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Abstract: We study topological indices of Fermionic time-reversal invariant topolog-
ical insulators in two dimensions, in the regime of strong Anderson localization. We
devise a method to interpolate between certain Fredholm operators arising in the con-
text of these systems. We use this technique to prove the bulk-edge correspondence for
mobility-gapped 2D topological insulators possessing a (Fermionic) time-reversal sym-
metry (class AII) and provide an alternative route to a theorem by Elgart-Graf-Schenker
(Commun Math Phys 259(1):185–221, 2005) about the bulk-edge correspondence for
strongly-disordered integer quantum Hall systems. We furthermore provide a proof of
the stability of the Z2 index in the mobility gap regime. These two-dimensional results
serve as a model for the study of higher dimensional Z2 indices.

1. Introduction

Topological insulators (TIs) [HK10] are characterized chiefly by their insulator condi-
tion, which is usually formulated as a gap requirement, i.e., that the Hamiltonian has
an interval of energies without any states–a spectral gap. However, some properties of
these systems can be explained only if one has, more generally, a mobility gap, namely
an interval of energies associated to dynamically localized eigenstates, a situation aris-
ing under strong disorder. For example, the plateaus of the integer quantum Hall effect
require this regime [Gra07], and certain physically-appealing interpretations of topolog-
ical systems appear precisely in the strongly disordered regime, e.g., for Floquet systems
[Nat+17,ST19] with orbital magnetization.

Curiously, all of the studies of topological systems in themobility gap regime [EGS05,
GS18,ST19,Sha20] upuntil now relied crucially on local trace formulas for the invariants
to prove the bulk-edge correspondence and stability of the indices. However, such trace
formulas seem out of reach for systems whose invariants are Z2-valued, such as time-
reversal (TR) invariant 2D systems. Indeed, a local trace formula for Z2 invariants has
not been defined yet and there are reasons to doubt its existence altogether (since such a
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formula should imply continuity, but we know the index should be allowed to jump by
even integers). For such Z2 systems, a different approach is required to study strongly-
disordered mobility gapped systems without a local trace formula.

One possibility is to use index formulas in place of trace formulas, an idea first
introduced by Bellissard and collaborators [BvS94] to exhibit integrality and continuity
of invariants. In [GS18,Fon+20] Fredholm index formulas were used to prove the bulk-
edge correspondence, but these proofs were restricted to the spectral gap regime, since
it was not clear how to perform homotopies of operators associated with Hamiltonians
not possessing a spectral gap. Here we finally extend the Fredholm perspective to the
mobility gap regime (by adapting the scheme of [Fon+20]), thus enabling homotopy
arguments for strongly-disordered Z2 systems.

Let us briefly describe one of the mathematical problems we shall face. Let H be a
separable Hilbert space and B(H) be the C∗ algebra of bounded linear operators on it.
If Q is an orthogonal projection and F is Fredholm such that [Q, F] is compact, then

QF := QFQ + Q⊥

is a Fredholm operator. Indeed, by Atkinson’s theorem [BB89], F has a parametrix
G, and one verifies that QG is a parametrix of QF . Moreover, if A is an orthogonal
projection, then

Q exp(2π i A) is Fredholm ; (1.1)

indeed, exp(2π i A) = 1 so Q exp(2π i A) is the identity operator (thus trivially Fred-
holm). In the context of disordered 2D-TIs, the topological invariants arise as indices of
Fredholm operators of the form Q exp(2π i A), with A not a projection, but nonetheless
close to a projection in an approximate sense (see Definition 2.7 below) so that (1.1) still
holds. This approachwas used in [Fon+20] to study disordered but still spectrally gapped
systems. To deal with mobility gapped systems, we must further weaken the sense in
which A is an approximate projection, while still keeping the basic logic leading to (1.1).

An additional major feature of the present paper is the proof that the Z2 index is
(deterministically) invariant with respect to the choice of the Fermi energy within the
mobility gap. This fact has profound implications for the entire classification theory of
topological insulators in the strong disorder. Indeed, our method lends itself to study
the strong disorder regime of higher dimensional and different symmetry class systems,
although here we merely concentrate on the two dimensional case. To be sure, works in
the mathematical physics literature have appeared regarding the classification problem
of single-particle topological insulators (see e.g. [Thi16,BCR16,GS16,BKR17,Kel17]),
and some of the indices defined even remain valid in the strongly disordered regime.
However, the classification problem itself remains open in that regime, and the stability
of the Z2 invariant would be a first step in this direction.

In the physics literature the question of the stability of theZ2 index has also been stud-
ied; see e.g. analytically in [XM06,MB16], numerically in [Ort+16,Sir+17,Yam+11]
and experimentally in [Kön+07,Du+15,ZZS14].

Finally, we wish to comment on the phrase "strongly-disordered insulators". In the
physics literature one sometimes finds "strongly-disorder" to be synonymous with what
in mathematical physics is referred to as "complete localization", i.e., when the entire
energy spectrum is localized and there are no interesting topological indices. Here we
mean by this phrase rather that disorder is so strong that the spectral gap closes, but parts
of the rest of the spectrum remains (possibly) delocalized.
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This paper is organized as follows. We begin by describing the mathematical setting
and the sense in which we take an operator to be approximately a projection. We go on
to define the induced edge system, the TR symmetry operator, and the relevant indices
for TR invariant systems. In the heart of the paper, we prove the invariance of the Z2
index in Theorem 4.1 and the bulk edge correspondence in Theorem 4.4 and finally we
delegate some technical points of the proofs to the appendix. Some further discussion
about future directions is presented right before the end. Of independent interest may be
the appendix discussing the so-called “SULE” basis and its applications, Appendix B.

2. Setting

We consider tight-binding, single-electron models in two-dimensions so that our Hilbert
space is eitherH = �2(Z2)⊗C

N for a bulk, infinite, sample or Ĥ = �2(Z×N)⊗C
N for

an edge, half-infinite, sample. Here N ∈ N≥1 is some fixed internal number of degrees
of freedom we allow on each site (number of atoms in the unit cell, spin, iso-spin, etc.).
Throughout the discussion edge objects shall carry a hat.

Between these two Hilbert spaces one has the natural injection

ι : Ĥ ↪→ H
which extends a half-space function φ ∈ Ĥ into the full plane by taking ιφ to be zero
in the lower half plane. With its adjoint ι∗ (restriction to the half-space) we find the
relations

ι∗ι = 1Ĥ ; ιι∗ = �2 ,

with �2 being orthogonal projection onto the upper half plane. We also will work with
the projection onto the RHS of space, �1, and oftentimes use the notation

∂ j A ≡ − i[� j , A] (2.1)

for the non-commutative derivative of A in direction j = 1, 2.

2.1. Spatial constraints. If A is an operator on either Hilbert space and x, y are points
in Z

2 (or Z × N) then Axy ≡ 〈δx , Aδy〉 is an N × N matrix with entries in C. We
are interested in formulating decay in terms of its matrix norm as ‖x − y‖ → ∞ (off-
diagonal decay) or as x, y → ∞ (diagonal decay). The following notions are recalled
from [ST19, Section 3]. They are formulated for H but have analogous definitions for
operators on Ĥ.

Definition 2.1 (Local operator). An operator A ∈ B(H) is local if and only if for each
α ∈ N sufficiently large, there exists Cα < ∞ such that

∥
∥Axy

∥
∥ ≤ Cα(1 + ‖x − y‖)−α (x, y ∈ Z

2) .

We denote the space of local operators as LOC.

Operators in LOC arise when applying the smooth functional calculus to operators
which are local with exponential off-diagonal decay rate, see [EG02, Lemma A.3] e.g..
For us these will be smooth functions of Hamiltonians. We also have operators whose
off-diagonal decay rate is not uniform in the diagonal direction,
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Definition 2.2 (Weakly-local operator) An operator A ∈ B(H) is weakly-local if and
only if there is some ν ∈ N such that for any μ ∈ N sufficiently large there is a constant
Cμ < ∞ so that

∥
∥Axy

∥
∥ ≤ Cμ(1 + ‖x − y‖)−μ(1 + ‖x‖)+ν (x, y ∈ Z

2) . (2.2)

We denote the space of all weakly-local operators as WLOC.

In our application, the sufficiently large threshold forμ is, say, 10 andfixed throughout
the paper (it is dictated by the finite number of algebraic operations in the WLOC *-
algebra, see [ST19, Section 3]).

Of course if ν = 0, we recover the notion of a local operator. Such weakly-local
estimates arise (almost surely) for measurable functions of random Hamiltonians which
exhibit Anderson localization [EGS05], e.g., χ(−∞,μ)(H) ∈ WLOC almost-surely for
a Hamiltonian H which is Anderson localized around μ. In [ST19, Section 3] it was
shown that WLOC is a *-algebra.

Finally, we have the notion of confined operators, with matrix elements that decay
along one axis:

Definition 2.3 (Weakly-local and confined operator) An operator A ∈ B(H) is weakly-
local and confined in direction j ( j = 1 or 2) if and only if there is some ν > 0 such
that for any μ > 0 sufficiently large there is a constant Cμ < ∞ so that

∥
∥Axy

∥
∥ ≤ Cμ(1 + ‖x − y‖)−μ(1 + |x j |)−μ(1 + ‖x‖)+ν (x, y ∈ Z

2) . (2.3)

We denote the space of such operators as WLOC j . The space of operators obeying the
estimate (2.3) with ν = 0 is denoted LOC j .

It is a fact that WLOC j forms a *-closed two-sided ideal within WLOC, see [ST19,
Section 3]. Moreover,

WLOC1WLOC2 ⊆ WLOC1 ∩ WLOC2 ⊆ J1 , (2.4)

the latter space being the trace-class operators. Here the juxtaposition WLOC1WLOC2
on the left indicates the set of all pairwise products where each factor comes from the
corresponding space. Finally, we have the implication [ST19, Cor. 3.16]

A ∈ WLOC �⇒ ∂ j A ∈ WLOC j , (2.5)

with ∂ j A as in (2.1).

2.2. Deterministic mobility-gapped insulators. .

Definition 2.4 (Physical system) A Hamiltonian is an operator H ∈ LOC which is
self-adjoint.

Definition 2.5 (Insulator). Let
 ⊂ Rbe an interval and let B1(
)denote the set ofBorel
measurable functions f which are constant on (−∞, inf 
] and on [sup
,∞) with
‖ f ‖∞ ≤ 1. AHamiltonian H ismobility-gapped on
 if and only if (1) f (H) ∈ WLOC
for all f ∈ B1(
), where the estimate (2.2) is uniform in the choice of such f , and (2)
all eigenvalues of H within 
 are of finite multiplicity.
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Of course, if H is spectrally gapped on 
 (i.e., σ(H)∩
 = ∅), then H is mobility-
gapped on 
. Indeed, in this case f (H) ∈ LOC (not just WLOC) for f ∈ B1(
),
with uniform bounds, as one can show using the Combes-Thomas estimate (see [AW15,
Theorem10.5] in our context of discreteSchrödinger operators) for the smooth functional
calculus [EG02] (with regards to f (H), the measurable function f ∈ B1(
) maybe be
deformed to be smooth as the deformation only affects f |
). However, H may have
a mobility gap in 
 while σ(H) ∩ 
 �= ∅. For example, this property holds (almost
surely) if H is a random operator exhibiting Anderson localization within 
. To see
this, one combines [AG98, Eq-n (E.6)] together with [ST19, Proposition A.1]. It can be
shown that if
 is a mobility gap for H , then the DC conductivity of H , computed using
the Kubo formula, vanishes for energies E ∈ 
 [AG98].

Remark 2.6. Whether Anderson localization in the strong coupling regime can be proven
for a topologically-non-trivial time-reversal-invariant Z2 model remains currently open
(cf. [GS18] and the localization proof in [Sha21] for the chiral topological case or
[EGS05] for a proof of Anderson localization for the non-trivial IQHE case). See the
concrete model we propose to study in the future in Sect. 3.

2.3. Quasi-projections. We now turn to the heart of the matter concerning index theory.
We want to define a space of operators which are almost projections as one probes them
far away along some axis.

Definition 2.7 ( j-quasi-projection). An operator A ∈ B(H) is a j-quasi-projection
( j = 1or 2) if andonly if (1) A is self-adjoint, (2) A ∈ WLOC, and (3) A2−A ∈ WLOC j .

Wedenote the spaceof suchoperators asP j , orP j (WLOC) to emphasize the presence
of WLOC in (1) and (2). We write P j (LOC) for the set of j-quasi-projections such that
A ∈ LOC and A2 − A ∈ LOC j . Of course orthogonal projections which happen to be
in LOC or WLOC are trivially in these spaces.

What concerns us in this paper is the space P j (WLOC) since our operators arise
in the context of Anderson localization, whereas in [Fon+20] the relevant object was
P j (LOC) thanks to the spectral gap condition. In [Fon+20, Prop. A4] it was shown that
if A ∈ P2(LOC) then exp(2π i A) − 1 ∈ LOC2 (cf. (1.1)) so that [�1, exp(2π i A)] ∈
LOC1∩LOC2. In particular, thanks to (2.4) the commutator is trace-class, hence compact,
so that for such A,˜1 exp(2π i A) = �1 exp(2π i A)�1+(1−�1) is Fredholm. Indeed,
exp(2π i A)−1 = h(A)(A2 − A) with h an analytic function. Because A is local, h(A)

is also local (using the Combes-Thomas estimate). Hence onemay use the ideal property
of local and confined operators to conclude that exp(2π i A) − 1 ∈ LOC2.

On the other hand, in the mobility gap regime, one encounters operators A that are
merely weakly-local, but not local. For such operators, it is not known (to us) whether
a Combes-Thomas estimate holds. Hence it is unclear whether h(A) is also weakly-
local. That is, it is an open question whether the weakly-local property is preserved
under analytic functions. Hence, we see no direct way to prove that ˜1 exp(2π i A) is
Fredholm.

Open Questions: Does the Combes-Thomas estimate hold for self-adjoint weakly-local
operators? Is WLOC closed under convergent power series?

Weshall dealwith this problembycircumventing it, inTheorem4.5.Thanks to the fact
that we are dealing with Fredholm operators, we can avoid talking about holomorphic
functions and instead use polynomials. Then the algebraic (rather than unestablished
topological) properties of WLOC will suffice.
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Fig. 1. The geometry of truncating the system to the edge

2.4. Edge systems. Edge systems are Hamiltonians on Ĥ, as in Definition 2.4. However,
unlike bulk systems, they are generically not insulators. Before we turn to the mobility
gap regime, it is instructive to consider the spectral gap case; then, there is a convenient
way to encode the fact an edge Hamiltonian is associated with a bulk one which pos-
sesses a spectral gap, without making reference to said bulk Hamiltonian. The following
definition is adapted from [SW22, Definition 3.4]:

Definition 2.8 (Edge systems with a bulk spectral gap). Let 
 ⊆ R be a given interval.
An edge system Ĥ ∈ B(Ĥ) has a bulk-spectral-gap within 
 if and only if there exists
a smooth g : R → [0, 1] with g(λ) = 1 for λ < 
, g(λ) = 0 for λ > 
, and such that
g(Ĥ) ∈ P2(LOC).

The rationale behind this definition is as follows: g differs fromχ(−∞,μ), a projection,
only within the bulk gap 
. Edge states with energies in 
, however, are localized near
the edge (see Figure 1) and hence become less relevant as one goes into the bulk, whence

g(Ĥ) → g(H) = χ(−∞,μ)(H) (into the bulk) .

The more intuitive notion of an edge system (which calls for a given bulk insulator)
remains appropriate in the mobility gap regime:

Definition 2.9. (Edge systems with a bulk mobility gap). An edge Hamiltonian Ĥ ∈
LOC(Ĥ) has a bulk-mobility-gap within 
 if and only if

Ĥ − Adι K ∈ LOC2 (2.6)

for some bulk insulator K ∈ LOC(H) within 
 (as in Definition 2.5). Here we use the
notation Adι K ≡ ι∗K ι.

In [EG02, Lemma A3 iii] one can find a proof that Definition 2.9 implies Definition
2.8 if the bulk Hamilotnian is spectrally gapped.

2.5. Time-reversal symmetry and the �-odd Fredholm index. Time reversal (TR) sym-
metry is a C-conjugate-linear and anti-unitary map � : H → H, i.e.,

�(ψ + αφ) = �ψ + ᾱ�φ and 〈�ψ,�ϕ〉 = 〈ϕ,ψ〉 (ψ, ϕ ∈ H, α ∈ C) ,

such that

[�, X j ] = 0 , (2.7)
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with X j being the position operator in direction j = 1, 2.We focus here on the Fermionic
case, so we require

�2 = −1 . (2.8)

We shall assume a TR symmetry� is defined on the bulk Hilbert space. Due to (2.7),
ι∗�ι is a TR-symmetry on the edge Hilbert space. Since the two TR operators are equal
fiberwise (on fibers over the upper half plane), we do not distinguish them with different
notation.

A Hamiltonian H is called TR invariant (TRI) if and only if [H,�] = 0. Thanks to
(2.7), if H is TRI, then the edge Hamiltonian Adι H is also TRI. However, a general
edge Hamiltonian Ĥ that descends from H (according to Definition 2.9) may not be
TRI, since the boundary term Ĥ − Adι H ∈ LOC2 need not be so.

Recall that the space of Fredholm operators, denoted F , is the set of all bounded
linear operators F such that both ker F and ker F∗ are finite dimensional and im F is
closed (see, e.g., [BB89]). For such an operator, the Z-valued Fredholm index is

index F ≡ dim ker F − dim ker F∗,

and the resulting map index : F → Z is continuous in the operator norm topology and
stable under compact perturbations. In fact, index ascends to a bijection between the set
of path-connected components of F and Z. Moreover, it obeys a logarithmic law

index AB = index A + index B .

Definition 2.10 (�-odd Fredholm operator) A Fredholm operator F ∈ F is called �-
odd if

F = −�F∗� .

The space of all such operators is denoted as F�. Clearly F� ⊆ F0, the zero-index
path-component of F , thanks to the logarithmic law of index.

Atiyah and Singer introduced a Z2-valued index for �-odd operators,

index2 F := dim ker F mod 2 ,

and proved that index2 is continuous, stable under compact perturbations, and ascends
to a bijection from the set of path-connected components ofF� to Z2 [AS69]. Different
proofs of these facts can be found also in [Sch15,Fon+20]. (Atiyah and Singer referred
to such operators as skew-adjoint and used a slightly different notation.)

3. Example: A Disordered BHZ Model

The Bernevig, Hughes, and Zhang model (BHZ henceforth) [BHZ06] is a model on
�2(Z2) ⊗ C

2 ⊗ C
2 given by

HBHZ = (a1 + Re{R1} + Re{R2}) ⊗ σ3 ⊗ 1 + Im{R2} ⊗ σ2 ⊗ 1 + Im{R1} ⊗ σ1 ⊗ σ3

where σ1, σ2, σ3 are the three Pauli spin matrices, R j is the right-shift operator along
the j = 1, 2 direction:

(R jψ)(x) ≡ ψ(x − e j ) (x ∈ Z
2)
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e j the standard basis vectors, and Re{A} := 1
2 (A + A∗); Im{A} := 1

2 i (A − A∗). Here
a ∈ R is a parameter of the model which controls the selection of the topological phase.
Time-reversal for this model is defined as

� := C1 ⊗ 1 ⊗ (− i σ2)

and C is complex-conjugation of scalars on the complex Hilbert space, which makes �

anti-C-linear.
One may verify now that: �2 = −1 and that HBHZ has a spectral gap about zero

energy for a �= 0,±2 (via the Bloch decomposition). Later on we will define a topo-
logical Z2 index applicable to this model. It is well known [BHZ06] that this index is
non-trivial for 0 < |a| < 2 and trivial for |a| > 2.

There are various ways to make this model disordered. One obvious example is:

Hdisordered
BHZ = HBHZ + ω(X) ⊗ σ3 ⊗ 1 (3.1)

where X is the position operator and {ω(x)}x∈Z2 is a sequence of i.i.d. random real
variables, all distributed with some probability measure μ on R. Hence the parameter a
has been replaced with ω which varies throughout the plane (in principle any random
perturbationwhichmaintains time-reversal invariance should do, but this onemight even
allow for roughly maintaining the phase diagram). We conjecture that depending on the
properties of μ, e.g., its support, the topological phase would be selected, and μ may
be chosen so that there is a well-defined topological phase yet there is no spectral gap
about zero. We postpone the study of this disordered model to future work; it is possible
most of the analysis might be covered already by, e.g. [ESS14,NDS15].

4. The Topological Indices and Our Main Result

We (mostly) do not distinguish between the IQHE (Z-index) and the TRI (Z2-index)
cases. Hence index A will either indicate dim ker A − dim ker A∗ or dim ker A mod 2
depending on context. Sometimes we will make this explicit by writing index(2) which
means an equation either holds for index or for index(2). When H is TRI, the Z-index
is trivial and it is appropriate to use the Z2 index instead. We will mostly use the fact
the index is stable under norm-continuous and compact perturbations, which is true for
both index and index2.

4.1. The bulk topological index. Let H be a 
-insulator as in Definition 2.5. Its associ-
ated bulk index is given by

N(2)(H,
) := index(2) PU ≡ index(2)(PU P + P⊥) , (4.1)

where P := χ(−∞,μ)(H) is the Fermi projection for H at Fermi energy μ ∈ 
, and

U := exp(i arg(X1 + i X2))

is theflux insertion operator. Sinceμ falls in themobility gap
of H , so that P ∈ WLOC,
it follows that PU is Fredholm and the index is well defined. In Theorem 4.1 below we
see that in agreement with our notation, N(2)(H,
) indeed does not depend on the
choice of μ ∈ 
. In fact, it is clear that N(2)(H,
) depends only on the connected
component of 
 (connectedness meant in the sense of Definition 2.5 holding).
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N was associated with the Hall conductivity in the integer quantum Hall effect in
[BvS94] (who already noted that it remainswell defined in themobility gap) via theKubo
formula; see also [ASS94b].N2 was associated with the Fu-Kane-Mele Z2 invariant by
Schulz-Baldes [Sch15]. In [AG98] there is a self contained proof that

P ∈ WLOC �⇒ PU ∈ F . (4.2)

4.2. Stability of the bulk index with respect to the Fermi energy. In the present section,
we make the dependence on the Fermi energy explicit by denoting Pμ := χ(−∞,μ)(H).
We shall prove

Theorem 4.1. If 
 ⊆ R is a mobility gap for H as in Definition 2.5 and Pμ ≡
χ(−∞,μ)(H) then the function


 � μ �→ index(2) PμU ∈ Z(2)

is constant.

Remark 4.2. This theorem is significant in regards to localization theory because it allows
to exhibit explicit time-reversal invariant models for which complete localization in two
dimensions fails. Indeed, take any random model with a non-trivial Z2 invariant (e.g.
a random version of the BHZ model [BHZ06,FK07]). Then at μ below the bottom of
the spectrum the invariant is clearly zero, whereas (by assumption) somewhere it is
non-zero. Hence in going from these two points, there must have been a value of μ for
which Pμ failed to be WLOC (for otherwise the index would have been well-defined
throughout the interpolation, but we have shown that if that were the case the index
would also be constant). This argument is analogous to one used to prove delocalization
for random Landau Hamiltonians via the quantumHall conducatance [GKS07], with the
difference that in the current setting the operators are TRI, although with�2 = −1. (For
TRI systems with�2 = 1, the scaling theory of localization [Abr+79] predicts complete
localization, i.e., that Pμ ∈ WLOC for all μ, for systems with extensive randomness;
see [EM08] for a review of what is to be expected.)

For the IQHE, Theorem 4.1 was proved in [EGS05, Prop. 3] using the Kubo trace
formula, and not using the integrality of the index. To the best of our knowledge, the
result is new for the Z2 index case. In [Sha20] this statement was boosted to invariance
of N w.r.t. H , however, the argument there does not carry over for N2.

We are aware of similar statements that have been made in [Sch15, Theorem 5] and
in [KK18, (2.2)]. Howwever, it appears these proofs contain gaps. Indeed, in the former
one, it is not clear that g(H)P = g(H) may be arranged in the mobility gap regime,
although this identity is used in the proof. To elaborate, g must smoothly interpolate
from 1 to 0 below EF , so that it will differ from P ≡ χ(−∞,EF )(H) on that interval
where the interpolation happens. In the latter paper, it is not clear that their equation
(2.1) can hold at a fixed value of the Fermi energy EF for their H ′ – see our Lemma B.3
below in which a similar bound is obtained for almost every energy E .

Proof of Theorem 4.1. Let μ′ be a point nearby μ within 
. We want to show that
indexPμU = indexPμ′U .Without loss of generality,we takeμ′ > μ andwrite P := Pμ

and Q := Pμ′ − P . So Q projects onto the (localized) states within [μ,μ′), both P and
Q are WLOC, and PQ = 0. Then
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Pμ′U = (P + Q)U (P + Q) + (P + Q)⊥ = PU P + QUQ + (P + Q)⊥

+PUQ + QU P .

We claim that PUQ is compact. Indeed, we have

|PUQ|2 = (PUQ)∗PUQ = QU∗PUQ = Q(U∗PU − P)Q .

Since U∗PU − P is Schatten-3 [ASS94b], it follows that PUQ is Schatten-6 and
hence compact. As a result,

indexPμ′U = index
[

PU P + QUQ + (P + Q)⊥
]

.

Since the three terms within the index on the right hand side are in fact operators on
direct sumands of the Hilbert space, we claim that

index
[

PU P + QUQ + (P + Q)⊥
]

= index [PU ⊕ QU ] .

To see this, note that

ker
[

PU P + QUQ + (P + Q)⊥
] ∼= ker PU P ⊕ ker QUQ ∼= ker PU ⊕ ker QU ,

and similarly for the adjoint operator (note that ker(P+Q)⊥ = ran(P+Q)). For either the
Z or theZ2 index,we have additivity under direct sums: index A⊕B = index A+index B
(with addition modulo 2 in the Z2 case). Thus indexPμ′U = indexPU + indexQU .
To complete the proof it suffices to show indexQU = 0, which is the content of the
following proposition. ��
Proposition 4.3. If Q is a spectral projection of H onto any subset of the mobility gap

, then

indexQU = 0 .

The formal proof of Proposition 4.3 is somewhat technical, andwe give it inAppendix
C below. Themain idea is that the range of Q is spanned by a basis {ψn}n of eigenvectors
of H with good localization properties, namely a so-called SULE basis with polynomial
decay (this follows from the fact that
 is amobility gap; seeAppendixB for a definition).
We define a unitary operator on ran Q via

Vψn := exp(i arg(xn · e1 + i xn · e2))ψn ,

where xn is a suitably chosen localization center for ψn . Extending V to the whole
Hilbert spaceH as Vψ = ψ forψ ∈ ran Q⊥, we find that V commutes with Q and thus
that indexQV = 0. For vectors ψ ∈ ran Q, Vψ is an approximation toUψ wherein the
flux insertion operator is modified to act at the localization centers of the SULE basis. As
we show below, it follows that (U −V )Q is compact. Thus indexQU = indexQV = 0.
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4.3. The edge topological index and the bulk-edge correspondence. We now turn to
the formulation of a suitable regularized index for an edge system with a bulk mobility
gap 
, and the equality of this index with the bulk index. To motivate our proposed
index, it is useful first to consider a system with a bulk spectral gap 
. In that case, the
following edge index was formulated in [Fon+20, eq. (2.4)] in both the IQHE and the
Fu-Kane-Mele Z2 case. Let Ĥ be an edge Hamiltonian that has a bulk-spectral-gap on

 as in Definition 2.8. Then its associated index is

N̂(2)(Ĥ ,
) := index
(2),Ĥ W1g(Ĥ) , (4.3)

where g : R → [0, 1] is any smooth function with g(t) ≡ 1 for t < 
 and g(t) ≡ 0 for
t > 
, and so, in particular,

supp(g2 − g) ⊆ 
 (4.4)

and where we use the abbreviated “winding” notation

W1A := ˜1 exp(−2π i A) ≡ �1 exp (−2π i A) �1 + 1 − �1 . (4.5)

The subscript Ĥ on index(2) is placed to emphasize the the dimensions of kernels are
now calculated on the edge Hilbert space Ĥ.

N̂ was first defined by [SKR00], where it is connectedwith the edgeHall conductivity
in the spectral gap regime. Heuristically, this index counts the number of states pushed
across the fiducial line x1 = 0 by the unitary evolution exp(−2π i g(Ĥ)) (or the parity of
this number, in theZ2 case). If H is a bulk Hamiltonian with a spectral gap on
, g(H) is
a spectral projection and exp(−2π i g(H)) = 1. Moreover, if Ĥ is an edge Hamiltonian
with a bulk-spectral-gap on
 as in Definition 2.8, exp(−2π i g(Ĥ)) − 1 ∈ LOC2, from
which it follows [Fon+20, Prop A.4] that W1g(Ĥ) ∈ F and hence N̂ is well defined.

Back to the case at hand, let now Ĥ be an edge Hamiltonian with a bulk-mobility-gap
on
 as in Definition 2.9. That implies there exists some bulk Hamiltonian K with a bulk
mobility gap on 
 as in Definition 2.5 and that Ĥ − Adι K ∈ LOC2 . In this scenario,
we no longer have exp(−2π i g(K )) = 1, since K possesses eigenvalues λ ∈ 
 for
which g(λ) �= 0, 1, and furthermore, exp(−2π i g(Ĥ)) − 1 will not decay into the bulk
since it will evolve localized bulk states infinitely far into away from the boundary.

To formulate a mobility-gap regularized edge index, we proceed with the idea that
for the winding, we only want to count “edge states” which do not overlap strongly with
such localized eigenstates of the bulk. The idea then is to define the regulator

R̂ := Adι χ
c (K ) . (4.6)

Nowwe replace the operator g(Ĥ) by R̂g(Ĥ)R̂, and define themobility-gap regularized
edge index as

N̂(2)(Ĥ ,
) := index
(2),Ĥ W1 R̂g(Ĥ)R̂ . (4.7)

Below in Sect. 4.4 we will show this index does not depend on the choice of the bulk
Hamiltonian K defining the regulator R̂, and thus is intrinsic to the edge Hamiltonian Ĥ .
As explained above, for spectrally-gapped systems this choice of regulator reduces to
R̂ = 1. The idea to define an edge index which apparently depends on a bulk object has
precedence in the mobility gap regime for the IQHE in [EGS05] (although there there
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was also an independent definition without a bulk Hamiltonian using time-averaging).
The definition is ultimately justified using the fact the index does not depend on the
choice of K , which will be established in Sect. 4.4.

A main result in this paper is

Theorem 4.4 (Bulk-edge correspondence). Let H be a mobility gapped insulator on 


as in Definition 2.5 and Ĥ be an edge Hamiltonian with bulk-mobility-gap on 
 as in
Definition 2.9, Furthermore, assume that H and Ĥ are compatible in the sense that

Ĥ − Adι H ∈ LOC2 .

Then bulk index of H and edge index of Ĥ agree, namely,

N(2)(H,
) = N̂(2)(Ĥ ,
) .

This result is new in the context of mobility-gapped TRI Z2 topological insulators.
In the IQHE it was proven in [EGS05, Theorem 1] and our proof provides an alternative
route, although our edge index in the IQHE is defined differently; see our comments
below in Sect. 6.1.

4.4. The edge index is well-defined. While there are proofs that the bulk index remains
well-defined in the mobility gap [BvS94,AG98], the edge index has not been similarly
studied in the generality considered here. Unfortunately the results of [Fon+20, Prop
A3, A4] do not apply in this case, but we will prove that

Theorem 4.5. If A ∈ P2 then W1A is Fredholm. Furthermore, if [0, 1] � t �→ A(t) ∈
P2 is a norm-continuous family of such operators then [0, 1] � t �→ indexW1A is
locally-constant.

The proof of Theorem 4.5 can be found in Sect. 5. Here we use it to derive our main
result, Theorem 4.4 as well as the fact that the regularized edge index is well-defined:

Proposition 4.6. With Ĥ an edge Hamiltonian with a bulk mobility gap on 
 as in the
preceding section, and with the choice of regulator R̂ as in (4.6), we have

W1 R̂g(Ĥ)R̂ ∈ F(Ĥ) (4.8)

and

index(2) W1 R̂g(Ĥ)R̂ = index(2) W1 R̂′g(Ĥ)R̂′ (4.9)

where

R̂′ ≡ Adι χ
̃c (K ′)

is a regulator associated with any other choice K ′ of bulk mobility gapped insulator on

 obeying Definition 2.5 such that

Ĥ − Adι K
′ ∈ LOC2

and 
̃ ⊆ 
 is any sub-interval of the mobility gap for which supp(g2 − g) ⊆ 
̃.
Consequently, N̂(2) is well-defined and independent of the regularization.
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Proof. Within this proof we will drop the hats from edge operators for convenience (all
operators will be edge operators, including H ≡ Ĥ within this proof). We will also
denote G := g(H) for brevity.

To show W1RGR ∈ F , by Theorem 4.5, it suffices to show that

RGR ∈ P2 . (4.10)

By construction, it is clear that, R is self-adjoint andweakly-local. Furthermore, R ∈ P2.
Indeed, denoting by ∼= equivalence up to terms in WLOC2, we have, using ιι∗ = �2
and ι∗� = ι∗,

R2 = ι∗χ
c (K )ιι∗χ
c (K )ι = ι∗χ
c (K )�2χ
c (K )ι = ι∗ ([χ
c (K ),�2]χ
c (K )

+�2χ
c (K )) ι ∼= R

where the last equality is due to the fact that

∂2WLOC ⊆ WLOC2 .

Since R ∈ P2, we have

(RGR)2 − RGR ∼= RGRGR − RGR ∼= R(GRG − GR)R = −RGRG⊥R

where G⊥ := 1−G even though G is not a projection. Next, we claim G−Adι g(K ) ∈
WLOC2. Indeed, we assume H −Adι K ∈ LOC2 and then we use the Helffer-Sjöstrand
formula to relate g of the operators in terms of their resolvents. Hence,

RGRG⊥R ∼= R(Adι g(K ))R(1 − Adι g(K ))R ∼= ι∗χ
c (K )(g(K )2 − g(K ))ι = 0 ,

the last equality is true since it is assumed (in (4.4)) precisely that supp(g2 − g) ⊆ 
.
This concludes the proof of (4.10).

Before turning to the proof that N̂ is independent of the choice of K , let us show
that the index stays the same if R ≡ Adι χ
c (K ) is replaced by Adι χ[a,b]c(K ) where
we assume that if supp(g2 − g) ⊆ [c, d] then

inf 
 < a < c < d < b < sup
 .

We will use the following fact, proven later in Lemma 4.8:

A − B ∈ WLOC2 �⇒ indexW1A = indexW1B .

We change only the starting point of the interval, so that

R := Adι χ[a,b]c(K ) ; R′ := Adι χ[a+ε,b]c (K )

Hence

RGR − R′GR′ = RG(R − R′) + (R − R′)GR′

and R − R′ = Adι χ[a,a+ε)(K ) whereas g|[a,a+ε) = 1 by assumption. Hence, using
again G ∼= Adι g(K ),

RGR − R′GR′ ∼= Adι χ[a,a+ε)(K ) .
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Later on in Sect. 4.5 we will see that, using Lemma 4.7, for any bulk projection Q, one
has

indexĤ W1 Adι Q = indexH QU

and we apply this with Q := Adι χ[a,a+ε)(K ) to learn that, since Q is fully localized
(as [a, a + ε) ⊆ 
), we have using Proposition 4.3, that indexQU = 0 . But since
(W1RGR)

(

W1R′GR′)∗ ∼= W1(RGR − R′GR′) (here ∼= means up to compact opera-
tors), this concludes the proof that the end points of 
 in the choice of R do not affect
the index.

Finally, we come to the invariance under the choice of K . Let K ′ be an alternative
choice, i.e., such that also Ĥ − Adι K ′ ∈ LOC2 and K ′ has a mobility gap on 
 as
in Definition 2.5. Using Lemma B.3 further below, we know that there exists two full
measures sets S, S′ ⊂ 
, dependent on K , K ′ respectively, such that the resolvents of
the respective operators with spectral parameter with real part in S, S′ respectively are
WLOC, (B.5). Pick a < b ∈ 
 such that, without loss of generality, a < c ∈ S ∩ S′ and
d < b ∈ S ∩ S′ where supp(g2 − g) ⊆ [c, d] ⊆ 
, and define

R := Adι χ[a,b]c (K ) ; R′ := Adι χ[a,b]c (K ′) .

Indeed, by the proof just before, we know that N̂ does not change under the replacement

 → [a, b] in R, R′.

Using again Lemma 4.8, it suffices to show that

R − R′ ∈ WLOC2 .

We note that we also have K − K ′ ∈ LOC2 and hence

R − R′ = 1 − Adι χ
(K ) − 1 + Adι χ
(K ′)

= Adι

i

2π

∫

(K − z1)−1(K − K ′)(K ′ − z1)−1 d z .

Now ifwe pick the contour integral to be the rectangular path inCwith two horizontal
legs parallel to [a, b] (above and below it at distance 1 from it, say) and which passes
vertically through a and b. Then using LemmaB.3 wemay conclude that since the factor
K − K ′ is WLOC2 and the two resolvents remain WLOC into the real axis, by the ideal
proprety of WLOC2 within WLOC we are finished. ��

4.5. The bulk-edge correspondence proof. In this section we prove our main theorem,
Theorem 4.4. A crucial first step is the passage from the bulk index defined in (4.1) (we
refer to it as the flux insertion index) to Kitaev’s index [Kit06, (131)], the latter being
much more suggestive of an edge geometry.

Lemma 4.7. Let P = χ(−∞,μ)(H) and U = exp(i arg(X1 + i X2)), as above. Then

indexPU = indexW1P�2P (4.11)

where we use the notation W1A := ˜1 exp(−2π i A) for any operator A.

Remark. The right hand side is Kitaev’s index. Note that it is well-defined even in the
mobility gap regime, due to the fact that P�2P ∈ P2.
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Proof. In the spectral gap regime, the proof of this result may be found in [Fon+20,
Thm. 3.1]. That proof remains valid in the mobility gap regime for the IQHE (Z index).
However, in the Z2 mobility gap case, we do not know that there are only two path-
connected components of TRI topological insulators. This is known in the spectral gap
regime, and is used in [Fon+20, Thm. 3.1] to assert that two index formulas are equal
globally provided they agree on one trivial and one non-trivial system. Here instead we
proceed by a direct homotopy.

LetUa = exp(i arg(X1 −a1 + i(X2 −a2)) be the flux insertion at position a ∈ (Z2)∗.
This can be norm-continuously deformed into Ua,R , the flux insertion at a with the
corresponding phase ua,R different from 1 only in the cone with vertex at a and opening
to the right with opening angle ν. Inspired by the picture where the flux is inserted
dynamically, we say that Ua,R is flux insertion with electric field supported in the cone
to the right of a. Similarly, we will denote by Ua,L the flux insertion at a with electric
field supported in the cone to the left of a.

The deformation from Ua to Ua,R can be done through a norm continuous path of
gauge transformations, all of which satisfy the assumptions of Lemma A.1. It follows
that we obtain a norm continuous path of Fredholm operators interpolating from PUa to
PUa,R . We conclude that the bulk index is given by N = indexPUa,R .

Step 1: Introducing a vertical cut:Choose a far to the right of the fiducial line x1 = 0.
We will show that the operator ˜1PUa,R is Fredholm, with the same index as PUa,R . To
do this, we simply show that the difference is compact. First note that

˜1PUa,R = �1PUa,R�1 + �⊥
1 = �1PUa,R�1 + �⊥

1 PUa,R�⊥
1 − �⊥

1 (PUa,R − 1)�⊥
1 .

Here

�⊥
1 (PUa,R − 1)�⊥

1 = �⊥
1 (P[Ua,R, P] + P(Ua,R − 1))�⊥

1 = �⊥
1 P[Ua,R, P]�⊥

1

is compact since [Ua,R, P] is compact by Lemma A.1 and Ua,R − 1 is a multiplication
operator supported on the cone to the right of a, which is disjoint from the support of�⊥

1 .
In a similar way, we find that �1PUa,R�⊥

1 and �⊥
1 PUa,R�1 are compact. We conclude

that ˜1PUa,R − PUa,R is compact and N = index˜1PUa,R .
Step 2: Inserting an opposing flux:We insert an opposite flux U∗−a,L at the point −a

far to the left of the fiducial line x1 = 0, with electric field supported in the cone to the
left of −a. Having fixed a, we henceforth drop it from the notation, so UR = Ua,R and
UL = U−a,L . We denote the combined flux insertion by ULR := U∗

LUR . We show that
the corresponding operator ˜1PULR is still Fredholm with the same index as ˜1PUa,R .
Indeed, their difference is compact:

˜1PULR − ˜1PUR = �1P(U∗
L − 1)URP�1 = �1(U

∗
L − 1)P�1 + �1[P,U∗

L ]P�1 ,

where �1(U∗
L −1) = 0 because the multiplication operators have disjoint supports and

[P,U∗
L ] is compact by Lemma A.1.

Step 3: Raising the Fermi projection to the exponent: The operator ULR can be
written as ULR = ei ξ where ξ is a multiplication operator that takes the value 2π on
the upper half plane outside of the cones, the value 0 on the lower half plane outside
of the cones, and interpolates continuously on the cones (see Figure 2). We thus have
N = index˜1P ei ξ .

We now want to ‘raise P to the exponent,’ i.e. we want to relate N to the index of

˜1P ei Pξ P = ˜1(P ei Pξ P P + P⊥) = ˜1 e
i Pξ P .
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−a a

ξ(x) = 0

ξ(x) = 2π
ξ(x) = 2π

ν θξ(x) = 2π
ν φ

θφ
νν

Fig. 2. The double flux insertion function ξ(x)

The difference with our starting point is

˜1P ei ξ −˜1 e
i Pξ P = �1(P ei ξ P − P ei Pξ P P)�1.

We will show that this difference is compact. Indeed

P ei ξ P − P ei Pξ P P =
∑

n≥2

in

n!
(

Pξn P − (Pξ P)n
)

=
∑

n≥2

in

n!
∑

{�i }:�i∈{1,⊥}
at least one ⊥

Pξ P�1ξ · · · ξ P�n−1ξ P . (4.12)

Each of these terms contains at least one factor Pξ P⊥, which we claim is compact. To
see this, note that [P, ξ ] = Pξ P⊥ − P⊥ξ P , so it is sufficient to show that [P, ξ ] is
compact. This follows from Lemma A.1 since we may choose ξ to satisfy ‖ξ‖∞ = 2π
and

|ξ(x + b) − ξ(x)| ≤ 1

ν

‖b‖
‖x‖ − ‖a‖

for ‖x‖ > ‖a‖. Thus the right hand side of (4.12) is a norm-convergent sum of compact
operators, and thus compact. We conclude that N = index˜1 ei Pξ P .

Step 4: Flattening the curve: Finally wewant to transform themultiplication operator
ξ to (a multiple of) the half-space projector −2π�2. This can be done by continuously
closing the cones, taking ν → 0, which yields a norm continuous deformation from
˜1 ei Pξ P to ˜1 e2π i P�2P . As long as the cones have not closed completely, the above
arguments show that the interpolating operators are Fredholm. The endpoint of the
interpolation is shown to be Fredholm in Theorem 4.5. We conclude that

N = index˜1 e
− i P�2P .

��
To complete the proof of Theorem 4.4, we will need the following basic lemma:

Lemma 4.8. If A, B ∈ P2 such that A − B ∈ WLOC2 then indexW1A = indexW1B.
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Proof. Consider the homotopy [0, 1] � t �→ t (A − B) + B. We have

(t (A − B) + B)2 − t (A − B) − B = t2(A − B)2 + t ((A − B)B + B(A − B))

+B2 − B − t (A − B)

so that at every point along the homotopy t (A − B) + B ∈ P2. The result follows from
Theorem 4.5. ��
Using this lemma, we have

indexW1P�2P = indexW1�2P�2 .

Indeed, it is sufficient to note that P�2P,�2P�2 ∈ P2 and that

P�2P − �2P�2 � �2[P,�2]P⊥ ∈ WLOC2 .

Next, note that, with Q := χ
c (H), we have Qg(H)Q = P if we take the Fermi
energy at the bottom of 
, and then we can use invariance with respect to the Fermi
energy, Theorem 4.1, to move to it any other point of 
, so that we may write

indexW1�2P�2 = indexW1�2Qg(H)Q�2 .

Also

indexW1�2Qg(H)Q�2 = indexW1�2Qg(�2H�2)Q�2.

This follows from the above lemma, thanks to the fact that �2Qg(H)Q�2,�2Qg(�2
H�2)Q�2 ∈ P2 and that

�2Qg(H)Q�2 − �2Qg(�2H�2)Q�2 ∈ WLOC2 .

For a proof of this latter fact, see [EG02] or [Fon+20, Rem. A9].
Finally, we have, for Dirichlet boundary conditions (with Ĥ = adι H ),

kerH W1 ± �2Qg(�2H�2)Q�2 ∼= kerĤ W1

(

±Q̂g(Ĥ)Q̂
)

and the transition to any boundary conditions is done by a further interpolation (as in
[Fon+20, Prop. A10]). This concludes the proof of Theorem 4.4, i.e., thatN = N̂ . Here
we have shown equivalence with the particular choice of R̂ = Q̂; in Proposition 4.6 we
saw that this choice is appropriate according to the definition of the edge index.

5. The Proof of Theorem 4.5 on Mobility Gap Homotopies

Herewe shall prove ourmain tool Theorem4.5. For any N ∈ N, let pN be the polynomial
approximation of α �→ exp(−2π i α) =: p∞(α) up to order N :

pN (α) =
N

∑

n=0

1

n! (−2π i α)n .

and define

fN (α) := pN (α) − (pN (1) − 1)α =: 1 +
N

∑

n=1

ϕnα
n .

We observe that fN is also a polynomial, and that fN (0) = fN (1) = 1. Moreover,
limN fN = p∞, uniformly as functions on R.
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Lemma 5.1. If A ∈ P2 is self-adjoint then there is some NA ∈ N such that for all
N ≥ NA,

˜1 fN (A) =: BN

is a Fredholm operator.

Proof. SinceU := p∞(A) is unitary, it is invertible. Since the set of invertible operators
is open, there is ε > 0 such that

Bε(U ) ⊆ invertibles .

In fact, ε may be estimated using the Neumann series: since U is unitary, one may
taken any ε < 1. Hence there is some N large enough (indepedent of A due to uniform
convergence) so that ‖U − fN (A)‖ < 1 and hence fN (A) is invertible. Let CN :=
˜1(( fN (A))−1). A short calculation yields

1 − BNCN = −�1[ fN (A) − 1,�1](( fN (A))−1)�1 .

Now, fN (A) − 1 = ∑N
n=1 ϕn An may be expressed, using the fact that

∑N
n=1 ϕn = 0,

as

fN (A) − 1 =
N

∑

n=2

ϕn

n−2
∑

k=0

Ak(A2 − A) ,

which is evidently the product of a polynomial (of finite degree) of A times A2 − A ∈
WLOC2. Thus, the whole expression is in WLOC2. After taking the commutator with
�1 we find an expression which is trace-class, whence CN is found to be the parametrix
of BN and hence our claim. ��

Finally we come to our main Theorem 4.5. In the proof we will use the following
Lemma of Dieudonne:

Lemma 5.2. (Dieudonne). If F is a Fredholm operator and G is any parametrix of F,
then the open ball B‖G‖−1(F) lies within the set of Fredholm operators.

Proof of Theorem 4.5. By Lemma 5.1 and its proof, there is NA such that if N ≥ NA
then BN is Fredholm with parametrix CN . Hence using the Lemma of Dieudonne, we
see it suffices to show that

‖BN − W1A‖ ≤ 1

‖CN‖ .

In factwemay estimate‖CN‖≤2+
∥
∥( fN (A))−1

∥
∥ and

∥
∥( fN (A))−1

∥
∥ ≤ 2 if‖ fN (A) −U‖

< 1
2 . Hence we can apparently pick N large enough (independent of A) such that

∥
∥ fN (A) −U < 1

4

∥
∥, which suffices. ��
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6. Open Questions

6.1. Equivalence of edge indices in the mobility gap regime. We have proved the bulk-
edge correspondence in the mobility gap regime for both the Z-index (IQHE) and Z2
index, using our regularized edge index (4.7), which is new. For the IQHE in themobility
gap regime, there was already an alternative regularized edge formula for the edge
conductance, defined [EGS05, Eq. (1.12)]. A priori, it is not clear that the two quantities
are equal. Of course, a posteriori, they are seen to be equal thanks to our bulk-edge
correspondence Theorem 4.4 and that of [EGS05]. However, it is an interesting question
whether one can prove this directly, without reference to the bulk index, along the lines
of [SKR00].

6.2. The nature of the edge spectrum in the mobility gap regime. For the IQHE, we
conjecture that in the mobility gap regime there is absolutely continuous spectrum in 


for Ĥ . Using the results of [ABJ20, Theorem 2.1 3.], we know that having a non-trivial
index implies that

σac(exp(−2π i Q̂g(Ĥ))Q̂)) = S
1 ,

but it is not clear what this implies about the spectral nature of Ĥ within 
 due to the
presence of Q̂ on the left hand side.

In [FGW00,BP] it was proved that continuum non-trivial IQHE edge systems have
ac-spectrum in the spectral gap regime using the Mourre esetimate, and in [BW21] the
same was proven for discrete systems via [ABJ20, Theorem 2.1 3.] (for them Q̂ = 1 as
they work in the spectral gap regime). Recently [BC22] proved the same thing for the
spectral gap regime of Z2 time-reversal-invariant discrete systems.

6.3. Local Z2 trace formulas. We conjecture that in the spectral gap regime,

N̂ = 2π

(

lim
T→∞ tr(g′(Ĥ)(i[�T

1 , Ĥ ])+)
)

mod 2 (6.1)

where A+ ≡ 1
2 (A + |A|) denotes the positive part of an operator and

�T
1 ≡ 1

2T

∫ T

−T
exp(i t Ĥ)�1 exp(− i t Ĥ) d t .

For this formula to make sense, we would need to show that

2π

(

lim
T→∞ tr(g′(Ĥ)(i[�T

1 , Ĥ ])+)
)

∈ Z . (6.2)

Once this has been established it is suggestive to regularize this formula in the mobility-
gap regime similarly to [EGS05]. However, this formula also includes a limiting process
(cf. [Fon+20, Thm. 2.3]), so that it’s unclear what value it might hold.
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Appendices

A A Schatten Class Lemma

A fundamental tool for our arguments is the observation that if P ∈ WLOC and f (X)

is a multiplication operator in the position basis such that | f (x)− f (y)| decays suitably
as x, y → ∞, then [P, f (X)] is compact. In fact we will show that this operator is
Schatten-3, i.e. ‖[P, f (X)]‖33 = tr |[P, f (X)]|3 < ∞, under natural conditions on f .
The proof of this fact follows similar arguments to those presented in [ASS94a,AG98].

Lemma A.1. Let P ∈ WLOC be such that ‖P‖ ≤ 1 and f ∈ �∞(Z2) be such that

| f (x) − f (y)| ≤ D
‖x − y‖
1 + ‖x‖ (A.1)

with D < ∞. Then [P, f (X)] is Schatten-3.
Proof. We have [P, f (X)]xy = Pxy( f (x) − f (y)) and

‖[P, f (X)]‖3 ≤
∑

b∈Z2

⎛

⎝
∑

x∈Z2

∥
∥Px+b,x

∥
∥
3 | f (x) − f (x + b)|3

⎞

⎠

1/3

.

Let B ⊆ Z
2 be a finite set, to be specified below. Applying the estimate (2.2) for x ∈ B

(since P ∈ WLOC) and, for x ∈ Bc, noting that
∥
∥Px,x+b

∥
∥ ≤ 1, we conclude that there

is ν ∈ N such that for any μ ∈ N there is Cμ < ∞ with which

∑

x∈Z2

∥
∥Px+b,x

∥
∥3 | f (x) − f (x + b)|3 ≤ 2‖ f ‖3∞

∑

x∈B
C3

μ

(1 + ‖x‖)3ν
(1 + ‖b‖)3μ

+
∑

x∈Bc

D3 ‖b‖3
(1 + ‖x‖)3 . (A.2)
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Now pick B to be the set of x such that 1 + ‖x‖ ≤ (1 + ‖b‖)α , with α still to be
determined.Then we find that the second term on the right hand side of (A.2) is bounded
above by

D3 ‖b‖3 (1 + ‖b‖)−α/2
∑

x

(1 + ‖x‖)−2.5 ≤ D̃3 ‖b‖3 (1 + ‖b‖)−α/2 ,

while the first term on the right hand side is bounded above by

8C3
μ(1 + ‖b‖)−3μ

∑

x∈B
(1 + ‖x‖)3ν ≤ 8C3

μ(1 + ‖b‖)−3μ+3να|B| .

Since B is a ball about the origin of radius (1 + ‖b‖)α − 1, B is bounded above by
C̃(1 + ‖b‖)2α for some universal C̃ < ∞. Hence the first term on the right hand side of
(A.2) is bounded above by

8C3
μ

˜̃C(1 + ‖b‖)−3μ+3να+2α .

To make the sum
∑

b∈Z2 finite we choose α/2− 3 > 6 and 3μ− (3ν +2)α > 6 (6 since
we are taking the 1/3 power and we need at least power, say, 2 to make this summable on
Z
2). Both of these may be arranged since α was arbitrary and μ may be taken arbitrarily

large. ��

B The SULE Basis

In this section let H = �2(Zd) ⊗ C
N and V ⊂ H a closed subspace.

Definition B.1 (SULE basis)A Semi-Uniformly Localized basis for V is an orthonormal
basis {ψn}n such that there are a sequence of “localization centers” {xn}n ⊆ Z

d and ν ∈ N

so that for any μ > 0 it holds that

‖ψn(x)‖ ≤ Cμ(1 + ‖x − xn‖)−μ(1 + ‖xn‖)ν (x ∈ Z
d) (B.1)

with Cμ < ∞.

Remark. When a semi-uniformly localized basis {ψn}n consists of eigenfunctions for
a self-adjoint operator, it is called a Semi-Uniformly Localized Eigenfunction (SULE)
basis. This notion was originally defined in [Rio+96].

It is shown in [Rio+96, Corollary 7.3] that the localization centers {xn}n obey
∑

n

1

(1 + ‖xn‖)d+ε
< ∞ (ε > 0) , (B.2)

a fact we shall use below. The estimate (B.1) of course implies that the operator on
�2(Zd) with matrix elements ‖ψn(x)‖ ‖ψn(y)‖ is WLOC.
The following proof appeared in [EGS05, Section 3.6]. We include it here for complete-
ness.

Lemma B.2. For an interval
 ⊆ R, if H is a
-insulator onH in the sense ofDefinition
2.5 then there exists a SULE basis for the vector subspace im(χ
(H)) consisting of
eigenfunctions for H.
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Proof. We let P := χ
(H) and Pλ := χ{λ}(H) for each eigenvalue λ ∈ 
 of H . Since
χ{λ} is a bounded Borel function on 
, we conclude from Definition 2.5 that there is ν

such that for any μ we have
∥
∥(Pλ)x,x0

∥
∥ ≤ Cμ(1 + ‖x − x0‖)−μ(1 + ‖x0‖)ν (B.3)

for every eigenvalue λ ∈ 
, with Cμ < ∞.
Since all eigenfunctions are of finite multiplicity (see Definition 2.5), we have tr(Pλ) <

∞, so ax = ‖(Pλ)xx‖ ≤ tr(Pλ)xx is a summable sequence. Let x0 ∈ Z
d be a point at

which ax attains its maximum value and let v0 ∈ C
N with ‖v0‖ = 1 and v†0(Pλ)xxv0 =

ax0 . Now define

ψ(x) := 1√
ax0

(Pλ)x,x0v .

One verifies that ψ is an eigenvector for H with eigenvalue λ, and it is normalized so
that ‖ψ‖2 = 1. We have the bound

∥
∥(Pλ)x,x0v0

∥
∥ = max‖v‖=1

|〈δx ⊗ v, Pλδx0 ⊗ v0〉| = max‖v‖=1
|〈Pλδx ⊗ v, Pλδx0 ⊗ v0〉|

≤ √
ax

√
ax0 ≤ ax0 (B.4)

where in the penultimate step the Cauchy-Schwarz inequality was used and in the last
step the fact that a achieves its maximum at x0. Combining (B.4), (B.3) and noting that
ax0 ≤ 1, we find that

‖ψ(x)‖ ≤ √

Cμ(1 + ‖x − x0‖)−μ/2(1 + ‖x0‖)ν/2 .

Applying the same process again now to Pλ − ψ ⊗ ψ∗, whose rank is smaller by 1
compared to Pλ, we obtain the result by induction. ��
One further consequence of our definition of an insulator (Definition 2.5) is that matrix
elements of the resolvent decay, as expressed in the following.

Lemma B.3. If H is a 
-insulator as in Definition 2.5 then there is a (fixed, H-
dependent) subset S ⊆ 
 of full Lebesgue measure such that, for any E ∈ S one
has

(H − (E + i ε)1)−1 ∈ WLOC (B.5)

withWLOC estimates uniform in ε ∈ [−1, 1] \ {0}.
Remark B.4. For random operators, the decay manifested in (B.5) is an almost-sure
consequence of the various methods used to prove localization, and so, in principle
could have been included in the definition of a deterministic insulator. We preferred to
keep that definition however as is and provide the deterministic proof below.

Proof. Let R(z) = (H − z)−1 for Im{z} > 0. It suffices to show, for any closed interval

′ ⊂ Int
 (the interior of 
), that there is a full measure set S′ ⊂ 
′ such that (B.5)
holds for E ∈ S′. Fix 
′ and let φ : R → [0, 1] be a smooth function with φ(x) = 1 on

′ and φ(x) = 0 on 
c. Then

R(z) = φ(H)(H − z)−1 + (1 − φ(H))(H − z)−1 =: Rφ(z) + R1−φ(z) .
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We will bound Rφ ∈ WLOC and R1−φ ∈ WLOC separately. The result for R1−φ is
immediate, since σ(H) � λ �→ (1 − φ(λ))(λ − E − i ε)−1 is a smooth function with
derivatives bounded uniformly in ε ∈ [0, 1], so for E ∈ Int
′ we have R1−φ(E + i ε) ∈
LOC ⊆ WLOC, uniformly in ε ∈ [0, 1]. To bound Rφ we will use the fact that 
 is a
mobility gap. We have

Rφ(z) =
∑

λ∈E(
)

φ(λ)(λ − z)−1Pλ ,

where E(
) denotes the (countable) set of eigenvalues of H in 
.
For j = 1, . . . , N let e j denote the elements of the standard basis for C

N . Fix x, y ∈ Z
2

and i, j ∈ {1, . . . , N } and let

f i, jx,y(z) := 〈ei , Rφ(z)x,yej〉 =
∑

λ∈E(
)

φ(λ)(λ − z)−1〈ei , (Pλ)x,ye j 〉

=
∫




(λ − z)−1φ(t) dmi, j
x,y(t)

with

dmi, j
x,y(t) :=

∑

λ∈E(
)

〈ei , (Pλ)x,ye j 〉 δ(t − λ) d λ .

Because f i, jx,y is the Borel transform of the finite Borel measure mi, j
x,y , it is well known

that the limit limε→0 f i, jx,y(E + i ε) exists for almost every E and satisfies
∣
∣
∣{E ∈ R : | f i, jx,y(E + i 0)| > α}

∣
∣
∣ ≤ C

α

∫

R

φ(t) d |mi, j
x,y |(t) , (B.6)

where | · | denotes Lebesgue measure, d |mi, j
x,y |(t) = ∑

λ |〈ei , (Pλ)x,ye j 〉| δ(t − λ) d λ

is the total variation measure for dmi, j
x,y , and C is a universal constant. To see this,

recall that limε→0
∫

Im{ 1
t−E−i ε } dmi, j

x,y(t) = 0 a.e., sincemi, j
x,y is purely singular, while

limε→0
∫

Re{ 1
t−E−i ε } dmi, j

x,y(t) = 0 = Hmi, j
x,y(E), the Hilbert transform of mi, j

x,y , a.e..
Thus (B.6) follows from Loomis’s weak L1 bound on the Hilbert transform of a measure
[Loo46].
The integral on the right hand side of (B.6) may be bounded as follows

∫

R

φ d |mi, j
x,y | =

∑

λ∈E(
)

φ(t)|〈ei , (Pλ)x,ye j 〉| ≤
∣
∣
∣
∣
∣
∣

sup
|g|≤1

∑

λ∈E(
)

g(λ)〈ei , (Pλ)x,ye j 〉
∣
∣
∣
∣
∣
∣

= sup
|g|≤1

〈δx ⊗ ei , P
(H)g(H)δy ⊗ e j 〉 ≤ sup
|g|≤1

∥
∥(P
(H)g(H))x,y

∥
∥ . (B.7)

Using Definition 2.5 to bound the right hand side, we see that we have shown the
following

There are ν ∈ N such that for every μ ∈ N and α > 0 we have
∣
∣
∣{E ∈ R : | f i, jx,y(E + i 0)| > α}

∣
∣
∣ ≤ Cμ(1 + ‖x‖)ν(1 + ‖x − y‖)−μ 1

α
.

(B.8)
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To prove (B.5) we need to extend (B.8) off the real axis. For the moment let x, y, i, j
be fixed and write f ≡ f i, jx,y , m ≡ mi, j

x,y to simplify notation. For this purpose, let
0 < s < 1 and note that the function | f (z)|s is sub-harmonic in the upper half plane.
Let 
̃ = {t : dist(t,
) ≤ 1} and define

g(E) = | f (E + i 0)|sχ
̃(E) and h(E) = | f (E + i 0)|s(1 − χ
̃(E)) .

By the subharmonicity of | f (z)|s , we have
| f (z)|s ≤ Pg(z) + Ph(z)

for all z in the upper half plane, Pg(z) = 1
π

∫

g(t)Im{ 1
t−z } d t denotes the Poisson

integral. Because the Poisson kernel is a radially decreasing function,

| f (E + i ε)|s ≤ Mg(E) + Mh(E) ,

with Mg, Mh the Hardy-Littlewood maximal functions of g, h, respectively. Since g is
compactly supported, it follows from (B.6) that g ∈ L p(R) for, say, p = 2

1+s > 1, with

‖g‖p
L p

= 1

p

∫ ∞

0
t p−1|{|g| > t}| d t ≤ C

∫ ∞

0
t p−1 min

(

|
̃|, t−1/s
∫

R

φ d |m|
)

d t

≤ C |
̃|1−sp
(∫

R

φ d |m|
)sp

.

Because | f (z)|s ≤ 1
dist(z,
)s

(∫

φ d |m|)s , we have h ∈ Lq(R), for, say, q = 2
s > 1,

with

‖h‖qLq
≤

∫


̃c

1

dist(t,
)qs

(∫

φ d |m|
)qs

d t ≤ C

(∫

φ d |m|
)qs

.

Thus
∣
∣
∣
∣
∣
{E : sup

ε∈(0,1]
| f (E + i ε)|s > α}

∣
∣
∣
∣
∣

≤ ∣
∣{E : Mg(E) ≥ α

2 }∣∣ +
∣
∣{E : Mh(E) ≥ α

2 }∣∣

≤C

(
1

α p

(∫

R

φ d |m|
)sp

+
1

αq

(∫

φ d |m|
)qs)

,

by the Hardy-Littlewood maximal inequality. Using (B.7) and Definition 2.5, we find
that we have shown:

There are ν ∈ N, s < 1, and p, q > 1 such that for μ ∈ N and α > 0 we have

∣
∣
∣
∣
∣
{E : sup

ε∈(0,1]
| f i, jx,y(E + i ε)|s > α}

∣
∣
∣
∣
∣

≤ Cμ

(
1

α p (1 + ‖x‖)spν(1 + ‖x − y‖)−spμ +
1

αq
(1 + ‖x‖)sqν(1 + ‖x − y‖)−sqμ

)

,

(B.9)

for every x, y ∈ Z
2 and i, j ∈ {1, . . . , N }.
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To prove (B.5) we now apply a Borel-Cantelli argument. Fix ν, s < 1 and p, q > 1 as
above and let ν′ ∈ N be such that ν′ = ν + 3/min(sp, sq). Let μ′ > 0 and apply (B.9)
with α = (1 + ‖x‖)ν′

(1 + ‖x − y‖)−μ′
and μ > μ′ + 3/min(sp, sq) to conclude that

∑

x,y,i, j

∣
∣
∣
∣
∣

{

E : sup
ε∈(0,1]

| f i, jx,y(E + i ε)|s > (1 + ‖x‖)ν′
(1 + ‖x − y‖)−μ′

}∣
∣
∣
∣
∣

≤ Cμ

∑

x,y,i, j

(1 + ‖x‖)−3(1 + ‖x − y‖)−3 < ∞ .

We conclude from the Borel-Cantelli lemma that there is a full measure set of energies
on which

sup
ε∈(0,1]

| f i, jx,y(E + i ε)|s ≤ (1 + ‖x‖)ν′
(1 + ‖x − y‖)−μ′

for all but finitelymany x, y, i, j . Since for each i, j, x, ywehave alsohave supε∈(0,1] | f i, jx,y
(E + i ε)|s < ∞ on a full measure set of E , we conclude that there is a full measure set
of E on which

sup
ε∈(0,1]

| f i, jx,y(E + i ε)|s ≤ Cμ′(1 + ‖x‖)ν
′
(1 + ‖x − y‖)−μ′

Repeating this for each μ′ ∈ N (a countable set) we find that (B.5) holds for E in a set
of full measure. ��

C Proof of Proposition 4.3

In this section we prove that indexQU = 0 for Q a projection onto a subset of the
mobility gap (this is Proposition 4.3). Since Q projects onto localized states of H , we
know it is spanned by a SULE basis {ψn}n as in Definition B.1.
Let us define an operator V on im Q, diagonal in the SULE basis, via

Vψn := exp(i arg(xn · e1 + i xn · e2))ψn .

We extend V to H by defining Vψ = ψ for ψ ∈ im Q⊥. Clearly, V is unitary and
commutes with Q. Thus indexQV = 0, so it suffices to prove (U − V )Q =: B is
compact. We shall show it is Schatten. For this, it suffices to show

∑

y

(
∑

x

|Bx,x+y |p
)1/p

< ∞ .

The proof is similar to that of Lemma A.1, but here we have the added complication of
having to control the infinite collection {ψn}n .
Note that

Bx,y =
∞
∑

n=1

(ei arg(x) − ei arg(xn)))ψn(x)ψn(y) .



A. Bols, J. Schenker, J. Shapiro

Now defining f (x) := exp(i arg(x)) we have

|Bx,y |p ≤
( ∞

∑

n=1

| f (x) − f (xn)||ψn(x)||ψn(y)|
)p

≤
∑

n

| f (x) − f (xn)|p|ψn(x)||ψn(y)| ,

where we have used Hölder’s inequality in the form

(
∑

j

a j b j c j )
p ≤ (

∑

j

a p
j b j c j ) (

∑

j

b2j )
p−1
2 (

∑

j

c2j )
p−1
2

as well as the fact that
∑

n |ψn(x)|2 ≤ 1, i.e.,
∑

n ψn ⊗ ψ∗
n = Q ≤ 1.

Now we observe that f obeys the estimate in (A.1), so that using (B.1) we find

|Bx,x+y |p ≤ DpC2
μ

∑

n

‖x − xn‖p

(1 + ‖xn‖)p/2(1 + ‖x‖)p/2
(1 + ‖x − xn‖)−μ

(1 + ‖x + y − xn‖)−μ+p(1 + ‖xn‖)2ν
≤ DpC2

μ

∑

n

(1 + ‖x − xn‖)−μ+p(1 + ‖x + y − xn‖)−μ+p(1 + ‖xn‖)2ν−p/2

(1 + ‖x‖)−p/2

≤ DpC2
μ(1 + ‖y‖)−μ/2+p/2(1 + ‖x‖)−p/2

∑

n

(1 + ‖xn‖)2ν−p

where in the last step we have used the triangle inequality in the form (1 + ‖a‖)(1 +
‖a + b‖) ≥ 1+‖b‖ aswell as (1+‖x + y − xn‖)−μ/2+p/2 ≤ 1, (1+‖x − xn‖)−μ/2+p/2 ≤
1.
The result now follows thanks to (B.2) and the fact p, μ may be chosen arbitrarily large.
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