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Handling Editor: Robert Freckleton 2. Modelling plant neighbour interactions presents several challenges for ecologi-
cal modelling. First, nonlinear models for distance decay can be prone to identi-
fiability problems, resulting in lack of model convergence. Second, the pairwise
data structure of plant-plant interaction matrices often leads to large matrices
that demand high computational power. Third, hierarchical structure in plant-
plant interaction data is ubiquitous, including repeated measurements within
field plots, species and individuals. Hierarchical terms (e.g. ‘random effects’)
can result in model convergence problems caused by correlations between
coefficients. We explore modelling solutions for these challenges with exam-
ples representing spatial data on plant demographic rates: growth, survival and
recruitment.

3. We show that ragged matrices reduce computational challenges inherent to
pairwise matrices, resulting in higher efficiency across data types. We also dem-
onstrate how metrics for model convergence, including divergent transitions
and effective sample size, can help diagnose problems that result from complex
nonlinear structures. Finally, we explore when to use different model structures
for hierarchical terms, including centred and non-centred parameterizations. We

provide reproducible examples written in Stan to enable ecologists to fit and

troubleshoot a broad range of neighbourhood interaction models.
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1 | INTRODUCTION

Interactions between neighbouring plants impact how plants grow,
survive and reproduce. Although these interactions occur at the
scale of individuals, their consequences shape population and com-
munity structure. Plants tend to do worse in single-species neigh-
bourhoods than in many-species neighbourhoods (Feng et al., 2022;
Sortibran et al., 2014), an individual-level dynamic that helps ex-
plain how plant biodiversity is maintained across ecosystems, from
montane deserts (Adler et al., 2010) to tropical rainforests (Comita
& Stump, 2020). Plants can also facilitate the growth and survival
of their neighbours, particularly in disturbed or stressful environ-
ments (Miriti et al., 2001). Managing plant neighbourhoods, from
thinning dense stands of trees (Lechuga et al., 2017) to planting spe-
cies that will facilitate their neighbours (Gémez-Aparicio, 2009), is
a cornerstone of forestry, restoration and agriculture. The impor-
tance of neighbour interactions across basic and applied ecology
underscores the need for statistical approaches that can quantify
how plant neighbourhoods impact plant demography. Such analyses
must account for space, as plants interact more with closer neigh-
bours than with neighbours further away (Figure 1).

As an approximation to spatially explicit models, many stud-
ies have used plant density in a fixed radius (LaManna et al., 2017),
which assumes plant neighbours at varying distances have equiv-
alent interaction strength. Spatially explicit models enable a more
realistic representation of individual plant relationships (Zambrano
et al., 2020). However, fitting spatially explicit neighbourhood models
requires accounting for the distance between all pairwise combina-
tions of neighbours, which can be computationally expensive. A com-
mon simplification is to assume that the effects of distant neighbours
are zero, creating an effective neighbourhood radius (Muller-Landau
et al., 2004). Effective neighbourhood radii result in matrices with
many zero elements, as most plant neighbours are distant enough
to have negligible interactions. Matrices rich in zeros, known as
sparse matrices, are found in a wide range of disciplines (Dokmanic
et al., 2015). While there are existing methods to optimize computa-
tion on sparse matrices (Chalauri et al., 2018), these methods have not
yet achieved wide use in ecology.

4. Spatially explicit models are increasingly central to many ecological questions.
Our work illustrates how novel Bayesian tools can provide flexibility, speed and
diagnostic capacity for fitting plant neighbour models to large, complex data-
sets. The methods we demonstrate are applicable to any dataset that includes a
response variable and locations of observations, from forest inventory plots to
remotely sensed imagery. Further developments in statistical models for neigh-
bour interactions are likely to improve our understanding of plant population

and community ecology across systems and scales.

big data, Hamiltonian Monte Carlo, hierarchical structures, neighbour interactions,
optimization, pairwise matrix, plant-plant interactions, Stan

FIGURE 1 Spatial structure of a plant neighbourhood. The
seedling in the centre of the plot experiences a range of neighbour
interactions, depending on the neighbour's species identity, size
and physical distance.

Another barrier to fitting spatially explicit neighbourhood
models is that interaction strength is almost always nonlinear.
There are a wide range of possible nonlinear response functions
that can approximate spatial relationships between neighbouring
individuals (Bolker, 2008). The downside of nonlinear models is
that they are prone to identifiability problems, meaning it is dif-
ficult to define a single solution for the equation (Ogle, 2009). In
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some cases, assuming linearity may be an acceptable solution to fit
neighbourhood models. For example, the sum of basal area within
circular plots is widely used as a neighbourhood competition index
in linear models (e.g. Yang et al., 2022). Nevertheless, the capacity
to fit a wide range of interaction functions, including nonlinear
functions that cannot be easily transformed into linear functions,
will improve links between theoretical models that rely on nonlin-
ear functions (e.g. Bolker & Pacala, 1999) and enable better fore-
casting models for ecological processes (e.g. Clark et al., 1999).
The challenges of fitting nonlinear models point to the need for
flexible methods for model parameterization, including diagnostic
metrics to assess model fit.

Hierarchical structures that violate assumptions of indepen-
dence between observations can also complicate parameter esti-
mation in statistical models. Hierarchical structures are ubiquitous
in ecological data, including individuals representing different gen-
otypes within species (Zaiats et al., 2020) or within sites (Caughlin
et al., 2015; Schneider et al., 2006). Hierarchical models also present
challenges for model estimation, for example, correlations between
the variance and estimates of group-level (‘random’) effects are
common. These correlations between group-level parameters mean
that different parameter combinations have similar likelihood esti-
mates, limiting the ability of the sampler to efficiently explore the
probability surface. Solutions to this pathology have not yet been
explored in the context of nonlinear models for neighbour interac-
tions. Bayesian methods present a powerful tool for fitting spatially
explicit plant interaction models with well-developed protocol for
assessing divergences that may result from nonlinearity and hier-
archical structure (Gelman et al., 2020). Nevertheless, guidance
for fitting Bayesian models for large and sparse spatial datasets for
neighbour interactions remains scarce.

In this paper, we provide a roadmap for how Bayesian method-
ology can expand opportunities to fit spatially explicit models for
neighbour interactions. Our work builds off a recent advance in
Bayesian inference, the Hamiltonian Monte Carlo (HMC) algorithm,
which has improved sampling efficiency relative to older algorithms
(Monnahan et al., 2017). The Stan software package provides an
interface to HMC, including model assessment tools, with high
value for fitting neighbour interaction models (Stan Development
Team, 2019a). Using examples of plant demographic rates, we ex-
plore computationally efficient strategies for sparse matrices and al-
ternative parameterizations that can help overcome computational
time challenges when hierarchical structures are present in a statis-
tical model. Our guide to fitting a range of spatially explicit neigh-
bour interaction models will enable broader use of these powerful

models in ecology.

2 | MATERIALS AND METHODS

We begin with the fundamental building block of a neighbourhood
model, an interaction kernel. Following Canham and Uriarte (2006),
we assume that the kernel alters the expected value () of a

demographic rate measured at a target plant p, with individual-
specific covariates (e.g. crown area) described by the function g(p).
Forj=1,..., nneighbouring plants (x;), the function f(x) describes the

relationship between neighbours and the target plant.

u(p) =38(p) Y f(x)- (1)

=1

Equation (2) represents a simple example of an interaction kernel:

f(Dy) = z 1 (2)

’
k=1 a Di,k

where D; is a pairwise matrix that contains the distance between plant
i and the plants within its effective neighbourhood radius and a, is a
parameter representing the strength of distance decay as the distance
between neighbouring plants increases.

2.1 | Optimization of sparse matrices using ragged
matrices in a neighbour interaction model

A common simplifying assumption for pairwise matrices (e.g.
distance;; in Equation (2)) is that neighbours beyond an effective
neighbourhood radius do not interact. We set values beyond this
radius to zero, thus transforming the pairwise matrix into a sparse
matrix. In the example below, we explore how different sizes of
the effective neighbourhood radius alter statistical results. Sparse
matrices can be simplified further by representing them as ragged
matrices (Chalauri et al., 2018). Ragged matrices allow different
numbers of elements in each row, which reduces computer process-
ing time but limits the use of linear algebra operations, such as matrix
multiplication. By representing the position of non-zero elements in
the original matrix with index vectors, which contain the row and
column number of each element, the ragged matrix efficiently pre-
serves information on matrix structure. In Stan, the built-in function
‘segment()’ creates a ragged matrix, representing elements in a vec-
tor and their position in the pairwise matrix using two index vectors

(Figure 2; Stan Development team, 2022).

2.1.1 | Example 1: Plant growth

To demonstrate how ragged matrices can improve computation time
for neighbour models, we simulated a spatially explicit dataset repre-
senting plant growth. We model plant growth as a function of intrinsic
growth (i.e. growth in isolation) and neighbourhood characteristics (i.e.
neighbour size and proximity; Equation (3)). To evaluate how choosing
an effective neighbourhood radius could introduce bias in parameter
estimation, we fit six models with effective neighbourhood radii of 5,
10, 15 and 20m. The ‘true’ effective radius of this simulated data is
10 m. With real data, the decision for radius size should be based on
biological knowledge, for example, root zone area (Zaiats et al., 2020).
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FIGURE 2 A demonstration of how the segment function
creates a ragged matrix. The predictor_matrix above includes
matrix elements labelled a:H, as well as zero elements. The nb_b
vector contains the number of non-zero elements per row, the
predictor_vector vector contains the non-zero elements and the
pos_vector contains the position of non-zero elements.

Additional spatial information, such as crown allometry, can also en-
able the construction of biologically meaningful plant neighbourhoods
without the need for an arbitrary decision on the effective neighbour-
hood radius (Zambrano et al., 2019). Alternately, the effective neigh-
bourhood radius can be chosen by testing predictive performance of
different sized radii (Zambrano et al., 2020). Beyond predictive perfor-
mance of models with different effective neighbourhood radii, infer-
ence on effects of neighbourhood radii on ecological processes can be
highly sensitive to the choice of neighbourhood radii (see Zambrano
et al., 2020 for a functional traits example).

Equation (3) represents our generative model for neighbour-

dependent growth:

Ste1j~normal(u;,0)
n

ji=a+ Sy +ay Y NG — L @)
k=1 exp(ka%)

In Equation 4, S;; and S, 4; are the sizes of planti at time t =0 and 1,
respectively, D; are the distance between i and the plants within its
effective neighbourhood radius, and SN; represents the size at time
t = 0 of the plants located within the effective neighbourhood radius
of plant i. For demographic rates that involve two censuses, such as
our growth example, we assume that the size of the neighbour at the
first census determines the demographic response measured as the
difference between the first and second censuses. a is the intercept,
and f is the effect of S, ;. In the interaction kernel, parameter a; me-
diates the effect of neighbouring plant size, parameter a, determines
the scale of distance decay, and a, represents the overall effect of the
neighbourhood term.

We fit models in Stan using either a sparse or ragged matrix.
These approaches share a large amount of code, with two main

differences. For the sparse matrix code, the data block in Stan in-
cludes two sparse matrices containing the distances and sizes of the
plants within the effective neighbourhood radius. A nested for-loop
that iterates through every neighbouring individual then defines the
interaction kernel (Stan Development Team, 2019a; for full code
check the data availability statement): In contrast, the ragged ma-
trix code includes the three vectors required to use the segment ()
function: neighbour size, distance and an index vector for non-zero
entries of the matrix (Figure 2). By referencing only non-zero ele-
ments using index vectors, the ragged matrix approach reduces
computationally expensive iterations of the nested for loop over
zero-valued entries. In this example, we went from iterating through
a matrix containing 250,000 elements to iterating through a ragged

matrix containing 69,448 elements.

2.1.2 | Example 2: Plant recruitment

To further explore the application of the ragged matrix as an opti-
mization strategy in neighbour interaction models, we parametrized
a model using real data on seedling abundance of invasive strangler
fig trees, Ficus macrocarpa, in Florida, USA. We analysed data from
Caughlin et al. (2012), which includes the total number of strangler
fig seedlings in 52 plots of 30m at a single time point. Distances to
adult fig trees within an effective neighbourhood radius of 300m
were recorded. We modelled seedling abundance for all plots i using
a negative binomial distribution, with a mean (x) and an over disper-

sion parameter (¢; Equation 4):

abundance; ~ negative binomial(u;, )

n

1 .

a+b CP if n>0
kz:;c+D,;k

Hi = : (4)

a if n=0

where a is the global intercept and b describes the strength of
the interactions kernel, which decays as a function of ¢ and the
distance from plot i to the adult fig trees within its effective neigh-
bourhood radius for n total adult trees per plot. Similar to other
strangler figs, F. microcarpa begins its life cycle by germinating in
the canopy of a host tree. The number of potential host trees in
the 30m plots, CP, is multiplied by the kernel as an offset, assum-
ing that more host trees create more opportunities for fig tree
seedlings to recruit.

The original study exponentiated a, b and ¢ to keep the param-
eters positive. To replicate the previous results, fit with maximum
likelihood estimation in Caughlin et al. (2012), we ensured non-
negative values for the mean of the negative binomial distribution
by constraining parameters a, b and j to positive values. However,
we note that the log-link is the canonical link-function for the neg-
ative binomial distribution and is a better choice for future studies
(for full code check the data availability statement). In this example,
there are seedling plots that do not have any adult strangler fig trees
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nearby, resulting in zeroes in the n_nb vector (second row of pre-
dictor matrix in Figure 2). In some interaction kernels, these zeroes
cause the denominator to become zero and hence undefined. A solu-
tion is to use an ifelse statement, so if nb_b is zero then p is equal to
the equation without the interaction kernel (4; = a), and if nb_b is not
zero then p is as stated in Equation 4 (for full code, check the data
availability statement). The consequence of the ifelse statement is
that trees with no neighbours within the radius do not provide in-
formation on interactions with other trees but can still inform other

parameters in the model.

2.2 | Centred and non-centred parametrization for
random effects in neighbour interaction models

2.2.1 | Example 3: Seedling germination

To demonstrate how hierarchical models for plant neighbour in-
teractions can be fit in a Bayesian context, we analysed a dataset
on seedling germination that includes multiple individuals nested
within field plots. These data represent the outcome of a seed
addition experiment, an experimental design commonly used to
study density dependence during early plant life stages (Clark
et al., 2007). The objective of this study was to quantify how the
density of seedling and adult tree neighbours impacted the prob-
ability of seed germination (Caughlin et al., 2015). In this study, the
effective neighbourhood radius was set at 10m. Germination suc-
cess of all seeds in plot k was estimated by modelling the number
of germination events, given the total number of added seeds (n),
and probability of germination, (p). This study represents data at
two time points, the initial number of seeds added and the pro-
portion of those seeds that germinated after several months. We
model the germination probability of seeds using the binomial dis-
tribution (Equation (5)):

germination ~ binomial(n, p)

n
. . 1
logit(p;) =u+b Seedllngsi+ak§{$Ni,k- i

ik

+a)k[,»]

i ~normal(0, o)
a~normal(0, 1)

o ~normal(0, 1)

where the input to the binomial distribution includes the total
number of seeds added to each plot (n) and the probability of suc-
cessful germination events (p). p is the global intercept, b is the
effect of seedling density, Seedlings; is the number of conspecific
seedlings to represent the crowding effect, a is the total effect of
neighbouring adult trees size and distance on recruitment, g is the
distance decay of the effect of neighbour size and distance, and @
is the random effect of plot k, to account for non-independence
between seeds in the same plot. SN is a matrix containing the size
of the adult trees within the effective neighbourhood radius of
germinating seed i, and D is the pairwise matrix containing the

distance between the adults within the effective neighbourhood
radius of germinating seed i.

Inclusion of group-level effects, such as the plot-level intercept
 in Equation 6, often leads to correlations between the variance (o)
and estimates of random effects (w,). These correlations can limit
the ability of samplers to explore probability surfaces thoroughly,
resulting in poor model convergence (Neal, 2011). One solution is to
reparametrize the model, creating a linear model structure to decou-
ple variance from random effect estimates (McElreath, 2020). This
solution is often referred to as the ‘non-centred parameterization’, in
contrast to the ‘centred parameterization’ in which the levels of the
random effects have a common prior, in this case with mean 0 and
standard deviation 6.

To create the non-centred parameterization, we re-write the
random effects as a deterministic sum of the mean and scaled
group variances, wy[;] = ¢+ oz; and sample z from a unit nor-
mal prior (McElreath, 2020). This new parameterization causes z
to be orthogonal to the variance, reducing correlation between
coefficients.

2.3 | Model performance across simulated datasets
with varying sample size

As a final demonstration of the utility of our ragged matrix ap-
proach, we simulated a large dataset, including nonlinear inter-
actions, a large number of neighbours and hierarchical effects.
Simulated sample sizes are derived from one of the world's most
extensive tree demographic datasets, the 50ha plot from Barro
Colorado Island (BCI; Davies et al., 2021). As the large, long-term
forest dynamics plot design has become more common worldwide
(Davies et al., 2021), the need for scalable methods for spatially
explicit analysis has also grown. We evaluated the ragged matrix
approach using a range of realistic sample sizes of individual trees,
from 466 to 235,338 (the yearly mean number of live trees >1cm
Diameter at Breast Height in the BCI plot). Given this range of
sample sizes, we simulated survival, growth and recruitment data
as a function of tree neighbours, using the following interaction

kernel:

n-1
aY SNy - %2 (©)
k=1 en? ik
In Equation (6) above, D; is the distance between the target plant and
the plants within its effective neighbourhood radius, and SN; rep-
resents the size of the plants within plant i effective neighbourhood
radius at the beginning of the census interval. The parameter p rep-
resents distance decay of neighbourhood interaction, and arepresents
the overall strength of neighbourhood effects on demography. We as-

sumed a neighbourhood interaction radius of 50m.

To simulate hierarchical structure in demographic rates, we sub-
divided our simulated 50ha plot into ten 5-ha subplots and mod-
elled subplot identity as a normally distributed group-level effect.
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FIGURE 3 For the models fit using the simulated growth data, the ragged matrix is more efficient than the sparse matrix for models of all
neighbour effects, especially for the 15m. the dashed blue line shows the change in efficiency using the sparse matrix and the solid green
line shows the change in efficiency using the ragged matrix. Greater values of ESS/time represent increased efficiency and lower values

represent decreased efficiency.

An interpretation of this group-level effect is that trees within the
same subplot tend to experience similar environmental conditions.
However, our model code is easily adaptable to other group-level
effects, such as species identity or health status.

To simulate tree growth and survival data, we generated data
from a normal distribution with an identity link (growth) and a bino-
mial distribution with a logit link (survival), incorporating tree size at
the initial census, the subplot group-level effect, and the neighbour-
hood effect as additive terms within the link function. To simulate
recruitment, we generated 100m transects in the centre of each
plot, divided into twenty 5x5 quadrats, resulting in 200 seedling
monitoring plots. We simulated recruit counts using a negative bino-
mial distribution with a log-link. In contrast to the growth and sur-
vival simulations, the number of plots remained constant throughout
simulation runs however, the number of potential neighbouring trees
ranged from 466 to 235,338.

For all three demographic rates, we initialized simulations by
randomly locating neighbouring trees across the plot. After simulat-
ing data, we fit statistical models using either the ragged or sparse
matrix approach. We then quantified how run time changed as the
number of trees increased as well as the ability of statistical models
to recapture the ‘true’ parameter values from the simulation (for full

code, check the data availability statement).

2.4 | Models assessment

We estimated the model fitting efficiency by dividing the sum of
the effective sample size (ESS) all the chains by the elapsed time
to run 1000 iterations excluding the warmup time. ESS is an esti-
mate of how much the autocorrelation within the chains increases
uncertainty in estimates. Higher ESS indicates lower autocorrelation
(Stan Development Team, 2019b). We also checked whether esti-
mated parameter intervals recover the parameters used to generate

the data. Lastly, we checked common diagnostic metrics to evaluate

convergence, including ﬁ, ESS, divergences and Bayesian fraction of
missing information. We considered convergence when the R was
lower than 1.01, all the chains mixed without any divergences and
the ESS was over 10% (Gelman et al., 2020).

To compare the centred and non-centred parametrization, in ad-
dition to convergence metrics above, we graphically explored how
well the model sampled the correlated area between the variance
and group-level effects. We also assessed goodness-of-fit by calcu-
lating the mean absolute error (MAE) between the model predic-

tions and observed data.

3 | RESULTS

3.1 | Comparison between sparse matrix and
ragged matrix performance

3.1.1 | Example 1: Plant growth

For the models assessing simulated growth data, the ragged matrix
was more efficient than the sparse for all effective neighbourhood
radii. Ragged matrices enable faster exploration of models with dif-
ferent neighbour effect radii (Figure 3). When the effective neigh-
bourhood radius was 10m, both matrix types were able to recover
the true parameters. For all other radii, the ragged matrix provided
consistently tighter credibility intervals than the sparse matrix
(Figure 4). There were no divergent transitions using either matrix
approach for radii 10m and 15m. For the sparse matrix at 10m ra-
dius and for the ragged matrix at 10 and 15 m radii, the R for all the
parameters was lower than 1.01 and the ESS was over 10%, indi-
cating convergence (Supplemental Tables S1-S3, and Supplemental
Figure S1). Models fit with other radii showed divergence transi-
tions, low ESS and high ﬁ indicating poor convergence for the mod-
els using both the sparse and the ragged matrices (Supplemental
Tables S4-S8, and Supplemental Figure S2).
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3.1.2 | Example 2: Seedling abundance

For the strangler fig case study, model efficiency was greater when
using the ragged matrix. The model fit with the ragged matrix was
3.6 times more efficient than the model fit with the sparse matrix,
with an efficiency of 3.32e07 ESS/Time(s) for the sparse matrix
relative to an efficiency of 1.19e08 ESS/Time(s)for the ragged ma-
trix. However, parameter estimates were the same for both model
parameterizations (Supplemental Figure S3 and Figure 5), and pro-
duced estimates similar to the frequentist maximum likelihood esti-
mation presented in the original analysis (Figure 5). Both Bayesian

models converged well (Supplemental Tables S9 and S10).

3.2 | Comparison between centred and non-
centred parametrization performance

3.2.1 | Example 3: Seed germination with plot-level
random effects

For the germination case study, the centred parametrization had an
efficiency of 1.32e07 ESS/time, while the non-centred parametriza-
tion sampled nearly 1,12 times more efficiently, with 1.48e07 ESS/
time (Supplemental Figure S4). Both parametrizations converged
well, with no divergences, ESS over 10%, and R lower than 1.01. This
model had to run for 30,000 iterations to converge for both para-
metrizations, a number comparatively higher than the rest of the
other models (Supplemental material, Appendices I1-XIl). The proba-
bility surface of the centred and non-centred parametrization shows
that both parametrizations explored the probability surface and that
there was no funnel shape (Supplemental material Figure S5).

The parameter estimates were similar for the centred and
non-centred parametrizations (Supplemental Figure Sé). For both

FIGURE 4 This figure shows
parameter estimates for a2 (Equation (3)),
which estimates distance decay in the
interaction strength between growth and
distance. The green shapes are the ragged
matrix parameter estimates. The blue
shapes are the sparse matrix parameter
estimates. Each of the shapes corresponds
to a different effective neighbourhood
radius. The red line is the true parameter
used in the simulation, and horizontal
lines represent 95% credibility intervals
(Cl). Note that the Cls for the 10, and 15m
radii are not visible.

parameterizations, the models slightly underestimated germination
(Supplemental Figure S7). Overall error was comparable between
the two parameterizations, with MAE = 1.196 (95% Cl: 0.002-4.453)
for the centred parametrization and MAE = 1.194 (95% Cl: 0.000-

4.376) for the non-centred parametrization.

3.3 | Model performance across simulated datasets
with varying sample size

For all simulated datasets, the ragged matrix approach was more ef-
ficient than the sparse matrix approach. The difference in run time
between the two approaches varied as sample size increased, from
an initial difference of 0 ESS/Time(s), 9,22e5 ESS/Time(s)(survival),
and 4.64e6 ESS/Time(s) (recruitment) at a sample size of 466 neigh-
bouring trees to a maximum difference of 4.61e4 ESS/Time(s) for
a sample size of 189,560 trees (recruitment). Despite these differ-
ences, parameter estimates were indistinguishable between the two
model fitting approaches (Supplemental Figures S8, S10, and S12).
Nevertheless, for sample sizes of >200,000 trees, computational
demands rendered the sparse matrix approach infeasible for spa-
tially explicit models with hierarchical structure, while the ragged
matrix approach provides a scalable method even for large datasets

(Figure 6 and Supplemental Figures S9 and S11).

4 | DISCUSSION

We have demonstrated how to leverage contemporary Bayesian
methods to estimate spatially explicit plant neighbour interactions.
The pairwise data structure of matrices representing neighbour in-
teractions often leads to large datasets that present computational
challenges. Our work shows that ragged matrices greatly increase
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FIGURE 5 The ragged matrix and the
sparse matrix approaches obtained similar
estimates of the relationship between
recruitment and the distance from a single
parent tree. Curves show the relationship
between recruitment and distance from
parent tree parametrized using the sparse
matrix, the segment function, and a
frequentist maximum likelihood model.
Shaded areas represent 95% credibility
intervals (Cl). The sparse matrix Cl is the
shaded orange and the ragged matrix is
shaded blue.

Recruitment
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FIGURE 6 Effective sample size
divided by time in the log scale of models
with simulated data on tree recruitment 14
across a range of sample sizes.
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computational efficiency, relative to full, yet sparse pairwise matri-
ces without changing the posterior estimates. We have also dem-
onstrated how Bayesian models can include hierarchical structures
in models of neighbour interactions, such as pseudoreplication be-
tween individuals of the same species or in the same plot (Schneider
et al., 2006). Correlations between random effect parameters are
inherent to many hierarchical models, and our work illustrates how
HMC provides the means to efficiently parametrize complex statis-
tical models, including diagnostic tools sensitive to detect sampling
pathologies. As big data become more common in ecology, compu-
tational limits are expected to become an increasing bottleneck for
analyses (Farley et al., 2018). We have demonstrated an algorithmic
solution, ragged matrices, that increases the efficiency of spatially
explicit analyses. Altogether, we expect that fitting neighbour mod-
els with contemporary Bayesian software packages, such as the Stan
programming language, will open up new opportunities for ecologi-
cal inference involving large, spatial datasets.

Spatially explicit neighbour matrices are frequently simplified
using an effective neighbour radius that sets effects of neigh-
bours beyond the radius to zero (Muller-Landau et al., 2004). This

1e+05 2e+05 3e+05
Sample size (number of trees)

simplifying assumption creates a sparse matrix structure, with many
zeros for non-interacting plant neighbours, that can be computa-
tionally inefficient. Models using ragged matrices were more com-
putationally efficient relative to those using entire sparse matrices
for a range of neighbourhood effect radii Built-in functions in the
Stan programming language enable sparse representations of a ma-
trix that improve storage efficiency but are limited in improving the
sampling speed (Stan Development Team, 2019b). Our results show
that ragged matrices can significantly improve computational speed
in addition to storage requirements. Beyond plant neighbourhood
analyses, ragged matrices present a solution for big data that can be
generally applied to spatial ecological questions, ranging from land-
scape graph-theoretic connectivity (Urban & Keitt, 2001) to pair-
wise relatedness analysis between individuals (Hardy, 2003).
Parameter estimation depended on the size of effective neigh-
bourhood radius for the ragged and the sparse matrices. A model fit
to simulated data revealed that (1) the most accurate parameter esti-
mates corresponded to the ‘true’ effective neighbourhood radius, (2)
accuracy decreased minimally for slightly bigger radii than the ‘true’
radius and (3) accuracy decreased more for radii smaller than the
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‘true’ radius. This result is similar to previous frequentist models, in
which larger radii provided estimates with lower biases than smaller
radii (Canham & Uriarte, 2006). However, we found that neighbour
effect radii that were much larger than the true radius resulted in
poor model convergence, which was straightforward to identify
using Stan's built-in diagnostic metrics. An alternate approach could
include estimating the neighbour effect radius as a parameter in
the model. Such an approach would enable propagation of uncer-
tainty from leaving some plants left out into model output (Uriarte
etal., 2004).

4.1 | Hierarchical modelling

We assessed the centred and non-centred parametrization of
random effects by checking model convergence and uncertainty
(Gelman et al., 2020). Our results suggest that the advantages of one
parametrization over another are highly case specific and depend on
the properties of the dataset. Although the centred parametrization
converged and the metrics did not show any sampling problem that
indicated the correlation problems, we observed lower efficiency
exploring the probability surface. In models that present stronger
correlation problems in the hierarchical structures, we would expect
less reliable parameter estimates and convergence problems. The di-
agnostic metrics provided by Stan can help to decide the appropriate
parametrization, and we would recommend comparing ESS/time for
both parametrizations to decide on the appropriate parametrization.
The diagnostic metrics also allowed us to decide for how long to run
the model to obtain reliable estimates. An interesting question for
future research will be to explore how the choice of effective neigh-
bourhood radius (e.g. Zambrano et al., 2020) potentially impacts the
performance of different parametrizations for hierarchical models.
Further research across a range of data structure and study sys-
tems will be necessary to develop concrete recommendations for
when the non-centred parameterization should be used (Gorinova
et al., 2020). As the range of potential hierarchical data structure
for neighbour interactions increases, including temporal (Valenta
et al., 2020), spatial (Pu et al., 2020) and phylogenetic autocorrela-
tion (Zaiats et al., 2020; Zambrano et al., 2017), developing efficient
ways to fit these models should be a research priority. Automatic
parametrization algorithms that build efficient sampling schemes
from the data are a promising research avenue that could be used

to parametrize neighbour interaction models (Gorinova et al., 2020).

4.2 | Research perspectives

An ever-growing body of literature seeks to understand population,
community and ecosystem dynamics through individual-based mod-
els (Deangelis et al., 2020; Hardy, 2003; Romero-Mujalli et al., 2019;
Seidl et al., 2012). Statistical models that incorporate spatial informa-
tion are critical for developing individual-based models (Canham &
Uriarte, 2006; Zhang & DeAngelis, 2020). Fortunately, the number of

datasets that include data on plant locations is growing. Any dataset
with location coordinates of plant individuals has potential to ben-
efit from neighbourhood interaction models, and many are publicly
available. As data sharing becomes the cultural norm, an increasing
number of existing experimental and observational datasets could
be used to fit neighbour interaction models (Soranno et al., 2015).
Some examples include common garden experiments (Madsen
et al., 2020; Zaiats et al., 2020) and forest inventories on permanent
plots (Gillerot et al., 2021; Lieberman & Lieberman, 2007). Our case
studies represent a limited time frame, with measurements at one
(seedling abundance) or two time points (growth and seedling ger-
mination). Understanding the demographic impacts of plant-plant
interactions and resultant consequences for population and commu-
nity dynamics will require measurements over longer time periods
(Butterfield et al., 2010; Caughlin et al., 2015; Miriti et al., 2001).
As time-series data on plant-plant interactions continue to increase
(Davies et al., 2021), we anticipate that sparse matrices will play an
even more important role in computationally efficient analyses of
these growing data.

The increasing volume of remote sensing data at the resolution
of individual plant canopies also represents novel opportunities
to fit neighbour interaction models. Individual plant canopies may
be identified using remote sensing data from aerial lidar, unoccu-
pied aerial systems, and high-resolution satellite imagery (Caughlin
etal., 2016; Shen et al., 2020). High-resolution remotely sensed data
offer opportunities to parameterize individual-based models for
vegetation at unprecedented scales. However, we expect that in-
creased uncertainty in identifying individual plants from air or space
may require statistical models that can disentangle measurement
from process error (Brack et al., 2018).

We have demonstrated how contemporary Bayesian algorithms,
such as HMC sampling implemented in Stan, provide a flexible and
efficient way to fit plant neighbourhood models. The flexibility of
the Stan programming language provides new opportunities to apply
Bayesian methods to large datasets, including optimization of sparse
matrices. In addition, uncertainty and model assessment metrics
provided in the Bayesian framework allow a more intuitive imple-
mentation of hierarchical structures (e.g. random effects; Monnahan
et al.,, 2017, Ogle & Barber, 2020) in nonlinear models with non-
normal error structures. We hope that these guidelines, together
with new ongoing improvements in model parametrizations and the
increasing availability of spatially explicit data, will help to advance

the study of population, community and ecosystem dynamics.
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