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Abstract

We correct a formula of Gavish and Donoho for singular value shrinkage with operator norm
loss for non-square matrices. We also observe that in the classical regime, optimal shrinkage for

any Schatten loss converges to the best linear predictor.

1 Introduction

Low-rank matrix denoising is the task of estimating a low-rank matrix X from a noisy observed
matrix of the form Y = X 4+ G, where G is a matrix of noise. The method of singular value
shrinkage, which keeps the singular vectors of Y while deflating the singular values to remove
the effects of noise, is a popular and well-studied approach to matrix denoising [15], [8], [7], [3],
(12], [4], [13], [17], [10], [11], [2], [6].

In foundational work on this topic, Gavish and Donoho [8] observe that the optimal singular
value shrinker depends crucially on the choice of loss function between X and the estimated
matrix }A(, and provide a powerful framework for deriving asymptotically optimal singular value
shrinkers for many loss functions in the spiked model [9]. However, the derivation of the optimal
shrinker for operator norm loss [|X — Xl|lop appears to contain a mistake. In this note, we derive
the correct formula, and observe that the optimal shrinker matches the shrinker proposed in [8]
only in the special case of square matrices. We also show that when X’s columns are iid random
vectors, then the optimal shrinker for any Schatten quasinorm loss converges to the best linear

predictor of each column in the limiting regime of aspect ratio zero.
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2 Preliminaries

2.1 Model and estimation problem

We observe a matrix Y = X + G of size p-by-n, where G has entries which are iid N(0,1/n)
and X is rank r with singular value decomposition X = ZZ=1 tkukvg. Here, uy,...,u, and
Vi,...,V, are orthonormal vectors in RP? and R"™, respectively, and t; > --- > t, > 0 are the
singular values of X. This model is generally referred to as a spiked model [9]. We study the
spiked model as both n and p = p(n) grow to infinity, and their ratio converges to a parameter
v = lim,, 00 p(n)/n, called the aspect ratio. We assume that 1, ..., ¢, remain fixed as p,n — oco.

As in [8], our goal is estimating X from Y by a singular value shrinkage estimator of the
form X9 = et gk, VE, where y,...,0, and Vq,...,V, are the top r singular vectors of
Y, and q = (¢1,...,4,) is the vector of X s singular values. [8] considers loss functions
ﬁp,n(f(q, X) that are orthogonally-invariant, block-decomposable, and continuous as a function
of X4. The typical examples of such loss functions are the Schatten loss functions, of the form

El(le()/iq, X) = HX‘I - X||ge, where ||A||s, is the Schatten ¢-quasinorm, defined for ¢ € (0, 00) by

min{p,n} 1t
IAls, =1 > %] (2.1)
k=1
where A1,..., Anin{p,ny A’s singular values; and for £ = oo by [|Alls,. = [|Allop. We use the

notation £, , and L, without superscripts, for operator norm loss (£ = c0).
For such a loss function and any choice of q = (qu,...,¢,), the asymptotic loss Eg@(q) =
limy, 5,00 E%L(f(q, X) is well-defined almost surely. The task is then to find the q* minimizing

Loo(q)®. The paper [8] introduces a method for this problem, which we review in Section 2.3.

2.2 Asymptotics of the spiked model

The spiked model has been well-studied in the statistics and random matrix literature. Writing

the SVD of Y as Y = Zzl:inl(p ) Jkﬁk{’g, we can summarize the relevant results as follows:

Proposition 2.1. For 1 < k < r, the k" squared singular value of Y converges almost surely

to the following deterministic limit:

B+ (1+3),  ifte>Y
o2={"" & (2.2)

(1+v7)% if t, < A4,



For 1 < j,k < r, the squared cosines between the j*" and k' singular vectors of X and Y

converge almost surely to the following limits:

L/t i =k and ty > A4,

lim (1, ug)2 = 2 = § T (2.3)
—00
' 0, if j # k orty, <4/,
and
1—/th ifj = 1/4
, 7=k and ty > ~v'/%,
lim (v, vi)? =&, = ¢ T/ (2.4)
n—oo
0, ifj £k ortk§71/4.

The proof of this result in the case of Gaussian noise may be found in [16]; generalizations
to other noise models appear in [1]. For each singular value o, of Y with o3 > 14 /7, we may

estimate ¢;, by inverting formula (2.2) and using t; > '/4:

02— 1—~n+/(0Z—1-")%_4

From ¢, the cosines ¢, and ¢ are estimable by directly applying formulas (2.3) and (2.4).

2.3 The shrinkage framework of [8]

In [8], Gavish and Donoho use the behavior of the spiked model described in Proposition 2.1 to
construct a framework for deriving asymptotically optimal singular value shrinkers. We review
this framework here as it applies to Schatten £-loss. The key observation is that when 0 < £ < oo,

the Schatten ¢-loss E,(fizq,(f(% X)) converges asymptotically to the following expression:

~ r tk 0 Ckék Ckgk
lim E;Ef')n(xqv X) = ‘Cg? (q) = Z — 4k ’ (26)
pn—=oo k=1 0 0 SkCL  SESE
Se
whereas for £ = co (the case of operator norm loss), we have
~ t, O CLCL  CLSE
lim £,,(X9X)=Ly(q) = max — qk . (2.7
pP,M—>00 1<k<r ~ ~
0 0 SKCk  SKSk
op

Here, s = /1 — ¢} and 5, = /1 —¢;.



Consequently, the asymptotically optimal singular values ¢ can be solved for as follows:

tr 0 CkCr  CLSk
gy = argmin — qk . (2.8)

qx 0 0 SpCr  SESk
Se

Explicit formulas for ¢; when ¢ = 1,2, 00 (corresponding to nuclear norm loss, Frobenius norm
loss, and operator norm loss, respectively) are derived in [8]. However, the solution presented
there for operator norm loss is not correct. In Section 3, specifically Theorem 3.1, we will present

the correct formula for the optimal ¢; that solves the minimization problem (2.8) for ¢ = occ.

3 The optimal singular values

In this section, we derive the optimal singular values g;, and the resulting asymptotic operator

norm loss L(q*). The main result is the following:

Theorem 3.1. The optimal singular value shrinkage estimator Xa' of X has singular values

t2 +min{1,y} .
tk m, Zf o > 1 + \/’7
g =4 Vet : (3.1)

0, otherwise

where 1 < k < r. The loss ||)A(q* — X|lop converges almost surely to

Loo(q*) = max tky/1 — min{c?, 2} = t1y/1 — min{c}, é}}. (3.2)

Remark 1. The optimal ¢; and loss £.(q*) may be consistently estimated from the observed
singular values o, of Y using (2.2), (2.3), and (2.4).

Remark 2. The paper [8] proposes the shrinker X4 with singular values g = tx. From Theorem
3.1, this is only optimal when vy = 1, and is suboptimal for all other v (the mistake in [8] appears
to occur in Section VI, part B, page 2146). In Figure 1, we plot both shrinkers ¢ = ¢* and ¢ = ¢

and their asymptotic losses as functions as functions of the observed singular value o.
Theorem 3.1 is a consequence of the following result:

Lemma 3.2. Lett >0, and 0 <c<1,0< ¢ < 1. For any q € R, define the 2-by-2 matriz
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Figure 1: Singular values and asymptotic errors, rank 1 signal, v = 0.1. Left: The singular values
g = ¢* and ¢ = t as functions of the observed singular value . Right: The asymptotic operator
norm losses as functions of o.

D(q) by
D(q) = -q : (3.3)

where s = /1 —c2 and § = /1 — . Define F(q) = |D(q)||2,, Then the minimizer q* of F is

op’

. min{ec, ¢}
=t max{c,c}’ (34)

when ¢ and é are not both 0; and ¢* may be taken as any value with |¢*| < t if ¢ = ¢ = 0.

Furthermore, F(q*) = t? - max{s?, §%}.

Remark 3. Lemma 3.2 is applicable for general parameters ¢t > 0 and 0 < ¢ <1,0< ¢

IN

L
even when they do not satisfy the relationships (2.2), (2.3) and (2.4).

We now prove Theorem 3.1 assuming Lemma 3.2. If o, > 1+ /7, or equivalently ¢;, > /4
Lemma 3.2 says that the optimal singular value is ¢; = t; min{cy, ¢}/ max{cy, & }. Using the

expressions (2.3) and (2.4), formula (3.1) follows immediately; indeed, when v < 1 we have

" min{cg, Ci Cr, 4+ yt? t2 + min{1
4 =ty { i } L k4 ’Y2k — 1 2k { 77}7 (3.5)
max{cg, C } Cr. ty +t7 ty + max{1,v}

and similarly when v > 1. When o < 1 + /7, or equivalently #; < 71/4, both ¢ and ¢ are
zero. Consequently, ¢ = 0 is optimal.

All the remains is to show maxi <<, t\/1 — min{c?,é; } = t14/1 — min{c$,c}. Wheny <1,



we have ¢ < ¢. Then

Py P4y
th+2 241

I (3.6)
is an increasing function of ¢, and is equal to /7 (the largest possible error for any component
tr < Y 4) when t = 41/%. Consequently, the maximum error is achieved at t = t;. A nearly
identical argument works when v > 1. This completes the proof of Theorem 3.1.

It remains to prove Lemma 3.2.

Proof of Lemma 3.2. First, suppose ¢ = ¢ = 0. Then

D(q) = ) (37)

and so F(q) = [|D(q)|2, = max{t?,¢*}. Consequently, any ¢ with |¢| < ¢ minimizes F(g), and
since s = § = 1, F(q) = t* - max{s?, §*} for such q.

Next, assume that at least one of ¢ and/or ¢ is not 0. The proof when ¢ = ¢ is identical to
the proof for optimal shrinkage of eigenvalues for covariance estimation contained in [5]; so we
will assume that ¢ # ¢é. Because F(q) is convex, we must show that F’(¢*) = 0. We will use the

expression for the operator norm as a function of ¢ derived in [8]. We have:

P42 = 2qtce + /(¢ + 12 — 2qtcd)? — 4(tgss)?
N 2

A(q) +/A(q)? — 4B(q)?
- ; : (3.8)

F(q)

where A(q) = ¢* +t? — 2qtcé and B(q) = —tgs3. The function F(q) is differentiable whenever

A(q)* — 4B(q)? > 0. Furthermore, at points where F is differentiable, its derivative is given by

F'(q)

1 A(q)A'(g) - 43@3/@) . (3.9)

A/
2 ( T I

Suppose, without loss of generality, that ¢ < c¢. Then the proposed minimizer of F' is

q* = t¢/c; we will show that F’(¢*) = 0. First, we have A’(q) = 2q — 2tcé. Consequently

A(q) =205 —2tcé = 2= (1= ) = 254 (3.10)
c c C



We also have
A * 2 62 ~2
(") =t 1+C—2—2c ) (3.11)
and so
5 o0 &
A(g) A (¢%) = 2t3s% = (1 + - 252) : (3.12)
c c
Next, observe that for all ¢, B'(q) = —ts3. We also have B(q*) = —tzgsé, and so
B(¢")B'(¢*) = 3s25(1 — &). (3.13)
c

Combining (3.12) and (3.13), we obtain:

G 2
A(¢")A'(q") — 4B(q")B'(¢") = 2°5%% (1 + 5 -2 —24 2&2>
c C

- 2t3520%(52 — ). (3.14)
Next, we observe that we may write
2 2 _ 4 &\
A(q"Y — 4B(g" ) =1 (1 - ) , (3.15)
and consequently,

t2
VA(g*)? = 4B(q%)* = 5 (¢ — &), (3.16)

C

where we have used the fact that ¢ > ¢. Note that (3.16) implies that F is differentiable at ¢*
whenever ¢ # ¢.

Combining (3.14) and (3.16), we get:

= —2t-s". 1
tcs (3.17)



Consequently,

Flg) =g (A'<q*> -
1
2

= 0. (3.18)

Next, we evaluate F'(¢*). From (3.11) and (3.16), we get

* 1/ & ~2 t? 2 =2
F(q):2<t <1+02_2 )+02( — &)
1/ 252 2~2 2 252
=t2(1 - &), (3.19)
which is the desired result. O

4 Convergence to the best linear predictor

In this section, we consider the setting where the columns of X are iid random vectors from a
distribution in RP with mean zero. We will write each column of X as X;//n, where X is a

random vector of the following form:
Xj = Zthjkuk, (41)
k=1

where the zj; are mean zero, unit variance sub-Gaussian random variables, and the u; are
the orthonormal principal components of X;. The assumption that X; has mean zero is easily

removed by subtracting the sample mean from each Xj.

Remark 4. In the new setting, each ¢ is the standard deviation of X; along the principal

component ug, not the singular value of X; and uy,...,u, are not the left singular vectors of
X. However, in the large n limit, the singular values of X converge almost surely to t1,...,%.,
and the left singular vectors of X almost surely make zero angle with, respectively, uy, ..., u,.

It is known [14] that the best linear predictor of X; from Y; has the following form:

T

~ t2
X]BLP — Z %<Y}7 uk>uk. (42)
k=1



The next result shows that optimal singular value shrinkage with any of the loss functions

considered in [8] converges to the best linear predictor when v = 0. We will let Xa =

[X9,..., X9]/y/n and XPLP — [XBLP . XBLP)) /.

Theorem 4.1. Let E%L(X,X) be the Schatten (-loss, and suppose q* = argmin, Eg@ ()A(q,X)

is the vector of asymptotically optimal singular values. Then in the limit n — oo and p/n — 0,
1 A~ ~ o~
oL a® _ ¥BLP|2 _ ; a* _ YBLP)2 _
Jim ~ Zl IX5 — XPET)? = dim X9 - XPEPYE =0, (4.3)
=

where the limit holds almost surely.

Theorem 4.1 is a consequence of the following result, which is a special case of Theorems

V.2 and V.3 in [13]:

Lemma 4.2. Let X9 be any singular value shrinker, with singular values q1,...,q.. Define the

linear predictor )~(]q by:

X§ =" 2y, up)uy, (4.4)
ok
k=1
where o1, ...,0, are given by (2.2). Then
1 n
: Ya _ Y92 — X Xqa||2 —

Jim Z; IX5 = X3)1% = lim X9 - X9 =0, (4.5)

j:

where the limit holds almost surely as n — oo and p/n — 0.

In particular, if we treat qr = qx(7y) as a function of v, and

. [ &
%%%(’Y)*tk t%ﬁ’ (4.6)

then
1<~ ~
: q BLP |2 _ 1: BLP |2 _
nh_rgoﬁ E 1 ||Xj —Xj II© = nlglgOHXq -X Iz = 0. (4.7
iz

Remark 5. Lemma 4.2 states that singular value shrinkage converges to a linear predictor of
the form (4.4) when v = 0 (the “classical” regime of zero aspect ratio). So long as (4.6) is
satisfied, the limiting linear filter is optimal. By contrast, any shrinker that does not satisfy

(4.6), including qx = tx, will converge to a suboptimal linear filter in the v = 0 regime.
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Figure 2: Operator norm errors for p = 100 and increasing n for the BLP (4.2) and the shrinkers
X4, g =q*" and g =t. The signal is rank 1 with ¢t = 1.1. Errors are averaged over 4000 runs.

To illustrate Theorem 4.1 and Lemma 4.2 numerically, we draw n iid observations from a
spiked model in R'%, for increasing values of n > 100. We take the rank r =1 and t = ¢, = 1.1
(to ensure the signal is detectable for all n > 100). We apply the best linear predictor X ]BLP
(which assumes the principal component u = u; is known), optimal shrinkage X ;1*7 and the
suboptimal shrinker )A(Jt In Figure 2, we plot the average operator norm error over 4000 runs
of the experiment, as a function of logy(n). The error for the BLP is approximately constant,
since the BLP does not vary with the sample size n. As n grows, the error for optimal shrinkage
approaches that of the BLP as predicted by Theorem 4.1, because )A(J‘f converges to the BLP
X JBLP. By contrast, the error for the shrinker of [8] converges to a strictly larger value, since
according to Lemma 4.2 )A(jt converges to the suboptimal linear predictor th

We now give the proof of Theorem 4.1:

Proof of Theorem 4.1. Since each component is treated separately, we drop the subscripts.
When v = 0, formulas (2.3) and (2.4) reduce to ¢ = 1 and ¢ = t2/(¢*> + 1). From (2.8), the

optimal singular value ¢* must then be equal to

) t 0 c s ) _ _ B t2
q¢" = argmin —q = argmin \/(t — ¢6)? + (¢5)? = tc =t/ 57—
4 0 0 0 0 a =1
Se

(4.8)

Applying Lemma 4.2, the proof of Theorem 4.1 is complete. O
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5 Conclusion

We have considered the problem of estimating a low-rank matrix X from noisy observations
Y = X + G, where we measure the error by operator norm loss || X — XHOP We have proven
(Theorem 3.1) that the optimal singular value shrinker has singular values of the form (3.1). For
square matrices (7 = 1), the optimal singular values agree with those proposed in [§8], though
the two methods differ when ~y differs from 1. We have also shown (Theorem 4.1) that when the
columns of X are iid vectors in R?, then in the classical regime (v = 0) the optimal shrinker for

any Schatten loss, including operator norm loss, converges to the best linear predictor.
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