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Abstract Urban areas often struggle with deterio-
rated water quality because of complex interactions
between landscape factors and climatic variables.
However, few studies have considered the effects of
landscape variables on water quality at a sub-500-m
scale. We conducted a spatial statistical analysis of six
pollutants for 128 water quality stations in four water-
sheds around Portland, Oregon, using data from 2015
to 2021 for the wet season at two microscales (100 m
and 250 m buffers). E. coli was associated with land
cover, soil type, topography, and pipe length, while
lead variations were best explained by topographic
variables. Developed land cover and impervious sur-
face explained variations in nitrate, while orthophos-
phate was associated with mean elevation. Models for
zinc included land cover and topographic variables
in addition to pipe length. Spatial regression models
better explain variations in water quality than ordi-
nary least squares models, indicating strong spatial
autocorrelation for some variables. Our findings pro-
vide valuable insights to city planners and research-
ers seeking to improve water quality in metropolitan
areas by manipulating city landscapes.
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Introduction

Many studies have examined spatial relationships
of water quality patterns and landscape or anthro-
pogenic factors, concluding that the ability of land-
scape metrics to explain water quality depend largely
on which spatial scale is used (Mainali et al., 2019).
Mainali and Chang (2018) found that a 100-m scale
and 1-km upstream scale best explained variations in
water quality in a large river basin, while Shi et al.
(2017) found varying abilities of catchment, riparian,
and reach scales to explain degraded water quality
(Mainali & Chang, 2018; Shi et al., 2017). However,
relatively few studies have examined relationships
between water quality and landscape variables at mul-
tiple microscales (smaller than a 500-m radius buffer)
within an urbanized region. Given that the urban
landscape is spatially heterogeneous (Cadenasso
et al., 2007), water quality can exhibit a large spatial
and temporal variation within a city (and even within
a neighborhood). Thus, it is important to understand
what microscale landscape factors are associated with
the variations (Sliva & Dudley Williams, 2001).
Water quality is in part determined by the presence
of physical pollutants, both aqueous and particulate
(Lintern et al., 2018). Escherichia coli (E. coli) is a
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fecal coliform that inhabits the intestinal tract of ani-
mals and humans and commonly contaminates water
sources in areas of high population density, thus pos-
ing significant public health risks in urbanized envi-
ronments (Jang et al., 2017). A 2018 evaluation by
the City of Portland Bureau of Environmental Ser-
vices concluded that E. coli is the main pollutant that
exceeds water quality standards in Portland streams
and rivers, with the highest recorded concentrations
occurring in the summer and during storms. This
report contrasts with McKee et al. (2020), whose
study of recreational areas and the surrounding water-
shed in Atlanta, Georgia, found that E. coli concen-
trations were highest during the winter (McKee et al.,
2020). Spatial differences were observed for concen-
trations of E. coli concentrations in Portland as well;
concentrations were found to be “significantly lower
in the Willamette Streams and Columbia Slough”
than in most other watersheds sampled in the Port-
land area (Fish & Jordan, 2018). Accounting for “land
use and stormwater management policies” helps to
explain variations in fecal coliform levels at a multi-
watershed scale in North Carolina (Vitro et al., 2017).

Phosphorus and nitrogen are organic nutrients
that occur naturally in vegetation and soil, but excess
amounts in water bodies can lead to eutrophication
and subsequent water body impairment, among other
ecosystem problems (Smith et al., 1999). Although
phosphorus and nitrogen excesses commonly result
from agricultural runoff, they are also important pol-
lutants in urban environments (Billen & Garnier,
1997; Sonoda et al., 2001; Withers et al., 2014; Yu
et al., 2012). For instance, urbanized watersheds in
St. Paul, Minnesota, were found to experience major
pollution from household nitrogen and phosphorus
runoff (Hobbie et al., 2017). Furthermore, multi-
ple studies have found that a lack of street sweep-
ing for trees lining streets in urbanized areas greatly
increases nitrogen and phosphorus loads in stormwa-
ter runoff (Taguchi et al., 2021). However, no previ-
ous studies examined the spatial variations in nutri-
ent concentrations in relation to various microscale
landscape factors with spatially intensive monitoring
data.

This study examines relationships between water
quality, anthropogenic and landscape factors, and sea-
sonality at a microscale in Portland, Oregon, using a
unique set of monitoring data. We address the follow-
ing research questions:
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1. How do selected water quality parameter concen-
trations vary spatially between the wet and dry
seasons? We expect that E. coli concentrations
are likely to be highest in developed (including
open and recreational) areas during the dry sea-
son, heavy metal concentrations are higher in the
wet season for areas in close proximity to roads,
and total suspended solids (TSS) concentrations
are likely to be greatest in steep areas with high
foot traffic.

2. Which landscape variables explain spatial vari-
ations in water quality between the wet season?
We expect that areas with larger percentages of
sandy clay loam soil are likely to be negatively
associated with pollutant concentrations and that
total storm pipe length would be positively asso-
ciated with pollutant concentrations. We antici-
pate that land cover variables such as impervious-
ness and road density are likely to be important
explanatory variables of water quality in accord-
ance with previous literature.

Materials and methods
Study area

This study was conducted in the metropolitan area
of Portland, Oregon, a city that has recently under-
gone accelerated population growth and urbaniza-
tion (Goodling et al., 2015; Jun, 2004). The region’s
climate consists of relatively dry and warm summers
and wet, cool winters. Average annual precipita-
tion and temperature are approximately 965 mm and
12 °C, respectively (Chang, 2007; Cooley & Chang,
2017). Historical climate and future climate projec-
tions show increasing winter precipitation intensities
with rising air temperatures (Cooley & Chang, 2021),
likely to result in increased surface runoff, which can
potentially decrease water quality.

Local soil types vary widely in texture between
clay, silt, silt/loam, and gravel, creating a range of
sizes that impact water infiltration flow rates (Baker
et al., 2019). Most of Portland is in low-lying foothills
situated between the Columbia and Willamette Rivers
(O’Donnell et al., 2020). Forest Park, a largely unde-
veloped, slightly higher-elevation conservation area
popular with hikers and bicyclists, comprises much
of the western side of the study area. The Columbia
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Slough, a flat, low-elevation, slow-moving water
body, comprises the northern side of the study area
(Fig. 1). Many small urban streams have been heavily
modified by human activities, resulting in rerouted,
straightened, or buried streams (Post et al., 2022).
Previous studies have found significant seasonal and
spatial variability in water quality for Portland’s water
bodies, including the Columbia and Buffalo Sloughs
(Fish & Jordan, 2018; McCarthy, 2006). Zinc con-
centrations generally increase downstream of Johnson
Creek, while lead concentrations do not show clear
spatial patterns (Chang et al., 2019). While streams
in Forest Park, Tryon Creek, and Johnson Creek are
flash and fast-moving, flow in Columbia Slough is
stagnant or slowly moving due to flat topography and
wetlands.

Data

Water quality data were obtained from the City of
Portland Bureau of Environmental Services’ Port-
land Area Watershed Monitoring and Assessment
Program (PAWMAP) (City of Portland, 2019). The

Fig. 1 Distribution of
PAWMAP water quality
station locations around the
City of Portland used in the
study. The lack of streams
in the center of the study
area reflects the outcome
of removing, piping, and
burying streams in the mid-
twentieth-century urban
development plans (Post

et al., 2022)

O water quality stations - dry (n = 36)
@ water quality station - wet (n =128)
A other PAWMAP locations
=u=i City of Portland boundary

— freeways
—— streams and rivers

data originated from 128 water quality monitoring
stations located on the outskirts of the City of Port-
land (Fig. 1), situated within the Willamette River,
Columbia Slough, Johnson Creek, and Balch Creek
watersheds. Pollutant concentration data were col-
lected according to the protocol developed by the
United States Environmental Protection Agency
(USEPA) through the Environmental Monitoring
and Assessment Program (City of Portland, 2019;
USEPA, 2019). Samples were analyzed in the City of
Portland’s water chemistry laboratory following the
standard USEPA methods for lead (EPA 200.8), zinc
(EPA 200.8), nitrate (EPA 300.0), and orthophosphate
(EPA 365.1). Standard Total Coliform Membrane Fil-
ter Procedure (SM9222G) was used for E. coli, and
standard methods SM2540D (total suspended solids
dried at 103-105 °C) was used for total suspended
solids, respectively (Supplementary Table 2A).
Generally, water quality measurements were
taken for at least one monitoring station at least
once a month by the City of Portland from July 2015
through May 2021. The PAWMAP program routinely
rotates active stations, which include 20 perennial

Kilometers 0% 50% 100%
percent impervious surface

1 - Columbia Slough and River
2 - Willamette River

3 - Forest Park

4 - Tryon Creek Natural Area

5 - Johnson Creek

@ Springer



219 Page 4 of 17

Environ Monit Assess (2023) 195:219

and 12 intermittent stations; as such, the complete-
ness of data varied, with some station records con-
taining data for multiple years, and others for less
than 1 year (City of Portland, 2019). Thus, we had to
take into account the possibility of interannual varia-
tion when analyzing means for each station. Further-
more, no station data was documented from March
through most of May of 2020, likely due to the onset
of the COVID-19 pandemic in the USA in March
2020, which temporarily impeded field work (Oregon
Department of Transportation, 2021).

Six water quality parameters representing physical,
chemical, and biological importance were selected
for this study: E. coli (MPN/100 mL), lead (ug/L),
nitrate (mg/L), orthophosphate (mg/L), total sus-
pended solids (TSS) (mg/L), and zinc (ug/L). Nitrate
and orthophosphate were chosen because they were
reported more frequently in the dataset compared to

other measures of nitrogen and phosphorus. Most
but not all data entries reported consistent detection
limits for each pollutant; thus, majority detection lim-
its are reported in Figs. 3 and 4 and Supplementary
Table 2A, B. The data available to us measured E.
coli directly as opposed to fecal coliform levels as a
proxy, providing an uncommon opportunity to meas-
ure a water pollutant of direct relevance to human
health (Vitro et al., 2017).

Explanatory spatial variables

Explanatory variables were chosen based on hypothe-
sized relationships with water quality (Table 1). Using
ESRI ArcGIS Desktop 10.8, we initially defined a cir-
cular buffer area of 100 m in diameter around each
water quality station to derive explanatory variables
(Table 1) (ESRI, 2021). We chose the 100-m distance

Table 1 Landscape characteristics selected as potential explanatory variables and summarized literature review of variable relation-

ships with water quality

Variable Relationship with pollutant  Supporting literature Data source
concentration
Land cover
Imperviousness (%) (+) Brabec et al. (2002); Dewitz and U.S. Geological
Salerno et al. (2018) Survey (2021)
Developed (%) (+) Brabec et al. (2002) Dewitz and U.S. Geological
Survey (2021)
Forested (%) (=) Shi et al. (2017) Dewitz and U.S. Geological
Survey (2021)
Infrastructure

Total storm pipe length (meters)* (+)
Total road length (meters) (+)

Soil and geomorphology

Hydrologic soil group C (sandy (+/-)
clay loam) (%)
Mean slope (meters) (+) (undeveloped)
(—) (developed)
Standard deviation in slope (meters) (+) (undeveloped)
(—) (developed)
(+) (undeveloped)
(—) (developed)
(+) (undeveloped)
(—) (developed)

Stream order* (+)

Mean elevation (meters)

Standard deviation in elevation

Hatt et al. (2004);
Meierdiercks et al. (2017)

Hallberg et al. (2007);
Huber et al. (2016)

Oregon Metro (2021)

Oregon Metro (2021)

Phillips et al. (2019);
Wilson et al. (2015)

USDA NRCS (2019)

Lintern et al. (2018) City of Portland (2008)

Lintern et al. (2018) City of Portland (2008)

Kim et al. (2015); Lintern ~ City of Portland (2008)
et al. (2018)

Lintern et al. (2018) City of Portland (2008)

Derived from 3-foot DEM from
the City of Portland (2008)

Lintern et al. (2018)

*Evaluated from station XY coordinates without consideration of buffer area

**Evaluated only at the 250-meter scale
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to avoid spatial overlap in buffer area between sta-
tions that are in close proximity to one another, and
the circular buffer area was deemed adequate because
of the relatively flat, urban land cover of the areas sur-
rounding the water quality stations. However, some
explanatory variables, road length and pipe length,
became insignificant at the 100-m scale. Therefore,
we introduced a 250-m-diameter circular buffer scale,
with the added benefit of allowing for a multiscalar
analysis at the microscale by comparing the 100-m
scale to the 250-m scale (Fig. 2).

We calculated all candidate explanatory variable
measurements for each water quality station at the
250-m and 100-m buffer scales (pipe length was ulti-
mately calculated only at the 250-m scale because of
the lack of pipe presence at the 100-m scale). While
it is more appropriate to use catchment scale in
more natural settings, since our study region’s flow
paths are heavily modified by anthropogenic activi-
ties such as storm pipes and disappeared streams
(Post et al., 2022), we used circular buffers for our
analysis. Also, PAWMAP sampling sites are found
within areas with heterogeneous land cover, allow-
ing for substantial variation in explanatory variable
measurements. Strahler stream order was calculated

using ArcGIS Hydrology tools in the Spatial Analyst
toolkit (Horton, 1945; Strahler, 1952).

For land cover variables, we defined “developed”
to be the total percentage of pixels classified as
“Developed” by the NLCD land cover classification
system, which included four categories of varying
development intensities (i.e., amounts of impervious
surface) (Dewitz & U.S. Geological Survey, 2021).
Despite correlation between imperviousness and
developed land cover types, we included both vari-
ables as candidate predictors because developed land
encompassed a wide range of urban land use types.
As shown in Supplementary Table 1, developed land
areas include much of open and low-density devel-
oped areas, which can potentially function as a sink
of pollutants as well as sources.

We defined wet season measurements as any data
recorded in October through April, and dry season
measurements as any data recorded in May through
September, considering rainfall distribution in the
study region (Chang et al., 2021). Mean pollut-
ant concentrations for each station were calculated
after we evaluated relative amounts of interannual
variation in pollutant concentration for each station,
which creates some inherent noise in our analysis

Fig. 2 Microscale deline-
ation at the 100-m and
250-m scale around each
water quality station
through which explana-
tory variable metrics were
calculated. Background
demonstrates streams and
30-m resolution NLCD land
cover raster data

100 Meters
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(Supplementary Table 2). We only considered sta-
tions with at least three measurements taken in the
duration of the study period, which consisted of 36
stations in the dry season and 128 stations in the wet
season. Most of the eligible stations exhibited pollut-
ant concentrations that were consistently high or low
(i.e., standard deviation less than the mean for each
pollutant for each station). Furthermore, most of the
mean concentrations for each of these stations was
above the detection limit for that pollutant. Only dry
and wet season measurements for the 36 stations with
at least three measurements for both seasons were
analyzed for spatial variation in pollutants, excluding
the other 92 eligible wet season stations for the pur-
pose of direct seasonal comparison (Fig. 3a, b).

Statistical analysis

We used R version 4.1 to observe the distribution shape
of pollutant concentrations across stations and produce
pairwise correlation coefficients for explanatory and
dependent variables. We tested the correlation between
explanatory and dependent variables at the 95% con-
fidence interval (RStudio Team, 2021). We used the
Spearman rank correlation analysis for all correlation
tests, to account for possible non-linear trends in water
quality measurements (Shrestha & Kazama, 2007). We
then generated heatmaps for each season at the 100-m
and 250-m scales for visual comparison.

Because of the lack of data in the dry season, we
only performed regression analysis for measurements
taken in the wet season. Upon observing that the con-
centrations for E. coli, lead, nitrate, orthophosphate,
TSS, and zinc were positively skewed, we applied the
transformation log;,(concentration+1) to the origi-
nal data when performing regression analysis. We
introduced multiple linear regression to evaluate the
influence of multiple landscape factors on each pol-
lutant. To rule out autocorrelated explanatory vari-
ables when determining the model that best explains
variations in pollutant concentrations, we employed
the Exploratory Regression Tool in ArcMap. This
geoprocessing tool takes a shapefile input and applies
the Global Moran’s I spatial autocorrelation test to
models that fit user-specified criteria (e.g., minimum
R? value and minimum Jarque—Bera p-value) to pro-
duce candidate ordinary least squares (OLS) models
for analysis. For this preliminary step, we used the
k-nearest neighbor’s approach with k=8, the default
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value, to calculate spatial weights for Global Moran’s
1. We recorded the “best model” for each pollutant in
the wet season based on highest R2, lowest Akaike
information criteria, and variation inflation factor
(VIF) value less than 10 (Kutner et al., 2004).

We created a weights matrix for the wet season
measurements (n=128) in GeoDa using the distance
band method and the software’s default bandwidth
value. We input the best OLS model detected by
exploratory regression into GeoDa 1.18.10’s Regres-
sion tool, running the tool twice more to incorporate
the weights matrix for the spatial lag and spatial error
models (Matthews, 2006). From the results output,
we formatted the variable coefficients into multiple
linear regression equations (Table 2).

Results
Spatial variations of pollutants

There were clear seasonal differences in mean pollutant
concentrations across different regions in the study area
when averaged across all measurements for each season.
In both the wet and dry seasons, mean E. coli concen-
trations tended to be higher in Portland’s southern met-
ropolitan area. However, the area around the Columbia
Slough demonstrated higher E. coli concentrations in the
dry season than in the wet season (Fig. 3a).

Lead concentrations tended to be high in the mid-
dle of the study area close to Interstate Highways 5
and 405, but more stations overall, exhibited higher
concentrations in the wet season than in the dry sea-
son (Fig. 3a). Similar to lead, overall mean zinc con-
centrations were higher in the wet season, with the
southern study area exhibiting the highest concentra-
tions in both seasons (Fig. 3b).

Mean nitrate concentrations were consistently
higher by the Columbia Slough and a small developed
area directly east of the Willamette River in both sea-
sons, although overall concentrations were higher in
the wet season (Fig. 3a). Mean orthophosphate con-
centrations were highest in the dry season and were
consistently high in the same area around the south
part of the Willamette River in both seasons (Fig. 3b).
There did not appear to be clear seasonal variation
in TSS concentrations at the scale of the study area,
although certain areas were consistently high in both
seasons (Fig. 3b).
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Fig. 3 a Relative proportions of mean E. coli, lead, and nitrate (majority value). b Relative proportions of mean orthophos-
concentrations for each water quality station with background phate, TSS, and zinc concentrations for each water quality sta-
NLCD Land Cover Classification (National Land Cover Data- tion with background NLCD land cover classification (Dewitz
base 2019 | NLCD, 2019 Legend, n.d.). Larger circles cor- & U.S. Geological Survey, 2021). Larger circles correspond to
respond to higher mean concentrations. DL, detection limit higher mean concentrations. DL, detection limit (majority value)
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Table 2 Ordinary least squares and spatial regression results for each pollutant in the wet season

Model R* AIC  Equation

E. coli OLS 044 93.75 1.45+0.0052(developed_250m)—0.055(mean_slope_250m)+0.12(std_dev_
slope_250m)—0.0022(soil_100m) + 0.072(stream_order)

SL 0.50 87.97 0.0042(developed_250m) +0.11(std_dev_slope_250m)—0.049(mean_
slope_250m) +0.86 4 0.35(W_ecoli_wet) +0.070(stream_order)—
0.0018(so0il_100m)

SE 0.49 88.17 1.4740.0051(developed_250m)+ 0.10(std_dev_slope_250m)—0.045(mean_
slope_250m) +0.39(LAMBDA _ecoli_wet)—0.0025(soil_100m) + 0.066(stream_
order)

Lead OLS 0.15 -209.42 0.12+40.00015(pipe_length) +0.0011(mean_elev_100m) +0.022(std_dev_
slope_250m)—~0.0097(mean_slope_250m)—0.00097(impervious_100m)

SL 0.22 -212.50 0.00015(pipe_length)+0.022(std_dev_slope_250m)+ 0.33(W_lead_wet)—
0.0097(mean_slope_250m) +0.0011(mean_elev_100m) + 0.12*—0.00097 (imperv
ious_100m)**

SE 0.22 -213.57 0.12+40.00014(pipe_length) +0.023(std_dev_slope_250m) +0.0010(mean_
elev_100m)—0.0094(mean_slope_250m) + 0.33(LAMBDA _lead_wet)—
0.00087(impervious_100m)*

Nitrate OLS 0.14 -131.64 0.46—0.0025(developed_250m) + 0.0030(impervious_100m)
SL 0.19 -135.79 0.14—0.0021(developed_250m) + 0.0028(impervious_100m)+ 0.33(W _nitrate_wet)

SE 0.18 -136.60 0.44—0.0022(developed_250m) + 0.0025(impervious_100m)+ 0.28(LAMBDA _
nitrate_wet)

Orthophosphate OLS 0.13 -881.09 0.014—9.21E-5(mean_elev_250m)+ 5.12E-5(s0il_100m) + 0.0029(std_dev_elev_1
00m) +4.23E-5(developed_250m)

SL 0.32 -899.98 0.54(W_ortho_wet)+0.0077—7.01E-5(mean_elev_250m)+0.0019(std_dev_elev_1
00m)* +2.22E-5(developed_250m)** + 1.76E-5(soil_100m)**

SE 0.33 -903.33 0.66(LAMBDA_ortho_wet)+0.021—7.25E-5(mean_elev_250m)+0.0014(std_
dev_elev_100m)** 4 2.67E-5(developed_250m)**—1.81E-5(soil_100m)**

Total suspended solids OLS  0.08 25.06 1.03—0.0033(impervious_250m) + 0.00029(pipe_length)—0.061(std_dev_
slope_100m) + 0.044(std_dev_slope_250m)

SL 0.12 26.54 0.89—0.061(std_dev_slope_100m)+ 0.00028(pipe_length)—
0.0030(impervious_250m)+ 0.046(std_dev_slope_250m)+ 0.13(W_tss_wet)**

SE 0.12 24.67 1.02—0.061(std_dev_slope_100m)+ 0.00029(pipe_length)—
0.0032(impervious_250m)+ 0.047(std_dev_slope_250m)+0.12(LAMBDA _tss_
wet)**

Zinc OLS 0.33 42.87 0.0060(developed_250m)+ 0.47—0.0073(impervious_100m)—
0.032(mean_slope_100m) +0.069(std_dev_slope_250m) +0.00029(pipe_
length) +0.0018(s0il_250m)

SL 0.46 27.05 0.47(W_zinc_wet)+ 0.0046(developed_250m)—
0.0054(impervious_100m) + 0.062(std_dev_slope_250m)—0.024(mean_
slope_100m) + 0.00026(pipe_length)+0.0011(soil_250m)** 4 0.12%*

SE 0.47 26.56 0.59(LAMBDA_zinc_wet)+0.0054(developed_250m) +0.47 +0.056
(std_dev_slope_250m)—0.0042(impervious_100m)—0.019(mean_
slope_100m)* +0.00023(pipe_length)* +0.00097(soil_250m)**

Pollutant concentrations were transformed using loglO(concentration + 1). Explanatory variables for each regression are
listed in order of significance. R2 values are equivalent to adjusted R2 for OLS only. AIC = Akaike Information Crite-
ria, OLS = Ordinary least squares, SL = Spatial lag, SE = spatial error; W_*“pollutant”_* season”= spatial lag coefficient;
LAMBDA_“pollutant”_*“season” = spatial error coefficient. Table adapted from Mainali and Chang (2018) (Mainali & Chang, 2018)

*insignificant at the 90% confidence level

**insignificant at the 95% confidence level
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Correlation analysis

More variables were significantly correlated in the
wet season than in the dry season. In the wet season
at both scales, E. coli, followed by zinc, was associ-
ated with the highest number of explanatory variables
at the 95% confidence level (Fig. 4a, c). The strong-
est correlations in the wet season occurred between
E. coli and percent developed (+), percent forested
(—), and percent imperviousness (+) at both scales.
Zinc was correlated most strongly with pipe length
(+), road length (+), and percent developed (+).
Orthophosphate was most strongly correlated with
pipe length (+) and mean elevation (—) at the 250-m
scale in the wet season. Pipe length was positively
associated with all dependent variables in the wet

a) 100-meter scale, wet season

stream order- 0.18

Q std slope- -0.23
g mean slope - |=0.37 -0.21
E std elevation - [=0.37 -0.18
; mean elevation - —0.21 -0.21
_§ road length- 0.27 0.18 0.3
g % soil type C- 1=0.31 -0.19
(_g_ % forested - - -0.27
55 % developed - ' 0.53 0.36
% impervious surface- 0.5 0.18 0.32
Ecoli lead nitrate OP TSS zinc
pollutant
¢) 250—-meter scale, wet season
stream order- 0.18
[0} std slope- -0.19
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Fig. 4 a-d Spearman rank correlation coefficient heatmaps for
the 100-meter and 250-meter scales in the wet (n = 128) and
dry seasons (n = 36). Correlation values significant at the 95%
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season except nitrate, which showed negative correla-
tion, and TSS, which showed no significant correla-
tion. Lead was only significantly correlated with road
length and pipe length in the wet season, the latter
only at the 250-m scale. Nitrate and TSS were barely
correlated with any candidate predictors in the wet
season.

Somewhat different explanatory variables were
correlated with water quality parameters in the dry
season than in the wet season. E. coli continued to
demonstrate the highest number of significant asso-
ciations with explanatory variables, while lead was
negatively associated with mean slope and mean
elevation, but the latter only at the 250-m scale
(Fig. 4b, d). Orthophosphate was positively associ-
ated with percent forested and negatively associated

b) 100-meter scale, dry season

stream order-

std slope -
mean slope - -0.41 Spearman
std elevation - Corqe(l)atlon
mean elevation - 05
road length- 0.4 0.0

% soil type C-

% forested - -

% developed - | 0.71

. -0.5
-1.0

% impervious surface-  0.47

Ecoli lead nitrate OP TSS zinc
pollutant

d) 250-meter scale, dry season

stream order-

std slope -
mean slope - -0.37 Spearman
std elevation - Correlation
mean elevation - -0.34 1.0
pipe length- | 0.7 0.37 0.5
road length- = 0.6 0.0
% soil type C- -0.5
% forested - }=0:46 0.35 . -1.0

% developed - | 0.62

% impervious surface- 0.38 -0.36

Ecoli lead nitrate OP TSS znc
pollutant

confidence level are shown in black while insignificant values
are in gray. OP = orthophosphate; TSS = total suspended sol-
ids.
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with percent imperviousness at the 250-m scale. Pipe
length and road length were less significant overall in
the dry season than in the wet season, although zinc
was still positively associated with pipe length. There
were no significant correlations between explanatory
variables and nitrate or TSS in the dry season.

Correlations between pollutants and explanatory
variables did not necessarily increase at the 250-m
scale compared to the 100-m scale. Slope and eleva-
tion measures became more significant at the 250-m
scale, especially in the dry season. In the dry season,
nitrate and TSS were significantly correlated with
more variables at the 250-m scale than at the 100-m
scale. In the wet season, orthophosphate was signifi-
cantly correlated with more variables at the 250-m
scale than at the 100-m scale.

Exploratory regression analysis

The model with the highest R? value was produced for
E. coli (Table 2). As demonstrated through the impor-
tance of spatial weights terms and improvements in
R? values and reductions in AIC values for the spa-
tial error/spatial error models, E. coli concentrations
exhibited a relatively low amount of spatial auto-
correlation in the wet season (Table 2). Significant
explanatory variables in the wet season were percent
developed (250 m) (+), standard deviation in slope
(250 m) (+), mean slope (250 m) (—), stream order
(+), and percent soil group C (100 m) (—) (Table 2).
The E. coli model was the only model to include
stream order as a significant explanatory variable.

Models for lead exhibited relatively high spa-
tial autocorrelation in the wet season (Table 2). Pipe
length (4) was the most significant predictor of lead,
followed by standard deviation in slope (250 m) (+),
mean slope (250 m) (—), and mean elevation (100 m)
(+) (Table 2). R* values were relatively low, indi-
cating that most of the variation in lead concentra-
tion between water quality stations was unable to be
explained using the chosen predictors.

Nitrate exhibited slightly lower spatial autocorre-
lation than lead, although like lead, models had rela-
tively low R? values (Table 2). All selected explana-
tory variables were significant at the 0.05 level for
all models in both the wet and dry seasons. Signifi-
cant explanatory variables were percent developed
(250 m) (—) and percent imperviousness (100 m)
(+) (Table 2). Orthophosphate demonstrated strong

spatial autocorrelation, indicated by leading spatial
terms, significant decreases in AIC values, and large
increases in R? values for the spatial lag/spatial error
models (Table 2). Significant explanatory variables
for the spatial lag and spatial error models at the 0.05
level were mean elevation (250 m) (—) and standard
deviation in elevation (100 m) (+) (Table 2). Percent
soil group C (100 m), standard deviation in eleva-
tion (250 m), and percent developed (250 m) became
insignificant when the spatial models were applied,
suggesting that these variables are highly spatially
autocorrelated.

TSS models had low R? values compared to models
for other pollutants, but all selected explanatory vari-
ables were significant at the 95% confidence level and
spatial autocorrelation was low (Table 2). Significant
explanatory variables for spatial lag/spatial error mod-
els at the 95% confidence level were standard devia-
tion in slope (100 m) (—), pipe length (+), and per-
cent imperviousness (250 m) (—) (Table 2). Standard
deviation in slope at the 250-m scale (+) was border-
line significant for the spatial lag/spatial error models.

Models for zinc exhibited relatively strong spatial
autocorrelation, with leading spatial terms, decreases
in AIC values, and large increases in R? values for
the spatial lag and spatial error models (Table 2). Six
explanatory variables best modeled zinc, more than
for all other pollutants. Significant explanatory vari-
ables were percent developed (250 m) (+), percent
imperviousness (100 m) (—), standard deviation in
slope (250 m) (+), mean slope (100 m) (—), and pipe
length (+), the last of which bordered on insignificant
for the spatial regression models. Percent soil group
C became insignificant when spatial models were
applied, suggesting that there is significant spatial
autocorrelation attributable to this variable.

Discussion

Spatial and seasonal variation in water quality

E. coli

As averaged for each water quality station over the
study period, E. coli concentrations were highest in
the southern portion of the study area, which encom-

passes the Tryon Creek State Natural Area in addition
to a number of Portland suburban neighborhoods, yet
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were comparatively low in many parts of the north-
western portion, which includes Forest Park, a natu-
ral area frequented by hikers and their pets (Fig. 3a,
b). As such, E. coli contamination appears to be het-
erogeneous even across recreational areas within the
same geographic locale, complicating our hypoth-
esis that recreational areas in general will experience
higher E. coli contamination than non-recreational
areas. This unexpected pattern may result in part from
the significance of slope variables and stream order
in wet season E. coli models (Table 2). The negative
association with mean slope and positive associa-
tion with stream order in the wet season indicate that
E. coli organisms tend to proliferate most in high-
order, low-elevation streams during seasonal periods
of increased streamflow. Positive associations with
standard deviation of slope might relate to the forma-
tion of puddles that form in the wet season for areas
with more irregular inclines and facilitate E. coli sur-
vival. E. coli exhibited higher concentrations in the
dry season, which previous research has suggested is
related to warmer summer temperatures that enable
growth (Chen & Chang, 2014). However, a recent
study of southern Oregon wetlands found that E. coli
concentrations were much more associated with live-
stock grazing than with seasonality, which calls for an
examination of whether increased outdoor recreation
and animal activity in the summer months as opposed
to inherent seasonal climatic variation predominantly
influence seasonal variation in E. coli within Portland
urban and suburban areas (Smalling et al., 2021).

Heavy metals

As hypothesized, both lead and zinc were positively
associated with road length and pipe length nega-
tively associated with mean slope, and positively
associated with standard deviation in slope, com-
plementing a recent Portland City report that heavy
metal concentrations were correlated with each other
in Portland area watersheds (Fish & Jordan, 2018).
However, R? values were relatively low, particularly
for lead, raising further questions about the differ-
ences in landscape and anthropogenic factors that
contribute to lead as opposed to zinc contamination
in the study area (Ramirez et al., 2022). However, the
same report noted that heavy metals were also corre-
lated with total suspended solid concentrations. Pipe
length and percent imperviousness are significant
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predictors for both lead and TSS in the wet season,
similar to the findings of previous work that focused
on Johnson Creek (Chang et al., 2019).

Despite previous literature tracing zinc to the dete-
rioration of asphalt, car tires, and brake pads, road
length was not included in models for zinc (Sorme
& Lagerkvist, 2002). Other sources of zinc, such as
industrial operations and galvanized building mate-
rials, have been found to be significant contributions
to storm runoff and thus should be investigated as
potential influencing factors in future studies (Brown
& Peake, 2006; Sorme & Lagerkvist, 2002). These
sources of zinc would occur in highly developed
areas with anthropogenic activities, but not necessar-
ily around roads and other areas of high impervious
surface.

Nutrients

Developed area and impervious surface best explained
variations in nitrate for both seasons, even as devel-
oped area was negatively associated and impervious
surface positively associated with nitrate. This unex-
pected relationship with percent imperviousness and
percent developed may result from the disproportion-
ate placement of water quality monitoring stations in
or near parks and other urban green spaces, which the
NLCD land cover classification system nevertheless
designates as “Developed-Open Space” for areas with
less than 20% impervious surface (Dewitz & U.S.
Geological Survey, 2021) (Supplementary Table 1).
Low-intensity developed areas include open spaces,
which may serve as nitrogen sinks with a buffering
effect. At the same time, impervious surfaces such
as urban and suburban roads and sidewalks facilitate
increased nitrogen runoff despite lower densities of
vegetation. Important nitrogen sources in urban areas
include household fertilizer and dead leaves from
urban street trees, as documented by previous studies
(Hobbie et al., 2017; Taguchi et al., 2021).

The positive association of orthophosphate with
developed area for the OLS model may relate to low-
intensity developed areas serving as a source for phos-
phate from lawn fertilizer applications, while positive
relationships with soil type C may have to do with low
infiltration rates creating higher overland flow. How-
ever, soils in developed areas are spatially autocorre-
lated, causing them to become insignificant in spatial
regression models. The lack of significant explanatory
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variables for spatial lag and spatial error models in
either season indicates that there are factors unex-
plored in this analysis that affect phosphorus concen-
trations. Such factors might include high flow events
and decreased drainage density, which was found to
reduce nutrient runoff in urbanized watersheds (Pratt
& Chang, 2012). For instance, decreased drainage
density reduces nutrient runoff in urbanized water-
sheds, and locally, high phosphorus levels in Fanno
Creek, on the outskirts of our study area, are known
to increase total phosphorus concentrations during
storms (Anderson & Rounds, 2002; Meierdiercks
etal., 2017).

Total suspended solids (TSS)

TSS concentrations did not follow any clear spatial
patterns between regions of the study area. However,
there was a negative association between TSS and
standard deviation in slope, indicating that unpaved
areas with consistent inclines tend to have higher
concentrations with TSS. This is consistent with our
prediction that areas with high foot traffic have the
greatest TSS concentrations, as less paved areas are
more likely to deposit sediment. This result is further
supported by Pratt and Chang’s findings that standard
deviation of slope is negatively associated with total
solids across seasons and scales for watersheds in
the greater Portland, Oregon region (Pratt & Chang,
2012; You et al., 2019). Furthermore, Lintern et al.’s
literature review also suggests a negative correlation
of slope with TSS for developed areas (Lintern et al.,
2018). The failure of spatial regression tools to find
a model with adequate explanatory power for TSS
suggests that analysis of TSS concentrations at this
microscale may require including additional explana-
tory variables accounting for human activity—for
instance, population density (Xu et al., 2021).

Predictive power of landscape variables

Percent developed, percent imperviousness, and
percent forested had the highest Spearman correla-
tion coefficients overall, emphasizing the impor-
tance of land cover on water quality variability even
at the microscale. However, the spatial lag and spa-
tial error models confirmed that percent impervious-
ness and percent developed were spatially autocor-
related, which decreased their explanatory power for

orthophosphate in both seasons and zinc in the dry
season. In the dry season at the 250-m scale, pipe
length and road length exhibited high positive cor-
relation with E. coli. Thus, it is interesting that road
length was not a significant predictor of any pollutant
in the spatial regression, although this could be due to
correlations between pipe and road density ruling out
road length as a predictor.

Hydrologic soil group C was negatively corre-
lated with E. coli and TSS for the Spearman tests in
the wet season. However, for all other spatial lag and
spatial error models, soil group C was ruled out as a
significant predictor when it was initially included in
OLS models; in other words, soil group C is highly
spatially autocorrelated within the study area, thus
reducing our ability to assess the predictive power of
hydrologic soil group using the assumptions of lin-
ear regression. Because hydrologic soil group C has
“relatively high runoff potential” when wet, negative
correlation with E. coli suggests that even relatively
impermeable soil still serves a purpose in influencing
E. coli concentrations (Phillips et al., 2019; USDA,
2007). Furthermore, soil is also a growth medium for
E. coli under certain conditions and E. coli trans-
port through soil is a function of soil water content
(Byappanahalli & Fujioka, 1998; Dwivedietal., 2016).
Future studies evaluating the effects of hydrologic
soil group on E. coli colony formation would benefit
analysis in this regard.

Scale effects

The 250-m scale produced a higher number of signifi-
cant correlations and higher correlation coefficients
between water quality parameters and explanatory
variables in both seasons, suggesting that a larger
microscale is more indicative of water quality than
a more immediate microscale, at least when using a
circular buffer. Future studies could employ multi-
ple riparian buffers to further compare spatial deter-
minants of water quality across microscales (Pratt
& Chang, 2012). Such studies should also calculate
landscape fragmentation metrics using software such
as FRAGSTATS (McGarigal & Marks, 1995) for
more robust explanatory power (Chang et al., 2021;
Fernandes et al., 2019).

Because we conducted analysis at the microscale,
we were unable to incorporate sociodemographic fac-
tors as explanatory variables in our analysis of water
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quality. Another important next step of this research
is to perform a multi-level analysis at the census
block group scale to evaluate how income, race, edu-
cation, and other socioeconomic variables are associ-
ated with water quality parameters at multiple spatial
scales (Baker et al., 2019; Chan & Hopkins, 2017;
Garcia-Cuerva et al., 2018).

Conclusions

Correlation and spatial regression analyses were
conducted for samples of six pollutants originating
from 128 water quality stations around the Portland,
Oregon area, from 2015 to 2021. We examined the
ability of various land cover, infrastructure, and soil
and geomorphological factors to act as explana-
tory variables at the microscale between the wet
and dry seasons. We found that there were seasonal
and spatial differences in water quality parameters
that can be attributed to differences in land use and
land cover at the chosen scale, which were often
associated in opposite directions from initial Spear-
man correlation coefficients. Using a distance band
weights matrix, spatial lag and spatial error models
best explain variations in water quality and uncov-
ered strong spatial autocorrelation for hydrologic
soil group C, imperviousness, and percent devel-
oped variables. E. coli was associated with land
cover, soil group C, and topographic variables,
while pipe length primarily explained variations in
lead concentrations. Nitrate was primarily affected
by percent developed area as well as impervious
surface in both seasons. Spatial regression mod-
els for orthophosphate ruled out several strongly
spatially autocorrelated predictors, though mean
elevation maintained a negative association. Total
suspended solids were also affected by topographic
variables and pipe length. Models for zinc included
topographic variables in the wet season and land
cover variables in both seasons.

Unexpected relationships of imperviousness and
developed area with pollutants might result from
the large amount of urban green spaces in Port-
land, which we considered ‘“developed” but with
low amounts of impervious surface. To address this
result, our methodology could be modified to better
evaluate the effects of the amount of development
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on pollutant concentrations. Observations of the
effects of hydrologic soil group C on water quality
were limited by spatial autocorrelation that ruled
out significance, although multiple OLS models
included soil as a significant variable. By incor-
porating precipitation data and comparing other
hydrologic soil groups in the future, we could bet-
ter examine the effects of hydrologic soil groups on
concentrations of E. coli and other pollutants.

Our research adds to the body of knowledge
regarding local hydrology, urban infrastructure,
and ecosystem services in Portland, Oregon. Facing
unprecedented environmental and social challenges
as a result of climate change, city planners hoping to
improve water quality in metropolitan areas can uti-
lize the findings of this study to better evaluate water
pollution in a metropolitan city with. Researchers in
the field can use findings from this study to under-
stand how anthropogenic and natural variables inter-
act to affect water quality across space and time.
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