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ABSTRACT

In this paper, we propose a novel transient full-chip thermal map

estimation method for multi-core commercial CPU based on the

data-driven generative adversarial learning method. We treat the

thermal modeling problem as an image-generation problem using

the generative neural networks. In stead of using traditional func-

tional unit powers as input, the new models are directly based on

the measurable real-time high level chip utilizations and thermal

sensor information of commercial chips without any assumption of

additional physical sensors requirement. The resulting thermal map

estimation method, called ThermGAN can provide tool-accurate

full-chip transient thermal maps from the given performance moni-

tor traces of commercial off-the-shelf multi-core processors. In our

work, both generator and discriminator are composed of simple con-

volutional layers with Wasserstein distance as loss function. Ther-

mGAN can provide the transient and real-time thermal mapwithout

using any historical data for training and inferences, which is con-

trast with a recent RNN-based thermal map estimation method

in which historical data is needed. Experimental results show the

trained model is very accurate in thermal estimation with an aver-

age RMSE of 0.47◦C, namely, 0.63% of the full-scale error. Our data

further show that the speed of the model is faster than 7.5ms per

inference, which is two orders of magnitude faster than the tradi-

tional finite element based thermal analysis. Furthermore, the new

method is ∼4x more accurate than recently proposed LSTM-based

thermal map estimation method and has faster inference speed. It

also achieves ∼2x accuracy with much less computational cost than

a state-of-the-art pre-silicon based estimation method.
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1 INTRODUCTION

As technology advances, today’s high-performance microproces-

sors are becoming more thermally constrained due to steadily in-

creasing power densities [? ]. To enhance reliability, many system-

level thermal/power regulation techniques such as clock gating,

power gating, dynamic voltage and frequency scaling (DVFS) and

task migration have been proposed in the past [? ? ? ]. One critical

aspect of the algorithmsmentioned above is correctly estimating the

full-chip temperature profile to properly guide the online thermal

management schemes [? ? ]. However, accurate thermal estimation

is a difficult task, especially for commercial off-the-shelf multi-core

processors.

Some of the existingmethods depend on the on-chip temperature

sensors. However, very few physical sensors are typically available,

and they may not be located in close proximity to the true hot-spots

on the chip, consequently misleading the temperature regulation

decision [? ]. Hence, the more popular solution is to supplement

the data from the few on-chip sensors with estimated temperatures

of all the prominent hot-spots on the chip via thermal models based

on estimated power-traces [? ]. These methods offer higher spatial

resolution as they allow for the temperature of all the hot-spots on

the chip to be monitored in real-time [? ? ? ? ].

However, the existing thermal modeling methods still suffer a

few drawbacks. First, they need accurate power-traces as inputs;

but estimating the power of each functional unit (FU) of a real

processor under varying workloads is not a trivial task, if not in-

feasible [? ? ]. On the other hand, from the system-level thermal

or power management perspective, the parameters that can be eas-

ily accessed are core frequency, voltage, and many utilization or

performance metrics natively supported by most commercial pro-

cessors [? ]. Examples include Intel’s Performance Counter Monitor

(PCM) [? ] and AMD’s uProf [? ]. Thermal models parameterized by

these parameters will be more desirable and practical. Second, it is

difficult to calibrate these models for practical use due to simplified

modeling, boundary conditions, and the lack of sufficient accuracy.

Lastly, most models such as HotSpot [? ] still employ expensive

numerical methods to find temperature solutions, which may not

be fast enough for real-time use.

On the other hand, estimating the full-chip 2D thermal map

of multi-core CPUs from given performance monitor parameters

can be viewed as imaging synthesis problem. We can treat the

performance monitor parameters as extracted latent features for

power information of the chip. Then we can synthesize the 2D

thermal maps once the neural network are trained for the utilization

to temperature transformation. Such training and image generation



process can be carried out using generative adversarial networks

(GAN), which is a popular generative deep neural networks for

imaging synthesis, semantic imaging editing, style transfer, image

superresolution etc [? ? ].

Inspired by this observation, In this work, we propose a novel

data-driven fast transient full-chip thermal map estimation method

for multi-core commercial CPU by exploiting the conditional gen-

erative adversarial learning. The new contributions are as follows:

1. First, ThermGAN can be implemented on most, if not all,

existing commercial multi-core microprocessors as it only

uses the existing temperature sensors and workload inde-

pendent utilization information. In other words, our strictly

post-silicon approach does not require any modifications to

the chip’s design.

2. We propose to treat this existing thermal modeling problem

as the image generation problem conditioned on high-level

performance monitors, which are available in most, if not all,

commercial microprocessors. Thenwe propose to explore the

conditional generative neural network structure in which the

input high-level performance data are treated as categorical

conditions.

3. In our work, we use simple memory-less convolutional neu-

ral network for both generator and discriminatorwithWasser-

stein distance as loss function. We demonstrate that the

proposed ThermGAN can estimate transient and real-time

thermal map without using any historical data for training

and inferences, which is contrast with a recent LSTM-based

thermal map estimation method in which historical data is

needed [? ].

4. We use an advanced infrared thermography setup system,

that enables lucid heatmaps to be recorded directly from

commercial microprocessors while they are under load. A

total number of 257400 pairs of PCM data and thermal maps

were collected and 75% were used for training.

5. The resulting ThermGAN can provide tool-accurate full-chip

transient thermal maps from the given performance monitor

traces of commercial off-the-shelf multi-core processors.

Experimental results show the trained model is very accurate

in thermal estimation with an average RMSE of 0.47◦C, namely,

0.63% of the full-scale error. Our data further show that the speed

of the model is less than 7.5ms per inference, which is two or-

ders of magnitude faster than the traditional finite element based

thermal analysis and is suitable for real-time thermal estimation.

Furthermore, the new method is ∼4x more accurate than recently

proposed LSTM-based thermal estimation method [? ] and has

faster inference speed. It also achieves ∼2x accuracy with much

less computational cost than the EigenMaps method [? ], which is

a state-of-the-art pre-silicon method.

2 RELATED WORK

To estimate the on-chip temperature maps, there are two general

strategies. The first is to estimate the full-chip heatmaps from

physics-based thermal models and power related information [? ?

]. Such bottom-up numerical methods such as HotSpot [? ] based

simplified finite difference methods, finite element methods [? ],

equivalent thermal RC networks [? ], and the recently proposed top-

down behavioral thermal models based on matrix pencil method [?

] and subspace identification method [? ? ]. In general, full-chip

thermal analysis from given power information requires expensive

numerical analysis such as finite difference or finite element based

approaches, which are very expensive for on-line applications [? ].

Second method is to use an interpolation based approach to esti-

mate the full-chip heatmaps from the embedded sensor readings [?

? ]. Since the number of sensors and their placement have a signifi-

cant impact on the accuracy of the aforementioned interpolation,

smart sensor placement algorithms have also been proposed that

can be used during design time to find the optimal placement for

the given budget of embedded temperature sensors [? ? ? ? ? ? ].

Work in [? ] exploits Fourier analysis techniques to fully recover the

thermal map. But the accuracy is limited by the nonband-limited

nature of the temperature signals and approximations required for

nonuniform placement of the thermal sensors, which is common

in heterogeneous multi-core processors. Nowroz et al. [? ? ] tried

to minimize the number of thermal sensors in the sensor place-

ment to recover thermal maps (or some key locations) based on

interpolation of hard sensor information in frequency domain and

DC domain respectively. Such strategy was further improved by

using Eigen decomposing of the interpolation matrix, which leads

to near optimal sensor number and placement [? ]. Zhang et al

[? ? ] proposes a statistical method for both power and thermal

maps estimation, in which the correlations of power dissipation of

different modules of a chip were exploited to recover the power

map from sensor readings first and temperature was estimated once

power map is obtained. However, the estimation based on the power

correlation information. Recently Ziabari et al [? ] introduced the

power blurring method for fast 2-D temperature map computation,

which essentially is the Green’s function based method in which

temperature response to unit power impulses have to be computed

first from FEM thermal analysis. This make this method difficult to

be applied practically as accurate thermal models are not always

available first.

However, the aforementioned methods either require design-

time hardware changes (inserting or relocating sensors) or at the

very least require detailed knowledge of the chip’s floorplan, corre-

lations among functional unit power sources, and constants specific

to the technology-node which are not disclosed by the original chip

manufacturer. An exclusively post-silicon approach to real-time

transient estimation of the spatial temperature distribution across

the entire chip area (i.e. at time t , estimate the full-chip spatial

heatmap T (x,y)t ) remains a challenge for existing commercial mi-

croprocessors.

On the other hand, recently, machine-learning (especially deep-

learning) is gaining much attention due to the breakthrough per-

formance in various cognitive applications such as visual object

recognition, object detection, speech recognition, natural language

understanding, etc., due to dramatic accuracy improvements in

their time-series or sequential modeling capabilities [? ]. Machine-

learning for electronic design automation (EDA) is also gaining

significant traction as it provides new computing and optimization

paradigms for many of the challenging design automation problems

that are complex in nature. For instance, machine learning methods
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have been applied to power modeling [? ] and design space ex-

ploration [? ]. Additionally, machine-learning based schemes have

recently been explored to build a workload-dependent thermal pre-

diction model [? ], where the future steady-state temperature of the

chip can be predicted by application characteristics and physical

features.

Recently long-short-term memory (LSTM) based machine learn-

ing approach based on Intel Performance Counter Monitor (PCM)

metrics has been proposed for hot spot detection [? ? ] and for

full-chip thermal map estimation [? ] of commercial off-the shelf

multi-core processors. To improve the efficiency, 2D discrete cosine

transformation (DCT) is used to compress the thermal images for

the learning process [? ]. But this method needs to know the histor-

ical data of both PCM and temperatures for the training, which can

be expensive. Furthermore, the accuracy of this approach is still

less than expected due to the data compression process.

Recently GAN-based methods have been applied for VLSI physi-

cal designs such as generation of the various noise maps to facility

the IR-drop noise sensor placement [? ], for layout lithography

analysis [? ] and sub-resolution assist feature generation [? ], for

analog layout well generation [? ]. But less studies have been inves-

tigated for data-driven circuit level and thermal analysis to model

the dynamic systems described by the partial differential equations.

3 TRAINING DATA PREPARATION

Sufficient data is always vital for machine learning methods. To let

the proposed model learn the distribution of PCM data and map

it to correct thermal distribution map, sufficient training data is a

must for it. In this work, a large amount of thermal distribution data

of the CPU (called thermal map in this work) and corresponding

real-time PCM data is required and from which the model can learn

the transformation scheme in between. In what follows, we will

present the setup used to acquire the training data. Some necessary

pre-processing methods performed on the training set prior to

feeding them to the model will also be discussed.

To externally acquire accurate thermal maps of a working CPU,

we propose to use a measurement system based on an infrared (IR)

camera. Fig. ?? illustrates the overall setup of our thermography

system. The IR camera over the chip is a FLIRA325sc (16-bit 320×240

pixels, 60Hz). The camera is rated for the temperature range of 0◦C

to 328◦C , and spectral range of 7.5µm to 13µm. A microscope lens is

used to provide a finer spatial resolution of 50µm/px. The CPU used

in our test is an Intel i7-8650U working on an Intel ® NUC7i7DNHE

motherboard with the stock CPU cooler removed. The distance

between the camera and the chip is approximately 70mm. When

the CPU is running, the thermo-electric device mounted at the back

of the chip transfers heat from its upper side to the other. The water

block and circulation loop attached below further dissipates the

heat into the radiator where the heat finally radiates to the air. With

such setup, we are able to maintain the temperature of the CPU

within its specified range as the stock cooler between the IR camera

and the chip is removed. To synchronize the captured thermal map

with its corresponding PCM data, we connect the IR camera and

the CPU through a synchronization I/O. Each thermal map and

PCM data that were collected in the same time instant are paired

and saved together as one sample.

IR Camera

Motherboard

CPU Die

Thermo-electric

Device

Waterblock

Radiator

Water 

Circulation

Loop

Programmable

DC Power Supply

Synchronization I/O

(a)

(b)

Figure 1: IR thermography setup used to collect training

data in this work

PCM is a tool from Intel which monitors performance and energy

metrics of all series of Intel processors. The monitored metrics

range widely from basic processor monitoring utilities, such as

instructions per cycle (IPC) and core frequency, to sleep and energy

states of processor, and to peripheral memory bandwidth and cache

miss. A number of APIs are provided for real-time monitoring

which is highly suitable for our real-time full chip thermal modeling

application. The complete list of all 170 PCMmetrics that we collect

and employ for the thermal modeling of Intel i7-8650U is shown in

Table ??.

The temperatures in each thermal map vary widely from 25
◦
C

to 100
◦
C while the values of the metrics in PCM data have all

kinds of scales. Some metrics only changes in a small range around

zero while others range widely with several orders of magnitude.

Such inconsistencies in data scales may cause severe instability and

accuracy degeneration in neural networks. Before feeding them to

themachine learningmodel, all data must be rescaled to comparable

ranges. In this work, to accommodate to the tanh activation function
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Table 1: Performance metrics (Intel PCM)

Pkg. Socket Socket Core 1 to 8
INST EXEC C6res% EXEC
ACYC IPC C7res% IPC
TIME FREQ C2res% FREQ

PhysIPC AFREQ C3res AFREQ
PhysIPC% L3MISS C6res L3MISS
INSTnom L2MISS C7res L2MISS
INSTnom% L3HIT C8res% L3HIT
C0res% L2HIT C9res% L2HIT
C2res% L3MPI C10res% L3MPI
C3res% L2MPI SKT0 L2MPI
C6res% READ C0res%
C7res% WRITE C1res%
C8res% TEMP C3res%
C9res% C0res% C6res%
C10res% C1res% C7res%
Energy C3res% TEMP

employed in our model, as detailed in Section ??, we rescale all

thermal maps to the range of [-1,1] using min-max normalization

scheme as is given in (??). For PCM data, we rescale all metrics to

mean of 0 and standard deviation of 1 using data standardization

method.

Data
′
i j = (

Datai j −min(Data)

max(Data) −min(Data)
× 2) − 1 (1)

Fig. ?? illustrates the flow of conventional thermal modeling for

full-chip estimation and our proposed ThermGAN method. There

are multiple stages in the conventional flow. First, only thermal

related metrics are extracted from the PCM data while the exact

locations of the thermal sensors are unknown. The thermal model

should predict the sensor locations prior to perform the actual

thermal estimation. As the final estimation is based only on the

sensor data, the accuracy of full-chip thermal modeling is inherently

limited. As is shown in the lower flow in Fig. ??, our proposed

GAN based method takes all PCM data as input and is trained

on measured thermal maps. The unknown physics-law governing

the transmission between them is automatically learned by the

model which makes it possible for high-accuracy full-chip thermal

modeling.

PCM Data

Conventional

Thermal

Model

ThermGAN

IPC

core frequency

energy state

cache miss

Estimated

Thermal Map

GAN Generated

Thermal Map

Ground Truth

Thermal Map

Functional Unit

Utilization Rate

Floorplan

Functional Unit

Power

Figure 2: Conventional thermal modeling flow and the pro-

posed ThermGAN flow.

We remark that the proposed thermal modeling technique is

orthogonal to specific CPU being modeled and the way thermal

maps are obtained. It can work for any real-time monitoring metrics

to full-chip thermal modeling of commercial multi-processor chips.

The CPU we choose in this work is only for illustration purpose.

Further more, the thermal maps obtained in this work is from the set

upwithout heat sinks due to the imagingmeasurement requirement.

But the proposed method can work for any obtained or computed

thermal maps. Research is under way to obtain accurate transient

thermal maps from CPUs running in the practical setup with heat

sinks.

4 CGAN-BASED PCM TO TEMPERATURE
TRANSFORMATION

4.1 From PCM to thermal image
transformation

Wefirst show that we can view the full-chip thermal map estimation

process for a multi-core processor as image synthesis process, in

which the DNN can convert the features (PCMs) and continuous

time variable into an image.

4.2 Review of GANs

Generative Adversarial Net (GAN) was first introduced by Ian Good-

fellow in 2014 [? ] and has drawn tremendous attention during the

past few years. A typical GAN consists of two networks known as

discriminator D and generator G. The generator takes a random

vector z, usually normally distributed, as its input and maps it to an

output image as close to those in the training dataset as possible.

Images in the training set are labeled as ’real’ images, and the ones

produced by the generator are noted as ’fake’. The discriminator

takes either real or fake image as its input and discriminates them

from each other. BothD andG are trained simultaneously, and such

process is a contest between these two networks. The generator

keeps optimizing itself to fool the discriminator with fake images

while the discriminator also strives to increase its classification

accuracy. Once the GAN is trained, the generator should be able

to generate real-like images by mapping its random input to the

learned distribution of real images. The discriminator, on the other

hand, will classify all its input images to be "real" or "fake" with the

same possibility of 50%, which indicates that fake and real images

look pretty much alike and are no longer distinguishable by the

discriminator.

The training of GAN is usually a tricky process and may never

converge due to gradient vanishing problem. Wasserstein GAN

(WGAN) was introduced by Martin Arjovsky in [? ] to mitigate

this issue. Wasserstein Distance, rather than the conventional JS-

Divergence, was proposed to serve as the measurement of the

difference between real and fake image distributions. With such a

small change in the loss function, WGAN promises a more stable

training process and less likelihood of mode collapse. The results

have shown significant advantages of GAN over the conventional

methods in terms of both performance and accuracy.

IPC

core freq

energy

cache

x G
G(x)

y

D

D(x,y)

D(x,G(x))

Real

Fake

Gradients

Gradients

OR OR

Condition

Generator Discriminator

+

PCM Data

Figure 3: The proposed ThermGAN framework.
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Fig. ?? illustrates our proposed structure of PCM data to thermal

map WGAN. The raw PCM data z given to the generator G is a

1×170 vector with all entries standardized around zero as described

in Section ??. Both PCM data and thermal maps follow a unique

probability distribution separately. The generator learns the map-

ping method between these two distributions and transform the

the input PCM data z to its corresponding thermal map denoted

as G(z). The fake thermal map G(z) and the real ones y are then

fed into the discriminator D alternatively together with its paired

PCM data which serves as the condition input. For G(z), the PCM

data concatenated to it is the input of G that was used to generate

G(z). For y, the PCM data collected in the same time instant is used

as the condition input. The output of the discriminator, noted as

D(z, y) or D(z,G(z)) depending on whether real or fake thermal

map was taken as input, is a real value indicating how confident

the discriminator is toward the input being a correct thermal map

conditioned on the given PCM data. The objective in the train-

ing of discriminator is therefore to maximize D(z, y) and minimize

D(z,G(z)) in term of expectations over the distributions of y and

z. Such objective function of discriminator can be mathematically

expressed as following equation (??).

max
D

{Ez,y[D(z, y)] − Ez[D(z,G(z))]−

λдpEẑ[(∥∇ẑD(ẑ, z))∥2 − 1)2]}
(2)

Ez,y and Ez are the expectations over the distributions of z and

y. To maintain the 1-Lipschitz continuity of the discriminator, we

adopt the gradient penalty from WGAN-GP [? ]. ẑ is the interpola-

tion between the fake and the real thermal map and λдp controls

the weight of gradient penalty. The training target of the generator

is to deceive the discriminator with generated thermal maps, so its

objective is to maximize the expectation ofD(z,G(z)). The objective

function of the generator is defined in (??). Since the generator has

no influence on the real thermal maps, the D(z, y) term is omitted

in the function.

min
G

{

Ez[−D(z,G(z))] + λL2 · Ez,y[∥y −G(z)∥2]
}

(3)

In both (??) and (??), we use the Wasserstein Distance as the loss

function to take its advantage of higher training stability and con-

vergence possibility. The detailed architecture and parameters of

the ThermGAN are shown in Table ??. We discard the random noise

from the original GAN, as in our work, there are abundant PCM

data in the training set which follow a certain distribution. This

makes the PCM data itself can be seen as random noise just as the

original z vector does. The PCM data given to the generator is first

passed through a fully connected layer and reshaped to a square

array. Then it is upsampled through 6 transposed convolutional

layers and outputted as a 256×256 fake thermal map. All thermal

maps are originally 185 × 154 in dimensions, however, for the con-

venience of being handled by the discriminator, they are expanded

to 256×256 by equally padding zero values in every dimension. The

discriminator is a conventional convolutional classifier with only

one neuron as output and, to utilize the Wasserstein distance, no

activation function is applied to it.

Table 2: ThermGAN parameters used in this work

Generator Discriminator

Layer Kernel #Output Activation Layer Kernel #Output Activation

FC - 8192 LReLU Conv 5x5 128×128×64 ReLU

Reshape - 4×4×512 - Conv 5x5 64×64×128 ReLU

Conv_trans 5x5 8×8×512 LReLU Conv 5x5 32×32×256 ReLU

Conv_trans 5x5 16×16×512 LReLU Conv 5x5 16×16×512 ReLU

Conv_trans 5x5 32×32×256 LReLU Conv 5x5 8×8×512 ReLU

Conv_trans 5x5 64×64×128 LReLU Conv 5x5 4×4×512 ReLU

Conv_trans 5x5 128×128×64 LReLU Conv 5x5 2×2×512 ReLU

Conv_trans 5x5 256×256×1 tanh FC - 512 ReLU

- - - - FC - 1 None

4.3 Transient thermal map estimation

Traditionally, computing thermal information from power is time

convolutional operation, which needs the historical data of power

information. However, our thermal image generation problem from

the utilization and on-chip sensor readings can be viewed as real-

time inverse or fitting problem form those on-chip real-time infor-

mation. Similar problem based on a limited on-chip sensor readings

have been explored by many pre-silicon temperature estimation

methods [? ? ? ].

For our problem, the PCM metrics indeed consists of real-time

temperature sensor information for each core and for the whole

chip. Although the temperature at any time instant is determined

by history thermo-information, such dependency is already decou-

pled by the temperature sensors which allows the thermal map

be estimated As shown in the experimental section, ThermGAN

can produce very accurate transient thermal map estimation, and

outperforms the time-dependent LSTM model from [? ] in terms of

both accuracy and speed.

5 EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this section, we present the experimental results showing both

the speed and accuracy of our proposed ThermGANmodel for PCM

data to thermal map estimation.

We implement the whole network in Python 3.7 basing on Ten-

sorFlow(1.14.0) [? ] which is a widely used open-source machine

learning library. The model is trained for 10 epochs on a Linux

server with 2 Xeon E5-2698v2 2.3GHz processors and Nvidia Titan

X GTX GPU. The batch size is set to 8 and each data sample is

a pair of synchronized PCM data and thermal map. We used 18

computationally intensive benchmarks from Phoronix benchmark

suite [? ] to collect the training data. As listed in Table ??, the

benchmarks are split into three categories: processor, memory, and

system. The variety of the benchmarks ensures the CPU is under

different kinds of workloads, which further leads to the diversity of

the training samples. For each workload, we keep the CPU running

for 4 minutes and sampled the data at a frequency of 60Hz. In each

time instant, both PCM data and the thermal map are captured

simultaneously and saved in pair as one sample. We finally get

14300 samples for each benchmark and a total number of 257400

samples are collected in the training set.

The collected raw samples are preprocessed as described in Sec-

tion ??. To better validate the performance of our trained model,

we randomly pick 25% of the samples as the test set and only use

the remaining 75% for training. The learning rate and the decay
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Table 3: Benchmarks

Processor Memory System

AObench PHPbench T-test

Compress-7zip Cyclictest Cachebench

Encode-flac Git RAMspeed

Build-gcc Mbw Stream

Idle Dbench Aio-stress

- Tinymem Fio

- - Tiobench

parameters in the RMSProp optimizer are set to 0.0001 and 0.9. The

weight of L2-norm λL2 is set to 100 and λдp is set to 10. We ran the

training for 10 epochs and the results reported in this section are

based on the test set which was completely unseen by the model in

the training process.

Fig. ?? visualizes the training process by showing the evolution

of the output of the generator. We randomly picked one sample

from the training set and show results in 5 epochs together with

the ground truth. It can be clearly seen that the generated thermal

map becomes closer to the ground truth as the training progresses.

Ground Truth

Epoch 1 Epoch 2 Epoch 5

Epoch 8 Epoch 10

Figure 4: Evolution of one random sample as the training

progresses.

5.1 Accuracy of Thermal Map Estimation

Once the ThermGAN is trained, the discriminator will be discarded

and only generator is preserved. This model can take PCM data

from any time instant as input and generates a real-like thermal

map indicating the full-chip thermal distribution. To verify the per-

formance of the model, we use the root-mean-square error (RMSE)

given in (??) as the metric to indicate the difference between the

generated and real thermal map (ground truth).

RMSE =

√

∑W
x=1

∑H
y=1(T (x,y) −T ′(x,y))2

W × H
(4)

where T and T ′ are the real and generated thermal map respec-

tively. Both of them are images with only one channel which can

easily suit in the equation as matrices. The vertical and horizontal

dimensions of the thermal maps are H = 185 pixels andW = 154

pixels respectively. We evaluated our trained ThermGAN model on

test set and the average RMSE across all 64350 samples in the test

set is 0.47◦C with a standard deviation of 0.56◦C. In this work, the

temperature in thermal maps of our test set ranges from 25 to 100◦C.

Comparing the absolute values of the error with this 75◦C scale,

the ThermGAN achieves an averaged full-scale estimation error of

0.63% and a standard deviation of 0.75%. This is a quite promising re-

sult since such resolution is accurate enough for thermal estimation

applications. Fig. ?? illustrates the comparison between generated

and ground truth thermal maps, which are randomly picked from

the test set. The title of each thermal map indicates the benchmark

it is from and the time instant in which it was collected. We show

every thermal map in both 2D-image and 3D-plot with contour

lines. As is shown in the figure, there are more spikes in the contour

lines of the generated thermal map which indicates more noises, but

the overall thermal distribution pattern is indistinguishable. The

bottom row of Fig. ?? illustrates the error maps which is defined

as the pixel-to-pixel difference between the real and fake thermal

maps. Most of the errors are within 0.5◦C except for only a few

points, but still in acceptable range which is less than 1.5◦C.

5.2 Real case study

The proposed ThermGAN is aimed at online estimation of full-

chip transient thermal distribution. To evaluate the model in real

application, we run the test on another benchmark named łGimpž.

It is also from the Phoronix benchmark suite and is an open-source

image manipulation program which keeps the chip at intensive

workload. This benchmarkwas kept unseen throughout the training

process and has completely no overlap with the benchmarks in the

training set. We run the łGimpž work load on i7-8650U processor

for 2 minutes while the PCM data are collected at the frequency of

60Hz and fed into the ThermGAN for inference. The IR camera is

simultaneously capturing real thermal maps of the chip which are

used as ground truth to verify the ThermGAN inference results. A

total number of 7200 samples are collected and ThermGAN achieves

an average RMSE of 0.83◦C with a standard deviation of 0.52◦C.

The error increases 0.39◦C comparing to the result we get on the

test set, which is actually a reasonable result as the distribution of

data points in real cases may vary a lot from that of the training set.

Despite the degradation of accuracy, the RMSE is still within 1◦C

and the averaged full-scale error is only 1.1% which is far beyond

enough for full-chip thermal estimation in real applications. Some

of the the results are detailed in Fig. ??. We pick 3 time instants

(883, 4260 and 6903) and compare the estimated thermal map with

its ground truth. We also fix a point on the upper right section of

the chip and plot the time series temperature prediction for this

position.

5.3 Speed of inference

The training process of the ThermGAN was time-consuming and

cost more than 12 hours to converge. However, once the model is

trained, it only reserves the generator part which is much lighter

and can be embedded into the CPU to perform the real-time thermal

map estimation. In our test, the time cost for each inference (one

estimation of the whole chip thermal distribution based on the PCM

data acquired in real-time) has a mean of 7ms and a maximum of

7.5ms, which translates to an inference frequency faster than 140

thermalmaps per second. Such performance further verifies that our

ThermGAN model is capable of real-time thermal estimation. The
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Figure 5: Comparison between estimated thermal distribu-

tion and ground truth on łGimpž benchmark.

inference may introduce some overhead into the CPU computation,

but doing temperature estimation at intervals of several seconds

is fast enough to meet the need for real applications such as CPU

task arrangement control.

We further study the modeling efficiency by comparing with

the off-the-shelf FEM tool. Since we start with PCM parameters as

inputs, we can’t use traditional thermal simulator like HotSpot [? ].

Instead, we first obtain the power map from the measured thermal

map via 2D spatial Laplace operation and subsequent scaling based

on total power [? ]. We then use COMSOL to model the setup for

multi-core processors and use power map obtained as the inputs.

The FEM simulation was conducted on the same server as the

GAN model and it takes 3 seconds on average for each thermal

map generation. As a result, our study shows that the proposed

ThermGAN model can achieve ∼240X speedup over FEM method

with similar accuracy as shown in Fig. ??. We remark that much

faster numerical thermal analysis (than FEM) methods also exist.

But the absolute speedup is less important than the millisecond

performance we achieved in this work.

(a) (b) (c)

Figure 6: (a) Ground truth and estimated thermal map using

(b) ThermGAN and (c) COMSOL FEM simulation.

5.4 Metrics in PCM that really matters

As is detailed in Table ??, we utilized all 170 PCM metrics as the

input of the ThermGAN, which is actually an overkill since not

all metrics are necessarily relevant to thermal estimation. For all

170 metrics, only 9 of them, i.e. temperature sensor readings of 8

cores and 1 socket, are directly related to the thermal information.

For the rest 161 metrics, it is hard to tell which of them are more

correlated with CPU thermal performance and which are of less

importance. In this work, we leave this question to the model itself

as the training process will automatically assign heavier weights

to thermo-relevant metrics. When doing inference, the irrelevant

metrics will contribute less influence on the accuracy of estimated

thermal map.

To verify this and identify the thermo-relevant metrics, The

following PCM masking test is conducted using the trained Ther-

mGAN model. For each PCM vector, we mask only one entree at

a time which is corresponding to the metric of interest. Thus, the

input dimension remains unchanged and the trained ThermGAN

model can still be applied to it while the masked metric will not

participate in the feed forward calculation. In this way, we can

observe how much the output accuracy is influenced by the masked

metric with all the rest 169 metrics remain unchanged. The RMSE

of the generated thermal map against the ground truth is calculated

in the same way introduced in Section ??. For each input, the mask

slides through all 170 entrees and results in 170 thermal maps with

each corresponding to a masked PCM metric. We ran the masking

test on the test set and the average RMSEs for all masked metrics

are shown in Fig. ??.
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Figure 7: RMSE distribution across 170 masked PCM met-

rics.

The red line represents the average RMSE of thermal maps gen-

erated using unmasked PCM data. Masking different metrics results

in vastly various accuracy degradation. The importance of each

metric is proportional to the increment it introduces to the output

RMSE. The top 8 errors are all caused by masking core temper-

ature sensor readings. Each of them leads to an accuracy loss of

more than 1.3◦C. Masking the socket temperature metric caused

an error of 0.65◦C, which is not as much as the core temperatures

but still among the top 10 metrics. Such observation is within our

expectation but they are obviously not the only factors causing the

accuracy degradation. The L3MISS is influencing the accuracy even

more than the socket temperature. For the rest 160 metrics, 70 of

them caused more than 5% degradation in accuracy compared to the

baseline 0.44◦C, and among which 33 metrics led to >10% accuracy

loss. We refer to these top 80 metrics as thermo-relevant metrics,

and the rest 90 metrics are playing a relatively small(<5%) or even

negligible role in the estimation which implies that they are not

thermo-relevant metrics. Apart from the temperatures, most of the

thermo-relevant metrics are related with C-state which reflects the

idle power saving information per core. The other thermo-relevant

metrics consists of frequencies, L3 caches, instructions per cycle

and so on.
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Figure 8: Comparison between generated and ground truth thermal maps.

5.5 Comparisons with state of the arts

In this subsection, we compare ThermGAN with a recently pro-

posed post-silicon full-chip thermal estimation methods [? ] and

the pre-silicon estimation method [? ].

Work in [? ] is a machine-learning based model aimed at full-

chip thermal estimation using PCM data. It employed LongShort-

Term-Memory (LSTM) as its backbone and is implemented on the

dual-core i5-3337U which has only 80 PCM metrics as input. To

conduct a fair comparison, we increased the number of units in

both its input and first layers to 170 to accommodate to the 170

PCM metrics of i7-8650U. The same dataset introduced in Sec ??

was used for both training and testing.

The average RMSE across all testing workloads is 1.84◦C and the

standard deviation is 1.11◦C. In contrast, the proposed ThermGan

which yields an average RMSE of 0.47◦C and standard deviation

of 0.56◦C respectively as previously mentioned in Sec ??. Further

more, the computational cost for each inference is ∼17ms which is

also slower than the ∼7ms inference time yields by ThermGan.

Since there is no other research on post-silicon thermal estima-

tion other than [? ], we further compare our method with the state-

of-the-art pre-silicon method known as łEigenmapsž proposed in [?

]. We note that this is not an apples-to-apples comparison as the

łEigenmapsž method requires optimized sensor locations in the chip

design process. For commercial off-the-shelf microprocessors, both

number and locations of the temperature sensors are fixed and may

not meet the requirements of łEigenmapsž method. However, in

this comparison research, we assume such optimizations are done

and allows the łEigenmapsž method get the temperatures from

the measured thermal maps instead of the physical sensors. The

locations where the temperatures are sampled can be seen as virtual

sensors which are optimized according to the algorithms in [? ].

To make a fair comparison, the number of virtual sensors is set to

, i.e. one for each of the 4 physical cores and one for socket. We

ran łEigenmapsž method on the test set and the average RMSE

of estimated thermal maps is 0.94◦C with a standard deviation of

0.45◦C. It is slightly better than [? ] but still worse than the pro-

posed ThermGAN method. In therms of the overhead in real-time

thermal estimation, łEigenmapsž method requires to pre-calculate

and save a dense matrix with 811680100 single-precision floating

point entries which translates to 3.25GB in memory. This is quite

expensive and is therefore not suitable for real-time application.

6 CONCLUSION

In this paper, we have proposed a new data-driven full-chip tran-

sient thermal map estimation method for commercial multi-core mi-

croprocessors based on the generative adversarial learning method.

The proposed method, named ThermGAN, only uses the existing

embedded temperature sensors and system level utilization infor-

mation, which are available in real-time. Consequently, the methods

presented in this work can be implemented by either the original

chip manufacturer or a third party alike. In our approach, we treat

this traditional thermal modeling problem as the image genera-

tion based on the customized conditional generative adversarial

networks. The resulting ThermGAN can provide tool-accurate full-

chip transient thermal maps from the given performance monitor

traces of commercial off-the-shelf multi-core processors. Experi-

mental results have showed the trained model is very accurate in

thermal estimation with an average RMSE of 0.47◦C, namely, 0.63%

of the full-scale error. Our data further show that the speed of the

model is faster than 7.5ms per inference, which is two orders of

magnitude faster than the traditional finite element based thermal

analysis. Furthermore, the new method is ∼4x more accurate than

recently proposed LSTM-based thermal map estimation method

and has faster inference speed. It also achieves ∼2x accuracy with

much less computational cost than a state-of-the-art pre-silicon

based estimation method.
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