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Abstract: Any discrete quantum process is represented by a sequence of quantum chan-
nels. We consider ergodic quantum processes obtained by a map that takes the points
along the trajectory of a discrete ergodic dynamical system to the space of quantum
channels. Under a natural irreducibility condition, we obtain a theorem showing that the
state under such a process converges exponentially fast to an ergodic sequence depend-
ing on the process, but independent of the initial state. As an application, we describe
the thermodynamic limit of ergodic matrix product states and prove that the 2-point
correlations of local observables in such states decay exponentially with their distance
in the bulk.

1. Introduction

The change of a physical system over a discrete unit of time, including the internal dy-
namics and interaction with the environment, can be represented by a quantum channel.
The evolution of the system at discrete times is then obtained by the application of a se-
quence of quantum channels, which may be termed a quantum process. Mathematically,
a quantum channel is a completely positive and trace preserving linear transformation
of the system’s density matrix, p — ¢(p). In a finite dimensional Hilbert space, any
such map can be written in the Kraus form [14]

d
¢(p)=) B pB', (L.1)

i=1
where 1 denotes the adjoint (conjugate transpose) and the following holds

d

> BB =1 (1.2)

i=1
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The net change in the state resulting from the quantum process is obtained from com-
position of the channels acting on the initial state

d
pn = Guo-odipo)= Y. B BlpgB! BT (13)

yeees in=1

In the present work, we study general ergodic sequences of channels in the following
sense. Consider a map from the points of a discrete, ergodic dynamical system €2 to the
space quantum channels. Starting from any point on €2, we obtain an ergodic sequence of
quantum channels by evaluating the map at the points along the corresponding trajectory.

Here we answer the following questions: What is the action of an ergodic compo-
sition given by equation (1.3)? Is there a convergence to a simple and general limit?
We obtain a general theorem (Theorem 1) for an ergodic sequence of quantum chan-
nels, with an underlying assumption of non-negligible decoherence. This theorem states
that the sequence of states p,, converges to a fixed-point sequence that only depends on
the sequence of channels and is independent of the initial state. Theorem 2 then shows
that the composition of such channels converges exponentially fast to a stochastic se-
quence of replacement (rank-one) channels. A corollary of this result is the well-known
convergence in the translation invariant case to a fixed replacement channel.

Theorems 1 and 2 also apply to sequences of completely positive maps, without
imposing the trace preserving condition Eq. (1.2). Such sequences are naturally related
to the expectation values of observables in a matrix product state (MPS). We apply our
results to an ergodic MPS, wherein the matrices in the MPS form an ergodic sequence.
We derive a formula for the expectation values of observables in an MPS. We then prove
(Theorem 3) that the correlation functions of local observables decay exponentially with
their distance.

1.1. Background and relation to other works. The generic aspects of the behavior of
quantum systems have long been of interest. However, because of the theoretical chal-
lenge of dealing with the general case, in the past ‘ergodic’ quantum channels were con-
sidered in various works, each of which, to the best of our knowledge, is a very special
subset of possibilities in this work. For example, in [3], a channel was chosen at random
from some ensemble and then repeatedly applied, i.e., the sets {B,’C ci=1,...,d }
were all equal. In [2], time dynamics were analyzed for a quantum system with repeated
independently chosen random interactions with an environment. Other instances stud-
ied include certain independent random channels and their compositions (e.g., from a
finite set of random isometries) [4,5]. See [6] for a review. Our work considers a gen-
eral ergodic sequence and therefore serves as a vast generalization of the past work.
In particular, this work allows for long-range correlations among the channels, or even
pseudo-randomness generated by quasi-periodic dynamics. This includes the previously
considered extreme cases of independently and identically distributed (iid) and (time)-
translation invariant channels.

The formalism of quantum channels naturally lends itself to the calculation of expec-
tation values of observables and correlation functions of local observables of physical
low-dimensional quantum systems, which are well described by density matrix renor-
malization group [26] and its natural representation in terms of MPS [24]. Previous
works on matrix product states have focused on the translation invariant case [1,8,21].
Theorem 2 allows us to move beyond the translation invariant case to analyze the ther-
modynamic limit of ergodic (one-dimensional) MPS. The ergodic MPS that we consider
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may be translation invariant, quasi-periodic, or formed from random matrices with ar-
bitrary correlations.

In order to reify our theory, in a companion paper [18] we apply our main result
(Theorem 2) to the translation invariant case as well as a natural example in which each
channel is an independent random Haar isometry:

$j(p) = t,[Ujp® O, U],

where Q, is a pure state on C"*", U; is a sequence of independent Haar distributed
Dr x Dr unitaries, and tr, is the partial trace from CP"*P" to CP*P_ We analyze the
asymptotics with respect to the dimension of the environment (), or of the system (D),
or both tending to infinity, and prove that the limiting states p,, are given by

1 1
pn = —Ip+—ouW,,
DT Vi+rD2 "

where W, are asymptotically Gaussian with distribution proportional to e~
8(tr[W]), where § is the Dirac delta measure. We also present consequences for ergodic
MPSs in [18], using Theorem 3 and the theory developed in Sect. 2.3 of the present
paper to analytically compute the entanglement spectrum of an ergodic MPS across any
cut as well as the one- and two-point correlation functions in an ergodic MPS.

D w2

1.2. Physical implications. In the companion paper [18], we discuss the physical con-
sequences of the theorems presented here. Theorems 1 and 2, to the best of our knowl-
edge, are the first general theorems proved that apply to correlated quantum processes.
Similarly, Theorem 3 for the first time demonstrates a general exponential decay of
correlations for ergodic MPS, and therefore, a vast class of ground states of interacting
quantum matter.

Physically realistic quantum processes inevitably have temporal correlations, even
if the underlying process is Markovian. In the latter case, any two consecutive times
are correlated. Similarly, correlated quantum channels arise naturally in the context of
MPS for the study of non-trivial systems and states of interacting quantum many-body
systems. For example, in any finite system simulation of one-dimensional systems, the
matrices that result in the density matrix renormalization group procedure will inevitably
be correlated. As such the consideration of iid channels and the MPS formed from them
is mostly of theoretical interest.

Three physical corollaries of our theorems are [18]:

(1) Engineered non-equilibrium phases of matter realized by time-periodic driven
Hamiltonians (e.g., in Floquet systems) [16,17,23], are only meta-stable in presence of
interactions with an environment at positive temperature.

(2) An ergodic sequence of quantum channels with non-negligible decoherence con-
verges to the same final sequence irrespective of the initial state. These channels are
asymptotically replacement channels, which implies that the process cannot even con-
vey classical information with respect to the initial state. This is intuitively seen from a
unique fixed point that is reached irrespective of the input quantum state. The channels
may be very correlated or even time-translation invariant however. For example, in the
near-term quantum computing era when the random quantum circuits have decoherence
at each step of computation, the initial memory of the state is exponentially lost with the
number of applied gates.
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(3) It was previously proved that a non-vanishing gap in the thermodynamic limit
implies an exponential decay of correlations [11,19], and that in one-dimension an area
law for entanglement entropy holds [10]. Brandao and Horodecki [1] proved that in
one-dimension the exponential decay of correlations implies an area law. We prove
somewhat of a partial converse, that says finitely correlated states with an ergodic MPS
representation have correlation function that decay exponentially with distance.

1.3. Hlustration. One of the simplest examples of a channel is the amplitude damping
channel of a qubit. The state space of a single qubit can be identified with the closed
unit ball in R3, the so-called Bloch sphere. A point v = (v1, vy, v3) in the Bloch sphere
corresponds to the density matrix p; = %(1 +v-0), where ¢ = (01, 02, 03) are the
Pauli matrices

01 0—i 10
01:<10), O'2=(l. O>’ and 03=<0_1>.

The amplitude damping channel with rate ¥ € [0, 1] and axis il = (sin 8 cos ¢, sin 6 sin
¢, cos 0) is the completely positive trace preserving map

¢yi(p) = EpE'+FpF",

where

10 + 07 ¢t

with S; defined by
( cosb/2 —e ®sin 9/2)
S; = .

e?sinf/2  cosb)2

This channel models relaxation, with the rate y, of a qubit to the pure state %(I +i-0),
i.e., the ground state of the spin Hamiltonian H; = —u - o. More generally, one may
consider relaxation coupled with the Schrodinger dynamics of Hj; over an interval § to
obtain the generalized amplitude damping channel

byis(p) = by (e p o)

One may obtain a large family of ergodic quantum processes, for instance, by allowing
i to evolve according to an ergodic process on the Bloch sphere S% (with y and § fixed).
Such processes would model the relaxation of a qubit toward an axis that fluctuates with
time, such as might be expected if the qubit Hamiltonian fluctuates while the interaction
with the environment remains fixed. The longtime behavior of such processes can depend
quite strongly on the nature of the ergodic process on S%. More generally one could
allow for all three parameters (y, it, §) to evolve according to an ergodic process on
[0, 1] x §% x [0, 00).

In Fig. 1 we plot the first 2000 steps p; = ¢; o ---¢1(p), j = 1, ..., 2000 for four
distinct ergodic quantum processes of the form ¢; = ¢, i, s, #; = (cosa;, sina;, 0).
The four processes considered are

(1) Random channels, with § = 7/12, y = 0.01 and «; chosen independently and
uniformly from [0, 2).
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Fig. 1. Evolution of the state of a qubit under four ergodic quantum processes

(2) A Markov chain of channels withé = 7/12,y = 04,01 =0and a4 = aj —xj,
where x; are independent and x; = 1 or 0 each with probability one half.

(3) A quasi-periodic family of channels with § = 7 /12, y = 0.01, «; = 0 and
Ajy] = O +1.

(4) A periodic family of channels with § = 7/12, y = 0.1, 1 = 0 and aj;1 =
aj +2m /3. By sampling the sequence p; only at j = 0 (mod3), we get a trajectory
obtained by repeating the single channel ¢3 o ¢ o ¢1.

2. Ergodic Theory of Quantum Processes and Matrix Product States

2.1. Notation. Let Mp = CP*P denote the space of D x D matrices. Recall the trace-
norm of M € Mp, [|M|l; = t[|M]] as well as the Hilbert-Schmidt inner product and
norm, (M M) = tr[M"M] and ||M||2 = tr[MTM]. Let L(Mp) denote the set of linear
maps from Mp to itself. Given ¢_€ L(Mp), we define the adjoint map ¢* via the
Hilbert-Schmidt inner product: tr[M* ¢(M)] = tr[[¢p*(M )]TM]

Let Pp denote the closed cone of positive semi-definite matrices in M p,

Pp = {MEMD - z'Mz>0 forallz e(CD].
The interior of Pp is the open cone of positive definite matrices,
P = {M eMp : zTMz>0 forallz e CP withz ;éo}.

Amap ¢ € LIMp) is positive if p(Pp) C Pp, i.e., ¢ maps positive semi-definite matri-
ces to positive semi-definite matrices. The map is strictly positive if ¢ (Pp \ {0}) C P9,
i.e., ¢ maps positive semi-definite matrices to positive definite matrices. A completely
positive map is one such that ¢ ® I, : L(Mp) ® L(M,) is positive for every r, where
I denotes the identity map on M, ; let CP(Mp) denote the set of completely positive
maps over Mp,

CPMp) = {¢p € L(Mp) : ¢ is completely positive.} .
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By Kraus’s theorem [14,25], ¢ € CP(Mp) if and only if ¢ is of the form equation (1.1).
A map ¢ € L(Mp) is trace preserving if tr[¢p(M)] = tr[M] for all M; equivalently
¢*(Ip) = Ip. A quantum channel is a completely positive trace preserving map.

Let (2, F, Pr) be a probability space with

(1) T : Q — Q an invertible, ergodic, and measure preserving map, and
(2) ¢o : Q@ — CP(Mp) a completely positive map valued random variable (taking the
Borel o-algebra on CP(Mp)).

Recallthat T is ergodic provided Pr[A] = O or 1 for any measurable set A with T-1(A) =
A. We follow the convention in probability theory and suppress the independent variable
o € 2 in most formulas; when it is needed we will use a subscript to denote the value
of a random variable at a particular w € Q, e.g., ¢o.,,. To specify ¢ we could introduce

matrix-valued random variables B(g : Q2 — Mp,fori =1,...,d, and take
d .o
do(M) = 235 M By (2.1)
i=1

If we further impose the condition
d .
Z B, TB(’) = Ip almost surely, (2.2)
i=1

then ¢ is almost surely trace preserving, so ¢ is almost surely equal to a quantum
channel valued random variable. We note, however, that the matrices B(’), i=1,...,d,
are not uniquely determined by the channel ¢q. For this reason, we formulate our results
directly in terms of the channel valued random variable ¢ without reference to a specific
Kraus representation.

2.2. Ergodic theorems for quantum processes. The main focus of this paper is to study
the composition of a sequence of maps obtained by evaluating ¢ along the trajectories
of the ergodic map 7':

¢n;w = ¢0;T”a)v (2.3)

with n € Z. For our general result, we do not require the maps to be quantum channels,
i.e., trace preserving. Nonetheless, we take inspiration from the quantum channel case
and consider the dynamics p, = ¢,(0,—1) induced by the sequence (¢,);>, on (non-
normalized) states of a D-dimensional quantum system with Hilbert space H = CP.
Consider the process
Oy = ¢pno 0o 2.4

for N > 0. The only assumption we need is that

Assumption 1. With probability one there exists an Ny > 0 such that @y is strictly
positive for all N > Nj.

Physically, this assumption states that no proper subspace of the system is invariant under
the dynamics. For more discussion of the physical motivation behind Assumption 1, see
[18]

Although Assumption 1 is physically natural, it is not formulated in a way that is
easily verifiable. However, it is equivalent to two more easily verified assumptions:
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Lemma 2.1. Assumption 1 is equivalent to the following two statements taken together:

(1) For some ng > 0, Pr [Cbno is strictly positive ] > 0.
(2) With probability one, (ker ¢o) NPp = (kergy) NPp = {0}.
That is, if po(M) = 0 or ¢5(M) = 0 with M € Pp, then M = 0.

Remarks. (1) Conditions (1) and (2) are manifestly verifiable by a finite computation,
while Assumption 1, as stated, is not. The proof of Lemma 2.1 is given below in Sect.
3.3.(2) A map ¢ is strictly positive if and only if ¢* is strictly positive.! Thus condition
(1) is equivalent to ¢j o - - - o qu{,o being strictly positive with positive probability. (3) If
¢ is trace preserving, i.e., a quantum channel, then tr[¢g(M)] = tr[M] for any M, so
ker o NIPp = 0. However, the other half of condition (2) (that ker ¢; NPPp = {0}) does
not necessarily hold. For example, if D is even and ¢ (M) = PMP + SMS™ with P a
projection onto a subspace of dimension D /2 and S a partial isometry from Ip — P to
P, then ¢ is a channel but ¢*(Ip — P) = 0.

The classical Perron—Frobenius theorem [9,22] has been generalized to linear maps
preserving a convex cone, e.g., see [15]. Based on such a generalization, Evans and
Hgegh-Krohn [7] obtained results for positive maps on M p. It follows from [7, Theorem
2.3] that, if @y is strictly positive, then there is a unique (up to scaling) strictly positive
matrix Ry € Mp such that

Oy (Ry) = ANRN, (2.5)

where Ay is the spectral radius of @ . Similarly, there is a unique (up to scaling) strictly
positive matrix Ly such that
CIJTV(LN) = AnLy. (2.6)

We extend the process to —N < 0 by defining

Oy = ¢po---0p_n. (2.7)

By Assumption 1, @y is strictly positive for all sufficiently large N > 0.In Lemma 3.13
below, we show below that, with probability one, we also have ®_ y strictly positive for
all N sufficiently large. Thus the left and right eigen-matrices Ry and Ly are unique
for large |N|. We normalize Ry and Ly so that trf[Ry] = tr[Ly] = 1.

Our first result is that Ly converges as N — oo, while Ry converges as N — —o0.

Theorem 1. There are random matrices Zy, Z(’) : Q — Mp such that Z, Z(’) e Py,
lim Ry =Zog, and lim Ly = Z;
N——00 N—o0

/

almost surely. Furthermore, if we set Z, = Zo.Tnq and Z, = Zy. 1, then

Zn=n Zn-1, and Z,=¢; Z,.,,

where - denotes the projective action of a positive map on the strictly positive D x D
matrices of trace 1:

1
M = ——¢,(M).
¢ tr[cbn(M)]qj( )

! Indeed, if ¢ is strictly positive and M € Py is non-zero, then we have tr[¢p* (M)M'] = tr[M ¢ (M')] > 0
for any non-zero M’ € P, since ¢(M’) > 0. Thus ¢* (M) is strictly positive.
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Remarks. (1) If the maps ¢, are quantum channels, then Ly = %]L s0 Z), = %H for all
n.(2) This result is closely related in spirit to Oseledec’s Multiplicative Ergodic Theorem
[20], a general result on convergence of singular vectors for products of linear trans-
formations. (3) Theorem 1 generalizes a theorem of Hennion on the Perron—Frobenius
eigenvectors of products of entry-wise positive matrices [12]. In fact, Hennion’s theorem
can be seen as a special case of our result applied to the following maps

$o(M) = ) Avapeac) Megey, (2.8)
a’ﬂ
with Ag a random matrix with non-negative entries, and ey, « = 1, ..., D, the standard

basis vectors of CP. An equivalent, simpler, expression to equation (2.8) is given by
¢o(M) = diag(Ag vec(M)), where vec M is the D-dimensional vector consisting of the
diagonal entries of M and diag(v) is a diagonal matrix with the entries of the vector v
on the diagonal.

Given m < n in Z, let P, ;,, denote the rank-one operator
Pym(M) = t[Z,,M] Z,,. (2.9)

Our second result states that, for n — m large, the operator ¢,, o - - - o ¢, is well approxi-
mated by P, ;. To formulate this result precisely, we use the operator norm foramap ® €
L(Mp) inherited from the tracenormon M p, | ®||{ =max {tr[ [P (M)|] : tr[ M| ]=1}.

Theorem 2. Given m < ninZ, let V,, ,y = ¢y 0 --- 0 ¢p. There is 0 < u < 1 so that
for each x € 7 the following bound holds:

1

- W,,—P
Wy, @ "

< Cux w " (2.10)

1

forallm < x andn > x, with C x finite almost surely.

2.3. Ergodic matrix product states. The Kraus matrices associated to a random com-
pletely positive map specified as in Eq. (1.1) can be used to define a family of random
matrix product states as follows. Let

AZ=BS;TW neZandi=1,...,d.

Given an interval [m, n] of Z, we define the matrix product state

d

1 . .
WD) = 5 D AR AT i i), 2.11)

Ipgyenes in=]

where |iy, ..., i,) are the elements of the computational basis on Q)_,, C4, where
d = 2 corresponds to qubits, and the normalization constant is given by

d

N= 3 jufafy - A7)

2
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For simplicity, we restrict our attention here to the periodic boundary condition states,
as defined in Eq. (2.11).

There is a close relation between matrix product states and completely positive maps,
via which Theorem 2 can be used to characterize the thermodynamic limit (m — —oo
and n — 00) of the states defined in Eq. (2.11). A preliminary observation is that the
normalization factor N can be expressed as

D

N? = Z tr [e,gegqb,, 0 0n (eaeg>] . (2.12)

o, f=1

Since {eaeg o, B=1,..., D] is an orthonormal basis for Mp, Eq. (2.12) can, in
turn, be written as

N2 =Tr[py 00 Pl

where Tr[¢] denotes the trace of a linear map ¢ € L(Mp). Throughout this discussion,
we use tr to denote the trace on Mp and Tr to denote the trace on L(Mp).

Let us now consider the state [ (N)) = [ ([—N, N])) defined on [-N, N] by Eq.
(2.11). Given —N < m < n < N and a local observable O on the spins in [m, n], let

OM) =" Aim-erinl Oljms . Ju) Afp T Al T M Al Al (2.13)

Jmseees Jn

which is a linear operator on M p. One may easily verify that the (quantum) expectation
of O in |y (N)) is

Tr[pn o 0duioOodu_io--o¢_y]
Tr[¢n o 0¢_n] .

We can express the thermodynamic limit of (¥ (N)|O |y (N)) in terms of the matrices
Zy and Z), from Theorem 1 by using Eq. (2.14) and Theorem 2. It is convenient to

use Dirac notation for the Hilbert-Schmidt inner product on Mp, with which we have
Pum =1Zn)(Z,,| (with Py, as in Theorem 2). Let

W(0) = lim (N O |y (N)) (2.15)

(W(N)IO[Y(N)) = (2.14)

denote the thermodynamic limit of |4 (N)), where O is any local observable. Using Eq.
(2.14) and Theorem 2, we compute W (O) as follows:

W) = tim — TVZNNZ|01Zn) (2L |
N=00 Tr|ZN) (Z 41| dn 0+ 0 b | Zm—1) (2|
_ Zal01zu-n
Zno o bm | Zmor)

whenever O is a local observable on the spins in [m, n]. Since Z,, = ¢ - Zy—1, the
normalization in the denominator is given by

(2.16)

(Znst|dno-0dm|Zn) = [1’[ trwk(zk_l)]} (Zn11Zn).-

k=m
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As is well known, there is a “gauge-freedom” in the representation of a matrix
product state such as |{(N)): the state itself does not change under the replacement
Af{ — Vk_lAf( Vk_l provided we have Viy = V_p. See [21] for more discussion on this
symmetry. Choosing the matrices Vi appropriately, one can impose a gauge fixing con-
dition such as Z?Zl AiAl.T = I, which would make the associated channel maps trace
preserving. A priori, it appears that the matrices required for gauge fixing may depend
on N and it is not clear that they can be chosen consistently with the ergodic structure.
However, Theorem 1 allows us to do just that, as we now explain. To begin, let

Sm —tI'[(P ( m+])

By Theorem 1, (§,)mez is a shift-covariant sequence (§y.0 = &m—1:70) Of positive
random variables. Furthermore ¢;,(Z, . ,) = &, Z,,. Now let

~ 1 _
B (M) = —Z/]/2¢>m (Z,/n 12 g 7 1/2) /172, 2.17)

% m+1 m+1°
m

this expression is well defined since the matrices Z,, are full rank almost surely by
Theorem 1. The maps ¢,, are an ergodic sequence of completely positive maps, and a
short computation shows that they are trace preserving:

tr[<75m(M)] = S%tr I:ZI/’H+1¢m< ;rz 172 M Z/—l/Z)] —tr [‘b;kn(z;/n-q.]) Zl/n 1/2 M Z/—l/z]

m
/

=tr[z’ 70V m 7)) 1/2}_“[1\4].

m

Also,
d . .
(M) = Y AT M A,

where Al = FZ;[L/IZ Al Z, W2,
We could apply Theorem 1 directly to the sequence ¢,,, since it is straightforward to
see that these maps satisfy conditions (1) and (2) of Lemma 2.1. However, it is easier to

simply write down the left and right matrices Z’,, and Z,, directly using Eq. (2.17):

~ 1 ~ 1 r1/2 / 1/2
Zy=—1 and Zy=——727 Zn Z,
m D m [Z;n.;.] m] m+1
Since am is trace preserving we have am (Zm,l) = am . Zm,l = Zm for all m and

*
O =1
m
We now return to the expression for the thermodynamic limit W (O). Given an interval
[m, n], one may easily check that

(Znoi| @m0 0dm|Zna)
= (- EDZ), Zy 1 1ttlpn 0 0 g (Zm—1)] = &+ Em) 12 Zin—1].

For a local observable O on the spins in [m, n], we define analogous to Eq. (2.13),

OM) = D Aims-erinl Oljms o ju) Alp T Al M Al Al (2.18)
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Inserting these definitions into Eq. (2.16), we find the following remarkably simple
formula for the thermodynamic limit W of the matrix product states:

W(0) = t[0(Zn-1)]. (2.19)

Equation (2.19) can be used to obtain a bound on the two-point correlation of two
observables O and O located in disjoint intervals I1 = [m,n] and I = [m», n3]
with n; < m,. For such observables

W(0201) = tr[020Gmy—1 00 ¢u+1 0 O1(Zm,—1)].

Applying Theorem 2 to 5,,1 allows us to obtain the following

Theorem 3. There is 0 < u < 1 such that for each x € Z the following correlation
inequality holds with C,, y < oo almost surely:

[W(0201) = W(O)W(0)| = Cpy |01 — WO | |02 — W(02) By | m2,
~ - ~ (2.20)
wheneversupp[O;] € [mj,njland ¥; = ¢n,-°' . -o¢mjf0rj =1,2withn; < x < my.

2.4. Overview of the proofs. Theorems 1, 2, and 3 are proved in Sect. 4 below, using
several technical lemmas presented and proved in Sect. 3. The central idea of the proofs
is contraction mapping argument for the maps @y on Pp. This is accomplished in
Lemma 3.10, facilitated by the introduction of a non-standard metric on the set of
quantum states—see Eq. (3.3) below. The metric and a number of the ideas developed
in Sect. 3 are inspired by results in section 10 of Hennion’s paper [12]. Although some
of the statements are similar, the proofs in [12] do not directly carry over to the present
more general context. Nonetheless, for readers interested in comparing the two papers,
we note the following correspondence between lemmas in the present paper and in [12]:

3.3 10.1
3.5 10.2
Lemma gg generalizes Lemma 182 of [12].
3.9 10.5
3.10 10.6

Although we have taken inspiration from [12], we do not use any of the results therein
directly and the present paper can be read on its own.
3. Technical Results
3.1. Notation. Let
Sp={MePp : u[M]|=1}, SH={MeP}, : u[M]=1},
and

Pp ={p € LMp) : ¢ isapositive map, ker ¢ NPp = {0}, and ker¢p* NPp = {0}.}.
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Note that Pp is a convex set. Let P, denote its interior, Since any strictly positive map
satisfies the kernel condition in the definition of Pp, we have

Py ={¢p € LMp) : ¢ is strictly positive.} .

Assumption 1 ensures that ®y = ¢y o --- o ¢g € P}, for large N, with probability
one. Condition (2) of Lemma 2.1 states that ¢g € Pp almost surely, while condition (1)
states that ®,, € P}, with positive probability for some positive integer ng. Note that
any ¢ € Pp maps Pp into IPp, while ¢ € P}, maps Pp into P7,.

Theorem 1 is formulated in terms of the projective action

ooy = PO
tr[¢ (M)]

of a positive map on Sp. Note that tr[¢p(M)] # 0 for ¢ € Pp and M € Sp, so this
action is well defined.

Lemma 3.1. Let ¢ € Pp then ¢ maps P4, into P,.

Proof. We first show that ¢ (I) € IP,. Suppose on the contrary that ¢(I) € Pp \ P,
Let P denote the orthogonal projection onto the kernel of ¢ (I). Then 0 = tr[P¢p ()] =
tr[¢*(P)], so ¢*(P) = 0, contradicting the definition of Pp. Thus ¢(I) € P},. Now
let M be any point of P}, and let § > 0 such that M > 6. Then ¢ (M) > ¢ (1), so
P (M) € P, O

The sets Pp, Py, are semi-groups under composition; it follows from Lemma 3.1
that Py, is a two-sided ideal of Pp :

Corollary 3.2. Given ¢ € Pp and ¢’ € Py, we have ¢ o ¢' € P}, and ¢’ o ¢ € Py,

Proof. We have ¢’ o ¢ in Py, since ¢’ o ¢(Pp) C ¢'(Pp) C P%,. On the other hand,
for any M € Pp we have ¢'(M) € P9, and thus ¢ o ¢'(M) € P, by Lemma3.1. O

3.2. Geometry of Sp. The set Sp of density matrices is convex and compact. To im-
plement the contraction argument at the heart of the proof of Theorem 1, it is useful to
introduce a special metric on this space based on the following quantity:

m(X,Y) =sup{r : AY <X}, 3.1)
for X,Y € Sp.
Lemma 3.3. Let X, Y € Sp. Then
. [ tr[AX]
m(X,Y) = min : AeSpand rf[AY] #0
tr[AY]
trlAX] (3-2)
f : AeSHyt .
! {tr[AY] © D}

Furthermore, if Z € Sp, Then

MHo=mX,Y) <1
Q)ymX,Zym(Z,Y) <m(X,Y)
B)mX,Yym(Y,X)=1lifandonlyif X =Y
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@) m(X,Y) =0 ifand only if YV # O for some v € ker X. In particular, m(X,Y) > 0
if X €S9,

Proof. Tf 1Y < X, then A tr[AY] < tr[AX] and 2 < H2 if A € Sp and tr[AY] # 0.
Thus

tw[AX]
tr[AY]

m(X,Y) < inf{ A €Spand tr[AY] # 0} .

To see that the infimum is attained and is equal to m (X, Y), note that if . = m(X,Y)
then 0 must be an eigenvalue of X — AY with an eigenvector # such that Yu # 0 (else
we could increase A by a small amount without violating AY < X). Let A = u (u, -).
Then tr[AX] = m(X, Y)tr[AY] and tr[AY] # O.

To see that we still obtain m (X, Y) if we restrict the infimum to range over A € S9,,
note thatif AY £ X, then we must have (i, Xu) < A (ﬁ, Yu) < O for some u. Since X
is positive, it follows that (i, Yu) # 0 and A > . Taking M = u (u, -) + 81 for

(i, Xu)
small enough § we see that A > inf{tr[AX] : A € §3,}. Thus

(u, Yu)
tr[AY] °

w[AX]
tw[AY]

m(X,Y) = inf{ AeS;)} .

The lower bound in part 1 is clear. To see the upper bound note that g%ﬂ = 1.

For part 2, note that if AZ < X and nY < Z, then AnY < X. For part 3, note that if
mX,Y)ym(Y,X) =1thenm(X,Y) =m(Y,X) =1s0X <Y and Y < X. Finally,
for part 4, note that if Yv # 0 and X9 = 0 then A (¥, Yv) > 0 = (v, Xv) for any
A > 0. Conversely, if YU = 0 for any ¥ € ker X, then Y is reduced by the subspace
decomposition ker X @ ran X, and with respect to this decomposition

00 00
X:<0X’> and Y:<OY’>’
where X', Y’ are operators on ran X. Furthermore ker X’ = {0}, so X" > 81 for some
§ > 0. It follows that LY’ < X’ for small A > 0. Then AY < X, som(X,Y) > 0. O

Corollary 3.4. dy(X, Y) := —logm(X, Y) — logm (Y, X) is a metric on Sp.

The metric dy(X, Y) is slightly unpleasant; it is unbounded and takes the value oco.
A much nicer metric is given by
1—mX,Y)m(Y, X)

ax.¥) = 1+mX, \ymY, X) (3-3)

Lemma 3.5. d is a metric on Sp such that

(1) sup{d(X,Y) : X,YeSp}=1,and
(2)if X € Sy andY € Sp, thend(X,Y) = 1 ifand only if Y € Sp \ SY,.

Proof. Symmetry of d is clear. Furthermore, 0 < d(X,Y) <l andd(X,Y) = 0if and
only if m(X, Y)m(Y, X) = 1, which holds if and only if X = Y by Lemma 3.3. To
prove the triangle inequality, let

1—ys

f(S)=1 . =—1+
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for 0 < s < 1. Then f is decreasing and

2 — 2st 1+ st 1 — st 1 1 — st
S+ f@) = =2 =

L+s+1+st l+s+r+st L+st T+ 2L T+st

The maximum of ”:t over s, t € [0, 1] is 1, from which it follows that f(s) + f(t) >

f (st). The triangle inequality for d follows from this inequality and part 2 of Lemma 3.3.

To prove that the diameter of Sp is 1 as claimed, we simply need to find X, Y € Sp
with m(X,Y) = 0. This holds, for instance, if X € SOD and ker Y # {0}, which also
leads to the result noted in item 2. O

Lemma 3.6. Let X, Y € Sp with X # Y. Then

ULvy — Upv
d(X,Y) = M7 (3.4)
uivy +urvy
where X = u1A_+urAyandY = vi A_+vy Ay with Ay the endpoints of the intersection
of Sp with the line through X and Y.

Remark 3.7. Since X and Y lie on the segment connecting A+ we have 11 +uy = 1 and
v; + v = 1. Thus we have

— v — v
d(X.Y) = lur — il . luz — va|

up+vy —2uvy  us+vy —2urv

Proof. Lett, and_ be the largest and smallest real numbers such that? X+(1—#)Y € Sp.
Notethatr. <0 <1<t and Ax =1+ X + (1 — ty)Y. Furthermore

te— 1 1—t ts —f_
, Uy = , V= , and vy = ,
th—1_ th—1_ - [

uy =

so Eq. (3.4) is equivalent to

fe — 1

dX,Y) = ——— |
N

(3.5)

Note that each A+ must have a non-trivial kernel. For example, if A_ were positive-
definite, then A_ — §(X — Y) would be positive definite for small §, contradicting
the minimality of 7_. A similar argument applies to A;. Furthermore we must have
ker A_ ¢ ker Ay and ker Ay ¢ ker A_. Indeed, suppose that ker A, C ker A_. Then
we would have Ay —§A_ > 0 for small §, contradicting the maximality of z,. The proof
that ker A_ ¢ ker A, is similar.

Suppose thatz, = 1. Then X = A, and X+ (1 —1)Y is not positive definite whenever
t > 1,i.e., X —AY is not positive definite for any A > 0. It follows that m (X, Y) = O and
thus d(X, Y) = 1, so Eq. (3.5) holds. Similarly, if /- =0then Y = A_,d(X,Y) =1,
and Eq. (3.5) holds.

Now suppose thatz, > 1 and7_ < 0. Then X and Y are in the interior of the interval
connecting A_ and A;. Letr = min {&; /v; : i =1, 2}. Then

rY =r(viA_ +vA;) < ulA_+urAy = X.
Thus r < m(X, Y). On the other hand

mX,Y)iA_ +12A) =m(X, Y)Y < X =u1A_ +urA,.
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Let w, € ker A; \ ker A_. Then m(X, Y)v; (w4, A_w;) < uy (Wy, A_wy). Thus
m(X,Y) < up/vy. Similarly, working with w_ € ker A_ \ A; we find that m(X, Y)
< up/vy sothat m(X,Y) < r. Thus m(X, Y) = r. Similarly, m(Y, X) = min {v; /u; :
i =1,2}. Thus,

. furva uzvg
m(X, Yym(Y, X) = mm{__,__}’
Ul Uy v Uy

from which Eq. (3.4) follows. O
Lemma 3.8. Let X, Y € Sp, thend(X,Y) > $tr|X — Y.
Proof. Based on the remark following Lemma 3.6, we have

lup — vl
dX,Y) = ———F—— > [u; —v1l,
up+v; —2u1v1

where X = ujA_ +upA; and Y = viA_ + 1o A, with AL as in Lemma 3.6. Since
up =1—urandvo, =1—v;,wehave X — Y = (u; — vi)(A_ — A;). Thus

—lur —vi|(A-+A) <X =Y < |ur —vi|(A- + Ay),

sotr | X — Y| <2|uy —vyql. |

Lemma 3.9. Let di(X,Y) = tr|X — Y| denote the trace norm metric on Sp. Let
Y € S5, X € Sp and let X,, be a sequence in Sp such that lim, d;(X,, X) = 0.
Then lim, d(X,,Y) = d(X,Y). In particular, the spaces (S$,,d) and (S%,,d;) are
homeomorphic.

Remark. The spaces (Sp, d) and (Sp, d1) are not homeomorphic, and look very differ-
ent on the boundary Sp \ S7,. For instance, if P € Sp is an orthogonal projection onto a
proper subspace, then Y; = (1 —¢) P+t converges to P indj ast — 0,butd(P, Y;) =1
for all r > 0 (since m(P, Y;) = 0). The space (Sp, d;) is compact, but (Sp, d) has an
uncountable number of components.

Proof. We will show that m(Y, X) = lim,, m(Y, X,,) and m(X, Y) = lim, m(X,,Y).
Since Y € Sj,, we have Y > 41l for some § > 0. Given € > 0 we have tr | X, — X| < €
and thus X,, < X +elland X < X, + € for large enough n.

We first show that m(X,Y) = lim, m(X,, Y). Let e > 0. Given A < m(X, Y), so
AX <Y,wehave Y < X < X, +€l. Thus (A—%)Y < X, forlarge enough n. It follows
that liminf,, m(X,,Y) > m(X,Y) — g On the other hand if A < lim sup,, m(X,, Y),
then we have AY < an < X + el along a subsequence n; — 0o. Thus (A — §)Y <X,
and so limsup, m(X,,Y) <m(X,Y)+ § We have shown

m(X,Y)—§ < lin}iinfm(X,,,Y) < limsupm(X,,Y) <m(X,Y)+5.

n

Taking € — 0, we see that lim,, m(X,, Y) = m(X, Y) as claimed.
Now we show that m(Y, X) = lim, m(Y, X,). Let 0 < t < 1 and choose ¢ small
enough that re < (1 — ). Given A < m(Y, X), we have

A X, < tA(X+el) <tY+(1=-nNdl <Y
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forlarge n. Thuslim inf, m(Y, X,) > tm(X, Y). Similarly, given A < lim sup, m(Y, X,),
we have tA X < t)L(X,,_,. + €l) < Y along a sub-sequence n; — 00. Thus

tm(Y, X) <liminf m(Y, X,,) <limsupm(Y, X,) < lm(Y, X).
n—00 n—00 t
Taking t — 1, we find that m(Y, X) = lim, m(Y, X,), completing the proof of (1).

To prove that (S9,,d;) and (S, d) are homeomorphic, note that d; < 2d by
Lemma 3.8. Thus convergence in d implies convergence in d; on all of Sp. On the
other hand, if X,, — X e §%, with respect to d; then lim, d(X,, X) = d(X, X) =0,
by the first part of the lemma, so X,, converge to X with respect to d. O

For any map ¢ € Pp we define the contraction coefficient
c(¢) = sup{d(@-X.¢-Y) : X,Y €Sp}. (3.6)
The following Lemma lists various properties of c(¢).

Lemma 3.10. Let ¢ € Pp, then

(1) For X,Y € Sp,d(¢p-X,¢-Y) < c(¢)d(X,Y).

(2) We have c(¢) < 1 and c(¢p) < 1 ifand only if ¢ € P},.

() If¢" € Pp, then c(¢’ o ) < c(¢p")c().

) c(9) = c(¢").

Remark. Thus, if ¢ € P, then the projective action of ¢ on Sp is strictly contractive

with respect to the metric d.

Proof. To prove (1), suppose that¢p € Pp. If¢p- X =¢ -V, then0=d(¢p- X, -Y) <
c(¢)d(X,Y). Now suppose that ¢ - X # ¢ - Y and let 71 and A4 be as in the proof of
Lemma 3.8. Similarly, let A, = s1¢ - X + (1 —s+)¢ - Y with s the largest and smallest
real numbers such that s¢p - X + (1 —s)¢p - Y € Sp.

The linear map ¢ maps the two dimensional space spanned by A_, A, into the two
dimensional space spanned by A’ , A’,. Let the matrix of this map (with respect to the
bases A_, A, for the domain and A’”_, A/, for the range) be

ap
yé)’
We claim that «, 8, y, § > 0. To see that &, y > 0, note that
PAD) = 1_¢pX)+ (1 —1)p(Y) = [ dp(X)g- X+ (1 —1_)rp(Y)g-Y].
Thus

boa t_tr[¢<X>]¢_X+[1_t_tr[cl><X>]]¢.Y

trl¢(A-)] tr{¢(A-)]

Since ¢ - A_ € Sp we must have s_ tr[¢p (A_)] < t_ tr[¢p(X)] < sy tr[¢p(A_)]. Thus
$(AZ) = a A+ y Al, with

¢ (O] = s wlp(A)] = Sy rlp(A)] —t-tw[p(X] _

Sy — S— Sy — S

The verification that 8 > 0 and § > 0 is similar.
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We also have «é + By > 0. Indeed if a§ + By were zero, then the matrix would
have a zero row or a zero column. A zero column would imply that one of ¢(A_) or
¢ (Ay) is zero, a contradiction. A zero row would imply that ¢ (A;) and ¢ (A_) were
both proportional either to A/, or A” . Suppose both were proportional to A”_ . Then both
points would lie on the line between 0 and A’ and also on the line between A’ and
A!,. Since these lines intersect only in A~ we would have ¢ (Ay) = ¢p(A-) = A,
contradicting the assumption that¢ - X # ¢ - Y.

With these preliminaries, we can now prove (1) by computing d(¢ - X, ¢ - Y). Let
X =uA_+urA,,Y =viA_ +vrA,. Then,

[(ocuy + Buz)(yvy +8v2) — (Yur + duz)(avy + fva)]
(auy + Buz)(yvy +8v2) + (yuy +duz)(avy + Bv2)
lad — Byl luiva — usvi
ay2u1v1 + (Ol5 +,3)/)(u102 + uzvl) +,382u2v2
ld — By | lujva — uzvy|
ad+ By upvy+uzv;
=d(@-A-,¢-ADd(X,Y) < c(P)d(X,Y).

d(¢-X,¢-Y) =

Turning now to (2), if ¢ € Pp \ P}, then ¢ - X € Sp \ S}, for some X € Sp \
S°D (otherwise ¢ would be strictly positive). Thus, c(¢) = 1, since by Lemma 3.5,
d(¢-X,¢-Y)=1forY e§Y,. To see that c(¢) < 1 for ¢ € P}, note that ¢- is a
continuous map from (Sp, dy) into (S9,, d;). By Lemma 3.9, F(X,Y) =d(¢-X,¢-Y)
is a continuous map of Sp x Sp into R, where we take the d;-product topology on
Sp x Sp. Since Sp x Sp is compact we conclude that there are X, Y € Sp such that
c(@)=d(@-X,¢-Y).Sincedp-X,¢-Y €Sj, wehave 0 <m(¢p-X,¢-Y) < 1and
O<m(p-Y, ¢ -X),sothatc(p) =d(¢p-X,¢-Y) < 1.

To prove (3), note that ¢’ o ¢ - X = ¢’ - (¢ - X), so that

d@'op-X,¢'0¢-Y) < c(¢Ndd-X,¢-Y) < c(p)c(pNd(X,Y),
by part (1).

Finally, to prove that c(¢) = c(¢*), we use the variational formula (3.2) which
implies

ufAX] tu[A'Y]

m(X,Y)m(Y, X) = inf {m tr[AY]

A,A’eS‘b}.

It follows that
* * l
tr[¢p*(A)X] tr[¢p*(A)Y] AN GS?)}
trl¢p*(A) X] tr[gp*(A)Y]
> inf {m(¢™ - A, ¢ - Aym(¢*™ - A", ¢* - A) : A A €S},

m(¢~X,¢~Y)m(¢-Y,¢-X)=inf{

and thus that

inf {m(¢* - X, 9" - Y)m(@*-Y.¢*-X) : X, Y €Sy}
=inf {m(¢ X, ¢ -Y)m(p Y, ¢ -X) : X, Y €S}},

from which it follows that c(¢) = c(¢™). O
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3.3. Existence of Zy and Z;,. We start by proving Lemma 2.1, which states the equiva-
lence of Assumption 1 to two conditions, which we reformulate here in the notation of
the Sect. 3.1:

(1) For some ng > 0, Pr [CDHO € PE] > 0.
(2) With probability one, ¢g € Pp.

Recall that ®y = ¢y o - - - 0 ¢, where ¢, = ppn,,. Let
T = inf{Ng >0 : &y € P for N > No}.
Note that Assumption 1 is equivalent to the statement that 7 < oo with probability one.

Proof of Lemma 2.1. We first show that Conditions (1) and (2) imply T < oo with
probability one. By ergodicity and condition (1),

Pr| | J{®,. 1, ePp} | =1
k=0

Thus with probability 1 there is 0 < oo such that ®,. 70, = @Pginy 0 - -0 s € P}
By Condition (1) and the shift invariance of probabilities, we have ¢, € Pp for all n,
with probability one. By Corollary 3.2, it follows that

Oy = pyo-- '¢n0+a+1 o (Dno;T"a) oPs_10---0¢yp

is strictly positive for N > ng+ 0,807 > no+o0

Conversely, note that Assumption 1 implies Condition (1) directly. To prove Condition
(2), note that for N > 0, we have ker @ D ker ¢y. It follows that ker 9 N Pp = {0}
if &y € Py for some N. Thus Assumption 1 implies that ker ¢o N Pp = {0} with
probability one. To prove the corresponding statement for ¢, first note that if ¢y =
¢n o Oy is strictly positive, then we have tr ¢j§, (A)®ny_1(B) > Oforevery A, B €
Pp \ {0}. Thus Assumption 1 implies that, with probability one, ker ¢3, N Pp = {0} for
all sufficiently large N. Let A, denotes the event

Ay = [ {o: kergy.,NPp=1{0}} .
N>M

Then (A M)i,}’:0 is an increasing sequence and Pr[| J y Am] = 1. Thus limy, Pr[Ay] =
1. However, Ay = TM(Ag) soPr[Ay] = Pr[Ag] for all M. We conclude that Pr[Ag] =
1 and thus that ker ¢; N Pp = {0} with probability one. |

Lemma 3.11. Let cy = c¢(Dy), with c(+) the contraction coefficient in (3.6). Then

. N . 1/N
lim cA/, = 1nch/, =K
N—oo N

exists almost surely, where k € [0, 1) is non-random and

1 1
Ink = ngnoo NIE{IncN} = iI]\l/f N]E {Incy}. (3.7)
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Proof. Notethatlncyiy = Inc(Pyip) =Inc(Py.puri,0Ppy). < Inc(Dy.pusiy,)+
Inc(®y) and Inc(Py) < 0 it follows from the subadditive ergodic theorem [13] that
the limit and infimum exist, and that Eq. (3.7) holds. Since 0 < c(Py) < 1, we have
0 < x < 1. By Condition (1) of Lemma 2.1 and Lemma 3.10, we see that ¢,, < 1 with

positive probability. Thus n;'E {Inc,,} < 0 and so Ink < 0. O
We can now prove the existence of the limiting processes:

Lemma 3.12. Let ®3, and Ly be as in Eq. (2.6). As N — oo, Ly converges almost
surely to a limit Z, such that:

(1) Z;, € S, almost surely;
(2) ¢g - Z(/);Tw = Zé;w; and
(3) forY € Sp and N > 0, we have d(®}, - Y, Z)) < c(Py).

Proof. Let By = CD‘;V -Sp,so By C By—1.ltfollows from Assumption 1 that By C S5,
for large enough N. Thus, by Lemma 3.9, By is compact in the d-topology for large N
(since By is compact in the dj-topology for every N). Thus Ny By is non-empty. On
the other hand,

diam By = sup {d(®} - X, Py -Y) : X, Y €Sp} =< c(®y) — 0,

by Lemmas 3.10 and 3.11. Thus Ny By = {Z} for a single point Z;. It is clear that
Z,, € S, almost surely.

We claim that Ly € By. Indeed, since CID}kV(LN) = AyLy and tr[Ly] = 1, it
follows that ®% - Ly = Ly. Thus, d(Ly, Z(’)) < diam By — 0 almost surely. It
follows that Z(’); Tw = UMy—oo Ly;Te. However Ly,7, is a normalized eigenmatrix

for @;;Tw = ¢ o0y, Thus ¢; - Ly;7w = PN, - LN:Tw € By41, from
which it follows that ¢ - Ly.7, — Z. Finally, let Y € Sp. Then ®} - Y € By, so
d(®y - Y, Zj) < diam By < c¢(®Py) as claimed. O

A similar argument can be applied to ®* ,, to conclude the existence and properties
of Zy. To this end, let ¢, = ¢*, and

Uy = Yyo- -0y = q)fNo-uoqﬁg = deN.
First we note that the process Wy satisfies Assumption 1:

Lemma 3.13. With probability one, there is Ny < 00 such that Wy € Py, for all
N > Nj.

Proof. We will show that Conditions (1) and (2) of Lemma 2.1 hold. Condition (2) for
Yo follows from the corresponding statement for ¢y, since Yo = ¢ and ¥; = ¢p. To
see that Condition (1) holds, note that W = ®_,;.,, = ®,,.7-n0,,- Thus by the shift
invariance of probabilities, Pr[\IJ,fO € Ppl = Pr[¥,, € Pyl > 0. m|

The existence of Z follows directly from Lemma 3.12 applied to Wy = &* ,:

Lemma 3.14. Let ® and Ry be as in Eq. (2.5). As N — —o0, Ry converges almost
surely to a limit Zo such that:

(1) Zy € S}, almost surely;
(2) ¢0 . ZO;T—lw = Z(),' and
(3)forY e Spand N > 0, we have d(®_y - Y, Zg) < c(P_p).
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4. Proofs of the Theorems

4.1. Proof of Theorem 1. We have already shown the existence of the limits limy_,
Ly = Zyand limy_, o Ry = Zo. Let Z, = Zo,rne and Z;, = Z.;u,. Then Zy =
¢o-Z_1 and Zy = ¢ - Z| by Lemmas 3.12 and 3.14. Thus Z, = ¢, - Z,—1 and

S / H
Z, = ¢, - Z,,, asclaimed. |

4.2. Proof of Theorem 2. Let © € (x,1) be as in Lemma 3.11. Given m < n, let
Wym =¢no---opyand Py (M) = tr[Z,,M] Z,. To prove Eq. (2.10), we must show
that

1

— M) — P, M) < C T M 4.1
r tr[\P;'l"m(]I)] nm (M) o (M)| < w,x M r|M]| 4.1)

whenever m < x < n. In fact, it suffices to prove Eq. (4.1) for M € Sp. Indeed, any
matrix M can be written as a linear combination

4 4
M =Y ajM; withM; €Spand Y |a;| <2tr[|M]]. 4.2)
j=1 j=1

Thus Eq. (4.1) for M € Sp implies the same bound for general M, with the constant C,
increased by a factor of 2. (To see that Eq. (4.2) holds, note that for self-adjoint M we have
M = tr[M,]ps —tr[M_]p_, where p+ = %Mi with M the positive and negative
parts of M. For a general matrix M, we proceed by a%)plying this decomposition to the real
and imaginary parts M = M, +iM;, where M, = 5(M +M")and M; = %i(M —Mh)

Now let M € Sp be fixed. Note that W, , = ®py—p;n and ¥y, = &7 . . By
Lemma 3.8 and Lemma 3.14 we have ’
tr{|l——Ww M)—-Z7 < 2¢(¥, .
rl:trklln,m(M) n,m( ) ni| < 2¢( n,m)
By Lemma 3.8 and Lemma 3.12, we have
tr[ Wy, (M)] ,
——— —tr[Z, M]| < 2c(V¥ ,
tr[\Il;,k,m(H)] r[ m 1l < 2¢( n,m)
where we have noted that tr[\IJ;’l‘,n OM] = [V, n(M)]. Thus
tr ;‘yn m(M) — Py m(M)' < 2c(Wn,m) (1 + M) < 4c(¥n,m)
[y, (M1 ’ - ’ (W, (D] ) ~ o
4.3)

since tr[Wy, , (M)] = e[V, (DM] < w[¥;, (D] for M € S7,.

To prove Eq. (4.1), first suppose thatm < x < n.Thenc(W, 1) < c(Wy x+1)c (W m)-
ByLemma3.11 wehave c(W, x41) < Dy x """ and c(Wy ;) < Dy ™~ for suitable
D, < oo. Thus c(W, m) < Di’xun_m, so Eq. (4.1) follows from Eq. (4.3). For
m < x =n, we have c(W;; ) = c(Wxm) < Dy xpt™ ™, so Eq. (4.1) holds in this case
as well. |
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4.3. Proof of Theorem 3. We have

W(qul)—W(Oz)lV(Oll _ o ~ ~
=tr [(02 - W(OZ)‘I/Z) O Pmy—10-+- 0@y 410 (Ol(Zml—l) - W(Ol)\ljl(zml_l))] ’

By Theorem 2, there is 0 < p < 1 such that

tr Ua"mzfl 0---0 (Znﬁl(M) - ZJn| tI‘M|] < Cpxp™ M ulIM]],

for any D x D matrix M, where we have used the fact that ¢;|+1 o-- -5:1271 M =1
Equation (2.20) then follows. |
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