
Scaled-CBSC: Scaled Counting-Based Stochastic Computing
Multiplication for Improved Accuracy

Shuyuan Yu
University of California, Riverside

Department of Electrical and Computer Engineering
Riverside, California, United States

syu070@ucr.edu

Sheldon X.-D. Tan
University of California, Riverside

Department of Electrical and Computer Engineering
Riverside, California, United States

stan@ece.ucr.edu

ABSTRACT

Stochastic computing (SC) can lead area-efficient implementation

of logic designs. Existing SCmultiplication, however, suffers a long-

standing problem: large multiplication error with small inputs due

to its intrinsic nature of bit-stream based computing. In this arti-

cle, we propose a new scaled counting-based SC multiplication ap-

proach, called Scaled-CBSC, to mitigate this issue by introducing

scaling bits to ensure the bit ‘1’ density of the stochastic number is

sufficiently large. The idea is to convert the “small” inputs to “large”

inputs, thus improve the accuracy of SC multiplication. But differ-

ent from an existing stream-bit based approach, the new method

uses the binary format and does not require stochastic addition

as the SC multiplication always starts with binary numbers. Fur-

thermore, Scaled-CBSC only requires all the numbers to be larger

than 0.5 instead of arbitrary defined threshold, which leads to in-

teger numbers only for the scaling term. The experimental results

show that the 8-bit Scaled-CBSC multiplication with 3 scaling bits

can achieve up to 46.6% and 30.4% improvements in mean error

and standard deviation, respectively; reduce the peak relative er-

ror from 100% to 1.8%; and improve 12.6%, 51.5%, 57.6%, 58.4% in

delay, area, area-delay product, energy consumption, respectively,

over the state of art work. Furthermore, we evaluate the proposed

multiplication approach in a discrete cosine transformation (DCT)

application. The results show that with 3 scaling bits, 8-bit scaled

counting-based SC multiplication can improve the image quality

with 5.9dB upon the state of art work in average.

ACM Reference Format:

Shuyuan Yu and Sheldon X.-D. Tan. 2022. Scaled-CBSC: Scaled Counting-

Based Stochastic Computing Multiplication for Improved Accuracy. In Pro-

ceedings of the 59th ACM/IEEE Design Automation Conference (DAC) (DAC

’22), July 10–14, 2022, San Francisco, CA, USA. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/3489517.3530499

This work is supported in part by NSF grants under No. OISE-1854276, in part by NSF
grant under No. CCF-1816361, No. CCF-2007135 and No. CCF-2113928.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).

DAC ’22, July 10–14, 2022, San Francisco, CA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9142-9/22/07.
https://doi.org/10.1145/3489517.3530499

1 INTRODUCTION

Approximate computing enables efficient trade-off among accu-

racy, area, latency and power for more efficient error tolerant ap-

plications implementation such as machine learning and multime-

dia workloads [1]. Those workloads are heavily dominated by the

multiplication operations and hence design of hardware-efficient

multiplier has been intensively investigated recently. The primary

goal of the approximate multiplier design is to trade the accuracy

or quality for the power/energy, latency and area.

A number of approximatemultiplier designs have been proposed

recently [2–10]. Those approximate multipliers employ some ad-

hoc truncation or reductionmethods ormathematically formulated

approximation schemes. Most of the existing methods, however,

lack the systematic configurability for accuracy vs. area/power/latency

trade-off.

On the other hand, another viable solution to approximate com-

puting is by means of stochastic computing (SC) in which the mul-

tiplication is performed by simple AND operation of two random

bit streams [11, 12]. SC can provide inherent progressive trade-off

between accuracy and latency/energy/area by changing the length

of bit-streams and it can be extremely low-cost and energy effi-

cient. However, traditional SC hardware implementation suffers

from very long latency, strict requirement for randomness of SC

numbers, and large area overhead for random number generations.

Recently a more efficient and also more accurate SCmultiplier was

proposed to partially mitigate the two aforementioned problems in

traditional SC [13]. First, It replaces theAND operation with count-

ing bit ‘1’ in the bit-stream, which can be early terminated without

going through the full length of the bit-streams and second, the bit

streams no longer need to be random, which significantly reduces

SC hardware overhead. However, it still suffers from the nature

of sequential counting process. Recently such counting-based SC

scheme has been improved by the COSAIM multiplier in which

the counting process can be further accelerated by a simple for-

mula [14].

Despite of the improvements for SC computing, one long-standing

problem for SC multiplication is that when two numbers are small,

the error of the multiplication can be very significant as shown in

Fig. 1. As we can see, the relative error in the SC multiplication for

8-bit binary data can be as large as 100% when the inputs are both

in the region of [1/256, 15/256] for the range of [1/256, 255/256].

To mitigate this problem, recently [15] proposed a scaled popu-

lation (SP) arithmetic for SC. The idea is to introduce a scaling term

so that one can scale the number within ([0,1]) larger than some

given threshold (like 0.7, ex.) to ensure better accuracy for SC mul-

tiplication. However, this method still suffers a few drawbacks as

https://doi.org/10.1145/3489517.3530499
https://doi.org/10.1145/3489517.3530499


DAC ’22, July 10–14, 2022, San Francisco, CA, USA Shuyuan Yu and Sheldon X.-D. Tan

Figure 1: (a)The absolute error distribution of the counting-based SC

method; (b)The relative error distribution of the counting-based SC

method.

it is based on the traditional random-number based SC framework.

Also, the SP format is difficult to interface with the commonly used

binary number format, which is often required in the image pro-

cessing and machine learning application. Further, it still operates

in the bit-stream level and requires complicated design to reduce

random fluctuation errors for random number generation, scaling

and random-shuffling operations.

In this work, we try to mitigate the long-standing issues with

the stochastic computing by introducing a scaled counting-based

stochastic computing scheme, called Scaled-CBSC, which can sig-

nificantly improve the accuracy of SC multiplications for small

numbers. The key contributions of this work are listed as follows:

1. In the Scaled-CBSC framework, instead of representing the

number in a bit-stream as the traditional SC methods do, a

scaling factor is introduced so that bit ‘1’ density in the bit-

stream (SC part) is always large than 0.5 to ensure sufficient

accuracy for SC computing and the scaling factor is guaran-

teed to be integer. Furthermore, our new scaled SC format is

in the binary form and all the operations like shifting is done

in the binary format, which is much more efficient than the

bit-stream level operations.

2. Instead of using traditional SC framework, we adopt the

counting-based SC (CBSC) scheme [13], in which determin-

istic bit-stream pattern is used. As a result, all the compli-

cated designs associated with the random number genera-

tions, correlation reductions are not needed any more. Fur-

ther more, no SC addition is required as it will be performed

in the binary domain, which is important for introducing

the scaling factors as SC addition based on OR operations

requires low ‘1’ density, which contradicates with high ’1’

density requirement of SC multiplication.

3. Our numerical results show that the 8-bit Scaled-CBSCmul-

tiplication with 3 scaling bits can improve the mean error

and standard deviation upon the original CBSC baseline by

up to 46.6% and 30.4%, respectively. The 16-bit Scaled-CBSC

multiplication with 4 scaling bits can improve the mean er-

ror and standard deviation by up to 50.3% and 34.9%. Also

with 1, 2, 3 scaling bits, Scaled-CBSC can significantly re-

duce the peak relative error from 100% to 51.6%, 5.8% and

1.8%, respectively. Furthermore, compared with the state of

art work, the 8-bit Scaled-CBSC multiplication with 3 scal-

ing bits improves area, delay, ADP (area-delay product) and

energy consumption with 12.6%, 51.5%, 57.6% and 58.4%, re-

spectively.

4. We also evaluate the Scaled-CBSC multiplication in a dis-

crete cosine transformation (DCT) application. The results

show that for 8-bit precision, 3 scaling bits are required to

achieve significant improvement on the image quality (5.9dB

in average). For 16-bit precision, 1 scaling bit is enough to

achieve 16.8dB (in average) image quality improvement. And

with over 2 scaling bits, we can even achieve an output im-

age with no quality loss.

This paper is organized as follows: Section 2 reviews several

recently proposed SC multiplication designs. Section 3 presents

the proposed Scaled-CBSC design including the special data tuple

format and the CBSC kernel optimization techniques. Section 4

shows the experimental results for the error metrics, area, delay,

power and energy consumption comparison results with the orig-

inal CBSC baseline and state of art works. Finally, section 5 con-

cludes the paper.

2 REVIEW OF RELATED WORK

Traditionally, SC multiplication consists of 3 parts: (1) stochastic

number generators (SNG) which convert the N -bit binary inputs

to the 2N -bit stochastic numbers (SN); (2) SC multiplication core,

usually an AND or NOR gate which is corresponding to unsigned

multiplication or signed multiplication; (3) a counter which con-

verts the product SN to binary form back again if needed.

As the computing accuracy of SC multiplication is determined

by the SN quality, in other words, the SNG. And the SNG also costs

much more area and power than the SC multiplication core. Exist-

ing works mainly focused on how to design more area efficient

and high quality SNGs, like: Halton sequence generator [16], LFSR

(linear feedback shift register) [17], LD (low discrepancy) sequence

generation [18].

Among theseworks, a recentwork proposed by Sim [13], named

counting-based SC (CBSC) multiplication achieved not only the

better accuracy but also the smallest latency by introducing an fi-

nite state machine (FSM) based SNG with counting scheme. The

CBSC multiplication design is shown in Fig. 2. Different from the

traditional SC multiplication, CBSC only requires one FSM-based

SNG to convert one of the two binary inputs, ex. x , into a bit-

streamwith deterministic pattern first. The FSM-based SNG evenly

distributes the xi−1, which is the ith bit of x , based on its binary

weight 2i−1. For instance, if i = 3, then x2 will appear 4 times in

the resulting SN. Such SN generation can be simplified and imple-

mented by an FSM and a MUX. The FSM is actually an up counter

counts from 0 to 2N − 1, assuming x is N -bit. The MUX then out-

puts xi−1 based on the output value of the FSM.

If the SN bit-stream for the other inputw is set to be series of ‘1’

followed by a bunch of ‘0’ as shown in Fig. 2. As SC multiplication

is simply AND operation, it is no necessary to count the second

half of the output bit-stream. So, the whole counting process only

requiresw ·2N cycles to finish, which saves half latency in average.

The authors used a down counter to realize the idea. Whilew · 2N

is used as the initial value, the down counter decreases by one in

each clock cycle. When it reaches “zero”, the process is terminated.

As a result, CBSC leads to a simpler design as one traditional SNG

(typically using LFSR) and the AND gate are removed in exchange

of a down counter, which is much cheaper than an SNG.



Scaled-CBSC: Scaled Counting-Based Stochastic Computing Multiplication for Improved AccuracyDAC ’22, July 10–14, 2022, San Francisco, CA, USA

Figure 2: (a) FSM based SNG which generates SN bit-stream in a de-

terministic way. (b) CBSC concept. (c) CBSCmultiplicationmethod.

To further improve the computing latency of CBSCmethod, work

in [19] exploits the symmetric properties of the deterministic bit

stream pattern so that one can start the counting process from

either the end or the beginning of the SN bit-stream depending

on the value of the weight to reduce the clock cycles needed. The

counting process can be further improved by recent COSAIMwork

in [14], in which a simple formula is used to compute the number

of bit ‘1’ in just a single clock cycle with minimum hardware over-

head.

These aforementioned works indeed helped reduce the latency,

but the long-standing low accuracy issue for small numbers as

shown in Fig. 1 for SC still remains. Basically this is due to the

intrinsic SC multiplication property that two N -bit inputs for SC

multiplication still generateN -bit output product instead of 2N -bit

output.

To mitigate this issue, Zhou in [15] has proposed a scaled pop-

ulation (SP) arithmetic concept. This method indeed improved the

errormetrics in the “small” range by inserting bit ‘1’s into the input

SN bit-stream. As a result, the bit ‘1’ density of the SN bit-stream

is then raised to a certain level, like 0.7, for example. Since the SN

value is changed during the bit ‘1’ insertion process, the SPmethod

introduced an exponent term so that the scaled SN number will re-

main approximately the same. The resulting SP number is a 2-tuple

including a scaling term and a SN term. But SP method still suffers

from a few problems. First, the method is still based on the tradi-

tional random-number based SC scheme. The format is difficult to

interface with the commonly used binary number format, which

is often required in the image processing and machine learning ap-

plication. Second, it operates in the bit-stream level and requires

complicated design to reduce random fluctuation errors for ran-

dom number generation, scaling and random-shuffling operations.

Third, it requires the bit ‘1’ density to be any given value such

as 0.7, which can lead to no integer number in the scaling term.

Fourth, it uses the OR operation for SC addition, which however

favors the low bit ‘1’ density (small value) in the SC bit stream,

and it contradicts the high bit ‘1’ density requirement in the SC

multiplication.

Based on the analysis and observation, we propose our scaled

counting-based SC multiplication approach, Scaled-CBSC to miti-

gate the long-standing low accuracy issues of SC at the same time,

and try to maintain the advantages of the latest CBSC method.

Figure 3: The data tuple including the scaling and the binary terms.

3 PROPOSED SCALED SC MULTIPLICATION
APPROACH

In this section, we present the details of our proposed scaled counting-

based SC (Scaled-CBSC) multiplication approach to mitigate the

large errors for small number multiplication.

3.1 Scaled counting-based SC multiplication
method

As shown in Fig. 1, SC multiplication will have very large relative

error with “small” inputs, especially in the range of [1/256, 15/256],

due to the low bit ‘1’ density of the input SN bit-stream, which

is an intrinsic property of SC multiplication. So a simple idea to

improve the error metrics of SC multiplication is to avoid these

“small” inputs, in other words, increasing the bit ‘1’ density of the

input SN bit-stream. Unlike SP method [15] which inserts bit ‘1’

into the SN bit-stream, our proposed Scaled-CBSC multiplication

directly enlarge the binary number inputs, which is also equivalent

to raising the bit ‘1’ density level of the SN bit-stream.

In the Scaled-CBSCmultiplication, anN -bit binary number data

is represented by a ‘scaling-binary’ 2-tuple. The tuple consists of

two parts, anM-bit scaling term and anN -bit binary term. The data

representation and how an N -bit binary number be converted to

2-tuple {M,N } is shown in Fig. 3. Specifically the scaling term has

M bits, the original binary number is then divided into 2M parti-

tions. To mitigate the SC multiplication error, we want the binary

term to be as large as possible to avoid the “small” inputs regions.

So the leading bit ‘1’ in the binary term, which is marked with

red in Fig. 3, should appear in the most significant partition. We

then left shift N /2M bits, or one partition each time. The value of

the scaling term records number of times the shift operation being

carried out. We can easily derive that the maximum number of the

scaling bits, or MMAX , equals to logN2 . As the binary term will al-

ways promise the leading bit ‘1’ in the most significant partition.

Each partition consists of N /2M bits, and the least significant bit

in the most significant partition weights (1/2)N /2M . Thus it can be

verified that after bit partition-based shifting operations, the value

of the binary term should be no less than (1/2)N /2M . We show an

8-bit example in Fig. 4. Since we use the binary term of the scaled

data presentation as the input of the CBSC kernel in our proposed

Scaled-CBSC method (will be discussed later in Sec. 3.2), our bi-

nary only representation is more compact than the SP format [15],

which is a mixed 2-tuple of bit-stream and binary numbers.

The resulting Scaled-CBSC multiplication approach is shown in

Fig. 5. The Scaled-CBSC multiplication consists of two blocks. One

is the simple M-bit binary summation to sum the scaling terms

(green blocks in Fig. 5) of the two input tuples (x and w) up. The



DAC ’22, July 10–14, 2022, San Francisco, CA, USA Shuyuan Yu and Sheldon X.-D. Tan

Figure 4: An 8-bit example to show the minimum promised value of

the binary term.

Figure 5: The Scaled-CBSC/COSAIM method.

Figure 6: (a) The output value of the original CBSC kernel compo-

nents. (b) The output value of the optimized CBSC kernel compo-

nents with the maximum number of the scaling bits.

Figure 7: The structure of the optimized CBSC kernel with the max-

imum number of scaling bits.

other block is the CBSC kernel which is shown in Fig. 2. The inputs

of the CBSC kernel are the binary terms (red blocks in Fig. 5) of the

two input data tuples. The output product p is also a 2-tuple, but

with a M + 1-bit scaling term and an N -bit binary term. Further-

more, the Scaled-CBSCmultiplication could be further extended to

Scaled-COSAIM with the CBSC kernel in Fig. 5 simply exchanged

to COSAIM kernel proposed in [14].

3.2 Hardware design and optimization

Assume a {M,N }-bit 2-tuple has the maximum number of the scal-

ing bits MMAX , as mentioned in Sec. 3.1, the minimum value of

the binary term should be 0.5. From Fig. 6(a), we notice that ifw is

promised to be no less than 0.5, the computing latency of the SC

multiplication should be no less than 2N /2. And since the SN bit-

stream of x is “centrosymmetric”, the up counter output value at

the 2N /2th clock cycle always equals to x/2+x[0]. So the counting

process before the 2N /2 + 1th cycle is promised, which means we

don’t need to count the first 2N /2 cycles anymore. We can simply

start the counting process from the 2N /2+1th cycle with an initial

value of x/2 + x[0] (x[N − 1 : 1] + x[0]). Thus we can save 2N /2

clock cycles of the computing latency of CBSC method, which is

shown in Fig. 6(b).

With the maximum number of scaling bits, the minimum value

of the binary term of x equals to 0.5, which means the most signif-

icant bit (MSB) of x is bit ‘1’. Based on the deterministic SN gener-

ation pattern of CBSC method, bit ‘1’ will appear once every two

clock cycles. So we can improve the up counter to count 2 bits (bit

‘1’ and an SN bit) at a clock cycle, which will further reduce the

computing latency. And since one of these two bits is determined,

we don’t need to use the FSM-based SNG to generate it. The N -bit

FSM could be shrunk to N − 1-bit. Note that as we count 2 bits at

a cycle, the up counter of the FSM will increase by 2 at each cycle,

which is shown in Fig. 6(b).

To further improve the hardware performance of the Scaled-

CBSCmultiplication approach, we try to optimize the CBSC kernel

upon the original design under the case of the maximum number

of the scaling bits. By observing the 3rd and the 4th line in Fig. 6(a),

we notice that the output value of FSM in the SNG is just a reversal

series of the output value of the down counter before the SC multi-

plication terminates. This means that when the FSM output value

equals to the initial value of the down counter, the whole counting

process will be ended. So the down counter is not required any-

more, we simply remove it from the CBSC structure, thus further

reduce the area and power of our proposed scaled CBSCmultiplica-

tion. We show the improved scaled CBSC multiplication structure

in Fig. 7. Note that since we don’t need to count the first 2N /2

cycles and count 2 bits at each cycle now, the counting process

should not be stopped when FSM < ⌊(w − 2N /2)/2⌋, which is

equivalent to FSM < w[N − 2 : 1]. For the odd number case, we

need to count an extra “half” cycle. In this case, asw is an odd num-

ber, w[0] = 1. We just need to add one to the final output result.

Finally, to combine the odd and even cases together, the output re-

sult will be added by x[N − 1] ·w[0] when the process stops. And

since x[N−1] = 1, x[N−1]·w[0] = w[0]. We show the optimization

in Fig. 7.

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this section, we evaluate the performance of the proposed scaled

counting-based stochastic computingmultiplication approach, named

Scaled-CBSC multiplication under 8-bit and 16-bit precision. We

also compare the proposed approach against the original CBSC

(counting-based stochastic computing)multiplication baseline [13],

and other state of art works with the same precision.



Scaled-CBSC: Scaled Counting-Based Stochastic Computing Multiplication for Improved AccuracyDAC ’22, July 10–14, 2022, San Francisco, CA, USA

Table 1

Hardware performance comparison.

8-bit

M Area /µm2 Delay /ns ADP Power /µW Energy /pJ

CBSC [13] 0 487.96 215.04 104930 26.85 13.75

Improved CBSC[19] 0 657.72 130.56 85873 39.04 10.00

Scaled-CBSC

1 460.51 176.64 81344 22.60 11.57

2 483.38 176.64 85385 24.15 12.36

3 575.13 63.36 36440 32.50 4.16

COSAIM [14] 0 660.77 2.05 1355 36.20 0.14

Scaled-COSAIM

1 692.29 2.07 1433 37.57 0.15

2 710.33 2.07 1470 38.34 0.15

3 707.79 2.07 1465 39.33 0.16

16-bit

COSAIM [14] 0 2575.50 3.85 9916 163.95 0.66

Scaled-COSAIM

1 2622.00 3.87 10472 165.33 0.66

2 2691.13 3.88 10144 157.34 0.63

3 2700.53 3.87 10216 157.86 0.63

4 2655.55 3.88 10130 159.86 0.64

4.1 Experimental setup

To evaluate the performance of the proposed Scaled-CBSC multi-

plication design, we first compare the error metrics and the hard-

ware performance of Scaled-CBSC with the original baseline ver-

sion: the CBSC multiplication proposed by Sim [13]. We also com-

pare Scaled-CBSC multiplication with a state of art work: an op-

timized CBSC multiplication [19]. To make a complementary, We

show the hardware performance of another state of art work, CO-

SAIM [14] which could be treated as an approximate multiplication

form of the original CBSC multiplication, with different number

of scaling bits. For the 16-bit Scaled-CBSC multiplication, as CBSC

multiplication will take 215 clock cycles in average to finish the

multiplication, which is too long and doesn’t make sense. We just

demonstrate the results of COSAIM and “Scaled-COSAIM” designs,

which only require a single clock cycle to finish the process.

All the aforementioned multipliers are implemented in Verilog

HDL and synthesized with Synopsys Design Compiler using EDK

32nm standard cell library [20] as single-cycle designs. For fair

comparison, the power and energy consumption of all the afore-

mentioned multipliers are measured under the same working fre-

quency (250MHz).

For the error metrics evaluation, we developed behavioral sim-

ulation models for CBSC and Scaled-CBSC with all the possible

number of scaling bits in MATLAB and measured the accuracy

using 1 million random inputs uniformly distributed over the set

{0, 1, ..., (2N − 1)}, (N = 8, 16). The errors are reported with re-

spect to the exact results. The error metrics used to report the error

behavior includes: mean error (mean of the absolute value of the

error) and standard deviation. Note that both of the improved ver-

sions of the CBSC method only do improvements on the comput-

ing latency and the hardware performance (area/power/energy),

and the error metrics keeps the same as the CBSC baseline. Thus

for the error metrics, we just compare our proposed Scaled-CBSC

multiplication with the original CBSC baseline.

4.2 Performance evaluation

We show the error metrics for CBSC and Scaled-CBSC multiplica-

tion with 8-bit and 16-bit in Fig. 8 and Fig. 9, respectively. Note that

the original CBSC method can be treated as Scaled-CBSC with ‘0’

scaling bit, which is shown at the leftmost location in Fig. 8 and

Fig. 9.

Figure 8: The mean error and standard deviation of 8-bit Scaled-

CBSC multiplication approach.

Figure 9: The mean error and standard deviation of 16-bit Scaled-

CBSC multiplication approach.

Figure 10: The absolute relative error distribution of Scaled-CBSC

with different number of scaled bits: (a) M = 0; (b) M = 1; (c) M = 2;

(d) M = 3.

Fig. 8 shows that with 3 scaling bits, the Scaled-CBSCmultiplica-

tion can improve the mean error and the standard deviation upon

the CBSC baseline by up to 46.6% and 30.4%. Fig. 9 shows that with

4 scaling bits, Scaled-CBSC multiplication can improve the mean

error and the standard deviation upon the CBSC baseline by up to

50.3% and 34.9%. Furthermore, from Fig. 10, we can see that with

scaling bits, Scaled-CBSC can improve the relative error profile of

the original CBSC significantly. With 1, 2, 3 scaling bits, Scaled-

CBSC can reduce the maximum relative error from 100% to 51.6%,

5.8% and 1.8%, respectively.

We demonstrate the hardware performance of the Scaled-CBSC

multiplication and compare with the CBSC baseline and several



DAC ’22, July 10–14, 2022, San Francisco, CA, USA Shuyuan Yu and Sheldon X.-D. Tan

state of art works in Table 1. M is the number of scaling bits we

used in the multiplication. By observing Table 1, we can see that

with 8-bit precision, Scaled-CBSC can improve the delay upon the

CBSC baseline by up to 70.5% with 17.9% area overheads, and im-

prove the ADP (area-delay product) and energy consumption upon

the CBSC baseline by up to 65.3% and 69.7%, respectively; and im-

prove all the four metrics (area, delay, ADP, energy) upon the state

of art work by 12.6%, 51.5%, 57.6% and 58.4%, respectively, with 3

scaling bits. For the Scaled-COSAIM design, no matter 8-bit or 16-

bit case, with scaling term, though the Scaled-COSAIM will intro-

duce a little bit hardware resource overheads, it will significantly

improve the error metrics as mentioned before.

4.3 An image processing application evaluation

Now, we show how the proposed Scaled-CBSC multiplication ap-

proach compare to state of art methods in amultimedia application.

Discrete cosine transformation (DCT) is a commonly used lossy im-

age compression method. The quality of the compressed images is

usually evaluated usingmetrics such as PSNR (peak signal noise ra-

tio) and higher PSNR value represents better image quality. We im-

plement the proposed Scaled-CBSC multiplication approach with

different number of scaling bits in the DCT-iDCT (inverse DCT)

workloads, and compare with the CBSC baseline on five example

images, considering both 8-bit and 16-bit precision. As mentioned

before, M = 0 represents the CBSC baseline. We show the results

of image compression in Table 2. For 8-bit precision, we can see

that 1 or 2 scaling bits will not improve the image quality much.

With 3 scaling bits, Scaled-CBSC can improve the image quality

of 5.9dB in average upon the CBSC baseline. For 16-bit precision,

1 scaling bit can improve the image quality of 16.8dB in average,

and 2 scaling bits are enough to achieve the best image quality im-

provement. Here “INF” in Table 2 represents “infinity large”, which

means the final output image is completely the same as the input

with no quality loss.

Table 2

PSNR (dB) for images after DCT-iDCT using CBSC multiplications.

8-bit

M Lena Boat Barbara House Pepper Avg. (dB)

0 32.24 31.57 32.70 31.95 32.62 32.22

1 32.43 31.77 32.93 32.17 32.93 32.45

2 32.47 31.85 33.04 32.32 33.03 32.54

3 38.17 37.92 38.58 37.80 37.97 38.09

16-bit

M Lena Boat Barbara House Pepper Avg. (dB)

0 78.23 76.08 77.54 77.32 74.99 76.83

1 INF 91.52 96.30 93.29 93.29 93.60

2 INF INF INF INF INF INF

3 INF INF INF INF INF INF

4 INF INF INF INF INF INF

5 CONCLUSION

In this work, we have proposed a novel scaled counting-based sto-

chastic computing multiplication design, named Scaled-CBSC. The

proposed design introduced scaling bits to promise the inputs of

the SC multiplication kernel to be larger than 0.5, avoiding the

“small” number region which led to large relative error of SC mul-

tiplication. Numerical results showed that 8-bit Scaled-CBSC with

3 scaling bits could achieve up to 46.6% and 30.4% improvements

in mean error and standard deviation, respectively; reduced the

peak relative error from 100% to 1.8%; and improved 12.6%, 51.5%,

57.6%, 58.4% in delay, area, area-delay product, energy consump-

tion, respectively, over the state of art work. For discrete cosine

transformation (DCT) application, 3 scaling bits are required for 8-

bit Scaled-CBSC multiplication to significantly improve the image

quality by 5.9dB.

REFERENCES
[1] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Approx-

imate computing and the quest for computing efficiency,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE, 2015.

[2] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an
underdesigned multiplier architecture,” in 2011 24th Internatioal Conference on
VLSI Design, pp. 346–351, IEEE, 2011.

[3] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power-and area-efficient approximate
wallace treemultiplier for error-resilient systems,” in Fifteenth International Sym-
posium on Quality Electronic Design, pp. 263–269, IEEE, 2014.

[4] B. S. Prabakaran, S. Rehman, M. A. Hanif, S. Ullah, G. Mazaheri, A. Kumar, and
M. Shafique, “Demas: An efficient design methodology for building approximate
adders for fpga-based systems,” in 2018 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pp. 917–920, IEEE, 2018.

[5] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif, M. Shafique, and
A. Kumar, “Area-optimized low-latency approximate multipliers for fpga-based
hardware accelerators,” in Proceedings of the 55th Annual DesignAutomation Con-
ference, pp. 1–6, 2018.

[6] S. Ullah, S. S. Murthy, and A. Kumar, “Smapproxlib: library of fpga-based approx-
imate multipliers,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pp. 1–6, IEEE, 2018.

[7] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic range unbiased multi-
plier for approximate applications,” in 2015 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 418–425, IEEE, 2015.

[8] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim, “Energy-
efficient approximate multiplication for digital signal processing and classifica-
tion applications,” IEEE transactions on very large scale integration (VLSI) systems,
vol. 23, no. 6, pp. 1180–1184, 2014.

[9] H. Saadat, H. Bokhari, and S. Parameswaran, “Minimally biased multipliers
for approximate integer and floating-point multiplication,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11,
pp. 2623–2635, 2018.

[10] H. Saadat, H. Javaid, A. Ignjatovic, and S. Parameswaran, “Realm: reduced-error
approximate log-based integer multiplier,” in 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1366–1371, IEEE, 2020.

[11] A. Naderi, S. Mannor, M. Sawan, andW. J. Gross, “Delayed stochastic decoding of
ldpc codes,” IEEE Transactions on Signal Processing, vol. 59, no. 11, pp. 5617–5626,
2011.

[12] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation on sto-
chastic bit streams digital image processing case studies,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 22, no. 3, pp. 449–462, 2013.

[13] H. Sim and J. Lee, “A new stochastic computing multiplier with application to
deep convolutional neural networks,” in 2017 54th ACM/EDAC/IEEE Design Au-
tomation Conference (DAC), pp. 1–6, IEEE, 2017.

[14] S. Yu, Y. Liu, and S. X.-D. Tan, “COSAIM: Counter-based stochastic-behaving
approximate integer multiplier for deep neural networks,” in Proc. Design Au-
tomation Conf. (DAC), pp. 1–6, Dec. 2021.

[15] H. Zhou, S. P. Khatri, J. Hu, and F. Liu, “Scaled population arithmetic for efficient
stochastic computing,” in 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 611–616, 2020.

[16] A. Alaghi and J. P. Hayes, “Fast and accurate computation using stochastic
circuits,” in 2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1–4, IEEE, 2014.

[17] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Transactions
on Embedded computing systems (TECS), vol. 12, no. 2s, pp. 1–19, 2013.

[18] M. H. Najafi, D. J. Lilja, and M. Riedel, “Deterministic methods for stochastic
computing using low-discrepancy sequences,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1–8, IEEE, 2018.

[19] Z. Chen, Y. Ma, and Z. Wang, “Optimizing stochastic computing for low latency
inference of convolutional neural networks,” in Proceedings of the 39th Interna-
tional Conference on Computer-Aided Design, pp. 1–7, 2020.

[20] R. Goldman, K. Bartleson, T. Wood, K. Kranen, V. Melikyan, and E. Babayan,
“32/28nm educational design kit: Capabilities, deployment and future,” in 2013
IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and
Electronics (PrimeAsia), pp. 284–288, IEEE, 2013.


	Abstract
	1 Introduction
	2 Review of related work
	3 Proposed scaled SC multiplication approach
	3.1 Scaled counting-based SC multiplication method
	3.2 Hardware design and optimization

	4 Experimental results and discussions
	4.1 Experimental setup
	4.2 Performance evaluation
	4.3 An image processing application evaluation

	5 Conclusion
	References

