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Abstract:

Eukaryotic cells have evolved membrane-bound organelles, including the endoplasmic reticulum
(ER), Golgi, mitochondria, peroxisomes, chloroplasts (in plants and green algae) and
lysosomes/vacuoles, for specialized functions. Organelle quality control and their proper
interactions are crucial both for normal cell homeostasis and function and for environmental
adaption. Dynamic turnover of organelles is tightly controlled, with autophagy playing an
essential role. Autophagy is a programmed process for efficient clearing of unwanted or
damaged macromolecules or organelles, transporting them to vacuoles for degradation and
recycling and thereby enhancing plant environmental plasticity. The specific autophagic
engulfment of organelles requires activation of a selective autophagy pathway, recognition of the
organelle by a receptor, and selective incorporation of the organelle into autophagosomes. While
some of the autophagy machinery and mechanisms for autophagic removal of organelles is
conserved across eukaryotes, plants have also developed unique mechanisms and machinery for
these pathways. In this review, we discuss recent progress in understanding autophagy regulation
in plants, with a focus on autophagic degradation of membrane-bound organelles. We also raise

some important outstanding questions to be addressed in the future.
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Introduction

Autophagy is a fundamental process that is unique to eukaryotes, during which cellular cargoes
are targeted for degradation or recycling via the vacuole (yeast and plants) or lysosome (animals)
[1,2]. Two types of autophagy are conserved across most eukaryotic species, macroautophagy
and microautophagy [3]. During macroautophagy, endoplasmic reticulum (ER)-derived double
membrane-bound vesicles called autophagosomes engulf targeted substrates (e.g. dysfunctional
proteins or damaged organelles) and deliver them to vacuoles or lysosomes via membrane
fusion; while in microautophagy, vacuoles or lysosomes can take up cytosolic substrates directly
(Figure 1) [4] . A third type of autophagy has also been described in plants, termed mega-
autophagy, during which the vacuole lyses, releasing vacuolar hydrolases into the cytoplasm,
resulting in degradation of cellular components and cell death [5]. Activation and progression of
autophagy involves many core AuTophaGy (ATG) components and receptors, with multiple

distinct steps identified, and has been extensively reviewed [1,2].

Cellular homeostasis requires tight regulation and coordination of various organelles [6]. When
homeostasis is disrupted, damaged macromolecules or organelles can be efficiently removed via
autophagy [7]. Here, unless otherwise specified, autophagy refers to macroautophagy, as in
plants degradation of membrane-bound organelles, the focus of this review, generally occurs via
macroautophagy. Selective autophagy of organelles in plants includes ER-phagy, mitophagy,
pexophagy and chlorophagy, and requires specific recognition between receptors and their cargo
[8]. ATGS (called LC3 in mammals) is a critical factor that is recruited to and tethered on the
membrane of autophagosomes via covalent conjugation to the membrane lipid
phosphatidylethanolamine. Binding of cargo receptors to ATGS then recruits the receptor and
cargo into the autophagosome for transport and degradation. Multiple ATGS isoforms (9 copies
in Arabidopsis) are present in plants, potentially allowing distinct regulatory mechanisms for
autophagy during growth and stress responses [9]. ATGS8 proteins interact with receptor proteins
through specific motifs, and an ATG8-intearcting motif (AIM) is present in most ATGS8-

interacting proteins involved in organellar autophagy [10,11].
ER-phagy

ER-phagy and ER stress
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The ER is a dynamic and continuous membrane system in eukaryotic cells. It is a highly
expanded structure, with multiple morphologies, including the nuclear envelope, rough ER
(RER) sheets with ribosomes, and smooth ER (SER) tubules connected by three-way junctions
[12]. These different structures facilitate distinct ER functions, including RER-mediated protein
synthesis, folding and vesicle transport, SER-mediated lipid production, and communication
with other organelles. Meanwhile, the ER is continuously undergoing highly dynamic
morphological remodeling in response to different environmental stimuli, allowing stress
adaptation and recovery [13]. When the processing and protein folding capacity of the ER is
overloaded, it will cause unfolded protein accumulation, a situation termed ER stress [14].
Organisms have evolved strategies to deal with ER stress, including ER-associated degradation
(ERAD), the unfolded protein response (UPR), and ER-phagy, an important pathway that
degrades ER fragments or ER-associated components. ER-phagy is a selective process that
involves the autophagic machinery and corresponding receptors to accomplish the vacuolar

degradation of ER [15].

In plants, ER stress-mediated ER-phagy is triggered by the accumulation of misfolded proteins in
the ER [16]. ER fragments were observed in autophagic bodies upon treatment with the ER
stress agent tunicamycin (Tm), and the ER stress sensor IRE1b (inositol-requiring enzyme 1b) is
required for this process [17]. IRE1b has two major activities, non-conventional splicing of the
mRNA of the transcription factor bZIP60 (basic region/leucine zipper motif 60) that in turn
activates ER stress-response gene transcription, and Regulated IRE1-dependent mRNA decay
(RIDD), a general mRNA degradation pathway that reduces production of ER proteins and
therefore relieves ER stress. The ribonuclease activity of IRE1b was found to be critical for
IRE1b-mediated autophagy during ER stress [18,19], and this was due to RIDD activity rather
than bZIP60 splicing, demonstrating RIDD-dependent and bZIP60-independent regulation of
ER-phagy [19].

Other regulators of autophagy during ER stress have been identified. SnRK1 (SNF1-related
protein kinase 1) is a protein kinase that senses the energy status of the cell [20] and is required
for activation of autophagy under many stress conditions, including ER stress [21]. How energy
status and ER stress are linked, how autophagy activation is triggered by SnRK1, and how

IRE1b and SnRK1 activities are coordinated is unknown. Sulfide has also been shown to
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negatively regulate ER-phagy, via persulfidation of the autophagy core factor ATG18a [22].
While ATG18a is required for bulk autophagy under various stress conditions, its regulation by
persulfidation seems to be restricted to ER stress conditions. Persulfidation increases binding of
ATG18a to phosphatidylinositol 3-phosphate, which then controls the number and size of
autophagosomes produced upon ER stress. Other Arabidopsis ER-associated proteins are
potentially involved in ER-phagy, such as NAP1 (Nck-associated protein 1). NAP1 was found to
be involved in autophagosome biogenesis by affecting actin nucleation [23]; a potential role for

NAPI1 in ER-phagy regulation is an interesting topic for future investigation.
ER-phagy receptors during ER stress

ER-phagy relies on specific receptor-adaptor interactions to facilitate engulfment of ER
fragments by autophagosomes or direct delivery to the vacuole. To date, many ER-phagy
receptors were identified and characterized in eukaryotes, including FAM134, Sec62, RTN3,
CCPGI, ATL3, TEX264, CALCOCOI1 and C53 in mammals [13]; Atg39, Atg40, and Eprl in
yeast [13]; and ATI1, ATI2, ATI3, RTN1, RTN2, AtSEC62, C53 and RHD3 in plants [13,24].
Different receptors can perceive distinct signals to control the degradation of ER fragments

(Figure 2), indicating their functional diversification in ER-phagy.

SEC62 is a component of the translocon complex, and was initially identified in mammals as an
ER-phagy receptor during stress recovery [25]. Arabidopsis AtSEC62 has translocon domains
but only shares 12% and 15% protein sequence similarity with its counterparts in yeast and
animals, respectively, and has a unique membrane topology, suggesting potential functional
differences. AtSEC62 is ER membrane-associated and interacts with ATGS8 through its AIM
motif during ER stress triggered by Tm or dithiothreitol (DTT) [26], Interestingly, ring-like
structures marked by YFP-AtSEC62 and the autophagosome marker mCherry-ATG8e were
observed upon ER stress induction. atsec62 null alleles were sensitive to Tm, whereas
overexpression of AtSEC62 enhances stress tolerance [26], raising the hypothesis that AtSEC62

can act as a receptor in ER stress-regulated autophagy.

Reticulons (RTNs) are ER-localized transmembrane proteins with a highly conserved reticulon
homology domain [27]. In mammals, two reticulon domain-containing proteins, FAM134B and

RTN3 were characterized as ER-phagy receptors in mediating ER turnover [28,29]. In plants,
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maize RTN1 and RTN2 proteins were reported to be ER-phagy receptors, containing four AIM
motifs, and the interactions between RTN and ATGS8 were enhanced upon ER stress treatment
[30]. In endosperm cells of maize r#n2 mutants, autophagy induction and up-regulation of ER
stress-responsive chaperones were detected, suggesting that ER homeostasis was disrupted, and
therefore indicating a crucial role of maize RTN1- and RTN2-controlled ER-phagy in ER

homeostasis and stress [30].

Arabidopsis ROOT HAIR DEFECTIVE (RHD) 3 is an atlastin GTPase previously reported to be
involved in root development [31], and more recently identified as an ER-phagy receptor [24].
The orthologs of RHD3 in mammals, atlastin 2 (ATL2) and 3 (ATL3), were reported to play an
important role in ER-phagy [32,33]. ATL2 is required for FAM134B-mediated ER-phagy [32]
and ATL3 functions as a receptor for ER-phagy, interacting with the ATGS8-related protein
GABARAP to promote tubular ER degradation upon starvation [33]. Two distinct AIM sites
were identified on RHD3, but interestingly, only AIM2 is involved in the interaction with ATGS,
and ER stress treatments enhance the interaction between RHD3 and ATGS. Sun et al. [24]

further showed that an r2d3 mutant is sensitive to ER stress and deficient in ER-phagy.

C53 is a unique ER-phagy receptor conserved in both plants and animals. Firstly, it is a cytosolic
protein, unlike most other ER-phagy receptors, which are ER membrane-localized. Secondly, it
interacts with ATGS8 via a shuffled ATGS interacting motif (SAIM), rather than a conventional
AIM site. Thirdly, it forms a tripartite receptor complex with the ER-associated ufmylation
ligase UFL1 and its membrane adaptor DDRGK1 to sense the proteotoxic level in the ER lumen;
the complex is activated by stalled ribosomes at the ER surface [34]. This discovery suggests that
ER-phagy receptors can have diverse cellular localizations, that the motif for interacting with
ATGS is not necessarily conserved, and that helper proteins can be recruited to form complexes

to mediate ER-phagy.
ER-phagy receptors during other types of stress

Beyond ER stress [35], dark-induced starvation [36], phosphate starvation [37] and viral
infection [38] were also reported to induce ER-phagy in plants. In many cases, the specific

receptor that recognizes the ER is unknown.
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ATII (ATGS8-interacting 1) and ATI2 are plant-specific ATG8-binding transmembrane proteins
that were found to be involved in ER-phagy [36,38]. ATI proteins contain two putative AIM
sites [39], located in the long intrinsically disordered regions (IDRs) at the N-terminus [40].
During dark-induced carbon starvation, ER-localized ATI proteins associate with ER-derived
bodies and sequester these bodies for autophagic degradation in the vacuole. In addition, ATI
proteins can interact with MSBP1 (membrane steroid-binding protein 1) and facilitate its
degradation through ER-phagy during carbon starvation [36]. The ATI proteins also interact with
AGOI1 (argonaute 1) protein on the ER, leading to its vacuolar degradation, playing a critical role
in plant-virus interactions [41]. ATI3 is a dicot-specific protein that was initially isolated as an
ATG8-interacting protein from a yeast-two-hybrid screen [42,43]. ATI3 interacts with ER-
localized UBAC2 (Ubiquitin-associated protein 2) protein, leading to its vacuolar degradation in

an autophagy-dependent manner.
Mitophagy

Mitochondria are double membrane-bound organelles within eukaryotic cells that serve as the
powerhouse by generating adenosine triphosphate (ATP). Many additional biochemical activities
are carried out in mitochondria, including de novo fatty acid synthesis, amino acid biosynthesis,
and iron-sulfur biosynthesis [44]. Mitochondria are also major sources of reactive oxygen
species (ROS) that can result in oxidative damage, and this ROS production increases when
mitochondria are damaged. Therefore, maintaining a healthy mitochondrial population is
important for plant cells, ensuring energy supply and multiple biochemical activities, and
preventing excess ROS production [45]. To maintain cell homeostasis, autophagic clearance of

damaged or superfluous mitochondria (mitophagy) is critical.

Based on the mechanism of recognition of mitochondria for degradation, mitophagy can be
classified into the three types: (1) ubiquitin-dependent, (2) receptor-dependent and (3) lipid-
dependent [45]. Mitophagy is best described in mammals, where ubiquitylation (e.g. via the E3
ubiquitin ligase PARKIN and PTEN-induced kinase 1, PINK1), receptors [such as FUN14
domain-containing protein 1 (FUNDC1), BCL2 Interacting Protein 1 (BNIP1) and NIX] and
lipids (cardiolipin and ceramide) can be the selective signals to mark damaged mitochondria and

recruit LC3 to allow autophagic degradation [45]. In yeast, the mitophagy receptor ATG32 is
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activated by casein kinase 2 via phosphorylation, binds ATG11 and then interacts with ATGS8
[46,47]. Compared with the studies in yeast and animals, mechanisms of selective mitophagy in
plants are still largely unknown (Figure 3). In addition, very few of the major participants of

mitophagy in animals and yeast mentioned above have clear orthologs in plants.
Regulation of mitophagy in plants

A variety of environmental stimuli, including senescence, carbon or nitrogen starvation, or UV-B
stress, can trigger mitophagy in plants. For instance, the number of mitochondria and amount of
mitochondrial protein decreased significantly in senescent leaves of wild-type (WT) Arabidopsis
plants but were stabilized in the autophagy deficient mutants azg7 and atg/I. When leaves were
pretreated with the vacuolar H'-ATPase inhibitor concanamycin A (ConcA), mitophagic bodies
marked by Mito-YFP and mCherry-ATG8a became visible in individually darkened leaves of
WT Arabidopsis plants, but were absent from the leaves of atg7 or atgl mutants [48]. ATGI11 is
an autophagy adaptor that can interact with ATGS through its AIM motif and, together with
ATGQGT7, participate in senescence-induced mitophagy in Arabidopsis [48]. In another study,
autophagic bodies containing mitochondria were found in roots under nitrogen starvation upon
ConcA treatment, but were not seen in the autophagy deficient mutant atg4a atg4b [49]. A high
dosage UV-B stress can cause mitochondria to be inactivated and fragmented, and mitophagy
was reported to play an important role in autophagic clearance of damaged mitochondria through

vacuolar degradation [50,51].

Mitophagy can also be triggered by a range of mitochondrial inhibitors, such as doxycycline
(Dox, inhibits translation on mitochondrial ribosomes), MitoBlockCK-6 (MB, inhibits
mitochondrial protein import), and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone
(FCCP) and 2,4-dinitrophenol (DNP), uncouplers which depolarize mitochondria [52,53]. Of
note, adding those inhibitors to the growth medium leads to a more pronounced mitophagy flux
than spraying on plants. In addition, as an uncoupler, FCCP was more potent than DNP,
depolarizing almost all mitochondria at a lower concentration, making it very challenging to
monitor mitophagy dynamics. For this reason, DNP is the more widely used uncoupler because
its slower action facilitates the observation of mitophagy flux via cell biological and biochemical

assays [53,54].



200
201
202
203
204
205
206
207
208

209

210
211
212
213
214
215
216

217
218
219
220
221
222
223
224

225

226
227

Kacprzak et al. [52] established a new system to monitor mitophagy levels in plants by
generating a stable Arabidopsis transgenic line expressing GFP fused with the mitochondrial
matrix-localized isocitrate dehydrogenase 1 (IDH1) or mitochondrial outer membrane localized
Translocase of Outer Membrane 20 (TOM20). With these new reporter lines, they found that
dark-induced carbon starvation, natural senescence, and specific mitochondrial stresses (long
term exposure to uncoupling agents or inhibitors of mitochondrial protein import/translation) are
key triggers of mitophagy in plants, while nitrogen starvation, hydrogen peroxide, heat, UV-B
and hypoxia did not appear to trigger substantial mitophagy [52]. These findings provide new

tools to detect mitophagy in plants and demonstrate effective inducing conditions or treatments.
Recognition of mitochondria for degradation

Ma et al. [53] recently reported that Friendly (FMT), a member of the clustered mitochondria
protein family, translocates to damaged mitochondria to mediate uncoupler-induced mitophagy.
Upon treatment with the uncoupler DNP, fmt mutants have more depolarized mitochondria and
fewer mitophagosomes, indicating that FMT is critical for mitophagy [53]. Defects were also
observed in mitophagy during cotyledon greening, identifying a physiological role for FMT in
development. However, how Friendly promotes autophagosome formation with its potential

binding partners require additional research.

Independent of whether mitophagy is activated in response to environmental or physiological
cues, for example during pollen tube growth [55], the mechanism for distinguishing damaged
mitochondria from the functional population is crucial for selective autophagic degradation.
TraB1, an uncharacterized mitochondrial outer-membrane protein, was identified as a novel
ATG8-inteacting component in mitophagy. Interestingly, the ER-localized protein VAP27-1
(Vesicle-Associated Protein 27-1), can directly interact with TraB1 and regulate its ER-
mitochondrial tethering and turnover through mitophagy [54], indicating that distinct

mechanisms exist for control of mitophagy in plants.
Pexophagy

Peroxisomes are small, single membrane organelles with diameters around 0.1~1 um. Despite

their simple structure and small size, peroxisomes contain over 200 proteins, involved in diverse
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metabolic functions [56]. In seeds, glyoxysomes, a specialized form of peroxisomes, function in
B-oxidation and the glyoxylate cycle, converting lipids into sucrose to support post-germination
growth of seedlings. In leaves, peroxisomes are involved in photorespiration, ROS catabolism,
and production of hormones, including auxin, jasmonic acid and salicylic acid, which are
essential phytohormones for plant growth and stress responses. Autophagic degradation of
peroxisomes, termed pexophagy (Figure 4), is required for the conversion of the population of
peroxisomes from seed glyoxysomes to leaf peroxisomes, and for their quality control to remove

damaged peroxisomes [57].
Pexophagy in development and stress responses

Glyoxysomes are directly transformed into leaf peroxisomes during the greening of etiolated
cotyledons for seedling peroxisome remodeling [58], along with the degradation of obsolete
glyoxysomal proteins such as isocitrate lyase (ICL) and malate synthase (MLS), two marker
enzymes of the glyoxylate cycle [59]. In the autophagy-deficient mutants azg5 and atg7, more
peroxisomes and endogenous glyoxysomal proteins (such as ICL and MLS) accumulate in the
hypocotyls of developing seedlings. Furthermore, when the seedlings were treated with ConcA,
peroxisomes were found in the vacuole of WT hypocotyls but not in that of the atzg7 mutant,
indicating that pexophagy participates in the degradation of glyoxysomal proteins [60]. During
this functional transition of peroxisomes, unnecessary proteins are degraded by both LON2
(LON protease 2)- and autophagy-dependent pathways. LON2 belongs to the AAA+ (ATPases
associated with various cellular activities) superfamily, and can act as both an ATP-dependent
protease and a chaperone. /on2 mutants have defects in peroxisomal number and metabolism and
in protein import, and these defects are suppressed by atg mutants, indicating that pexophagy and

LON2 cooperate in peroxisome quality control [61,62].

Under normal growth conditions, plants maintain a basal level of pexophagy, as autophagy-
deficient mutants have increased numbers of peroxisomes compared to WT plants [57,60].
Treatment of tobacco BY2 cells with the autophagy inhibitor 3-methyladenine (3-MA) led to
accumulation of peroxisomes and peroxisomal proteins [63]. Pexophagy is also involved in plant
responses to various stressful conditions. In BY2 cells, the number of peroxisomes dropped

substantially during sucrose starvation, and 3-MA delayed peroxisome degradation, indicating
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that carbon starvation effectively triggers autophagic degradation of peroxisomes [63]. Under
high glucose treatment (3%), the autophagy-deficient mutants azg5 and atg7 accumulate more
peroxisomes in root cells than do WT plants, indicating that high glucose-promoted peroxisome

degradation in roots requires a functional autophagy pathway [64].

Peroxisomes generate ROS, which need to be removed by antioxidant enzymes such as catalase.
When ROS accumulation in peroxisomes causes oxidative damage of peroxisomal proteins or
other peroxisomal components, the resulting dysfunctional peroxisomes need to be removed.
Although the signals that trigger plant pexophagy have not yet been well characterized, oxidative
changes seem to be a key factor. Using unusual positioning of peroxisomes as a criterion,
Shibata et al [65] identified several peroxisome unusual positioning (peup) Arabidopsis mutants,
which were found to be mutated in ATG2, ATG18a and ATG7 genes. In peup/atg mutants,
oxidized peroxisomes accumulated in large aggregates and contained inactive catalase; these
aggregates were also found in a catalase mutant. Damaged and aggregated peroxisomes are
therefore degraded by autophagy as a quality control mechanism [65]. Even under normal
growth conditions, peroxisomes in leaf cells of autophagy mutants contained increased levels of
catalase in an insoluble and inactive aggregate form, and these accumulated abnormal
peroxisomes were selectively recognized and delivered to vacuoles for degradation upon
restoration of autophagy function [57]. Similarly, exposure of Arabidopsis plants to cadmium
induces oxidative stress, and oxidation of peroxisomal proteins such as catalase is likely a trigger

for pexophagy [66].
Identification of pexophagy machinery

The mechanistic understanding of pexophagy has been increasing over the last few years. In
yeast, the major players for recognition of peroxisomes for degradation are Atg36 and Atg30,
while mammals use p62/SQSTMI1 or NBR1 as pexophagy receptors [67]. Plants have no clear
counterparts of Atg36 or Atg30, but may use the conserved component NBR1 as a peroxisome
receptor. In cadmium-induced pexophagy in Arabidopsis, NBR1 co-localizes with ATG8 and
catalase, suggesting that NBR1 may function as a pexophagy receptor [66]. However, Young et
al. [68] showed that NBR1 is not required for pexophagy in the /on2 mutant, and overexpression

of NBRI is not sufficient to trigger pexophagy, suggesting that an NBR 1-independent
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mechanism for pexophagy also exists in Arabidopsis. Through bioinformatics approaches, Xie et
al. [69] identified nine peroxisomal PEX proteins in Arabidopsis that contain high fidelity AIMs
(hfAIMs), among which AtPEX6 and AtPEX10 interact with ATGS8 in vivo as validated by
bimolecular fluorescence complementation (BiFC). Moreover, mutations occurring within or
near hfAIMs in PEX6 and PEX10 cause defects in the growth and development of various
organisms, indicating that the conserved hfAIMs are important for their functions [69]. In
addition, an independent yeast two-hybrid screen also identified PEX10 as an ATGS8-interacting
protein [70], suggesting that PEX10 is a promising candidate for a pexophagy receptor.

ABCD1/PXA1 (ATP-binding cassette D1; Formerly PXA1/peroxisomal ABC transporter 1) is a
peroxisomal transmembrane protein, and plays multiple roles in plant lipid metabolism and
signaling, including the transport of indole-3-butyric acid (IBA) for subsequent conversion via f3-
oxidation into the active auxin indole-3-acetic acid (IAA) [56]. The Walker B motif of
ABCDI1/PXAI1 physically interacts with ATG8e in vitro and in vivo, as verified by yeast two-
hybrid and coimmunoprecipitation assays [64]. In addition, overexpression of ABCDI1 partially
rescues the glucose-associated phenotypes of the atg mutants. Therefore, ABCD1/PXAl is
another possible receptor for pexophagy. The ubiquitin-binding protein DSK?2 (dominant
suppressor of KAR2) was proposed as another pexophagy receptor/adaptor candidate in plants
[71-73]. DSK2 functions in autophagy by interacting with ATGS8 through its AIM sites [72].
DSK2 also interacts with the RING (really interesting new gene) finger domain of two
peroxisomal membrane proteins, PEX2 and PEX12 [71]. However, DSK2 is not a peroxisome-
associated protein, and there is no clear evidence that PEX2 or PEX12 recruit DSK2 to
peroxisomes. Thus, the role of DSK2 in plant pexophagy needs to be verified. Finally, ARP2/3
(Actin Related Protein 2/3 complex) is a heteroheptameric protein that participates in actin
reorganization at the plasma membrane (PM) and at PM-ER contact sites. Martinek et al. [74]
recently found that ARP2/3 complex-containing dots associate exclusively with peroxisomes in
plant cells, and co-localize with the autophagosome marker ATG8f under autophagy-inducing
conditions. Moreover, ARP2/3 subunits co-immunoprecipitate with ATG8f, and mutants lacking
functional ARP2/3 complex have more peroxisomes than do WT plants. ARP2/3 may therefore

function as a receptor or adaptor in pexophagy [74].

Chlorophagy

11
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Chloroplasts are specialized plastids found in plants and algae in which photosynthesis converts
light and CO; into chemical energy and carbohydrates to support their photoautotrophic
lifecycle. Mature chloroplasts contain two envelope membranes (outer and inner), a soluble
stroma and a thylakoid membrane system. Starch granules are often present in the stroma as a

product of photosynthesis, and chloroplasts also contain numerous proteins and metabolites [75].

Turnover of chloroplasts must be tightly controlled to maintain photosynthetic function and
alleviate cell damage. Chloroplasts are degraded during leaf senescence to remobilize their
contents, and also upon environmental stress, as removing damaged chloroplasts is critical in
maintaining cell viability [76]. Photo-oxidative damage of chloroplasts is frequently
encountered, caused by photosynthesis-related superoxide (O%), hydrogen peroxide (H,02) and
singlet oxygen (102) or ROS produced upon exposure to UV-B or high light (HL) [76].
Chloroplasts are highly sensitive to different stresses, including carbon starvation, salt stress and
the combination of abnormal light with low or high temperature. Senescence or stress often
causes changes to chloroplast morphology along with the decrease in photosynthetic efficiency.
Chloroplasts in senescing leaves often have more and bigger plastoglobules (lipoprotein
particles), collapsed thylakoid membranes and disrupted envelope [77]. Upon strong UV-B
exposure for a short period, chloroplasts become smaller but have larger plastoglobules, and the
number of chloroplasts decreases significantly [78]. The structure of the thylakoid system in
particular is dynamic in response to different light intensities [75]. These features indicate that

quality control of chloroplasts is essential to maintain normal plant growth and development.
Pathways for chloroplast turnover

Chloroplast components, or even entire chloroplasts, can be degraded by both plastidic and
extraplastidic pathways. The extraplastidic degradation of chloroplasts includes autophagy-
dependent mechanisms, including entire chloroplast degradation and piecemeal degradation
(Figure 5), and autophagy-independent mechanisms, including senescence-associated vacuoles
(SAVs) and CHLOROPLAST VESICULATION (CV)-containing vesicles [79]. Using electron
microscopy, entire chloroplasts were found in the vacuoles of senescing leaves [80], and
accumulation of chloroplast-associated components (stroma, chlorophyll pigments, and Rubisco-

containing bodies (RCBs)) was also observed in the vacuoles of WT Arabidopsis cells, but not in

12
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atg mutants, suggesting that the autophagy machinery is involved in chloroplast degradation
[81]. A distinct pathway was seen upon disrupting microtubules via silencing tubulin genes or
treating with microtubule-depolymerizing agents; autophagosome formation was suppressed, and
plastidic starch degradation was impaired. An autophagy-related pathway for clearing these
disorganized chloroplasts was observed, in which selective transport of chloroplasts into the
vacuole occurred, independent of ATG6, ATGS and ATG7 [82]. The details of this mechanism

are still unclear.

Upon extensive photodamage, entire chloroplasts can be surrounded by autophagosomal
structures in the cytoplasm and transported into the central vacuole, which was directly observed
using GFP-ATG8a as a marker to label autophagosomal membranes [78]. This degradation of
chloroplasts under UV-B or high light intensities is dependent on core ATG proteins (ATG2,
ATGS, ATG7), indicating an essential role of chlorophagy in whole chloroplast clearance.
Interestingly, in the presence of ConcA to block vacuolar degradation, the GFP-ATG8a
fluorescence was more intense on one side of the autophagosomes, suggesting that additional
unknown structures are associated with the sequestration of the entire chloroplast [78]. Entire
chloroplasts can also be degraded by microautophagy. In high visible light, autophagy-deficient
mutants accumulate abnormal swollen chloroplasts [83]. These swollen chloroplasts were
partially encapsulated by GFP-ATG8a-marked membrane and then directly engulfed by the
vacuole [83]. Intriguingly, this kind of chlorophagy can be suppressed by applying exogenous
mannitol to increase the osmolarity outside the chloroplast, or by improving the integrity of the
chloroplast envelope via overexpressing VESICLE INDUCING PROTEIN IN PLASTIDI
(VIPP1) [83], a protein essential for envelope and thylakoid membrane maintenance [84—-86].

The underlying basis for this regulation warrants further investigation.
Role of ubiquitination in chlorophagy

How chloroplasts are recognized for degradation is still unclear. Chloroplast membrane integrity
is affected by various stresses, during which starch levels and granule structure is also changed,
and the structure and shapes of chloroplasts are significantly altered, forming excessive
stromules or plastoglobules [78,81-83]. How those ultrastructural changes can be recognized by

autophagy for subsequent degradation is in most cases unknown. In yeast cells, selective
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autophagic degradation of mitochondria involves ubiquitination, but whether a similar
mechanism can lead to chlorophagy in plants is not clear [78,83]. Genetic screening identified an
E3 ubiquitin ligase, PLANT U-BOX4 (PUB4), as required for ubiquitination of chloroplasts,
thus mediating their selective degradation [87]. However, several recent studies have in contrast
suggested that chlorophagy does not require PUB4-mediated ubiquitination [88,89], and the

relevant component(s) for ubiquitination-mediated chlorophagy is therefore yet to be confirmed.
Rubisco-containing body (RCB)-mediated chlorophagy

Chloroplasts are large and complex organelles, and in addition to degradation of entire
chloroplasts, chlorophagy pathways often function in degradation of parts of chloroplasts via the
transfer of bodies containing chloroplast components into the vacuole. RCBs were first identified
via immunoelectron microscopy in naturally senescing leaves of wheat (Triticum aestivum L.)
labeled with antibodies against the large subunit (LSU) of Rubisco. Small spherical bodies
containing Rubisco were observed with double membranes [90], and were named RCBs. RCBs
contain proteins derived from the chloroplast envelope and stroma, but not from the thylakoid
[90]. They usually accumulate in senescent leaves [90-92] or plants under carbon starvation [93]
or salt stress [94]. ATG8 co-localized with RCBs upon formation of autophagosomes, indicating
that RCBs are delivered to the vacuole by macroautophagy [91]. RCB production is very
sensitive to sugar levels [93], and starch content and C/N balance probably affects RCB
production in vivo. A recent study [95] showed that RCB-mediated chlorophagy is involved in
tolerance of Pi starvation, and autophagy-deficient mutants which are unable to form RCBs are

extremely sensitive to Pi starvation.

CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A and B), a component of
Endosomal Sorting Complex Required for Transport (ESCRT)-III [96], plays an important role
in phagophore maturation and efficient delivery of RCBs to the vacuole during chlorophagy. In a
chmp 1 mutant, abundant abnormal phagophores, RCB-like bodies and stromal proteins over
accumulate [96]. The chloroplasts in chmp contained large starch granules, long extended
stromules and interconnecting bridges, which were also found in atg5 and atg7 mutants [96].
chmpl mutants also over-accumulate peroxisomal and mitochondrial proteins, suggesting that

ESCRT mediates autophagic routes for multiple organelles in plants.
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ATII-plastid associated body (ATI1-PS)-mediated chlorophagy

ATII functions in ER-phagy via interaction with the ER, as described above, but also localizes to
distinct plastid-associated autophagic structures, termed ATI1-plastid associated bodies (ATI1-
PS), of ~50 to 100 nm diameter [97], containing chloroplast stroma, envelope, and thylakoid
membranes. Similar to its role in ER-phagy, ATI1 interacts with ATGS8 [38,98] and the core
autophagy machinery to mediate partial chloroplast degradation in the vacuole. Under carbon
starvation, two distinct bodies, ATI1-ER bodies and ATI1-PS bodies are thus formed, both of
which end up in the central vacuole, playing a crucial role in selective turnover of ER and
chloroplast proteins, respectively. ATI1-PS bodies also form during heat stress, and plants with
reduced AT11 expression are hypersensitive to salt stress, indicating a role for ATI1 in salt

tolerance [97].
Small starch granule-like structure (SSGL)-mediated chlorophagy

Finally, an autophagy-related pathway for degradation of plastid starch has been demonstrated.
In leaves, plastid transitory starch is the main photosynthetic carbon reservoir, reaching high
levels at the end of the day and hydrolyzed into sugars to support plant growth at night [99].
Mutants with abnormal chlorophagy typically also have altered starch levels [93,96,100].
Besides the well-documented plastidic degradation pathway [99], extraplastidic starch
degradation can also occurs through formation of small starch granule-like structures (SSGLs) in
the cytoplasm [100]. SSGLs were found outside of the chloroplast, and localized to CFP-ATG8{-
labeked autophagosomes in the cytoplasm and the central vacuole [100]. Moreover, autophagy-
deficient mutants have excess starch and a reduction in vacuole-localized SSGLs, indicating that

autophagic turnover is an independent and parallel route for degradation of leaf starch [100].
Future perspectives

It is now becoming clear that plant cell organelles can be selectively degraded by autophagy and
autophagy-related processes. These pathways typically require recognition of the organelle, or
components of the organelle, to allow selective packaging into autophagosomes for delivery to
the vacuole for degradation. Organelle degradation must be tightly regulated to allow disposal of

damaged and unneeded organelles, while restraining the pathway from complete organelle
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degradation, which would lead to cell death. Many unanswered questions remain that will be
interesting topics for future research. Why does such a diversity of receptors exist for recognition
of some organelles such as the ER? Is this linked to different types of cargo or different stress
conditions? Are there as yet unidentified selective autophagy receptors that recognize
organelles? Does nucleophagy occur in plants, and if so, what receptor and mechanism is
involved? How is the extent of organelle degradation controlled to prevent death of the cell?
Answering these questions will provide further insight into the mechanisms of organelle quality

control during normal growth and development, and in response to environmental stresses.
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Figure 1. A simplified working model for plant autophagy. After the induction of
macroautophagy, double membrane structures called phagophores are initiated from the ER with
the assistance of ATG9-associated vesicles. The phagophores engulf damaged or excess
organelles (e.g. chloroplasts, peroxisomes, mitochondria, ER) or protein aggregates, and
transport them to the vacuole for degradation. Alternatively, cytoplasmic cargos may be

transported to the vacuole through microautophagy for degradation and recycling.
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Figure 2. A working model for ER-phagy in plants. Multiple routes govern the degradation of
ER fragments or its associated components during ER-phagy. As a response to certain stressful
stimuli (e.g. carbon starvation or ER stress), specific ER-phagy receptors including C53, ATI,
Sec62, RTN, and RHD3, are employed for selective degradation of ER-associated targets.
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Figure 3. A working model for mitophagy in plants. Selective degradation of mitochondria
can be carried out through two main routes in plants. Targeted mitochondria can be first tethered
to the ER via interaction between TraB1 and VAP27-1 and then recognized by the autophagy
adaptor ATGS; or they can be directly recognized by ATGS8 via the specific receptor Friendly
(FMT), or via unknown receptors and ATG11.
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Figure 4. A working model for pexophagy in plants. Imbalance of ROS homeostasis

(cadmium or other stress treatments) or a genetic defect (LON2 mutation) in peroxisomes causes

pexophagy-mediated vacuolar degradation via various specific receptors including NBR1,

PXA1, PEX10 or DSK2.
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Figure 5. A working model for plant chlorophagy. Microchlorophagy mediates whole
chloroplast degradation upon carbon starvation and senescence. Macrochlorophagy mediates
degradation of whole chloroplasts or chloroplast fragments via several mechanisms, including:
Rubisco-containing bodies (RCBs) that are induced in carbon or nitrogen starvation; ATI-PS
bodies that are induced by starvation or salt stress; small starch granule-like (SSGL) bodies that

are induced during dark-induced senescence or starvation.
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Table 1. Receptors for autophagic degradation of membrane-bound organelles

Autophagy type  Receptors Stimuli References
ER-Phagy ATI1 Carbon starvation, viral infection [36, 38]
ATI2 Carbon starvation, virus infection [36, 38]
RTNI1 ER stress [30]
RTN2 ER stress [30]
Sec62 ER stress [26]
C53 Stalled ribosomes, ER stress [34]
RHD3 ER stress [24]
Mitophagy FMT Uncoupler DNP [53]
TraB1 Uncoupler DNP [54]
Pexophagy NBRI1 Cadmium stress [66, 68]
PEX10 na [69, 70]
ABCDI1/PXA1 ROS [64]
ARP2/3 NAA and 3-MA [74]
Chlorophagy ATII Carbon starvation, heat stress [97, 98]

na, not applicable.
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