M.;
551 Bürstenbinder, K.; Abel, S. The Local Phosphate Deficiency Response Activates
552 Endoplasmic Reticulum Stress-Dependent Autophagy. *Plant Physiol* **2019**, *179*, 460–476,
553 doi:10.1104/pp.18.01379.

554 38. Honig, A.; Avin-Wittenberg, T.; Ufaz, S.; Galili, G. A New Type of Compartment, Defined by
555 Plant-Specific Atg8-Interacting Proteins, Is Induced upon Exposure of Arabidopsis Plants to
556 Carbon Starvation. *Plant Cell* **2012**, *24*, 288–303, doi:10.1105/tpc.111.093112.

557 39. Noda, N.N.; Ohsumi, Y.; Inagaki, F. Atg8-Family Interacting Motif Crucial for Selective
558 Autophagy. *FEBS Lett* **2010**, *584*, 1379–1385, doi:10.1016/j.febslet.2010.01.018.

559 40. Sjøgaard, I.M.Z.; Bressendorff, S.; Prestel, A.; Kausika, S.; Oksbjerg, E.; Kragelund, B.B.;
560 Brodersen, P. The Transmembrane Autophagy Cargo Receptors ATI1 and ATI2 Interact
561 with ATG8 through Intrinsically Disordered Regions with Distinct Biophysical Properties.
562 *Biochem J* **2019**, *476*, 449–465, doi:10.1042/BCJ20180748.

563 41. Michaeli, S.; Clavel, M.; Lechner, E.; Viotti, C.; Wu, J.; Dubois, M.; Hacquard, T.; Derrien, B.;
564 Izquierdo, E.; Lecorbeiller, M.; et al. The Viral F-Box Protein P0 Induces an ER-Derived
565 Autophagy Degradation Pathway for the Clearance of Membrane-Bound AGO1.
566 *Proceedings of the National Academy of Sciences* **2019**, *116*, 22872–22883,
567 doi:10.1073/pnas.1912222116.

568 42. Zhou, J.; Wang, J.; Cheng, Y.; Chi, Y.-J.; Fan, B.; Yu, J.-Q.; Chen, Z. NBR1-Mediated Selective
569 Autophagy Targets Insoluble Ubiquitinated Protein Aggregates in Plant Stress Responses.
570 *PLOS Genetics* **2013**, *9*, e1003196, doi:10.1371/journal.pgen.1003196.

571 43. Zhou, J.; Wang, Z.; Wang, X.; Li, X.; Zhang, Z.; Fan, B.; Zhu, C.; Chen, Z. Dicot-Specific ATG8-
572 Interacting ATI3 Proteins Interact with Conserved UBAC2 Proteins and Play Critical Roles in
573 Plant Stress Responses. *Autophagy* **2018**, *14*, 487–504,
574 doi:10.1080/15548627.2017.1422856.

575 44. Rao, R.S.P.; Salvato, F.; Thal, B.; Eubel, H.; Thelen, J.J.; Møller, I.M. The Proteome of Higher
576 Plant Mitochondria. *Mitochondrion* **2017**, *33*, 22–37, doi:10.1016/j.mito.2016.07.002.

577 45. Ren, K.; Feng, L.; Sun, S.; Zhuang, X. Plant Mitophagy in Comparison to Mammals: What Is
578 Still Missing? *Int J Mol Sci* **2021**, *22*, 1236, doi:10.3390/ijms22031236.

579 46. Okamoto, K.; Kondo-Okamoto, N.; Ohsumi, Y. Mitochondria-Anchored Receptor Atg32
580 Mediates Degradation of Mitochondria via Selective Autophagy. *Dev Cell* **2009**, *17*, 87–97,
581 doi:10.1016/j.devcel.2009.06.013.

582 47. Kondo-Okamoto, N.; Noda, N.N.; Suzuki, S.W.; Nakatogawa, H.; Takahashi, I.; Matsunami,
583 M.; Hashimoto, A.; Inagaki, F.; Ohsumi, Y.; Okamoto, K. Autophagy-Related Protein 32 Acts
584 as Autophagic Degron and Directly Initiates Mitophagy. *J Biol Chem* **2012**, *287*, 10631–
585 10638, doi:10.1074/jbc.M111.299917.

586 48. Li, F.; Chung, T.; Vierstra, R.D. AUTOPHAGY-RELATED11 Plays a Critical Role in General
587 Autophagy- and Senescence-Induced Mitophagy in Arabidopsis. *Plant Cell* **2014**, *26*, 788–
588 807, doi:10.1105/tpc.113.120014.

589 49. Yoshimoto, K.; Hanaoka, H.; Sato, S.; Kato, T.; Tabata, S.; Noda, T.; Ohsumi, Y. Processing of
590 ATG8s, Ubiquitin-like Proteins, and Their Deconjugation by ATG4s Are Essential for Plant
591 Autophagy. *Plant Cell* **2004**, *16*, 2967–2983, doi:10.1105/tpc.104.025395.

592 50. Dündar, G.; Teranishi, M.; Hidema, J. Autophagy-Deficient Arabidopsis Mutant Atg5 ,
593 Which Shows Ultraviolet-B Sensitivity, Cannot Remove Ultraviolet-B-Induced Fragmented
594 Mitochondria. *Photochemical & Photobiological Sciences* **2020**, *19*, 1717–1729,
595 doi:10.1039/C9PP00479C.

596 51. Nakamura, S.; Hagihara, S.; Otomo, K.; Ishida, H.; Hidema, J.; Nemoto, T.; Izumi, M.
597 Autophagy Contributes to the Quality Control of Leaf Mitochondria. *Plant Cell Physiol*
598 **2021**, *62*, 229–247, doi:10.1093/pcp/pcaa162.

599 52. Kacprzak, S.M.; Van Aken, O. Carbon Starvation, Senescence and Specific Mitochondrial
600 Stresses, but Not Nitrogen Starvation and General Stresses, Are Major Triggers for
601 Mitophagy in Arabidopsis. *Autophagy* **2022**, *1*–19, doi:10.1080/15548627.2022.2054039.

602 53. Ma, J.; Liang, Z.; Zhao, J.; Wang, P.; Ma, W.; Mai, K.K.; Fernandez Andrade, J.A.; Zeng, Y.;
603 Grujic, N.; Jiang, L.; et al. Friendly Mediates Membrane Depolarization-Induced Mitophagy
604 in Arabidopsis. *Curr Biol* **2021**, *31*, 1931–1944.e4, doi:10.1016/j.cub.2021.02.034.

605 54. Li, C.; Duckney, P.; Zhang, T.; Fu, Y.; Li, X.; Kroon, J.; De Jaeger, G.; Cheng, Y.; Hussey, P.J.;
606 Wang, P. TraB Family Proteins Are Components of ER-Mitochondrial Contact Sites and
607 Regulate ER-Mitochondrial Interactions and Mitophagy. *Nat Commun* **2022**, *13*, 5658,
608 doi:10.1038/s41467-022-33402-w.

609 55. Yan, H.; Zhuang, M.; Xu, X.; Li, S.; Yang, M.; Li, N.; Du, X.; Hu, K.; Peng, X.; Huang, W.; et al.
610 Autophagy and Its Mediated Mitochondrial Quality Control Maintain Pollen Tube Growth
611 and Male Fertility in Arabidopsis. *Autophagy* **2022**, *1*–16,
612 doi:10.1080/15548627.2022.2095838.

613 56. Pan, R.; Liu, J.; Wang, S.; Hu, J. Peroxisomes: Versatile Organelles with Diverse Roles in
614 Plants. *New Phytologist* **2020**, *225*, 1410–1427, doi:10.1111/nph.16134.

615 57. Yoshimoto, K.; Shibata, M.; Kondo, M.; Oikawa, K.; Sato, M.; Toyooka, K.; Shirasu, K.;
616 Nishimura, M.; Ohsumi, Y. Organ-Specific Quality Control of Plant Peroxisomes Is
617 Mediated by Autophagy. *J Cell Sci* **2014**, *127*, 1161–1168, doi:10.1242/jcs.139709.

618 58. Luo, M.; Zhuang, X. Review: Selective Degradation of Peroxisome by Autophagy in Plants:
619 Mechanisms, Functions, and Perspectives. *Plant Sci* **2018**, *274*, 485–491,
620 doi:10.1016/j.plantsci.2018.06.026.

621 59. Lingard, M.J.; Monroe-Augustus, M.; Bartel, B. Peroxisome-Associated Matrix Protein
622 Degradation in Arabidopsis. *Proc Natl Acad Sci U S A* **2009**, *106*, 4561–4566,
623 doi:10.1073/pnas.0811329106.

624 60. Kim, J.; Lee, H.; Lee, H.N.; Kim, S.-H.; Shin, K.D.; Chung, T. Autophagy-Related Proteins Are
625 Required for Degradation of Peroxisomes in Arabidopsis Hypocotyls during Seedling
626 Growth. *Plant Cell* **2013**, *25*, 4956–4966, doi:10.1105/tpc.113.117960.

627 61. Farmer, L.M.; Rinaldi, M.A.; Young, P.G.; Danan, C.H.; Burkhardt, S.E.; Bartel, B. Disrupting
628 Autophagy Restores Peroxisome Function to an Arabidopsis Lon2 Mutant and Reveals a
629 Role for the LON2 Protease in Peroxisomal Matrix Protein Degradation. *Plant Cell* **2013**, *25*,
630 4085–4100, doi:10.1105/tpc.113.113407.

631 62. Goto-Yamada, S.; Mano, S.; Nakamori, C.; Kondo, M.; Yamawaki, R.; Kato, A.; Nishimura,
632 M. Chaperone and Protease Functions of LON Protease 2 Modulate the Peroxisomal
633 Transition and Degradation with Autophagy. *Plant Cell Physiol* **2014**, *55*, 482–496,
634 doi:10.1093/pcp/pcu017.

635 63. Voitsekhoukaja, O.V.; Schiermeyer, A.; Reumann, S. Plant Peroxisomes Are Degraded by
636 Starvation-Induced and Constitutive Autophagy in Tobacco BY-2 Suspension-Cultured
637 Cells. *Front Plant Sci* **2014**, *5*, 629, doi:10.3389/fpls.2014.00629.

638 64. Huang, L.; Yu, L.-J.; Zhang, X.; Fan, B.; Wang, F.-Z.; Dai, Y.-S.; Qi, H.; Zhou, Y.; Xie, L.-J.; Xiao,
639 S. Autophagy Regulates Glucose-Mediated Root Meristem Activity by Modulating ROS
640 Production in Arabidopsis. *Autophagy* **2019**, *15*, 407–422,
641 doi:10.1080/15548627.2018.1520547.

642 65. Shibata, M.; Oikawa, K.; Yoshimoto, K.; Kondo, M.; Mano, S.; Yamada, K.; Hayashi, M.;
643 Sakamoto, W.; Ohsumi, Y.; Nishimura, M. Highly Oxidized Peroxisomes Are Selectively
644 Degraded via Autophagy in Arabidopsis. *Plant Cell* **2013**, *25*, 4967–4983,
645 doi:10.1105/tpc.113.116947.

646 66. Calero-Muñoz, N.; Exposito-Rodríguez, M.; Collado-Arenal, A.M.; Rodríguez-Serrano, M.;
647 Laureano-Marín, A.M.; Santamaría, M.E.; Gotor, C.; Díaz, I.; Mullineaux, P.M.; Romero-
648 Puertas, M.C.; et al. Cadmium Induces Reactive Oxygen Species-Dependent Pexophagy in
649 Arabidopsis Leaves. *Plant Cell Environ* **2019**, *42*, 2696–2714, doi:10.1111/pce.13597.

650 67. Germain, K.; Kim, P.K. Pexophagy: A Model for Selective Autophagy. *International Journal
651 of Molecular Sciences* **2020**, *21*, 578, doi:10.3390/ijms21020578.

652 68. Young, P.G.; Passalacqua, M.J.; Chappell, K.; Llinas, R.J.; Bartel, B. A Facile Forward-Genetic
653 Screen for Arabidopsis Autophagy Mutants Reveals Twenty-One Loss-of-Function
654 Mutations Disrupting Six ATG Genes. *Autophagy* **2019**, *15*, 941–959,
655 doi:10.1080/15548627.2019.1569915.

656 69. Xie, Q.; Tzfadia, O.; Levy, M.; Weithorn, E.; Peled-Zehavi, H.; Van Parys, T.; Van de Peer, Y.;
657 Galili, G. HfAIM: A Reliable Bioinformatics Approach for in Silico Genome-Wide
658 Identification of Autophagy-Associated Atg8-Interacting Motifs in Various Organisms.
659 *Autophagy* **2016**, *12*, 876–887, doi:10.1080/15548627.2016.1147668.

660 70. Marshall, R.S.; Hua, Z.; Mali, S.; McLoughlin, F.; Vierstra, R.D. ATG8-Binding UIM Proteins
661 Define a New Class of Autophagy Adaptors and Receptors. *Cell* **2019**, *177*, 766–781.e24,
662 doi:10.1016/j.cell.2019.02.009.

663 71. Kaur, N.; Zhao, Q.; Xie, Q.; Hu, J. Arabidopsis RING Peroxins Are E3 Ubiquitin Ligases That
664 Interact with Two Homologous Ubiquitin Receptor Proteins(F). *J Integr Plant Biol* **2013**, *55*,
665 108–120, doi:10.1111/jipb.12014.

666 72. Nolan, T.M.; Brennan, B.; Yang, M.; Chen, J.; Zhang, M.; Li, Z.; Wang, X.; Bassham, D.C.;
667 Walley, J.; Yin, Y. Selective Autophagy of BES1 Mediated by DSK2 Balances Plant Growth
668 and Survival. *Dev Cell* **2017**, *41*, 33–46.e7, doi:10.1016/j.devcel.2017.03.013.

669 73. Borek, S.; Stefaniak, S.; Śliwiński, J.; Garnczarska, M.; Pietrowska-Borek, M. Autophagic
670 Machinery of Plant Peroxisomes. *Int J Mol Sci* **2019**, *20*, E4754, doi:10.3390/ijms20194754.

671 74. Martinek, J.; Cifrová, P.; Vosolsobě, S.; Krtková, J.; Sikorová, L.; Malínská, K.; Mauerová, Z.;
672 Leaves, I.; Sparkes, I.; Schwarzerová, K. ARP2/3 Complex Associates with Peroxisomes to
673 Participate in Pexophagy in Plants 2022, 2022.04.07.487451.

674 75. Kirchhoff, H. Chloroplast Ultrastructure in Plants. *New Phytologist* **2019**, *223*, 565–574,
675 doi:10.1111/nph.15730.

676 76. Woodson, J.D. Control of Chloroplast Degradation and Cell Death in Response to Stress.
677 *Trends in Biochemical Sciences* **2022**, doi:10.1016/j.tibs.2022.03.010.

678 77. Krupinska, K.; Melonek, J.; Krause, K. New Insights into Plastid Nucleoid Structure and
679 Functionality. *Planta* **2013**, *237*, 653–664, doi:10.1007/s00425-012-1817-5.

680 78. Izumi, M.; Ishida, H.; Nakamura, S.; Hidema, J. Entire Photodamaged Chloroplasts Are
681 Transported to the Central Vacuole by Autophagy. *Plant Cell* **2017**, *29*, 377–394,
682 doi:10.1105/tpc.16.00637.

683 79. Otegui, M.S. Vacuolar Degradation of Chloroplast Components: Autophagy and Beyond. *J
684 Exp Bot* **2018**, *69*, 741–750, doi:10.1093/jxb/erx234.

685 80. Minamikawa, T.; Toyooka, K.; Okamoto, T.; Hara-Nishimura, I.; Nishimura, M. Degradation
686 of Ribulose-Bisphosphate Carboxylase by Vacuolar Enzymes of Senescent French Bean
687 Leaves: Immunocytochemical and Ultrastructural Observations. *Protoplasma* **2001**, *218*,
688 144–153, doi:10.1007/BF01306604.

689 81. Wada, S.; Ishida, H.; Izumi, M.; Yoshimoto, K.; Ohsumi, Y.; Mae, T.; Makino, A. Autophagy
690 Plays a Role in Chloroplast Degradation during Senescence in Individually Darkened
691 Leaves. *Plant Physiol* **2009**, *149*, 885–893, doi:10.1104/pp.108.130013.

692 82. Wang, Y.; Zheng, X.; Yu, B.; Han, S.; Guo, J.; Tang, H.; Yu, A.Y.L.; Deng, H.; Hong, Y.; Liu, Y.
693 Disruption of Microtubules in Plants Suppresses Macroautophagy and Triggers Starch
694 Excess-Associated Chloroplast Autophagy. *Autophagy* **2015**, *11*, 2259–2274,
695 doi:10.1080/15548627.2015.1113365.

696 83. Nakamura, S.; Hidema, J.; Sakamoto, W.; Ishida, H.; Izumi, M. Selective Elimination of
697 Membrane-Damaged Chloroplasts via Microautophagy. *Plant Physiol* **2018**, *177*, 1007–
698 1026, doi:10.1104/pp.18.00444.

699 84. Kroll, D.; Meierhoff, K.; Bechtold, N.; Kinoshita, M.; Westphal, S.; Vothknecht, U.C.; Soll, J.;
700 Westhoff, P. VIPP1, a Nuclear Gene of Arabidopsis Thaliana Essential for Thylakoid
701 Membrane Formation. *Proc Natl Acad Sci U S A* **2001**, *98*, 4238–4242,
702 doi:10.1073/pnas.061500998.

703 85. Zhang, L.; Kato, Y.; Otters, S.; Vothknecht, U.C.; Sakamoto, W. Essential Role of VIPP1 in
704 Chloroplast Envelope Maintenance in Arabidopsis[W]. *Plant Cell* **2012**, *24*, 3695–3707,
705 doi:10.1105/tpc.112.103606.

706 86. Gupta, T.K.; Klumpe, S.; Gries, K.; Heinz, S.; Wietrzynski, W.; Ohnishi, N.; Niemeyer, J.;
707 Spaniol, B.; Schaffer, M.; Rast, A.; et al. Structural Basis for VIPP1 Oligomerization and
708 Maintenance of Thylakoid Membrane Integrity. *Cell* **2021**, *184*, 3643–3659.e23,
709 doi:10.1016/j.cell.2021.05.011.

710 87. Woodson, J.D.; Joens, M.S.; Sinson, A.B.; Gilkerson, J.; Salomé, P.A.; Weigel, D.; Fitzpatrick,
711 J.A.; Chory, J. Ubiquitin Facilitates a Quality-Control Pathway That Removes Damaged
712 Chloroplasts. *Science* **2015**, *350*, 450–454, doi:10.1126/science.aac7444.

713 88. Kikuchi, Y.; Nakamura, S.; Woodson, J.D.; Ishida, H.; Ling, Q.; Hidema, J.; Jarvis, R.P.;
714 Hagiwara, S.; Izumi, M. Chloroplast Autophagy and Ubiquitination Combine to Manage
715 Oxidative Damage and Starvation Responses. *Plant Physiol* **2020**, *183*, 1531–1544,
716 doi:10.1104/pp.20.00237.

717 89. Nakamura, S.; Izumi, M. Chlorophagy Does Not Require PLANT U-BOX4-Mediated
718 Ubiquitination. *Plant Signal Behav* **2021**, *16*, 1861769,
719 doi:10.1080/15592324.2020.1861769.

720 90. Chiba, A.; Ishida, H.; Nishizawa, N.K.; Makino, A.; Mae, T. Exclusion of Ribulose-1,5-
721 Bisphosphate Carboxylase/Oxygenase from Chloroplasts by Specific Bodies in Naturally
722 Senescing Leaves of Wheat. *Plant and Cell Physiology* **2003**, *44*, 914–921,
723 doi:10.1093/pcp/pcg118.

724 91. Ishida, H.; Yoshimoto, K.; Izumi, M.; Reisen, D.; Yano, Y.; Makino, A.; Ohsumi, Y.; Hanson,
725 M.R.; Mae, T. Mobilization of Rubisco and Stroma-Localized Fluorescent Proteins of
726 Chloroplasts to the Vacuole by an ATG Gene-Dependent Autophagic Process. *Plant Physiol*
727 **2008**, *148*, 142–155, doi:10.1104/pp.108.122770.

728 92. Ono, Y.; Wada, S.; Izumi, M.; Makino, A.; Ishida, H. Evidence for Contribution of Autophagy
729 to Rubisco Degradation during Leaf Senescence in *Arabidopsis Thaliana*. *Plant Cell Environ*
730 **2013**, *36*, 1147–1159, doi:10.1111/pce.12049.

731 93. Izumi, M.; Wada, S.; Makino, A.; Ishida, H. The Autophagic Degradation of Chloroplasts via
732 Rubisco-Containing Bodies Is Specifically Linked to Leaf Carbon Status but Not Nitrogen
733 Status in *Arabidopsis*. *Plant Physiol* **2010**, *154*, 1196–1209, doi:10.1104/pp.110.158519.

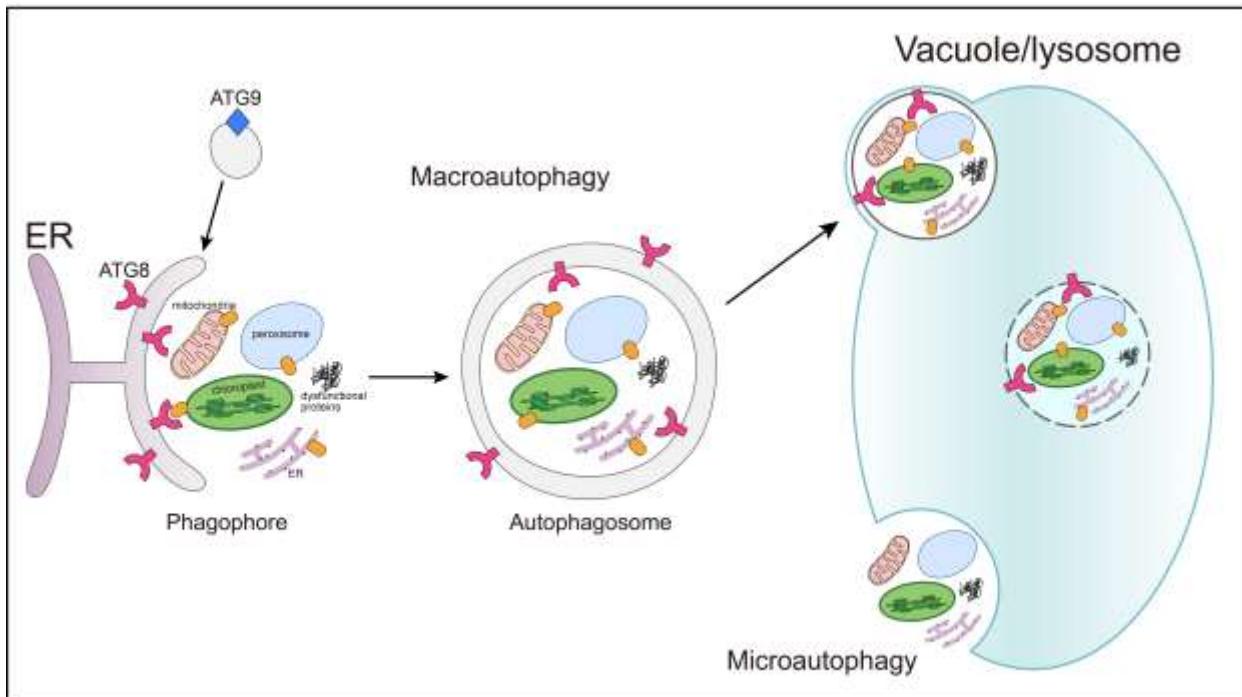
734 94. He, Y.; Yu, C.; Zhou, L.; Chen, Y.; Liu, A.; Jin, J.; Hong, J.; Qi, Y.; Jiang, D. Rubisco Decrease Is
735 Involved in Chloroplast Protrusion and Rubisco-Containing Body Formation in Soybean
736 (*Glycine Max.*) under Salt Stress. *Plant Physiology and Biochemistry* **2014**, *74*, 118–124,
737 doi:10.1016/j.plaphy.2013.11.008.

738 95. Yoshitake, Y.; Nakamura, S.; Shinozaki, D.; Izumi, M.; Yoshimoto, K.; Ohta, H.; Shimojima,
739 M. RCB-Mediated Chlorophagy Caused by Oversupply of Nitrogen Suppresses Phosphate-
740 Starvation Stress in Plants. *Plant Physiol* **2021**, *185*, 318–330, doi:10.1093/plphys/kiaa030.

741 96. Spitzer, C.; Li, F.; Buono, R.; Roschzttardtz, H.; Chung, T.; Zhang, M.; Osteryoung, K.W.;
742 Vierstra, R.D.; Otegui, M.S. The Endosomal Protein CHARGED MULTIVESICULAR BODY
743 PROTEIN1 Regulates the Autophagic Turnover of Plastids in *Arabidopsis*. *Plant Cell* **2015**,
744 *27*, 391–402, doi:10.1105/tpc.114.135939.

745 97. Michaeli, S.; Honig, A.; Levanony, H.; Peled-Zehavi, H.; Galili, G. *Arabidopsis* ATG8-
746 INTERACTING PROTEIN1 Is Involved in Autophagy-Dependent Vesicular Trafficking of
747 Plastid Proteins to the Vacuole. *Plant Cell* **2014**, *26*, 4084–4101,
748 doi:10.1105/tpc.114.129999.

749 98. Avin-Wittenberg, T.; Michaeli, S.; Honig, A.; Galili, G. ATI1, a Newly Identified Atg8-
750 Interacting Protein, Binds Two Different Atg8 Homologs. *Plant Signal Behav* **2012**, *7*, 685–
751 687, doi:10.4161/psb.20030.

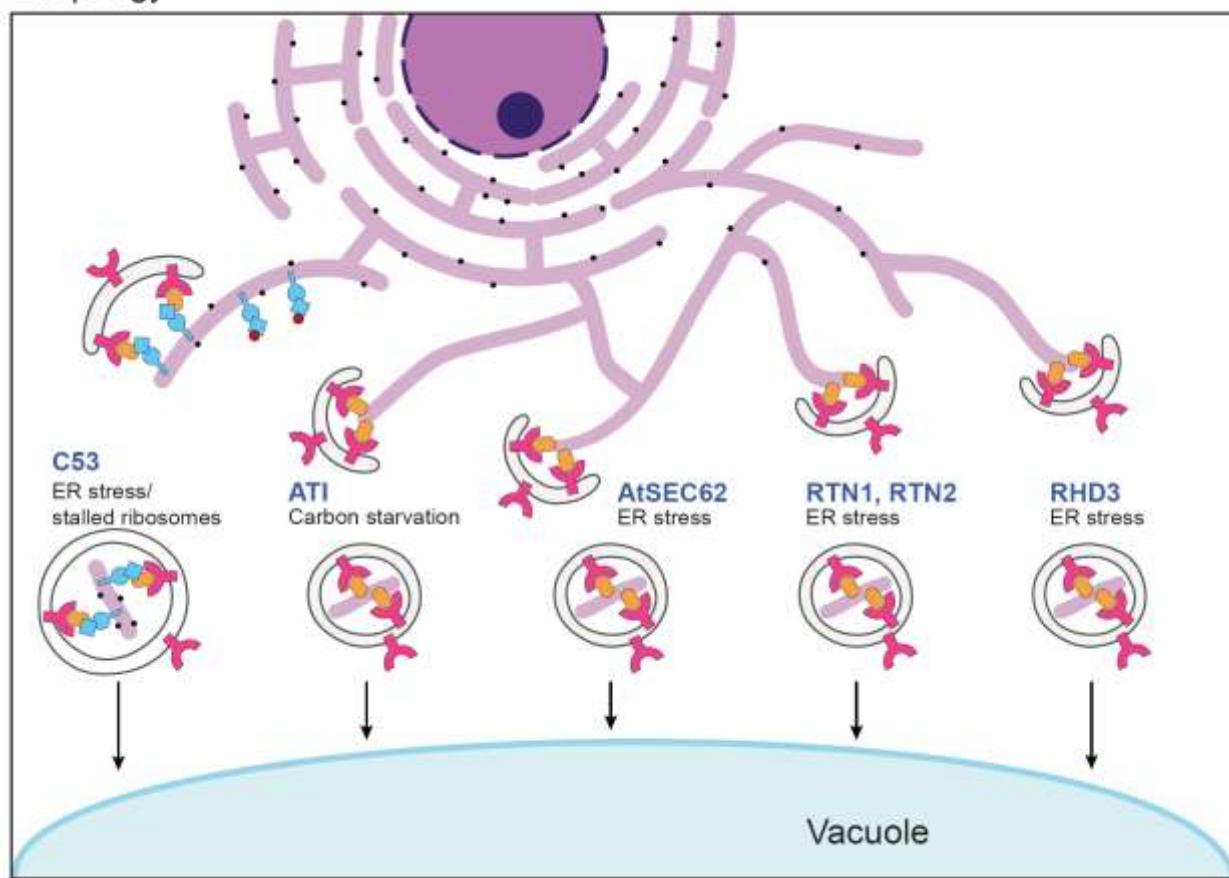

752 99. Smith, A.M.; Zeeman, S.C. Starch: A Flexible, Adaptable Carbon Store Coupled to Plant
753 Growth. *Annual Review of Plant Biology* **2020**, *71*, 217–245, doi:10.1146/annurev-arplant-
754 050718-100241.

755 100. Wang, Y.; Yu, B.; Zhao, J.; Guo, J.; Li, Y.; Han, S.; Huang, L.; Du, Y.; Hong, Y.; Tang, D.; et al.
756 Autophagy Contributes to Leaf Starch Degradation. *Plant Cell* **2013**, *25*, 1383–1399,
757 doi:10.1105/tpc.112.108993.

758

759

760 **Figure legends**



762 **Figure 1. A simplified working model for plant autophagy.** After the induction of
763 macroautophagy, double membrane structures called phagophores are initiated from the ER with
764 the assistance of ATG9-associated vesicles. The phagophores engulf damaged or excess
765 organelles (e.g. chloroplasts, peroxisomes, mitochondria, ER) or protein aggregates, and
766 transport them to the vacuole for degradation. Alternatively, cytoplasmic cargos may be
767 transported to the vacuole through microautophagy for degradation and recycling.

768

769

ER-phagy

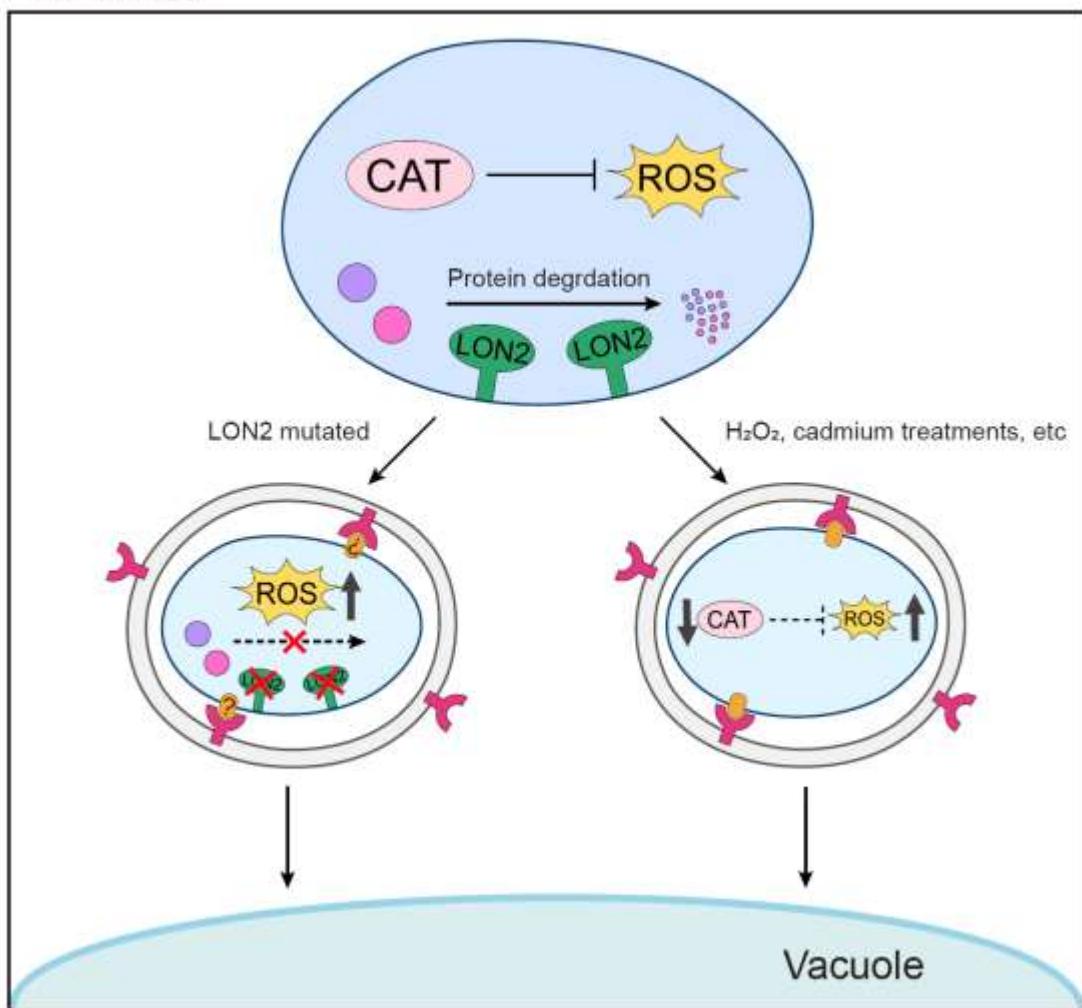

770

ATG8 Receptor DDRGK1 UFL1 UFM1

771 **Figure 2. A working model for ER-phagy in plants.** Multiple routes govern the degradation of
772 ER fragments or its associated components during ER-phagy. As a response to certain stressful
773 stimuli (e.g. carbon starvation or ER stress), specific ER-phagy receptors including C53, ATI,
774 Sec62, RTN, and RHD3, are employed for selective degradation of ER-associated targets.

775

Mitophagy

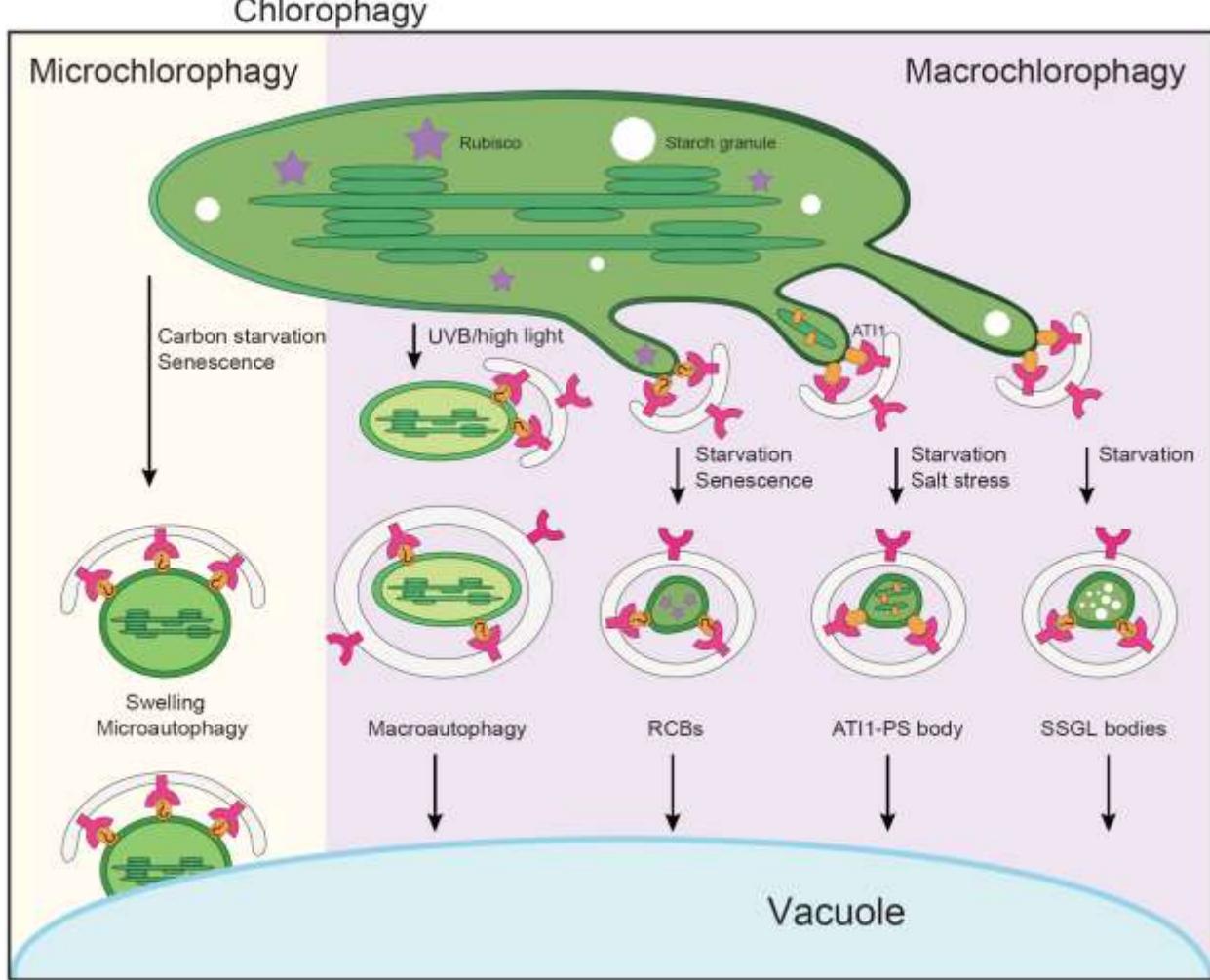

ATG8 Receptor VAP27-1 ATG11

776

777 **Figure 3. A working model for mitophagy in plants.** Selective degradation of mitochondria
778 can be carried out through two main routes in plants. Targeted mitochondria can be first tethered
779 to the ER via interaction between TraB1 and VAP27-1 and then recognized by the autophagy
780 adaptor ATG8; or they can be directly recognized by ATG8 via the specific receptor Friendly
781 (FMT), or via unknown receptors and ATG11.

782

Pexophagy



783

ATG8 NBR1, PXA1, PEX10, etc

784 **Figure 4. A working model for pexophagy in plants.** Imbalance of ROS homeostasis
785 (cadmium or other stress treatments) or a genetic defect (LON2 mutation) in peroxisomes causes
786 pexophagy-mediated vacuolar degradation via various specific receptors including NBR1,
787 PXA1, PEX10 or DSK2.

788

789 ATG8 Receptor

790 **Figure 5. A working model for plant chlorophagy.** Microchlorophagy mediates whole
 791 chloroplast degradation upon carbon starvation and senescence. Macrochlorophagy mediates
 792 degradation of whole chloroplasts or chloroplast fragments via several mechanisms, including:
 793 Rubisco-containing bodies (RCBs) that are induced in carbon or nitrogen starvation; ATI-PS
 794 bodies that are induced by starvation or salt stress; small starch granule-like (SSGL) bodies that
 795 are induced during dark-induced senescence or starvation.

796

797 Table 1. Receptors for autophagic degradation of membrane-bound organelles

Autophagy type	Receptors	Stimuli	References
ER-Phagy	ATI1	Carbon starvation, viral infection	[36, 38]
	ATI2	Carbon starvation, virus infection	[36, 38]
	RTN1	ER stress	[30]
	RTN2	ER stress	[30]
	Sec62	ER stress	[26]
	C53	Stalled ribosomes, ER stress	[34]
	RHD3	ER stress	[24]
Mitophagy	FMT	Uncoupler DNP	[53]
	TraB1	Uncoupler DNP	[54]
Pexophagy	NBR1	Cadmium stress	[66, 68]
	PEX10	na	[69, 70]
	ABCD1/PXA1	ROS	[64]
	ARP2/3	NAA and 3-MA	[74]
Chlorophagy	ATI1	Carbon starvation, heat stress	[97, 98]

798 na, not applicable.