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Abstract: Water quality is affected by multiple spatial and temporal factors, including the sur-
rounding land characteristics, human activities, and antecedent precipitation amounts. However,
identifying the relationships between water quality and spatially and temporally varying environ-
mental variables with a machine learning technique in a heterogeneous urban landscape has been
understudied. We explore how seasonal and variable precipitation amounts and other small-scale
landscape variables affect E. coli, total suspended solids (TSS), nitrogen-nitrate, orthophosphate,
lead, and zinc concentrations in Portland, Oregon, USA. Mann-Whitney tests were used to detect
differences in water quality between seasons and COVID-19 periods. Spearman’s rank correlation
analysis was used to identify the relationship between water quality and explanatory variables. A
Random Forest (RF) model was used to predict water quality using antecedent precipitation amounts
and landscape variables as inputs. The performance of RF was compared with that of ordinary least
squares (OLS). Mann—-Whitney tests identified statistically significant differences in all pollutant
concentrations (except TSS) between the wet and dry seasons. Nitrate was the only pollutant to
display statistically significant reductions in median concentrations (from 1.5 mg/L to 1.04 mg/L)
during the COVID-19 lockdown period, likely associated with reduced traffic volumes. Spearman’s
correlation analysis identified the highest correlation coefficients between one-day precipitation
amounts and E. coli, lead, zinc, and TSS concentrations. Road length is positively associated with E.
coli and zinc. The Random Forest (RF) model best predicts orthophosphate concentrations (R% = 0.58),
followed by TSS (R? = 0.54) and nitrate (R? = 0.46). E. coli was the most difficult to model and had the
highest RMSE, MAE, and MAPE values. Overall, the Random Forest model outperformed OLS, as
evaluated by RMSE, MAE, MAPE, and R?. The Random Forest was an effective approach to modeling
pollutant concentrations using both categorical seasonal and COVID data along with continuous
rain and landscape variables to predict water quality in urban streams. Implementing optimization
techniques can further improve the model’s performance and allow researchers to use a machine
learning approach for water quality modeling.

Keywords: urban runoff; machine learning model; water quality; temporal analysis; urban
runoff-management; antecedent precipitation

1. Introduction

Urban streams show substantial spatial and temporal variations in water quality due
to spatially complex and heterogeneous landscapes. Throughout a city, pollutant con-
centrations are typically high in highly developed areas, while they are low in open or
forested areas [1]. Water quality also varies substantially by season, which is associated
with flow variability. A study of urban catchments in Southern California found higher
levels of pollution corresponding to higher storm-runoff volumes [2]. Larger amounts
of storm runoff and increased potential pollution sources in urban areas leave stormwa-
ter runoff susceptible to being greatly polluted, which can be detrimental to public and
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ecological health [3]. Our goal is to understand the environmental and anthropogenic
factors that explain the behavior of total suspended solids (TSS), nitrate, orthophosphate,
E. coli, lead, and zinc levels in stormwater runoff throughout the metropolitan area of
Portland, Oregon, USA. Understanding the spatial and temporal variations in pollutant
concentrations can help manage stormwater systems to minimize the threat to the public
and the surrounding ecosystems.

Stormwater-runoff quality can vary substantially within the same season since the
storm intensity and duration and soil moisture conditions can affect the source, pathway,
and delivery of pollutants [4,5]. Antecedent precipitation has been cited as a principal
factor that influences the levels of pollutants in stormwater runoff [1,5,6]. Antecedent
precipitation provides the ground surface moisture, which allows for the greater accu-
mulation and mobilization of pollutants [5]. On the other hand, significant antecedent
rain amounts can have a diluting effect on pollutants and lower their overall measured
levels in stormwater runoff [6]. This demonstrates that antecedent precipitation’s effect on
pollutants is situational. While previous studies examined how previous days’ amounts of
rainfall are associated with the concentrations of pollutants in the stormwater runoff [1,5,6],
no previous studies have examined how the relationship between antecedent precipitation
and the pollutant concentration changes with respect to the surrounding land characteris-
tics. Thus, this study seeks to fill the gap in the literature by considering both spatial (land
cover and infrastructure) and temporal (antecedent precipitation amount) variables that
are likely to be associated with pollutant concentration in urban streams.

The difference in the amount of precipitation an area receives is most noticeable
during its wet and dry seasons. The seasons provide a macro-level time frame to observe
how stormwater runoff in urban areas changes over time. For example, after a long
time without receiving rain, heavy metals accumulated on developed land surfaces will
experience higher levels of concentration in the storm runoff after the first major rain event
due to a flushing effect. This was shown by the study conducted by Ferreira et al. [6],
who investigated the patterns of surface water quality patterns in a Portuguese suburban
catchment. However, a study by Ortiz-Hernandez et al. [7] observed higher mean values
for total suspended solids, lead, and zinc in the dry season than in the wet season across all
of their sampling sites at a university in the semi-arid region of Pachuca, Hidalgo, Mexico.
Given such contrasting findings in previous studies, this study investigated whether these
seasonal behaviors of lead and zinc also occur in a climatically different region and relate
to antecedent precipitation amounts and landscape variables. Additionally, the current
study examined whether other more naturally occurring pollutants (total suspended solids,
nitrate, and orthophosphate) exhibit either flushing (higher concentration) or dilution
(lower concentration) effects during the wet season [8].

When there is a major disruption in human activities in urban regions, water quality
is likely to exhibit differences between the pre-disruption and post-disruption periods. The
COVID-19 pandemic provided us with a unique opportunity to examine a time frame with
unprecedented shifts in human/environmental activities. Before the pandemic, the city’s
annual average daily traffic for all highways that travel through the city ranged from 15,000
to 75,000+ vehicles [9]. Once the pandemic spread across the country and travel restrictions
were implemented, the state of Oregon experienced major changes in vehicle miles traveled,
with a 10.77% decrease in 2020 compared to 2019 [10]. After the Oregon Governor’s stay-at-
home order was issued on 23 March 2020, the traffic volume substantially declined in late
March and early April. While traffic volume gradually bounced back after April 6, traffic
volumes in the summer of 2020 were 10-15% lower than those in the summer of 2019 [10].

With the primary source of many heavy metals found in urban storm runoff being
car traffic emissions [11,12], this large decrease in driving activity due to the Coronavirus
Disease 2019 (COVID-19) lockdown could have lowered the heavy metal concentrations in
storm runoff. Deposits of metals such as copper, iron, lead, and zinc come from vehicle
undercarriage deterioration and brake system wear [13]. Beasley and Kneale [11] also
stated that “heavily trafficked catchments produce more pollutants than lightly trafficked
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catchments [14,15]”. Analyzing pollutant levels before and after the COVID-19 lockdown
can show how the quality of stormwater runoff responds to a large decrease in terrestrial
and atmospheric inputs of pollutants on roadways.

These constantly changing driving forces contribute to a pollutant’s concentration in
urban stormwater runoff. It is for this reason that many turn to machine learning models
to better predict water quality [16-19]. Machine learning models can account for complex,
nonlinear relationships between multiple inputs without having to explicitly define the
function a priori [17]. Wang et al. developed a Random Forest to model water quality
in a spatially heterogeneous watershed and identified the key driving factors for three
water quality indicators [18]. A Random Forest model was used for 13 out of the 15 best-
performing models when tasked to model water quality indices between Random Forest
and sequential minimal optimization-support vector machine (SMO-SVM) models [19].
The authors compare the Random Forest performance with the ordinary least-squares
(OLS) performance to test the effectiveness of using a Random Forest model to predict
water quality using both spatial and temporal factors.

The objectives of this study were as follows:

1.  To observe whether the study area experiences different levels of pollutants between
seasons and COVID-19 lockdown period.

2. Toidentify the relationship between pollutant concentration and precipitation and
landscape variables in the urban environment.

3. To quantify the Random Forest model’s ability to model water quality compared
to OLS.

2. Materials and Methods
2.1. Study Area

The study area is the city of Portland, Oregon, located in the Pacific Northwest
region of the United States. According to Koppen'’s climate classification system, the city
is in a dry-summer subtropical (Mediterranean) climate. The city experiences its wet
season from October to April and its dry season from May to September, and receives
approximately 965 mm of precipitation annually [20]. Portland was selected for this study
because the city has precipitation intensity and water quality monitoring stations while
representing heterogeneous landscape patterns with different degrees of land development.
Hourly rain data were collected from 32 stations that are part of the City of Portland
HYDRA network [21]. Water quality data were compiled from 36 eligible stations for
seasonal analysis and 21 eligible stations for the COVID-19 period. These stations qualified
from the 132 stations that are a part of the Portland Area Watershed Monitoring and
Assessment Program (PAWMAP) [22]. These stations were considered eligible because
they had at least three samples collected across seasons and COVID-19 lockdown period,
which were necessary for the statistical tests. Figure 1 shows the distribution of all the
eligible stations and their placement with regards to the city’s borders and waterways.
Portland’s widespread rain gauge network and its consistent monitoring of the water
quality of storm runoff through PAWMAP stations provided an in-depth record of hourly
precipitation going as far back as 1998 and storm runoff water samples beginning in 2015.
The city’s climate patterns contribute to the interest of the investigation. Cooley and
Chang [23] detected that regional precipitation in the Portland metropolitan area has been
experiencing longer dry period durations paired with sporadic and more intense days
of rainfall in the wet seasons. They projected this behavior to continue through the 21st
century and noted that it is most noticeable at the event or monthly timescales. Access
to hourly precipitation from the HYDRA network allows for an analysis of water quality
fluctuations at scales as refined as storm events or as broad as the seasonal scale.
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Figure 1. Study area: the city limits and locations of water quality monitoring and weather stations
in Portland, OR, USA.

2.2. Data Preparation

Our data consisted of samples taken at various PAWMAP stations ranging from 2015 to
2021. A subset of pollutants originating from anthropogenic sources (E. coli, lead, and zinc)
and pollutants originating from more natural sources (TSS, nitrate, and orthophosphate)
were selected for this investigation based on data availability and their importance to
aquatic health. Precipitation data were assigned to samples from all water quality sampling
stations depending on their proximity to the nearest rain gauge. While this method of
using spatial proximity is reasonable for most stations located in relatively flat areas in
the east of the Willamette River, it may either overestimate or underestimate precipitation
amounts for some stations on the west side of the city, where Forest Hills could potentially
block (rain shadow) or enhance precipitation (orographic). For every water quality sample,
the sum of the antecedent precipitation was determined based on 1 day, 3 days, 5 days,
7 days, and 30 days prior to its sampling date using the Python package pandas [24].
These days were chosen to represent various short-term storms with different durations
and their memory effects on the soil water content, which contributes to streamflow and
pollutant concentrations in the study streams [1]. Compared to the previous study [1], we
added 30 days of antecedent precipitation to our analysis since it can take a few weeks
for storm events to saturate soils in the wet season. Samples collected during the months
from October to April were considered wet season samples, while the rest of the samples
(May to September) were assigned to the dry season. For COVID-19 period classification,
samples taken from 23 March 2020 through 26 May 2021 were considered to have been
collected during the COVID-19 lockdown period. All those collected prior were considered
samples from before the COVID-19 lockdown period.
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Environmental variables were adapted from Gelsey et al. [25], who examined the
spatial variations in wet season pollutant concentrations for 128 stations at two different
spatial scales using spatial regression analysis. The variables included percent impervious-
ness, road length, percent developed, percent forested, pipe length, mean slope, standard
deviation of slope, and standard deviation of elevation. The surrounding landscape values
were determined considering a 250 m circular buffer around all the sampling stations in the
study. As such, these variables take into account the spatially heterogeneous urban land-
scape. However, they do not consider the landscape conditions of upstream contributing
areas of some monitoring stations that are located along the mainstem.

2.3. Methodology

This study aimed to quantify the impacts that different spatial and temporal variables
have on pollution concentrations in storm runoff across the seasons as well as with respect
to the COVID-19 lockdown. First, the Mann-Whitney U test was used to determine whether
each pollutant’s concentrations were statistically different across seasonal and COVID-19
time frames. The Mann-Whitney U test detects statistically significant differences between
two sets of data that are not assumed to follow a normal distribution with relatively small
sample sizes. Water samples taken at an eligible station meant that the station had at
least three samples tested for the same pollutant for all six pollutants in both respective
time-frame periods. This left 36 water quality monitoring stations eligible for seasonal
comparison, and 21 stations were eligible for the pre-COVID-19 and COVID-19 lockdown
period comparison.

Second, Spearman’s rank-order correlation test was used to investigate the relation
between pollutant concentrations and different days” antecedent precipitation amounts
and other landscape and infrastructure variables for all stations. Spearman’s correlation
was used because water quality data and many explanatory variables are not normally
distributed, which violates the assumptions of parametric tests such as Pearson’s correla-
tion analysis.

Finally, ordinary least-squares regression and a Random Forest (RF) model were used
to explain the variation in wet season pollutant concentrations using a combination of
antecedent precipitation amounts and landscape variables. A Random Forest is a type of
machine learning model that can be described as an ensemble model. Capable of both
classification and regression tasks, a Random Forest is a collection of simpler models
that collectively relate a set of input features to predict a desired output. Random Forest
regressors can simultaneously include categorical and continuous values as inputs and
effectively prevent overfitting compared to other machine learning models [26]. The
Random Forest regressor and data preprocessing were conducted using libraries from
scikit-learn [27].

A Random Forest regressor was compiled for each pollutant individually for an easier
analysis of feature importance. The input data were always normalized prior to fitting the
model. The available data for each pollutant were split into two—=80% for training and 20%
for testing. In order to identify the best-performing and least complex model, features that
had a correlation coefficient with the pollutant measurement that was greater than 0.1 in
absolute value were selected as the input features of the Random Forest. The performance
of the Random Forest was evaluated using the Root-Mean-Square Error (RSME), Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and R? values. Since the
range of the pollutant concentrations varied greatly between pollutants, some performance
metrics were more appropriate than others to evaluate the performance of the models for
each pollutant. The results were compared to the results of an ordinary least-squares model,
which was used as a benchmark for the performance of the Random Forest.
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3. Results
3.1. Seasonal Differences in Water Quality

Comparing the median concentration values describes the general pollutant levels in
urban storm runoff across seasons. The Mann—-Whitney test showed statistically significant
differences between the wet and dry seasons at the 1% significance level for E. coli, lead,
nitrate, orthophosphate, and zinc. Table 1 summarizes each pollutant’s median concentra-
tion levels in the wet season and dry season. E. coli, nitrate, lead, TSS, and zinc had higher
median values in the wet season than in the dry season. Orthophosphate was the only
pollutant to exhibit higher median values in the dry season than in the wet season.

Table 1. Median seasonal concentrations and Mann-Whitney U test p-values for samples originating
from 36 eligible stations. Pollutants from anthropogenic sources are shaded yellow, while pollutants
from more natural sources are shaded green. Bolded entries signify statistical significance (p < 0.05).

. Dry Season Wet Season Dry Season Median  Wet Season Median Mann-Whitney
Pollutant (Units) . .
Samples Samples Concentration Concentration p-Value
E. coli MPN/100 mL) 141 236 120 85.0 0.0029
Lead (ng/L) 141 236 0.224 0.315 <0.001
Zinc (ug/L) 141 236 3.78 5.705 <0.001
TSS (mg/L) 141 236 4.0 4.0 0.351
Nitrate (mg/L) 143 236 0.72 1.5 <0.001
Orthophosphate 142 236 0.054 0.038 <0.001
(mg/L)

Figure 2 illustrates the distribution of pollutant concentrations sampled in both sea-
sons. Skewed median values in the interquartile range suggest that seasonal pollutant
concentration levels cannot be described by a normal distribution. This demonstrates the
complexity of each pollutant’s seasonal behavior. Furthermore, each pollutant’s boxplot
has numerous outliers, representing abnormally high levels of the pollutant’s concentration
that must be investigated on a case-by-case basis for a better understanding.
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Figure 2. Boxplots showing the seasonal distributions of E. Coli, lead, zinc, nitrate, orthophosphate,
and TSS concentration from 36 eligible stations.
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3.2. Effects of COVID-19 Lockdown on Water Quality

Similar to the seasonal analysis, the boxplots in Figure 3 demonstrate the distribution
of all samples taken during the different periods from eligible stations. The smaller number
of samples taken during the pandemic reflects fewer cases of extremely high concentrations
as outliers in the boxplots. Table 2 reports the results of the Mann-Whitney test, as
well as median pollutant values across COVID-19 periods. The test shows that nitrate
is the only pollutant that received a statistically significant difference between the two
periods (p < 0.05). The median nitrate concentration before COVID-19 was 1.5 mg/L, and
it decreased to 1.04 mg/L in samples collected during the COVID-19 lockdown period.

~.500- & 8 . 125y s 30- ¢ 200- *
£ I 1.00- M .
o 2000 gy o ‘ull o, 150-
S 300 go 2075 E .
* T T 100-
< 200 1000-%  £0.50- g | T
S s 3 81 50- ° ¢
£ 100- l l 0.25- ®
O i o-®8  o00- & . o- | o-'?".L
B D BD B D BD B D B D
E. Coli Lead Zinc .
Bn= 111,Dn= 99 Bn= 111,Dn= 99 Bn= 111,Dn= g9 COVID-19 Period
" 2 . " Ed B = Before lockdown
4- . 9 v B E3 D = During lockdown
— —-— 4 —
d d | )
E E £ .
g2 : g :
10- 1
8 4. 8 0.05- S i L
0- ; ; 0- i
B D D B D
Nitrate Orthophosphate TSS
Bn= 111,Dn= 99 Bn= 111,Dn= 99 Bn= 111,Dn= 99
Figure 3. Sample distribution across COVID-19 periods for E. Coli, lead, zinc, nitrate, orthophosphate,
and TSS from 21 eligible stations.
Table 2. Mean concentrations and Mann-Whitney p-values for samples originating from 21 eligible
stations during the COVID-19 period. Pollutants from anthropogenic sources are shaded yellow,
while pollutants from more natural sources are shaded green. Bolded entries signify statistical
significance (p < 0.05).
Pollutant (Units) Pre-COVID-19 COVID-19 Lockdown Pre-COVID-19 COVID-19 Lockdown Mann-Whitney
oltuta S Samples Samples Median Concentration = Median Concentration Test p-Value
E.coli MPN/100 mL) 111 99 74.0 110.0 0.75
Lead (ug/L) 111 99 0.277 0.261 0.61
Zinc (ug/L) 111 99 4.09 5.15 0.32
TSS (mg/L) 111 99 6.0 5.0 0.93
Nitrate (mg/L) 111 99 1.5 1.04 0.02
Orthophosphate 111 99 0.04 0.044 0.71
(mg/L)

3.3. Correlation between Water Quality and Explanatory Variables

As shown in Figure 4, in nearly all cases, antecedent precipitation amounts are sig-
nificantly correlated with all pollutants, although the strength of the relationship varies
by pollutant. Nitrate’s correlation coefficients with all antecedent precipitation values are
the lowest among all pollutants. Additionally, nitrate was the only pollutant that included
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the COVID-19 lockdown period as an input feature, reinforcing the findings in Table 2. Or-
thophosphate was the only pollutant that was negatively associated with the precipitation
variables. Road length is positively associated with E. coli and zinc concentrations. Devel-
oped land and pipe length are positively related to the E. coli concentration, while forested
land and soil C are negatively associated with the E. coli concentration. Topographic vari-
ables such as the mean slope, standard deviation of the slope, and standard deviation of
elevation are statistically significantly related to the orthophosphate concentration.
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Figure 4. Spearman’s rank correlation coefficient values among pollutant concentrations and explana-
tory variables. Statistically significant variables are shown in bold.

3.4. Random Forest Regression Results

With the massive number of combinations that are possible as input features and
desired output pairs, the Random Forest performs the best when the number of training
data points is largest while the variance of the output is minimal [19]. In the models using
correlated features as inputs, lead was the most difficult pollutant to make predictions for.
It received an R? value of 0.04 for the OLS model and an R? value of 0.08 for the Random
Forest, which were the poorest values for both models. The Random Forest achieved its
best performance with orthophosphate, producing an RSME = 0.0, MAE = 0.01, MAPE
of 25.3, and R? values of 0.58. With the Random Forest model, TSS and nitrate follow
orthophosphate with R? values of 0.54 and 0.42, respectively.

Comparing the R? values for E. coli, the OLS model’s R? value of 0.149 slightly out-
performed the Random Forest’s R? value of 0.13. For every other pollutant’s performance
metrics, the Random Forest performed better than OLS, with lower RMSE, MAE, MAPE,
values and a higher R? value (Table 3). As shown in Figures 5 and 6, the predictions made
by the Random Forest are more clustered by the line of identity (Y = X). This fit is desired,
as all the performance metrics calculate the total error from the predictions and their actual
ground-truth values.
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Table 3. Comparison of model goodness-of-fit between Random Forest and OLS.
OLS
Pollutant RSME MAE MAPE R?
E. coli 321.09 205.26 5.20 0.149
Lead 2.11 0.57 0.97 0.042
Nitrate 0.95 0.72 0.81 0.105
Orthophosphate 0.00 0.015 0.39 0.29
TSS 18.21 10.87 1.23 0.499
Zinc 12.13 6.34 1.20 0.284
Random Forest
Pollutant RSME MAE MAPE R?
E. coli 323.68 159.15 291 0.13
Lead 2.07 0.53 0.77 0.08
Nitrate 0.77 0.55 0.62 0.42
Orthophosphate 0.00 0.01 0.25 0.58
TSS 17.35 9.52 1.16 0.54
Zinc 11.35 497 0.93 0.37
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Figure 5. Comparison between observed and OLS-predicted pollutant concentrations.
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Figure 6. Comparison between observed and Random-Forest-predicted pollutant concentrations.

4. Discussion

E. coli and orthophosphate were the pollutants that had higher median values in the
dry season. For E. coli, this confirms previous investigations of seasonal differences that
found higher concentrations of the microorganism in urban watersheds in the summers in
the Pacific Northwest [1]. With orthophosphate being negatively correlated with all five
precipitation variables, it follows that the higher median value was achieved during the dry
season. While the findings agree with a previous study in Johnson Creek in Portland [28],
the results contradict other studies in humid temperate climates that reported higher
concentrations of orthophosphate in the wet season [29,30]. Given that the main sources of
orthophosphate in urban runoff are plant decay and plant fertilizers [7], climate plays a
significant role in the orthophosphate concentration. During the wet winter season, fewer
plants are decaying, and fertilizer usage diminishes because of the lower demand for lawn
fertilizers. Together with fewer sources, more frequent winter precipitation could have
resulted in the dilution of orthophosphate found in urban runoff, while groundwater might
be a major source of orthophosphate in the dry season [28]. The heavy metals lead and
zinc experienced higher median levels in the wet season with statistical significance. A
flushing effect may be the cause of the increased heavy metal levels in the wet season in
the study region. Similarly, a study in the Greater Vancouver region in Canada shows
higher concentrations of lead and zinc in the wet season [31]. These findings are in contrast
with the higher readings of both lead and zinc in the dry season in a semi-arid zone [7].
Differences between these investigations are likely to be attributed to differences in climate,
the intensity of human activities, and the number of samples utilized for analysis.

The COVID-19 pandemic placed limitations on human activity, yet our analysis did not
confirm many statistically significant changes in pollutant levels during the COVID-19 pe-
riod, similar to the conclusion from a study on US coastal watershed health throughout the
COVID-19 lockdown period [32]. Nitrate was the sole pollutant to have a statistically signif-
icant decrease in its measured concentration in urban storm runoff during the COVID-19
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period. It is likely that the diminished car traffic might have resulted in lower emissions
and atmospheric deposition of NOX, as reported in major Chinese cities [33,34]. The smaller
number of samples taken during the lockdown period might have limited the detection of
how urban streams responded to this sudden shift. Legislative responses and human atti-
tudes toward following travel restrictions fluctuated temporally throughout different stages
of the pandemic [35]. Changes in travel activity significantly varied spatially between areas
defined as finely as the county level. This nonuniform response to the pandemic may have
decreased the possibility for heavily trafficked areas to experience a clear improvement
associated with the COVID-19 lockdown. Continually monitoring pollutant levels over
a longer period as restrictions are lifted during the response to COVID-19 can provide a
better understanding of how changes in human activities impact stormwater-runoff quality.

Spearman’s rank correlation analysis indicated one-day antecedent precipitation as
an important explanatory variable for all pollutants, suggesting that the chosen pollutants
are sensitive to short rainfall events. Other studies reported similar findings that turbidity
and pathogen concentrations are highly correlated with the previous day’s precipitation
in Tennessee, USA [36]. The positive correlation between zinc concentration and road
length also confirms previous studies indicating that traffic on roads (e.g., car brake and tire
wear) is the main source of zinc in urban streams [11-13]. The positive correlation between
storm-pipe length and E. coli concentration indicates possible sources of human and animal
wastes [37].

The Random Forest model outperformed standard OLS in modeling pollutant concen-
trations using a subset of the initial input features. Being allowed to include categorical
data along with continuous precipitation and landscape data allows for a complete un-
derstanding of the factors that impact pollutant levels. While the RF model predicted
naturally occurring pollutants (orthophosphate, TSS, and nitrate) reasonably well, it did
not adequately predict anthropogenically generated pollutants (E. coli, lead, and zinc),
suggesting that additional predictors are needed to improve the accuracy of the model.
Further model-refining techniques such as boosting or interpreting the feature importance
can allow a deeper understanding of how the Random Forest outperformed OLS, since
both were trained using the same input features for each pollutant. Connecting a spatial
aspect to a temporal analysis can offer a more complete understanding to devise a targeted
plan to restore urban runoff and associated water quality to a more natural regime [38,39].

To improve the reliability and efficiency of the model, future research endeavors will
consider conducting an uncertainty analysis to identify the best set of input variables
and ensemble models [40]. Once continuous hydrometeorological data (e.g., precipitation
and flow) are available, different lead times can be considered for inputs to machine
learning models. For example, different wavelet-ANN models using the least-squares
boosting ensemble and Bates-Granger techniques resulted in the more reliable and accurate
forecasting of chlorophyll and salinity in Hilo Bay, Hawaii, USA [40].

5. Conclusions

Using a unique set of spatially intensive monitoring data in urban streams, the study’s
main findings are summarized below.

(1) Pollutant concentrations in urban runoff demonstrated pronounced differences
across seasons and marginal differences with respect to COVID-19 travel restrictions. E. coli
and orthophosphate experienced higher median values in the dry season, with different
sources being more common during that period. Nitrate was the only element that showed
statistically significantly lower amounts after the introduction of COVID-19 restrictions,
most likely resulting from reduced traffic emissions due to lower driving volumes during
this period.

(2) Antecedent rainfall variables were correlated with the measurements of all the
pollutants and were thus used as inputs to the Random Forest model. The one-day an-
tecedent precipitation amount has the highest correlations with E. coli, lead, zinc, and TSS.
Road length is positively associated with E. coli and zinc concentrations, suggesting that
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roads are the primary sources of these pollutants. The standard deviation of the slope is
positively associated with both nitrate and orthophosphate concentrations.

(3) The Random Forest demonstrated a better capability to utilize both temporal
(antecedent precipitation) factors and spatial (land cover) variables to predict pollutant
concentrations compared to the standard OLS model. The Random Forest achieved lower
RMSE, MAE, and MAPE values and higher R? values for the predictions of every pollu-
tant except E. coli. E. coli was the pollutant with the highest variance during the study
periods, contributing to the difficulty of modeling it by both the Random Forest and OLS.
Orthophosphate was best estimated with the given inputs.

Future studies can include improvements to the Random Forest model with boosting
or cross-validation. Feature importance can be analyzed to correlate input features to learn
whether the correlation is an optimal condition for feature selection.

Regardless, the current study demonstrates the utility of using both landscape and
weather variables as inputs for the Random Forest model for predicting water quality in
urban streams.

Author Contributions: Conceptualization, D.R. and H.C.; methodology, D.R. and H.C.; software,
D.R. and K.G,; validation, D.R., H.C. and K.G.; formal analysis, D.R.; investigation, D.R. and H.C.;
resources, D.R., K.G. and H.C,; data curation, D.R.; writing—original draft preparation, D.R.; writing—
review and editing, D.R., H.C. and K.G,; visualization, D.R. and K.G.; supervision, H.C.; project
administration, H.C.; funding acquisition, H.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the National Science Foundation under grant num-
ber 1758006.

Data Availability Statement: The data are available from the corresponding author.

Acknowledgments: The authors appreciate the National Science Foundation for supporting this
research. Christof Teuscher and Adrian Jimenez provided informal feedback on the initial version of
the manuscript. Chris Prescott at the City of Portland provided water quality data, without which
this research would not have been possible. Thanks also go to three anonymous reviewers and editor,
whose comments helped strengthen the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Chen, H].; Chang, H. Response of discharge, TSS, and E. coli to rainfall events in urban, suburban, and rural watersheds. Environ.
Sci. Process. Impacts 2014, 16, 2313-2324. [CrossRef] [PubMed]

2. Dwight, RH.; Caplan, ].S.; Brinks, M.V,; Catlin, S.N.; Buescher, G.; Semenza, J.C. Influence of Variable Precipitation on Coastal
Water Quality in Southern California. Water Environ. Res. 2011, 83, 2121-2130. [CrossRef] [PubMed]

3. Fish, N.; Jordan, M. Portland Area Watershed Monitoring and Assessment Program. Executive Summary—Findings from Years
1-4. 2018. Available online: https:/ /www.portlandoregon.gov/bes/article/689921 (accessed on 27 July 2021).

4. Yazdi, M.N.; Sample, D.]J.; Scott, D.; Wang, X.; Ketabchy, M. The effects of land use characteristics on urban stormwater quality
and watershed pollutant loads. Sci. Total Environ. 2021, 773, 145358. [CrossRef] [PubMed]

5. Guo, D,; Lintern, A.; Webb, J.A.; Ryu, D,; Liu, S.; Bende-Michl, U.; Leahy, P.; Wilson, P.; Western, A.W. Key Factors Affecting
Temporal Variability in Stream Water Quality. Water Resour. Res. 2019, 55, 112-129. [CrossRef]

6. Ferreira, C.S.S.; Walsh, R.P.D.; de Lourdes Costa, M.; Coelho, C.O.A.; Ferreira, A.J.D. Dynamics of surface water quality driven by
distinct urbanization patterns and storms in a Portuguese peri-urban catchment. J. Soils Sediments 2016, 16, 2606-2621. [CrossRef]

7. Ortiz-Hernandez, J.; Lucho-Constantino, C.; Lizarraga-Mendiola, L.; Beltran-Hernandez, R.I.; Coronel-Olivares, C.; Vazquez-
Rodriguez, G. Quality of urban runoff in wet and dry seasons: A case study in a semi-arid zone. Environ. Sci. Pollut. Res. 2016, 23,
25156-25168. [CrossRef] [PubMed]

8. Mainali, J.; Chang, H.; Chun, Y. A review of spatial statistical approaches to modeling water quality. Prog. Phys. Geogr. Earth
Environ. 2019, 43, 801-826. [CrossRef]

9.  Oregon Department of Transportation. TRAFFIC FLOW MAP 2020 [WWW Document]. Flow_Map_2020. 2020. Available online:

https:/ /www.oregon.gov/odot/Data/Documents/Flow_Map_2020.pdf (accessed on 30 July 2021).


http://doi.org/10.1039/C4EM00327F
http://www.ncbi.nlm.nih.gov/pubmed/25096028
http://doi.org/10.2175/106143011X12928814444574
http://www.ncbi.nlm.nih.gov/pubmed/22368953
https://www.portlandoregon.gov/bes/article/689921
http://doi.org/10.1016/j.scitotenv.2021.145358
http://www.ncbi.nlm.nih.gov/pubmed/33940725
http://doi.org/10.1029/2018WR023370
http://doi.org/10.1007/s11368-016-1423-4
http://doi.org/10.1007/s11356-016-7547-7
http://www.ncbi.nlm.nih.gov/pubmed/27680002
http://doi.org/10.1177/0309133319852003
https://www.oregon.gov/odot/Data/Documents/Flow_Map_2020.pdf

Hydrology 2022, 9, 220 13 of 14

10.

11.

12.
13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Oregon Department of Transportation. Impacts of COVID-19 on Traffic [WWW Document]. Regionl Covid-19 Traffic Report 20
08.03.20-09.23.20. 2021. Available online: https://www.oregon.gov/odot/Projects/Project%20Documents /Region1%20Covid-
19%20Traffic%20Report%2020%2008.03.20-09.23.20.pdf (accessed on 30 July 2021).

Beasley, G.; Kneale, P. Reviewing the impact of metals and PAHs on macroinvertebrates in urban watercourses. Prog. Phys. Geogr.
Earth Environ. 2002, 26, 236-270. [CrossRef]

Alexakis, D.E. Multielement Contamination of Land in the Margin of Highways. Land 2021, 10, 230. [CrossRef]

Sansalone, ].J.; Buchberger, S.G. Partitioning and First Flush of Metals in Urban Roadway Storm Water. J. Environ. Eng. 1997, 123,
134-143. [CrossRef]

Andoh, R.Y.G. Urban Runoff: Nature, Characteristics and Control. Water Environ. ]. 1994, 8, 371-378. [CrossRef]

Marsalek, J.; Rochfort, Q.; Brownlee, B.; Mayer, T.; Servos, M. An exploratory study of urban runoff toxicity. Water Sci. Technol.
1999, 39, 33-39. [CrossRef]

Arefinia, A.; Bozorg-Haddad, O.; Chang, H. Chapter 4: The Role of Data Mining in Water Resources Management. In Essential
Tools for Water Resources Analysis, Planning, and Management; Bozorg-Haddad, O., Ed.; Springer: Singapore, 2021.

Nourani, V.; Molajou, A.; Tajpakhsh, A.D.; Najafi, H. A Wavelet Based Data Mining Technique for Suspended Sediment Load
Modeling. Water Resour. Manag. 2019, 33, 1769-1784. [CrossRef]

Wang, F.; Wang, Y.; Zhang, K.; Hu, M.; Weng, Q.; Zhang, H. Spatial heterogeneity modeling of water quality based on random
forest regression and model interpretation. Environ. Res. 2021, 202, 111660. [CrossRef]

Sakaa, B.; Elbeltagi, A.; Boudibi, S.; Chaffai, H.; Islam, A.R.M.T.; Kulimushi, L.C.; Choudhari, P; Hani, A.; Brouziyne, Y.; Wong, Y.J.
Water quality index modeling using random forest and improved SMO algorithm for support vector machine in Saf-Saf river
basin. Environ. Sci. Pollut. Res. 2022, 29, 48491-48508. [CrossRef]

Chang, H. Comparative streamflow characteristics in urbanizing basins in the Portland Metropolitan Area, Oregon, USA. Hydrol.
Process. 2007, 21, 211-222. [CrossRef]

United States Geological Survey, 2021. City of Portland HYDRA Rainfall Network. Available online: https://or.water.usgs.gov/
non-usgs/bes/ (accessed on 28 June 2021).

City of Portland Environmental Services, n.d. Portland Area Watershed Monitoring and Assessment Program (PAWMAP).
Available online: https://www.portlandoregon.gov /bes/article /489038 (accessed on 28 June 2021).

Cooley, A K.; Chang, H. Detecting change in precipitation indices using observed (1977-2016) and modeled future climate data in
Portland, Oregon, USA. J. Water Clim. Change 2021, 12, 1135-1153. [CrossRef]

McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference,
Austin, TX, USA, 28 June-3 July 2010; Available online: https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
(accessed on 28 June 2021).

Gelsey, K.; Chang, H.; Ramirez, D. Effects of Landscape Characteristics, Anthropogenic Factors, and Seasonality on Water Quality in
Portland, Oregon; Portland State University: Portland, OR, USA, 2021. (In review)

Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Pedregosa, F; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R,;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. |. Mach. Learn. Res. 2011, 12, 2825-2830.

Sonoda, K.; Yeakley, ].A. Relative Effects of Land Use and Near-Stream Chemistry on Phosphorus in an Urban Stream. J. Environ.
Qual. 2007, 36, 144-154. [CrossRef]

Yang, Y.-Y.; Toor, G.S. Stormwater runoff driven phosphorus transport in an urban residential catchment: Implications for
protecting water quality in urban watersheds. Sci. Rep. 2018, 8, 11681. [CrossRef] [PubMed]

Hobbiea, S.E.; Finlaya, J.S.; Jankea, B.D.; Nidzgorskia, D.A.; Milletb, D.B.; Baker, L.A. Contrasting nitrogen and phosphorus
budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl. Acad. Sci. USA 2017, 114,
4177-4182. [CrossRef] [PubMed]

Huang, ].Y.; Gergel, S.E. Landscape indicators as a tool for explaining heavy metal concentrations in urban streams. Landsc. Urban
Plan. 2022, 220, 104331. [CrossRef]

Wetz, M.S.; Powers, N.C.; Turner, ].W.; Huang, Y. No widespread signature of the COVID-19 quarantine period on water quality
across a spectrum of coastal systems in the United States of America. Sci. Total Environ. 2022, 807, 150825. [CrossRef] [PubMed]
Chen, H.; Huo, J.; Fu, Q.; Duan, Y.; Xiao, H.; Chen, J. Impact of quarantine measures on chemical compositions of PM2.5 during
the COVID-19 epidemic in Shanghai, China. Sci. Total Environ. 2020, 743, 140758. [CrossRef]

Yang, Y.; Zhao, T.; Jiao, H.; Wu, L.; Xiao, C.; Guo, X,; Jin, C. Atmospheric Organic Nitrogen Deposition in Strategic Water Sources
of China after COVID-19 Lockdown. Int. |. Environ. Res. Public Health 2022, 19, 2734. [CrossRef]

Bamney, A.; Gupta, N.; Jashami, H.; Megat-Johari, M.-U.; Savolainen, P. An Analysis of Changes in County-Level Travel Behavior
Considering COVID-19-Related Travel Restrictions, Immunization Patterns, and Political Leanings. . Transp. Eng. Part A Syst.
2022, 148, 04022096. [CrossRef]

Hamilton, J.L.; Luffman, I. Precipitation, pathogens, and turbidity trends in the Little River, Tennessee. Phys. Geogr. 2009, 30,
236-248. [CrossRef]

McCurdy, P,; Luffman, L; Joyner, T.A.; Maier, K. Storm sampling to assess inclement weather impacts on water quality in a karst
watershed: Sinking Creek, Watauga watershed, East Tennessee. J. Environ. Qual. 2021, 50, 429-440. [CrossRef]


https://www.oregon.gov/odot/Projects/Project%20Documents/Region1%20Covid-19%20Traffic%20Report%2020%2008.03.20-09.23.20.pdf
https://www.oregon.gov/odot/Projects/Project%20Documents/Region1%20Covid-19%20Traffic%20Report%2020%2008.03.20-09.23.20.pdf
http://doi.org/10.1191/0309133302pp334ra
http://doi.org/10.3390/land10030230
http://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(134)
http://doi.org/10.1111/j.1747-6593.1994.tb01120.x
http://doi.org/10.2166/wst.1999.0526
http://doi.org/10.1007/s11269-019-02216-9
http://doi.org/10.1016/j.envres.2021.111660
http://doi.org/10.1007/s11356-022-18644-x
http://doi.org/10.1002/hyp.6233
https://or.water.usgs.gov/non-usgs/bes/
https://or.water.usgs.gov/non-usgs/bes/
https://www.portlandoregon.gov/bes/article/489038
http://doi.org/10.2166/wcc.2020.043
https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.2134/jeq2006.0037
http://doi.org/10.1038/s41598-018-29857-x
http://www.ncbi.nlm.nih.gov/pubmed/30076338
http://doi.org/10.1073/pnas.1618536114
http://www.ncbi.nlm.nih.gov/pubmed/28373560
http://doi.org/10.1016/j.landurbplan.2021.104331
http://doi.org/10.1016/j.scitotenv.2021.150825
http://www.ncbi.nlm.nih.gov/pubmed/34627882
http://doi.org/10.1016/j.scitotenv.2020.140758
http://doi.org/10.3390/ijerph19052734
http://doi.org/10.1061/JTEPBS.0000748
http://doi.org/10.2747/0272-3646.30.3.236
http://doi.org/10.1002/jeq2.20196

Hydrology 2022, 9, 220 14 of 14

38. Chang, H.; Makido, Y.; Foster, E. Effects of land use change, wetland fragmentation, and best management practices on total
suspended solids concentrations in an urbanizing Oregon watershed, USA. |. Environ. Manag. 2021, 282, 111962. [CrossRef]

39. Fletcher, T.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for
receiving waters: A state of the art. Adv. Water Resour. 2003, 51, 261-279. [CrossRef]

40. Shamshirband, S.; Jafari Nodoushan, E.; Adolf, J.E.; Abdul Manaf, A.; Mosavi, A.; Chau, K.W. Ensemble models with uncertainty

analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters. Eng. Appl. Comput. Fluid Mech. 2019, 13,
91-101. [CrossRef]


http://doi.org/10.1016/j.jenvman.2021.111962
http://doi.org/10.1016/j.advwatres.2012.09.001
http://doi.org/10.1080/19942060.2018.1553742

	Introduction 
	Materials and Methods 
	Study Area 
	Data Preparation 
	Methodology 

	Results 
	Seasonal Differences in Water Quality 
	Effects of COVID-19 Lockdown on Water Quality 
	Correlation between Water Quality and Explanatory Variables 
	Random Forest Regression Results 

	Discussion 
	Conclusions 
	References

