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ABSTRACT

Stochastic computing (SC) can lead area-efficient implementation
of logic designs. Existing SC multiplication, however, suffers a long-
standing problem: large multiplication error with small inputs due
to its intrinsic nature of bit-stream based computing. In this arti-
cle, we propose a new scaled counting-based SC multiplication ap-
proach, called Scaled-CBSC, to mitigate this issue by introducing
scaling bits to ensure the bit ‘1’ density of the stochastic number is
sufficiently large. The idea is to convert the “small” inputs to “large”
inputs, thus improve the accuracy of SC multiplication. But differ-
ent from an existing stream-bit based approach, the new method
uses the binary format and does not require stochastic addition
as the SC multiplication always starts with binary numbers. Fur-
thermore, Scaled-CBSC only requires all the numbers to be larger
than 0.5 instead of arbitrary defined threshold, which leads to in-
teger numbers only for the scaling term. The experimental results
show that the 8-bit Scaled-CBSC multiplication with 3 scaling bits
can achieve up to 46.6% and 30.4% improvements in mean error
and standard deviation, respectively; reduce the peak relative er-
ror from 100% to 1.8%; and improve 12.6%, 51.5%, 57.6%, 58.4% in
delay, area, area-delay product, energy consumption, respectively,
over the state of art work. Furthermore, we evaluate the proposed
multiplication approach in a discrete cosine transformation (DCT)
application. The results show that with 3 scaling bits, 8-bit scaled
counting-based SC multiplication can improve the image quality
with 5.9dB upon the state of art work in average.
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1 INTRODUCTION

Approximate computing enables efficient trade-off among accu-
racy, area, latency and power for more efficient error tolerant ap-
plications implementation such as machine learning and multime-
dia workloads [1]. Those workloads are heavily dominated by the
multiplication operations and hence design of hardware-efficient
multiplier has been intensively investigated recently. The primary
goal of the approximate multiplier design is to trade the accuracy
or quality for the power/energy, latency and area.

A number of approximate multiplier designs have been proposed
recently [2-10]. Those approximate multipliers employ some ad-
hoc truncation or reduction methods or mathematically formulated
approximation schemes. Most of the existing methods, however,
lack the systematic configurability for accuracy vs. area/power/latency
trade-off.

On the other hand, another viable solution to approximate com-
puting is by means of stochastic computing (SC) in which the mul-
tiplication is performed by simple AND operation of two random
bit streams [11, 12]. SC can provide inherent progressive trade-off
between accuracy and latency/energy/area by changing the length
of bit-streams and it can be extremely low-cost and energy effi-
cient. However, traditional SC hardware implementation suffers
from very long latency, strict requirement for randomness of SC
numbers, and large area overhead for random number generations.
Recently a more efficient and also more accurate SC multiplier was
proposed to partially mitigate the two aforementioned problems in
traditional SC [13]. First, It replaces the AND operation with count-
ing bit ‘1’ in the bit-stream, which can be early terminated without
going through the full length of the bit-streams and second, the bit
streams no longer need to be random, which significantly reduces
SC hardware overhead. However, it still suffers from the nature
of sequential counting process. Recently such counting-based SC
scheme has been improved by the COSAIM multiplier in which
the counting process can be further accelerated by a simple for-
mula [14].

Despite of the improvements for SC computing, one long-standing
problem for SC multiplication is that when two numbers are small,
the error of the multiplication can be very significant as shown in
Fig. 1. As we can see, the relative error in the SC multiplication for
8-bit binary data can be as large as 100% when the inputs are both
in the region of [1/256, 15/256] for the range of [1/256, 255/256].

To mitigate this problem, recently [15] proposed a scaled popu-
lation (SP) arithmetic for SC. The idea is to introduce a scaling term
so that one can scale the number within ([0,1]) larger than some
given threshold (like 0.7, ex.) to ensure better accuracy for SC mul-
tiplication. However, this method still suffers a few drawbacks as
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Figure 1: (a)The absolute error distribution of the counting-based SC
method; (b)The relative error distribution of the counting-based SC
method.

it is based on the traditional random-number based SC framework.
Also, the SP format is difficult to interface with the commonly used
binary number format, which is often required in the image pro-
cessing and machine learning application. Further, it still operates
in the bit-stream level and requires complicated design to reduce
random fluctuation errors for random number generation, scaling
and random-shuffling operations.

In this work, we try to mitigate the long-standing issues with
the stochastic computing by introducing a scaled counting-based
stochastic computing scheme, called Scaled-CBSC, which can sig-
nificantly improve the accuracy of SC multiplications for small
numbers. The key contributions of this work are listed as follows:

1. In the Scaled-CBSC framework, instead of representing the
number in a bit-stream as the traditional SC methods do, a
scaling factor is introduced so that bit ‘1’ density in the bit-
stream (SC part) is always large than 0.5 to ensure sufficient
accuracy for SC computing and the scaling factor is guaran-
teed to be integer. Further more, our new scaled SC format is
in the binary form and all the operations like shifting is done
in the binary format, which is much more efficient than the
bit-stream level operations.

2. Instead of using traditional SC framework, we adopt the
counting-based SC (CBSC) scheme [13], in which determin-
istic bit-stream pattern is used. As a result, all the compli-
cated designs associated with the random number genera-
tions, correlation reductions are not needed any more. Fur-
ther more, no SC addition is required as it will be performed
in the binary domain, which is important for introducing
the scaling factors as SC addition based on OR operations
requires low ‘1’ density, which contradicates with high ’1’
density requirement of SC multiplication.

3. Our numerical results show that the 8-bit Scaled-CBSC mul-
tiplication with 3 scaling bits can improve the mean error
and standard deviation upon the original CBSC baseline by
up to 46.6% and 30.4%, respectively. The 16-bit Scaled-CBSC
multiplication with 4 scaling bits can improve the mean er-
ror and standard deviation by up to 50.3% and 34.9%. Also
with 1, 2, 3 scaling bits, Scaled-CBSC can significantly re-
duce the peak relative error from 100% to 51.6%, 5.8% and
1.8%, respectively. Furthermore, compared with the state of
art work, the 8-bit Scaled-CBSC multiplication with 3 scal-
ing bits improves area, delay, ADP (area-delay product) and
energy consumption with 12.6%, 51.5%, 57.6% and 58.4%, re-
spectively.
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4. We also evaluate the Scaled-CBSC multiplication in a dis-
crete cosine transformation (DCT) application. The results
show that for 8-bit precision, 3 scaling bits are required to
achieve significant improvement on the image quality (5.9dB
in average). For 16-bit precision, 1 scaling bit is enough to
achieve 16.8dB (in average) image quality improvement. And
with over 2 scaling bits, we can even achieve an output im-
age with no quality loss.

This paper is organized as follows: Section 2 reviews several
recently proposed SC multiplication designs. Section 3 presents
the proposed Scaled-CBSC design including the special data tuple
format and the CBSC kernel optimization techniques. Section 4
shows the experimental results for the error metrics, area, delay,
power and energy consumption comparison results with the orig-
inal CBSC baseline and state of art works. Finally, section 5 con-
cludes the paper.

2 REVIEW OF RELATED WORK

Traditionally, SC multiplication consists of 3 parts: (1) stochastic
number generators (SNG) which convert the N-bit binary inputs
to the 2NV-bit stochastic numbers (SN); (2) SC multiplication core,
usually an AND or NOR gate which is corresponding to unsigned
multiplication or signed multiplication; (3) a counter which con-
verts the product SN to binary form back again if needed.

As the computing accuracy of SC multiplication is determined
by the SN quality, in other words, the SNG. And the SNG also costs
much more area and power than the SC multiplication core. Exist-
ing works mainly focused on how to design more area efficient
and high quality SNGs, like: Halton sequence generator [16], LFSR
(linear feedback shift register) [17], LD (low discrepancy) sequence
generation [18].

Among these works, a recent work proposed by Sim [13], named
counting-based SC (CBSC) multiplication achieved not only the
better accuracy but also the smallest latency by introducing an fi-
nite state machine (FSM) based SNG with counting scheme. The
CBSC multiplication design is shown in Fig. 2. Different from the
traditional SC multiplication, CBSC only requires one FSM-based
SNG to convert one of the two binary inputs, ex. x, into a bit-
stream with deterministic pattern first. The FSM-based SNG evenly
distributes the x;_1, which is the ith bit of x, based on its binary
weight 2:71. For instance, if i = 3, then x, will appear 4 times in
the resulting SN. Such SN generation can be simplified and imple-
mented by an FSM and a MUX. The FSM is actually an up counter
counts from 0 to 2N — 1, assuming x is N-bit. The MUX then out-
puts x;—1 based on the output value of the FSM.

If the SN bit-stream for the other input w is set to be series of ‘1’
followed by a bunch of ‘0’ as shown in Fig. 2. As SC multiplication
is simply AND operation, it is no necessary to count the second
half of the output bit-stream. So, the whole counting process only
requires w-2N cycles to finish, which saves half latency in average.
The authors used a down counter to realize the idea. While w - 2V
is used as the initial value, the down counter decreases by one in
each clock cycle. When it reaches “zero”, the process is terminated.
As a result, CBSC leads to a simpler design as one traditional SNG
(typically using LFSR) and the AND gate are removed in exchange
of a down counter, which is much cheaper than an SNG.
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Figure 2: (a) FSM based SNG which generates SN bit-stream in a de-
terministic way. (b) CBSC concept. (c) CBSC multiplication method.

To further improve the computing latency of CBSC method, work
in [19] exploits the symmetric properties of the deterministic bit
stream pattern so that one can start the counting process from
either the end or the beginning of the SN bit-stream depending
on the value of the weight to reduce the clock cycles needed. The
counting process can be further improved by recent COSAIM work
in [14], in which a simple formula is used to compute the number
of bit ‘1’ in just a single clock cycle with minimum hardware over-
head.

These aforementioned works indeed helped reduce the latency,
but the long-standing low accuracy issue for small numbers as
shown in Fig. 1 for SC still remains. Basically this is due to the
intrinsic SC multiplication property that two N-bit inputs for SC
multiplication still generate N-bit output product instead of 2N-bit
output.

To mitigate this issue, Zhou in [15] has proposed a scaled pop-
ulation (SP) arithmetic concept. This method indeed improved the
error metrics in the “small” range by inserting bit ‘1’s into the input
SN bit-stream. As a result, the bit ‘1’ density of the SN bit-stream
is then raised to a certain level, like 0.7, for example. Since the SN
value is changed during the bit ‘1’ insertion process, the SP method
introduced an exponent term so that the scaled SN number will re-
main approximately the same. The resulting SP number is a 2-tuple
including a scaling term and a SN term. But SP method still suffers
from a few problems. First, the method is still based on the tradi-
tional random-number based SC scheme. The format is difficult to
interface with the commonly used binary number format, which
is often required in the image processing and machine learning ap-
plication. Second, it operates in the bit-stream level and requires
complicated design to reduce random fluctuation errors for ran-
dom number generation, scaling and random-shuffling operations.
Third, it requires the bit ‘1’ density to be any given value such
as 0.7, which can lead to no integer number in the scaling term.
Fourth, it uses the OR operation for SC addition, which however
favors the low bit ‘1’ density (small value) in the SC bit stream,
and it contradicts the high bit ‘1’ density requirement in the SC
multiplication.

Based on the analysis and observation, we propose our scaled
counting-based SC multiplication approach, Scaled-CBSC to miti-
gate the long-standing low accuracy issues of SC at the same time,
and try to maintain the advantages of the latest CBSC method.

| Original 8-bit Input: 00000101, # of scaling bits: M | Scaled data tuple:
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Figure 3: The data tuple including the scaling and the binary terms.

3 PROPOSED SCALED SC MULTIPLICATION
APPROACH

In this section, we present the details of our proposed scaled counting-
based SC (Scaled-CBSC) multiplication approach to mitigate the
large errors for small number multiplication.

3.1 Scaled counting-based SC multiplication
method

As shown in Fig. 1, SC multiplication will have very large relative
error with “small” inputs, especially in the range of [1/256, 15/256],
due to the low bit ‘1’ density of the input SN bit-stream, which
is an intrinsic property of SC multiplication. So a simple idea to
improve the error metrics of SC multiplication is to avoid these
“small” inputs, in other words, increasing the bit ‘1’ density of the
input SN bit-stream. Unlike SP method [15] which inserts bit ‘1’
into the SN bit-stream, our proposed Scaled-CBSC multiplication
directly enlarge the binary number inputs, which is also equivalent
to raising the bit ‘1’ density level of the SN bit-stream.

In the Scaled-CBSC multiplication, an N-bit binary number data
is represented by a ‘scaling-binary’ 2-tuple. The tuple consists of
two parts, an M-bit scaling term and an N-bit binary term. The data
representation and how an N-bit binary number be converted to
2-tuple {M, N'} is shown in Fig. 3. Specifically the scaling term has
M bits, the original binary number is then divided into 2M parti-
tions. To mitigate the SC multiplication error, we want the binary
term to be as large as possible to avoid the “small” inputs regions.
So the leading bit ‘1’ in the binary term, which is marked with
red in Fig. 3, should appear in the most significant partition. We
then left shift N/ 2M bits, or one partition each time. The value of
the scaling term records number of times the shift operation being
carried out. We can easily derive that the maximum number of the
scaling bits, or Mpr4x, equals to logé\]. As the binary term will al-
ways promise the leading bit ‘1’ in the most significant partition.
Each partition consists of N/2M bits, and the least significant bit
in the most significant partition weights (1/2)N/ 2™ Thus it can be
verified that after bit partition-based shifting operations, the value
of the binary term should be no less than (1/2)N 2" We show an
8-bit example in Fig. 4. Since we use the binary term of the scaled
data presentation as the input of the CBSC kernel in our proposed
Scaled-CBSC method (will be discussed later in Sec. 3.2), our bi-
nary only representation is more compact than the SP format [15],
which is a mixed 2-tuple of bit-stream and binary numbers.

The resulting Scaled-CBSC multiplication approach is shown in
Fig. 5. The Scaled-CBSC multiplication consists of two blocks. One
is the simple M-bit binary summation to sum the scaling terms
(green blocks in Fig. 5) of the two input tuples (x and w) up. The
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Figure 4: An 8-bit example to show the minimum promised value of
the binary term.
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Figure 5: The Scaled-CBSC/COSAIM method.
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Figure 6: (a) The output value of the original CBSC kernel compo-
nents. (b) The output value of the optimized CBSC kernel compo-
nents with the maximum number of the scaling bits.
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Figure 7: The structure of the optimized CBSC kernel with the max-
imum number of scaling bits.

other block is the CBSC kernel which is shown in Fig. 2. The inputs
of the CBSC kernel are the binary terms (red blocks in Fig. 5) of the
two input data tuples. The output product p is also a 2-tuple, but
with a M + 1-bit scaling term and an N-bit binary term. Further-
more, the Scaled-CBSC multiplication could be further extended to
Scaled-COSAIM with the CBSC kernel in Fig. 5 simply exchanged
to COSAIM kernel proposed in [14].
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3.2 Hardware design and optimization

Assume a {M, N }-bit 2-tuple has the maximum number of the scal-
ing bits Mpjax, as mentioned in Sec. 3.1, the minimum value of
the binary term should be 0.5. From Fig. 6(a), we notice that if w is
promised to be no less than 0.5, the computing latency of the SC
multiplication should be no less than 2N /2. And since the SN bit-
stream of x is “centrosymmetric”, the up counter output value at
the 2V /2th clock cycle always equals to x/2+x[0]. So the counting
process before the 2V /2 + 1th cycle is promised, which means we
don’t need to count the first 2V /2 cycles anymore. We can simply
start the counting process from the 2V /2 + 1th cycle with an initial
value of x/2 + x[0] (x[N — 1 : 1] + x[0]). Thus we can save 2N /2
clock cycles of the computing latency of CBSC method, which is
shown in Fig. 6(b).

With the maximum number of scaling bits, the minimum value
of the binary term of x equals to 0.5, which means the most signif-
icant bit (MSB) of x is bit ‘1’. Based on the deterministic SN gener-
ation pattern of CBSC method, bit ‘1’ will appear once every two
clock cycles. So we can improve the up counter to count 2 bits (bit
‘1’ and an SN bit) at a clock cycle, which will further reduce the
computing latency. And since one of these two bits is determined,
we don’t need to use the FSM-based SNG to generate it. The N-bit
FSM could be shrunk to N — 1-bit. Note that as we count 2 bits at
a cycle, the up counter of the FSM will increase by 2 at each cycle,
which is shown in Fig. 6(b).

To further improve the hardware performance of the Scaled-
CBSC multiplication approach, we try to optimize the CBSC kernel
upon the original design under the case of the maximum number
of the scaling bits. By observing the 3rd and the 4th line in Fig. 6(a),
we notice that the output value of FSM in the SNG is just a reversal
series of the output value of the down counter before the SC multi-
plication terminates. This means that when the FSM output value
equals to the initial value of the down counter, the whole counting
process will be ended. So the down counter is not required any-
more, we simply remove it from the CBSC structure, thus further
reduce the area and power of our proposed scaled CBSC multiplica-
tion. We show the improved scaled CBSC multiplication structure
in Fig. 7. Note that since we don’t need to count the first 2V /2
cycles and count 2 bits at each cycle now, the counting process
should not be stopped when FSM < [(w — 2N /2)/2], which is
equivalent to FSM < w[N — 2 : 1]. For the odd number case, we
need to count an extra “half” cycle. In this case, as w is an odd num-
ber, w[0] = 1. We just need to add one to the final output result.
Finally, to combine the odd and even cases together, the output re-
sult will be added by x[N — 1] - w[0] when the process stops. And
since x[N—1] = 1, x[N—1]-w[0] = w[0]. We show the optimization
in Fig. 7.

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this section, we evaluate the performance of the proposed scaled

counting-based stochastic computing multiplication approach, named

Scaled-CBSC multiplication under 8-bit and 16-bit precision. We
also compare the proposed approach against the original CBSC
(counting-based stochastic computing) multiplication baseline [13],
and other state of art works with the same precision.
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Table 1
HARDWARE PERFORMANCE COMPARISON.

8-bit
M [ Area /um?® | Delay /ns | ADP | Power /uW | Energy /pJ]
CBSC [13] 0 187.96 215.04 | 104930 26.85 13.75
Improved CBSC[19] | 0 657.72 130.56 | 85873 39.04 10.00
1 16051 176.64 | 81344 22.60 1157
Scaled-CBSC 2 18338 176.64 | 85385 2415 1236
3 575.13 6336 | 36440 32.50 416
COSAIM [14] 0 660.77 205 | 1355 36.20 0.14
1 692.29 207 | 1433 3757 0.15
Scaled-COSAIM | 2 710.33 2.07 | 1470 3834 0.15
3 707.79 207 | 1465 3933 0.16

16-bit
COSAIM [14] 0 2575.50 385 | 9916 163.95 0.66
1 2622.00 387 | 10472 165.33 0.66
2 2691.13 388 | 10144 157.34 0.63
Scaled-COSAIM - 1— 270053 387 | 10216 157.86 063
) 265555 388 | 10130 159.86 0.64

4.1 Experimental setup

To evaluate the performance of the proposed Scaled-CBSC multi-
plication design, we first compare the error metrics and the hard-
ware performance of Scaled-CBSC with the original baseline ver-
sion: the CBSC multiplication proposed by Sim [13]. We also com-
pare Scaled-CBSC multiplication with a state of art work: an op-
timized CBSC multiplication [19]. To make a complementary, We
show the hardware performance of another state of art work, CO-
SAIM [14] which could be treated as an approximate multiplication
form of the original CBSC multiplication, with different number
of scaling bits. For the 16-bit Scaled-CBSC multiplication, as CBSC
multiplication will take 2!° clock cycles in average to finish the
multiplication, which is too long and doesn’t make sense. We just
demonstrate the results of COSAIM and “Scaled-COSAIM” designs,
which only require a single clock cycle to finish the process.

All the aforementioned multipliers are implemented in Verilog
HDL and synthesized with Synopsys Design Compiler using EDK
32nm standard cell library [20] as single-cycle designs. For fair
comparison, the power and energy consumption of all the afore-
mentioned multipliers are measured under the same working fre-
quency (250MHz).

For the error metrics evaluation, we developed behavioral sim-
ulation models for CBSC and Scaled-CBSC with all the possible
number of scaling bits in MATLAB and measured the accuracy
using 1 million random inputs uniformly distributed over the set
{0,1,..., (ZN — 1)}, (N = 8,16). The errors are reported with re-
spect to the exact results. The error metrics used to report the error
behavior includes: mean error (mean of the absolute value of the
error) and standard deviation. Note that both of the improved ver-
sions of the CBSC method only do improvements on the comput-
ing latency and the hardware performance (area/power/energy),
and the error metrics keeps the same as the CBSC baseline. Thus
for the error metrics, we just compare our proposed Scaled-CBSC
multiplication with the original CBSC baseline.

4.2 Performance evaluation

We show the error metrics for CBSC and Scaled-CBSC multiplica-
tion with 8-bit and 16-bit in Fig. 8 and Fig. 9, respectively. Note that
the original CBSC method can be treated as Scaled-CBSC with ‘0’
scaling bit, which is shown at the leftmost location in Fig. 8 and
Fig. 9.

e Mean Error o Standard Deviation
0.16 0.20
0.16
0.12
0.12
0.08
0.08
0-04 0.04
0.00 0.00
0 1 2 3 0 1 2 3
Scaling Bits Scaling Bits

Figure 8: The mean error and standard deviation of 8-bit Scaled-
CBSC multiplication approach.
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Figure 9: The mean error and standard deviation of 16-bit Scaled-
CBSC multiplication approach.

100%

18%

Figure 10: The absolute relative error distribution of Scaled-CBSC
with different number of scaled bits: (a) M = 0; (b) M = 1; (c) M = 2;
d)M=3.

Fig. 8 shows that with 3 scaling bits, the Scaled-CBSC multiplica-
tion can improve the mean error and the standard deviation upon
the CBSC baseline by up to 46.6% and 30.4%. Fig. 9 shows that with
4 scaling bits, Scaled-CBSC multiplication can improve the mean
error and the standard deviation upon the CBSC baseline by up to
50.3% and 34.9%. Furthermore, from Fig. 10, we can see that with
scaling bits, Scaled-CBSC can improve the relative error profile of
the original CBSC significantly. With 1, 2, 3 scaling bits, Scaled-
CBSC can reduce the maximum relative error from 100% to 51.6%,
5.8% and 1.8%, respectively.

We demonstrate the hardware performance of the Scaled-CBSC
multiplication and compare with the CBSC baseline and several
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state of art works in Table 1. M is the number of scaling bits we
used in the multiplication. By observing Table 1, we can see that
with 8-bit precision, Scaled-CBSC can improve the delay upon the
CBSC baseline by up to 70.5% with 17.9% area overheads, and im-
prove the ADP (area-delay product) and energy consumption upon
the CBSC baseline by up to 65.3% and 69.7%, respectively; and im-
prove all the four metrics (area, delay, ADP, energy) upon the state
of art work by 12.6%, 51.5%, 57.6% and 58.4%, respectively, with 3
scaling bits. For the Scaled-COSAIM design, no matter 8-bit or 16-
bit case, with scaling term, though the Scaled-COSAIM will intro-
duce a little bit hardware resource overheads, it will significantly
improve the error metrics as mentioned before.

4.3 Animage processing application evaluation

Now, we show how the proposed Scaled-CBSC multiplication ap-
proach compare to state of art methods in a multimedia application.
Discrete cosine transformation (DCT) is a commonly used lossy im-
age compression method. The quality of the compressed images is
usually evaluated using metrics such as PSNR (peak signal noise ra-
tio) and higher PSNR value represents better image quality. We im-
plement the proposed Scaled-CBSC multiplication approach with
different number of scaling bits in the DCT-iDCT (inverse DCT)
workloads, and compare with the CBSC baseline on five example
images, considering both 8-bit and 16-bit precision. As mentioned
before, M = 0 represents the CBSC baseline. We show the results
of image compression in Table 2. For 8-bit precision, we can see
that 1 or 2 scaling bits will not improve the image quality much.
With 3 scaling bits, Scaled-CBSC can improve the image quality
of 5.9dB in average upon the CBSC baseline. For 16-bit precision,
1 scaling bit can improve the image quality of 16.8dB in average,
and 2 scaling bits are enough to achieve the best image quality im-
provement. Here “INF” in Table 2 represents “infinity large”, which
means the final output image is completely the same as the input
with no quality loss.

Table 2
PSNR (DB) FOR IMAGES AFTER DCT-IDCT usING CBSC MULTIPLICATIONS.

8-bit

M | Lena | Boat | Barbara | House | Pepper | Avg. (dB)

0 | 32.24 | 31.57 32.70 31.95 32.62 32.22

1 | 3243 | 31.77 32.93 32.17 32.93 32.45

2 | 32.47 | 31.85 33.04 32.32 33.03 32.54

3 | 38.17 | 37.92 38.58 37.80 37.97 38.09
16-bit

M | Lena | Boat | Barbara | House | Pepper | Avg. (dB)

0 | 78.23 | 76.08 77.54 77.32 74.99 76.83

1 INF | 91.52 96.30 93.29 93.29 93.60

2 INF INF INF INF INF INF

3 | INF INF INF INF INF INF

4 | INF | INF INF INF INF INF

5 CONCLUSION

In this work, we have proposed a novel scaled counting-based sto-
chastic computing multiplication design, named Scaled-CBSC. The
proposed design introduced scaling bits to promise the inputs of
the SC multiplication kernel to be larger than 0.5, avoiding the
“small” number region which led to large relative error of SC mul-
tiplication. Numerical results showed that 8-bit Scaled-CBSC with
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3 scaling bits could achieve up to 46.6% and 30.4% improvements
in mean error and standard deviation, respectively; reduced the
peak relative error from 100% to 1.8%; and improved 12.6%, 51.5%,
57.6%, 58.4% in delay, area, area-delay product, energy consump-
tion, respectively, over the state of art work. For discrete cosine
transformation (DCT) application, 3 scaling bits are required for 8-
bit Scaled-CBSC multiplication to significantly improve the image
quality by 5.9dB.
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