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Abstract—Water quality parameters such as dissolved oxygen

and turbidity play a key role in policy decisions regarding the

maintenance and use of the nation’s major bodies of water. In

particular, the United States Geological Survey (USGS) maintains

a massive suite of sensors throughout the nation’s waterways that

are used to inform such decisions, with all data made available to

the public. However, the corresponding measurements are regu-

larly corrupted due to sensor faults, fouling, and decalibration,

and hence USGS scientists are forced to spend costly time and

resources manually examining data to look for anomalies. We

present a method of automatically detecting such events using

supervised machine learning. We first present an extensive study

of which water quality parameters can be reliably predicted,

using support vector machines and gradient boosting algorithms

for regression. We then show that the trained predictors can be

used to automatically detect sensor decalibration, providing a

system that could be easily deployed by the USGS to reduce the

resources needed to maintain data fidelity.

Index Terms—supervised learning, support vector regression,

gradient boosting, water quality

I. INTRODUCTION

Persistent monitoring of water quality factors such as
dissolved oxygen (DO) and turbidity is an important task
in science and engineering, with stakeholders ranging from
scientific research to municipalities where policy decisions
must be made. In particular, the United States Geological
Survey (USGS) maintains a host of sensors throughout the
country, and scientists at the USGS go to great lengths to
maintain the fidelity of this data and make it publicly available.
However, maintaining this vast network is a costly process,
in large part due to the fact that the phenomena of interest
can only be measured using costly in-situ sensors that require
regular inspection and maintenance.

While significant advances to sensor technology have ush-
ered in the age of “big data,” numerous sources of error im-
pact the resulting measurements, including those from sensor
failure, decalibration, and bio-fouling. To combat these issues
and maintain high-fidelity data, the USGS manually examines
records for such corruptions, sending engineers to perform
maintenance when a fault is detected. This is a costly process
for data quality engineers, and an automated system to detect
sensor faults would be highly valuable to both the USGS and
other organizations collecting water quality data on a massive
scale.

In this work, we show that the wealth of validated data
provided by the USGS through its online portal that can be
used to train supervised machine learning algorithms, which
can then be used to detect anomalies in future data resulting
from the sources listed above. Predicting water quality factors
using supervised learning is an increasingly common task, but
existing studies either focus on predicting a single parameter
(e.g., dissolved oxygen (DO)) or rely on very small datasets
with results that may not be indicative of general underlying
trends. As mentioned, the USGS provides historical data for all
its sensor sites, dating as far back as thirty years in some cases.
In particular, we focus on the sensor suite near the Morrison
Bridge on the Willamette River downtown Portland, OR.

Our contributions are as follows. We present an extensive
study of water quality factor prediction, examining which of
the measured factors can be reliably predicted by the others us-
ing two popular algorithms for supervised regression—support
vector regression (SVR) [1] and gradient boosting (via the
XGBoost implementation [2]). Our results show that six of
the nine factors considered can be predicted with an R2 value
exceeding 0.9. We then show that decalibration in the form
of multiplicative scaling can be reliably detected by using the
trained regressor.

II. PROBLEM FORMULATION & RELATED WORK

In this work, we consider a total of nine parameters that are
used when studying water quality: dissolved oxygen (DO), pH
balance, chlorophyll, temperature, specific conductivity, tur-
bidity, cyanobacteria, nitrate, and fluorescent dissolved oxygen
matter (fDOM). A summary of these factors, including their
units of measurement and a brief statistical summary, are given
in Table I.

As stated in the introduction, we utilize the SVR (via
the scikit-learn Python library [3]) and XGBoost algo-
rithms. Both implementations are freely available and easily
accessible to any data scientist with knowledge of Python.
More importantly, these algorithms are shown to perform well
across a large variety of datasets [4], and both are computation-
ally efficient compared to popular methods from deep learning.
We begin by forming a training dataset {Xi, Yi}Ntrain

i=1 , where
Yi 2 R is the (ith example of) the factor of interest to
be predicted (e.g., DO) and Xi 2 R8 is the feature vector
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corresponding to the other eight factors considered in this
study. Our goal is to learn a function f : R8 ! R such that
f(Xi) =: Ŷi ⇡ Yi for all (Xi, Yi) pairs in the training set.
However, we also wish for f to generalize to data not in the
training set (i.e, test data), and hence setting the regularization
parameter in each algorithm is an important procedure that
prevents overfitting the training data. We consider all nine fac-
tors as regression targets, i.e., we solve nine distinct regression
problems. Further details on how the algorithms were trained
are given in Section III.

A. Related Work

Existing studies on predicting water quality factors such
as those considered here tend to focus either on predicting a
single parameter with two or more algorithms or by predicting
a small number of parameters with a single algorithm. These
also tend to rely on much smaller datasets than that considered
here; the previous studies [5]–[10] considered a range of ex-
amples from 132-2063. In contrast, we study a total of 52,563
examples collected over a period of three years, allowing for
more accurate predictions and a more thorough understanding
of the intrinsic relationships between parameters.

In [6], the authors report a high prediction for DO using
SVR, linear genetic programming, and two types of artifi-
cial neural networks (multilinear perceptron and radial based
function). They demonstrate that various regression algorithms
can be used to gain a deeper understanding of the physical
relationships between parameters, using a dataset of 2063
examples. In [5], the authors use support vector machines to
classify DO values into three distinct bins (high, medium, and
low levels) but only considered a dataset of 147 total examples.
The authors of [7] employ the SVR, general regression neu-
ral network, back propagation neural network (BP-NN), and
multilinear regression algorithms, but only consider predicting
DO using a dataset of 240 total examples.

In [8], faecal coliform is predicted using a genetic pro-
gramming (GP) algorithm as well as a variation of the SVM
algorithm, LS-SVM. Finally, [10] predicts both DO and water
temperature with SVR, using a genetic algorithm to guide the
parameter tuning.

The end goal of this study is to bring to life a use for
machine learning in water quality monitoring and to show
that machine learning has an important role to play in this
area of the sciences. Through a combination of accessible
algorithms and a thorough investigation of a large dataset, we
show that supervised learning has the potential to significantly
streamline the data validation process at the USGS, saving
valuable resources for the organization and improving the
fidelity of their data.

III. WATER QUALITY FACTOR PREDICTION

In this section, we describe our methodology for performing
supervised regression and anomaly detection using SVR and
XGBoost. As with all real-world datasets, the data we consider
contains missing entries and a number of outliers, which can

Factor Mean Maximum Minimum
dissolved oxygen (mg/L) 11.17 14.7 3.50

pH balance (std. unit) 7.33 8.80 6.80
chlorophyll (ug/L) 1.95 41.30 0.20

temperature (deg. C) 13.57 25.10 2.10
specific conductivity (uS/cm) 77.30 134 51

turbidity (FNU) 8.35 120 0.30
cyanobacteria (ug/L) 0.35 1.48 -0.05

nitrate (mg/L) 0.66 2.30 0.0
fDOM (ppd QSE) 6.89 25.60 -0.46

TABLE I
SUMMARY OF WATER QUALITY FACTORS STUDIED.

Factor Mean Maximum Minimum
dissolved oxygen 0.9789 0.9835 0.9756

pH balance 0.8654 0.8746 0.8557
chlorophyll 0.8820 0.8972 0.8627
temperature 0.9843 0.9880 0.9818

specific conductivity 0.8784 0.8946 0.8687
turbidity 0.8145 0.8367 0.7932

cyanobacteria 0.8852 0.8880 0.8811
nitrate 0.9469 0.9493 0.9443
fDOM 0.9357 0.9434 0.9268

TABLE II
SVR PREDICTION ACCURACY RESULTS (R2)

inhibit the performance of the supervised regression algo-
rithms. Initial runs of the algorithms utilized all 14 parameters
measured at the Morrison Bridge site. This resulted in poor
prediction accuracy due to lack or inconsistency of data with
five of the parameters. These parameters include discharge
(tide filtered and not), gauge height, sensor depth, and mean
water velocity. Even with the relative consistency of data in
the final nine parameters, there were spots in data collection
process that resulted in little to no data points collected. These
missing data points were filled with the mean values of each
individual water quality parameter.

A. Supervised Regression

As described above, we considered 52,563 examples of all
parameters. We then performed a 90% / 10% training/test data
split, where the training data is used to learn the corresponding
regression function (using SVR or XGBoost), and the test data
is used to evaluate the accuracy of the resulting regression. In
contrast to some studies mentioned in Section II, we selected
our training and test sets randomly, i.e., we did not use the
first 90% of the data to predict the final 10%. To quantify
algorithm performance, we use the R2 coefficient, defined as

R2 = 1�

PNtest

i=1

⇣
Ŷi � Yi

⌘2

PNtest

i=1 (Yi � Ȳ )2
,

where Ȳ =
PNtest

i=1 Yi is the sample mean of the test data,
and a value of R2 = 1 implies a perfect prediction. Since the
training/test split was performed randomly, we trained each
algorithm for 10 independent instances and report the mean,
maximum, and minimum R2 values.

The results of both algorithms are given in Tables II and III.
The best performing parameters depended on the algorithm
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Fig. 1. Subset of ground truth and predicted values for (a) dissolved oxygen using SVR (R2 = 0.9810), (b) cyanobacteria using XGBoost (R2 = 0.9429),
and (c) turbidity using SVR (R2 = 0.8283). The training and test sizes are Ntrain = 47, 306 and Ntest = 5, 257.

Factor Mean Maximum Minimum
dissolved oxygen 0.9446 0.9471 0.9414

pH balance 0.8164 0.8286 0.8042
chlorophyll 0.8794 0.8869 0.8673
temperature 0.9849 0.9857 0.9836

specific conductivity 0.8857 0.8896 0.8760
turbidity 0.9376 0.9493 0.9195

cyanobacteria 0.9493 0.9486 0.9409
nitrate 0.9160 0.9197 0.9128
fDOM 0.8831 0.8886 0.8769

TABLE III
XGBOOST PREDICTION ACCURACY RESULTS (R2)

used. For SVR, temperature and dissolved oxygen performed
well with an average prediction accuracy score of 0.9889
and 0.9789, respectively. For XGBoost, performance was
similar for temperature, with a prediction accuracy of 0.9849.
Dissolved oxygen and three other parameters performed above
prediction accuracy of 0.9. Fig. 1 shows example predictions
of (a) DO using SVR, (b) cyanobacteria using XGBoost, and
(c) turbidity using SVR. The worst prediction accuracies were
likewise different for both algorithms. For SVR, turbidity per-
formed poorly in relation to the other water quality parameters.
To better understand why turbidity performed so poorly in
comparison to the other parameters, we studied a plot of the
predicted values, shown in Fig. 1(c). The plot reveals that the
predicted values track the actual values well except in the cases
of large spikes in the data, which SVR has trouble predicting.
For XGBoost, the poorest performance was pH balance, but
the reason for this poor performance was not apparent from
the plotted predictions.

While SVR had more parameters that exceeded the R2 =
0.9 prediction accuracy threshold, the algorithm itself took
much longer to process the large dataset than XGBoost. For
each run of the SVR algorithm, the training time ranged from
two to four minutes on a personal computer. In contrast, the
XGBoost algorithm averaged ten to thirty seconds per run.
However, while the gradient boosting algorithm proved to
be fast, SVR had more parameters that received prediction
accuracy scores above 0.9.

The above results are encouraging in that they indicate
strong correlations among the measured water quality factors.

However, the question remains as to whether the trained
regression algorithms can be used for the purpose of anomaly
detection. In what follows, we show that this is indeed the case.
Moreover, our empirical results suggest that fault detection is
possible even when the initial R2 score is not particularly high.

B. Fault Detection

The ultimate aim of this study is to produce a system
that would make detecting sensor faults a more streamlined
process. Intuitively, if the prediction of a parameter is within
a reasonable range (e.g., close to those achieved in the previous
section), then it is likely that the sensor itself is performing
well. If, however, the prediction accuracy suddenly begins
to perform poorly, that is a strong indication that there is a
problem with calibration, sensor failure, or bio-fouling. To
show that the regression algorithm can detect a sudden change
in data, a scalar value was applied to the testing data. This is a
way to mimic a sensor failure due to short-term weather events
such as storms. A sudden drop in prediction accuracy could
be utilized as a way to warn engineers of a problem with the
sensors. This could create a way to detect sensor failures in a
time sensitive way, potentially saving time and money for the
USGS.

We now show that the regression functions learned in the
previous section can be used to reliably detect sensor faults
in the form of a multiplicative scaling. Formally, we train a
regressor on Ntrain successive samples, taking the remaining
examples as the test data, in a manner similar to time-series
prediction. Note however, that no temporal aspects have been
considered when training the regression algorithms, and doing
so is an important topic of future work. We then choose a point
in time t samples into the test set and apply a multiplicative
scaling, so that

Ỹi =

(
Yi i < t

↵Yi i � t
.

We use the updated values Ỹi as a test set. This scaling model
is motivated by previous studies in sensor calibration [11]. The
key question is whether the resulting prediction score changes
significantly after applying such a scaling.
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Fig. 2. Subset of ground truth and predicted values for (a) dissolved
oxygen using SVR (R2 = 0.9810), (b) cyanobacteria using XGBoost
(R2 = 0.9429), and (c) turbidity using SVR (R2 = 0.8283). The training
and test sizes are Ntrain = 47, 306 and Ntest = 5, 257.

The goal is to see if the regression algorithm is able to
pick up on the change in testing data. The prediction score
for the unscaled data is compared to the prediction score
for the scaled data to determine if the change in accuracy
is detected. We considered the case of predicting temperature
using XGBoost, since temperature was among the top factors
in terms of performance and the low computational cost of
XGBoost makes it a strong candidate for running in real time.
Scalar values of 1.15, 1.5, 3, and 10 were considered; however,
all values above 1.15 were trivial to detect, and hence we
discuss only the case of ↵ = 1.15. The results for this test are
promising. The prediction of the regular data when ran at a
training and testing split of 90% / 10% received a prediction
score of 0.9449. Keeping this as a comparative value, a scalar
of ↵ = 1.15 was applied after the first 1000 samples of the
testing data to simulate a fault in the sensor. The resulting
prediction score was 0.8248, which indicates a performance
reduction greater than 10%. This actively shows the anomaly
in the scaled data and reflects the ability of the regression
algorithm to detect scaled changes in the data.

While the reduction in R2 value is encouraging, the users
of such a fault detection method may wish to detect anomalies
in real time, rather than averaged over a window. Fig. 3
shows the squared error between the prediction and the scaled
data as a function of the example number (i.e., time). The
dashed red line indicates the point where the scaling factor
was applied. The figure clearly demonstrates a visible increase
in squared error after the time at which the linear scaling was
applied. Hence, we conclude that supervised regression has
strong potential for use in fault detection for water quality
measurement systems.

IV. CONCLUSION

In this work, we have shown that two supervised regression
algorithms (support vector regression and gradient boosting)
can be used to predict a variety of water quality factors with
a high degree of accuracy. We then demonstrated how such a
trained regressor could be used to detect sensor faults in the
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Fig. 3. Subset of ground truth and predicted values for (a) dissolved
oxygen using SVR (R2 = 0.9810), (b) cyanobacteria using XGBoost
(R2 = 0.9429), and (c) turbidity using SVR (R2 = 0.8283). The training
and test sizes are Ntrain = 47, 306 and Ntest = 5, 257.

form of a linear scaling, which could occur in practice as a
result of weather events. While the results here are promising,
there is still a rich opportunity for research in this area. First,
would be interesting to include the temporal correlations in
the data when predicting future values. As a second line of
work, it may be more realistic to apply a scaling factor that
grows linearly over time, simulating a gradual sensor drift.
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