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Abstract— Max-affine regression refers to a model where the
unknown regression function is modeled as a maximum of %k
unknown affine functions for a fixed £ > 1. This general-
izes linear regression and (real) phase retrieval, and is closely
related to convex regression. We study this problem in the
high-dimensional setting assuming that k is a fixed constant,
and focus on the estimation of the unknown coefficients of the
affine functions underlying the model. We analyze a natural
alternating minimization (AM) algorithm for the non-convex
least squares objective when the design is Gaussian. We show
that the AM algorithm, when initialized suitably, converges with
high probability and at a geometric rate to a small ball around
the optimal coefficients. In order to initialize the algorithm,
we propose and analyze a combination of a spectral method
and a search algorithm in a low-dimensional space, which may
be of independent interest. The final rate that we obtain is
near-parametric and minimax optimal (up to a polylogarithmic
factor) as a function of the dimension, sample size, and noise
variance. In that sense, our approach should be viewed as a
direct and implementable method of enforcing regularization to
alleviate the curse of dimensionality in problems of the convex
regression type. Numerical experiments illustrate the sharpness
of our bounds in the various problem parameters.

Index Terms— Max-affine regression, alternating minimization,
dimension reduction, iterative optimization.

I. INTRODUCTION
AX-AFFINE regression refers to the regression model
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where Y is a univariate response, X is a d-dimensional
vector of covariates and € models zero-mean noise that is
independent of X. We assume that £ > 1 is a known integer
and study the problem of estimating the unknown parameters

f...,0; € R? and bj,...,b; € R from independent
observations (x1,91),...,(Zn,yn) drawn according to the
model (1). Furthermore, we assume for concreteness' in this
paper that the covariate distribution is standard Gaussian, with

ivi.d.

Ty (OaId)

Let us provide some motivation for studying the model (1).
When k£ = 1, equation (1) corresponds to the classical linear
regression model. When k = 2, the intercepts b5 = b7 = 0,
and 05 = —67 = 0%, the model (1) reduces to

Y = (X, 0%)] +e )

The problem of recovering 6* from observations drawn
according to the above model is known as (real) phase
retrieval—variants of which arise in a diverse array of science
and engineering applications [2]-[5]—and has associated with
it an extensive statistical and algorithmic literature.

To motivate the model (1) for general k, note that the
function = — maxi<;<k((z, 07) + b7) is always a convex
function and, thus, estimation under the model (1) can be
used to fit convex functions to the observed data. Indeed,
the model (1) serves as a parametric approximation to the
non-parametric convex regression model

Y =¢"(X) +e, 3)

where ¢* : R — R is an unknown convex function. It is well-
known that convex regression suffers from the curse of dimen-
sionality unless d is small, which is basically a consequence
of the fact that the metric entropy of natural totally bounded
sub-classes of convex functions grows exponentially in d
(see, e.g., [6]-[8]). To overcome this curse of dimensionality,
one would need to work with more structured sub-classes of
convex functions. Since convex functions can be approximated
to arbitrary accuracy by maxima of affine functions, it is
reasonable to regularize the problem by considering only those
convex functions that can be written as a maximum of a
fixed number of affine functions. Constraining the number
of affine pieces in the function therefore presents a simple
method to enforce structure, and such function classes have
been introduced and studied in the convex regression literature
(see e.g., [9]). This assumption directly leads to our model (1),
and it has been argued by [10]-[12] that the parametric
model (1) is a tractable alternative to the full non-parametric

'Our companion paper [1] weakens distributional assumptions on the
covariates, but this requires significantly more technical effort.
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convex regression model (3) in common applications of convex
regression to data arising in economics, finance and operations
research where d is often moderate to large.

Another motivation for the model (1) comes from the prob-
lem of estimating convex sets from support function measure-
ments. The support function of a compact convex set X C R?
is defined by hy () : = sup,c g (x, u) for d-dimensional unit
vectors z. The problem of estimating an unknown compact,
convex set K* from noisy measurements of hy«(-) arises
in certain engineering applications such as robotic tactile
sensing and projection magnetic resonance imaging (see,
e.g., [13]-[15]). Specifically, the model considered here is

Y = hg-(X) +e,

and the goal is to estimate the set K* C R?. As in convex
regression, this problem suffers from a curse of dimensionality
unless d is small, as is evident from known minimax lower
bounds [16]. To alleviate this curse, it is natural to restrict
K* to the class of all polytopes with at most k extreme
points for a fixed k; such a restriction has been studied as
a special case of enforcing structure in these problems by Soh
and Chandrasekharan [17]. Under this restriction, one is led
to the model (1) with b} = --- = b}, = 0, since if K* is the
polytope given by the convex hull of 67,...,0; € RY, then
its support function is equal to = — maxi << (7, 07).

Equipped with these motivating examples, our goal is to
study a computationally efficient estimation methodology for
the unknown parameters of the model (1) from i.i.d obser-
vations (z;, ;). Before presenting our contributions, let
us first rewrite the observation model (1) by using more
convenient notation, and use it to describe existing estimation
procedures for this model. Denote the unknown parameters by
B; 1= (05,b7) € R+ for j = 1,...,k and the observations
by (&,y:) for i = 1,...,n, where & := (x;,1) € RIFL,
In this notation, the observation model takes the form

yi:fgf‘é(k (&, B) + €i, fori=1,2,...,n. (4)
Throughout the paper, we assume that in addition to the
covariates being i.i.d. standard Gaussian, the noise variables
€1,...,€, are independent random variables drawn from
a (univariate) distribution that is zero-mean and sub-Gaussian,
with unknown sub-Gaussian parameter o.

Let us now describe existing estimation procedures for max-
affine regression. The most obvious approach is the global
least squares estimator, defined as any minimizer of the least
squares criterion

n 2
(BE'S), e A,(Js)) € argmin Z <yz — max (&, @)) .

By BrERITL T 1sj<k
(5)

It is easy to see (see Lemma 1 to follow) that a global
minimizer of the least squares criterion above always exists but
it will not—at least in general—be unique, since any relabeling
of the indices of a minimizer will also be a minimizer. While
the least squares estimator has appealing statistical properties
(see, e.g. [16]-[18]), the optimization problem (5) is non-
convex. Furthermore, for a worst-case choice of covariates, the
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problem can be shown to be NP-hard? via a reduction from
the subset-sum problem. Consequently, we focus on settings
where the covariates are drawn i.i.d. (in which this hardness no
longer applies), and in particular, we assume that the covariate
distribution is Gaussian.

It is interesting to compare (5) to the optimization problem
used to compute the least squares estimator in the more general
convex regression model (3), given by

o e argminz (yi — ¢(x:))”, ©)
[}

i=1

where the minimization is over all convex functions ¢. In sharp
contrast to the problem (5), the optimization problem (6)
is convex [19], [20] and can be solved efficiently for fairly
large values of the pair (d,n) [21]. Unfortunately however,
the utility of ¢(®) in estimating the parameters of the max-
affine model is debatable, as it is unclear how one may obtain
estimates of the true parameters 37, ..., 3; from ¢(®), which
typically will not be a maximum of only k affine functions.

Three heuristic techniques for solving the non-convex
optimization problem (5) were empirically evaluated by
Baldzs [12, Chapters 6 and 7], who compared running times
and performance of these techniques on a wide variety of real
and synthetic datasets for convex regression. The first tech-
nique is the alternating minimization algorithm of Magnani
and Boyd [10], the second technique is the convex adaptive
partitioning (or CAP) algorithm of Hannah and Dunson [11],
and the third is the adaptive max-affine partitioning algo-
rithm proposed by Baldzs himself [12]. The simplest and
most intuitive of these three methods is the first alternating
minimization (AM) algorithm, which is an iterative algorithm
for estimating the parameters 7, ..., 3; and forms the focus
of our study. In the ¢-th iteration of the algorithm, the current
estimates Bft), e ,(:) are used to partition the observation
indices 1,...,n into k sets Sy),...,S,gt) such that ;7 €
argmax, e (i, @(f)} for every i € Sj(t). Foreach1 < j <k,
the next estimate [3§t+1) is then obtained by performing a
least squares fit (or equivalently, linear regression) to the data
(&,v:),1€ 8 ](-t). More intuition and a formal description of the
algorithm are provided in Section II. Baldzs found that when
this algorithm was run on a variety of datasets with multiple
random initializations, it compared favorably with the state of
the art in terms of its final predictive performance—see, for
example, Figures 7.4 and 7.5 in the thesis [12], which show
encouraging results when the algorithm is used to fit convex
functions to datasets of average wages and aircraft profile
drag data, respectively. In the context of fitting convex sets to
support function measurements, Soh and Chandrasekaran [17]
recently proposed and empirically evaluated a similar algo-
rithm in the case of isotropic covariates. However, to the best
of our knowledge, no theoretical results exist to support the
performance of such a technique.

In this paper, we present a theoretical analysis of the AM
algorithm for recovering the parameters of the max-affine

2We provide a proof of this in Appendix I for completeness.
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regression model when the covariate distribution is Gaussian.?

This assumption forms a natural starting point for the study
of many iterative algorithms in related problems [22]-[25],
and is also quite standard in theoretical investigations of
multidimensional regression problems. Note that the AM
algorithm described above can be seen as a generalization of
classical AM algorithms for (real) phase retrieval [26], [27],
which have recently been theoretically analyzed in a series
of papers [22]-[24] for Gaussian designs. The AM—and
the closely related expectation maximization,* or EM—
methodology is widely used for parameter estimation in miss-
ing data problems [28], [29] and mixture models [30], includ-
ing those with covariates such as mixtures-of-experts [31] and
mixtures-of-regressions [32] models. Theoretical guarantees
for such algorithms have been established in multiple statistical
contexts [25], [33]-[35]; in the case when the likelihood is not
unimodal, these are typically of the local convergence type.
In particular, algorithms of the EM type return, for many such
latent variable models, minimax-optimal parameter estimates
when initialized in a neighborhood of the optimal solution
(e.g., [32], [36], [37]); conversely, these algorithms can get
stuck at spurious fixed points when initialized at random [38].
In some specific applications of EM to mixtures of two
Gaussians [39], [40] and mixtures of two regressions [41],
however, it has been shown that randomly initializing the
EM algorithm suffices in order to obtain consistent parameter
estimates. Here, we establish guarantees on the AM algorithm
for max-affine regression that are of the former type: we prove
local geometric convergence of the AM iterates when initial-
ized in a neighborhood of the optimal solution. We analyze
the practical variant of the algorithm in which the steps are
performed without sample-splitting. As in the case of mixture
models [32], [42], we use spectral methods to obtain such an
initialization.

A. Contributions

Let us now describe our results in more detail. To simplify
the exposition, we state simplified corollaries of our theorems;
for precise statements, see Section III. We prove in Theorem 1
that for each ¢ > 0, the parameter estimates ﬁy), ceey ,(ct)
returned by the AM algorithm at iteration ¢ satisfy, with high
probability, the inequality

k
> lis”
j=1

2

N . w0 kd
_63H2S€+C(615a6k)

log(kd) log (%)
@)

b 187 -8
€

for every t > log,s , provided that the

sample size n is sufficiently large and that the initial estimates

3In our companion paper [1], we weaken this assumption on the covariate
distribution.

“Indeed, for many problems, the EM algorithm reduces to AM in the
noiseless limit, and AM should thus be viewed as a variant of EM that uses
hard-thresholding to determine values of the latent variables.
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satisfy the condition
© _ gz < Lg "
ICIl>lgl II?aX ||66 ﬁj || — kc(ﬁla"'vﬁk)' (8)
Here C(81,...,5;) and ¢(57, ..., B}) are constants depend-

ing only on the true parameters 37, ..., 3y, and their explicit
values are given in Theorem 1. The constant ¢ in equation (8)
endows the initialization with a scale-invariance property:
indeed, scaling all parameters 5(0) ...,ﬂ,io) by the same
positive constant ¢ ?roduces the same initial partition of
subsets SEO), e 0 from which the algorithm proceeds
identically.

Treating k as a fixed constant, inequality (7) implies, under
the initialization condition (8), that the parameter estimates
returned by AM converge geometrically to within a small ball
of the true parameters, and that this error term is nearly the
parametric risk <2 °d up to a logarithmic factor. The initial-
ization condition (8) requires the distance between the initial
estimates and the true parameters to be at most a specific
(k-dependent) constant. It has been empirically observed that
there exist bad initializations under which the AM algorithm
behaves poorly (see, e.g., [10], [12]) and assumption (8) is
one way to rule these out.

A natural question based on our Theorem 1 is whether
it is possible to produce preliminary estimates BEU), ceey ,(CU)
satisfying the initialization condition (8). Indeed, one such
method is to repeatedly initialize parameters (uniformly) at
random within the unit ball BY*!; Balazs empirically observed
in a close relative of such a scheme (see Figure 6.6 in his the-
sis [12]) that increasing the number of random initializations is
often sufficient to get the AM algorithm to succeed. However,
reasoning heuristically, the number of repetitions required to
ensure that one such random initialization generates parame-
ters that satisfy condition (8) increases exponentially in the
ambient dimension d, and so it is reasonable to ask if, in large
dimensions, there is some natural form of dimensionality
reduction that allows us to perform this step in a lower-
dimensional space.

When® k < d, we show that a natural spectral method
(described formally in Algorithm 2) is able to reduce the
dimensionality of our problem from d to k. In particular, this
method returns an orthonormal basis of vectors Uy, ..., U
such that the k-dimensional linear subspace spanned by
these vectors accurately estimates the subspace spanned by
the vectors 67,...,0;. We form the matrix U := U1

Uk] by collectlng these vectors as its columns, and in
order to account for the intercepts, further append such a
U 0 £ pld+n)x(k+1)

0 1
Finally, we construct a covering of the (k + 1)-dimensional
unit ball M = {v*¢ = 1,...,M} and search it for a
“good” set of initial parameters. To that end, we evalu-
ate (on an independent set of samples) the goodness-of-
fit statistic ming>o Y, (y;—cmaxi<;<x (&, Vv;))? for each
V1,...,V; € M, where the minimization over the constant ¢

matrix to form the matrix V :=

SIf k > d, then this dimensionality reduction step can be done away with
and one can implement the search routine directly.
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accounts for the scale-invariance property alluded to above.
Letting ug, ey y,’i denote the minimizers, we then return the
initializer ﬁ;o) = Vug forj=1,... k.

Our algorithm can thus be viewed as a variant of the
repeated random initialization evaluated by Baldzs [12], but
incurs significantly smaller computational cost, since we only
run the full-blown iterative AM algorithm once. Note that our
algorithm treats the radius of the covering (and subsequently
its size M) as a tuning parameter to be chosen by the
statistician, similar to Baldzs [12], but we show a concrete
upper bound on M that is sufficient to guarantee convergence.
In particular, we show that in order to produce an initialization
satisfying condition (8) with high probability, it suffices to
choose M as a function only of the number of affine pieces &
and other geometric parameters of the problem (and indepen-
dently of the sample size n and ambient dimension d when
k <d).

To produce our overall guarantee, we combine the initial-
ization with the AM algorithm in Corollary 1, showing that
provided the sample size scales linearly in the dimension (with
a multiplicative pre-factor that depends polynomially on £ and
other problem-dependent parameters), we obtain estimates that
are accurate up to the parametric risk. Our algorithm is also
computationally efficient when £ is treated as a fixed constant.

From a technical standpoint, our results for the AM algo-
rithm are significantly more challenging to establish than
related results in the literature [23], [25], [43], [44]. First,
it is technically very challenging to compute the population
operator [25]—corresponding to running the AM update in the
infinite sample limit—in this setting, since the max function
introduces intricate geometry in the problem that is difficult
to reason about in closed form. Second, we are interested in
analyzing the AM update without sample-splitting, and so can-
not assume that the iterates are independent of the covariates;
the latter assumption has been used fruitfully in the literature
to simplify analyses of such algorithms [22], [24], [43].
Third, and unlike algorithms for phase retrieval [23], [44],
our algorithm performs least squares using sub-matrices of
the covariate matrix that are chosen depending on our ran-
dom iterates. Accordingly, a key technical difficulty of the
proof, which may be of independent interest, is to control
the spectrum of these random matrices, rows of which are
drawn from (randomly) truncated variants of the Gaussian
distribution.

Our spectral initialization algorithm is also a natural estima-
tor based on the method-of-moments, and has been used in a
variety of non-convex problems [32], [36], [37]. However, our
guarantees for this step are once again non-trivial to establish.
In particular, the eigengap of the population moment (on which
the rates of the estimator depend) is difficult to compute in
our case since the max function is not differentiable, and so
it is not clear that higher order moments return reasonable
estimates even in the infinite sample limit (see Section II).
However, since we operate exclusively with Gaussian covari-
ates, we are able to use some classical moment calculations
for truncated Gaussian distributions [45] in order to bound
the eigengap. Translating these calculations into an eigengap
is quite technical, and involves the isolation of many properties

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

of the population moments that may be of independent
interest.

Finally, it is important to note that owing to the scale
invariance of our initialization condition (8) and goodness-
of-fit statistic, our search scheme does not require a bound on
the size of the parameters; it suffices to initialize parameters
uniformly within the unit ball. This is in contrast to other
search procedures employed for similar problems [46], [47],
which are based on covering arguments and require a bound
on the maximum norm of the unknown parameters.

B. Organization

The rest of the paper is organized as follows. Section II
describes the problem setup and our methodology (including
the AM algorithm and initialization methods) in more detail.
In Section III, we present our main theoretical results and their
consequences, complementing our discussion with figures that
verify that our results are borne out in simulation. An overview
of the main ideas behind our proofs is given in Section III-D.
We conclude the main paper with a discussion in Section IV
of some related models and future directions. Full proofs of
our results are presented in the supplementary material in
Sections B-D, with further technical details relegated to the
later sections of the appendix.

C. Notation

For a positive integer n, let [n] := {1,2,...,n}. For a
finite set S, we use | S| to denote its cardinality. All logarithms
are to the natural base unless otherwise mentioned. For two
sequences {an 5, and {b,}52,, we write a,, < b, if there
is a universal constant C' such that a,, < Cb,, for all n > 1.
The relation a,, 2= b, is defined analogously, and we use

~

an ~ by to indicate that both a,, = b, and a, < b, hold
simultaneously. We use ¢, C,c1,c2,... to denote universal
constants that may change from line to line. For a pair of
vectors (u,v), we let u®v : = uv ' denote their outer product.
We use ||-|| to denote the ¢ norm unless otherwise stated.
Denote by I, the d x d identity matrix. We let 1 {£} denote
the indicator of an event £. Let sgn(¢) denote the sign of
a scalar ¢, with the convention that sgn(0) = 1. Let \;(T)
denote the ¢-th largest eigenvalue of a symmetric matrix I'.
Let S9! := {v € R®: ||v|| = 1} denote the unit sphere in
d-dimensions, and use B? : = {v € R?: |[v|]| < 1} to denote
the d-dimensional unit ball. Finally, we use the shorthand
a Ab := min(a,b) and a V b := max(a,b) for two scalars
a and b.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we formally introduce the geometric para-
meters underlying the max-affine regression model, as well as
the methodology we use to perform parameter estimation.

A. Model and Geometric Parameters

We work throughout with the observation model defined in
equation (4); recall that our covariates are drawn i.i.d. from
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a standard Gaussian distribution, and that our noise is o-sub-
Gaussian. We let X € R"*? denote the covariate matrix with
row ¢ given by the vector z;, and collect the responses in a
vector y € R".

Recall that &; = (z;, 1) € R¥*! for each i € [n]; the matrix
of appended covariates = € R™*(?+1) is defined by appending
a vector of ones to the right of the matrix X. Our primary goal
is to use the data (X, y)—or equivalently, the pair (2, y)—to
estimate the underlying parameters {ﬂ;‘ ?:1.

An important consideration in achieving such a goal is the
“effective” sample size with which we observe the parameter
f3;. Toward that end, for X ~ N(0,1y), let

(B, B) = Pe{(X, 0) + b7 = max ((X, 0) +b}))
(€

denote the probability with which the j-th parameter 3} =
(07 , b}) attains the maximum. Note that the event on which
more than one of the parameters attains the maximum has
measure zero, except in the case where 37 = ﬂ; for some
i # j. We explicitly disallow this case and assume that the
parameters [37,..., 3} are distinct. Let

7Tmin(ﬁ>1k; s 7ﬁ2) = min Trj(ﬁik’ e

min B, o)

and assume that we have mmin(07,...,0;) > 0; in other
words, we ignore vacuous cases in which some parameter is
never observed. Roughly speaking, the sample size of the para-
meter that is observed most rarely is given by min ¢y mjn ~
n - Tmin(67,...,0;), and so the error in estimating this
parameter should naturally depend on 7min(07, ..., 055).
By definition, we always have mmin(57,...,0;) < 1/k.
Since we are interested in performing parameter estimation
under the max-affine regression model, a few geometric quan-
tities also appear in our bounds, and serve as natural notions
of “signal strength” and “condition number” of the estima-
tion problem. The signal strength is given by the minimum
separation
2 .
)

ABT - Br)

= min
CHEE
5,3 3 #d

* *
Hj — 9]-/
we also assume that A is strictly positive, since otherwise,
a particular parameter is never observed. To denote a natural
form of conditioning, define the quantities

2
. . max;£j ||9’f — 0%
Hj(ﬁlwuvﬂk): - ! PRI

minj/;,gj HH;“ — 9;,
with w(57,...,085) = maxjep £;(67,. .., 8;). Finally, let

Bmax (81, -, B;) = maxjec [|F;]| denote the maximum
norm of any unknown parameter. We often use the shorthand

:ﬂ-min(ﬁfvw.vﬂz% A:A(ﬁfvvﬂg)v
(BT, ..., 05), and Bmax = Bmax(047, ...

when the true parameters 37, ...

Tmin

R

752)

, B;, are clear from context.
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B. Methodology

As discussed in the introduction, the most natural estimation
procedure from i.i.d. samples (&;,y;)_; of the model (4) is
the least squares estimator (5). The following lemma (which
does not seem to have been explicitly stated previously in
the literature, except in the case k = 2 [18], [48]) proves
that the least squares estimator (A§'S>, cee B,(Cls)) always exists.
Note, however, that it will not be unique in general since any
relabeling of a minimizer is also a minimizer.

Lemma 1: The least squares estimator (B\gls) ,...,3,95) )

exists for every dataset (Z,y).

We postpone the proof of Lemma 1 to Appendix A. In spite
of the fact that the least squares estimator always exists, the
problem (5) is non-convex and NP-hard in general. The AM
algorithm presents a tractable approach towards solving it in
the statistical setting that we consider.

1) Alternating Minimization: We now formally describe the
AM algorithm proposed by Magnani and Boyd [10]. For each
081, ..., Bk, define the sets

Si(Br,. ., k) = {z € [n] : j = min argmax ((§;, @))}

1<u<k
(11)

forj =1,...,k. In words, the set S;(51,. .., Ox) contains the
indices of samples on which parameter 3; attains the maxi-
mum; in the case of a tie, samples having multiple parameters
attaining the maximum are assigned to the set with the smallest
corresponding index (i.e., ties are broken in the lexicographic
order®). Thus, the sets {S;(531, ..., Bk) ?:1 define a partition
of [n]. The AM algorithm employs an iterative scheme where

one first constructs the partition S (ﬂgt) ey ,(:)) based

(®) (t)
1 By

on the current iterates /3 and then calculates the

next parameter estimate 5](-t+1) by a least squares fit to the

dataset {(&;,yi),7 € S; (ﬁit), e ,(Ct))}. The algorithm (also
described below as Algorithm 1) is, clearly, quite intuitive and
presents a natural approach to solving (5).

As a sanity check, Lemma 2 (stated and proved in Appen-
dix A) shows that the global least squares estimator (5) is
a fixed-point of this iterative scheme under a mild technical
assumption.

We also note that the AM algorithm was proposed by
Soh [49] in the context of estimating structured convex sets
from support function measurements. It should be viewed as a
generalization of a classical algorithm for (real) phase retrieval
due to Fienup [27], which has been more recently analyzed
in a series of papers [22], [23] for Gaussian designs. While
some analyses of AM algorithms assume sample-splitting
across iterations (e.g. [22], [24], [43]), we consider the more
practical variant of AM run without sample-splitting, since
the update (12a)-(12b) is run on the full data (Z,y) in every
iteration.

SIn principle, it is sufficient to define the sets S;(B1,...,8%),j € [k] as
any partition of [n] having the property that (§;, 8;) = max, ¢k (&, Bu)
for every j € [k] and i € Sj(B1,...,0%); here “any” means that ties can
be broken according to an arbitrary rule, and we have chosen this rule to be
the lexicographic order in equation (11).
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Algorithm 1 Alternating Minimization for Estimating
Maximum of & Affine Functions
Input: Data {¢;, yz}z 1, initial parameter estimates
o ..., 89
Output: Fmal estimator of parameters ﬁl, e
1 Initialize ¢ < 0.
repeat

number of iterations 7.

aﬁk'

2 | Compute maximizing index sets
s =5;8"..... 8, (12a)
for each j € [k], according to equation (11).
3 | Update
ﬁ](»tﬂ) € argmin (yi — (&, B))°, (12b)
BERI+1 )
55
for each j € [k].

until ¢ =T,
4 Return f3; = 5§T> for each j € [k].

2) Initialization: The alternating minimization algorithm
described above requires an initialization. While the algorithm
was proposed to be run from a random initialization with
restarts [10], [17], we propose to initialize the algorithm from
parameter estimates that are sufficiently close to the optimal
parameters. This is similar to multiple procedures to solve non-
convex optimization problems in statistical settings (e.g., [25],
[50]), that are based on iterative algorithms that exhibit local
convergence to the unknown parameters. Such algorithms
are typically initialized by using a moment method, which
(under various covariate assumptions) returns useful parameter
estimates.

Algorithm 2 PCA for k-Dimensional Subspace Initializa-
tion When k£ < d
Input: Data {fz,yz}
Output: Matrix Ue Rka having orthonormal columns
that (approximately) span the k£ dimensional
subspace spanned by the vectors 67, ..., 0;.
1 Compute the quantities

e 9 n/2 e n/2
Ml:ﬁ;yixi and M, = Zyl :cx —Id)

13)

and let M = M\l ® 7\4\1 + ]/\4\2; here, I; denotes the d x d
identity matrix and ® denotes the outer product.

2 Perform the elgendecompos1t10n M = PAPT, and use
the first & columns of P (corresponding to the & largest

eigenvalues) to form the matrix U € R4k Return U.

Our approach to the initialization problem is similar, in that
we combine a moment method with search in a min{k,d}
space. For convenience of analysis, we split the n samples
into two equal parts—assume that n is even without loss of
generality—and perform each of the above steps on different
samples so as to maintain independence between the two steps.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

The formal algorithm is presented in two parts as Algorithms 2
and 3. In Algorithm 2, we adgress the case k < d; if
k > d, then it suffices to return U = I; and proceed directly
to Algorithm 3.

In related problems [32], [36], [43], [51], a combination
of a second order and third order method (involving tensor
decomposition) is employed to obtain parameter estimates in
one shot. Take the problem of learning generalized linear
models [51] as an example; here, the analysis of the moment
method relies on the link function being (at least) three times
differentiable so that the population moment quantities can
be explicitly computed. After showing that these expecta-
tions are closed form functions of the unknown parameters,
matrix/tensor perturbation tools are then applied to show that
the empirical moments concentrate about their population
counterparts. However, in our setting, the max function is not
differentiable, and so it is not clear that higher order moments
return reasonable estimates even in expectation since Stein’s
lemma (on which many of these results rely) is not applicable’
in this setting. Nevertheless, we show that the second order
moment returns a k-dimensional subspace that is close to the
true span of the parameters {9* ;=15 the degree of closeness
depends only on the geometric properties of these parameters.

Algorithm 3 Low-Dimensional Search

Input: Data {&;,y;};_,, subspace estimate U € Rdxknd
having orthonormal columns that (approximately)
span the k£ A d dimensional subspace
span(67,...,0;), and radius of covering 7.

Output: Initial estimator of parameters 5(0) ceey ]io).

1 Choose M points M = {v, ¢ =1,..., M} such that
they form an r-covering of the (k A d + 1)-dimensional

unit ball B¥ ¥+ e, with mingepay v — vf|| < r for all
v € BFL Let
[T o
0 1

be a matrix in R(¢+1)*(FAd+1) haying orthonormal
columns.
2 Compute the k& parameters

<D

2
V%, .,1/2 € argmin —< min
v1,.,v €M n c20

n
> (i —crré?X@, VVy))Q}-
i=n/2+1 J

3 Return the (d + 1)-dimensional parameters

ﬁ](p) = V¥ foreach j € [k].

J

Let us also briefly discuss Algorithm 3, which corresponds
to performing a brute force search in (k A d + 1)-dimensional

7 A natural workaround is to use Stein’s lemma on the infinitely differentiable
“softmax” surrogate function, but our approach to this involved balancing the
estimation error (which, in turn, involves derivatives of the softmax function)
and approximation error terms, and led to suboptimal dependence on the
dimension.
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space to obtain the final initialization. First, note that a
covering of the set B*\9*1 can be constructed in time that
is exponential in £ A d in a variety of ways including repeated
random trials. Second, note that we use the mean squared error
on a holdout set (corresponding to samples n/2+ 1 through n)
to select the final parameter estimates. In particular, we eval-
uate the error in a scale-invariant fashion; the computation
of the optimal constant ¢ in step 2 of the algorithm can be
performed in closed form for each fixed choice of the tuple
(v1,...,vk), since for a pair of vectors (u,v) having equal
dimension, we have

argmin ||u—cv||* = max{ fu, ? ) 0} .
c>0 [[v]l

A key parameter that governs the performance of our search
procedure is the radius of the covering r, and the resulting
cardinality of the covering set M. We show in the sequel
that it suffices to take r depending only on k£ A d and other
geometric parameters in the problem, which also bounds
M independently of the ambient dimension for problems in
which k < d.

Our overall algorithm should be viewed as a variant of the
AM algorithm with random restarts. When the covering set
M is generated by random sampling and & is small relative to
the dimension, the algorithm inherits similar empirical perfor-
mance (see panel (b) of Figure 2 to follow), while significantly
reducing the computational cost, since operations are now
performed in ambient dimension k + 1, and the iterative AM
algorithm is run only once overall. It also produces parameter
estimates with theoretical error guarantees. Having stated the
necessary background and described our methodology, we now
proceed to statements and discussions of our main results.

IIT. MAIN RESULTS

In this section, we present our main theoretical results for
the methodology introduced in Section II.

A. Local Geometric Convergence of Alternating Minimization

We now establish local convergence results for the AM
algorithm. Recall the definition of the parameters (mmin, A, k)
introduced in Section II, and the assumption that the covariates
{;}_, are drawn i.i.d. from the standard Gaussian distribu-
tion (0, I;). Throughout the paper, we assume that the true
parameters 37, ..., 3} are fixed.

Theorem 1: There exists a tuple of universal constants
(c1,¢2) such that if the sample size satisfies the bound

5 kOK? }
T ARG (0

min

k
n > ¢y max {d, 10logn} max{g—ﬁ,
7r

min

(0)
) Pgg

(0) (0) * *
=) -1
165 — 05|
6 2
Tnin —3/2 k*r
§C2m10g / (6—),

min

then for all initializations ﬁ§0), e satisfying the bound

min  max
>0 1<j#)' <k

(14a)
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the estimation error at all iterations ¢ > 1 is simultaneously
bounded as

k 3 t k

t * * »(0 *
S =< (3) ([ Shen? - e
=1 j=1

log(kd)log(n/kd)

k
+er0?— (14b)

min

6 2
Ty k

with probability exceeding 1 — co (k exp (—cln kz) + n—7)
Here, the positive scalar ¢* minimizes the LHS o
ity (14a).

See Appendix B for a concise mathematical statement of
the probability bound.

Let us interpret the various facets of Theorem 1. As men-
tioned before, it is a local convergence result, which requires
the initialization 5§0), e ﬂ,io) to satisfy condition (14a).
In the well-balanced case (with myin ~ 1/k) and treating
k as a fixed constant, the initialization condition (14a) posits
that the parameters are a constant “distance” from the true
parameters. Notably, closeness is measured in a relative sense,
and between pairwise differences of the parameter estimates as
opposed to the parameters themselves; the intuition for this is
that the initialization [350), ceey ,(CO) induces the initial partition
of samples S ( ;0)7 ce ,g,o)), ooy Sk( ;0)7 e ]io))’ whose
closeness to the true partition depends only on the relative
pairwise differences between parameters, and is also invariant
to a global scaling of the parameters. It is also worth noting
that local geometric convergence of the AM algorithm is
guaranteed uniformly from al/ initializations satisfying con-
dition (14a). In particular, the initialization parameters are
not additionally required to be independent of the covariates
or noise, and this allows us to use the same n samples for
initialization of the parameters.

Let us now turn our attention to the bound (14b), which
consists of two terms. In the limit ¢ — oo, the final parameters
provide an estimate of the true parameters that is accurate to
within the second term of the bound (14b). Up to a constant,
this is the statistical error term

inequal-

o (dy oy Tmin) = 02 log(kd)log(n/kd) (15)

3 .

min
that converges to 0 as n — oo, thereby providing a consistent
estimate in the large sample limit. Notice that the dependence
of 0y, (d, k, Tmin) on the tuple (o,d,n) is minimax-optimal
up to the logarithmic factor log(n/d), since a matching lower
bound can be proved for the linear regression problem when
k = 1. In Proposition 2, (see Appendix E) we also show a
parametric lower bound on the minimax estimation error for
general k, of the order o2 kd/n. Panel (c) of Figure 1 verifies
in a simulation that the statistical error depends linearly on
d/n. The dependence of the statistical error on the pair
(k, Tmin) is more involved, and we do not yet know if these are
optimal. As discussed before, a linear dependence of my,;;, is
immediate from a sample-size argument; the cubic dependence
arises because the sub-matrices of = chosen over the course
of the algorithm are not always well-conditioned, and their
condition number scales (at most) as 72, . In Appendix E-B,

we show a low-dimensional example (with d = 2 and k = 3)
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Fig. 1. Convergence of the AM with Gaussian covariates— in panel (a), we plot the noiseless sample complexity of AM; we fix H,@Z* H =1 for all ¢ € [k],

o =0 and 7, = 1/k. We say 37 is recovered if ﬂft) - B
that the empirical probability of success over 100 trials is more

‘ < 0.01. For a fixed dimension d, we run a linear search on the number of samples n, such
than 0.95, and output the least such n. In panel (b), we plot the optimization error (in blue)
E?:l I ﬂj(.t) — ﬂj(.T) ||? and the deviation from the true parameters (in red) E?:l ‘ ﬁj(.t) -85 ‘
k =5,d =100, T = 50 and n = 5d, and averaged over 50 trials. Panel (c) shows that the estimation error at 7" = 50 scales at the parametric rate

2
/o2 over iterations t for different o (0.15,0.25, 0.4, 0.5), with

d/n, where

we have chosen a fixed k = 5 and o = 0.25. Panel (d) shows the variation of this error as a function of 7y, where we fix k = 3,d = 2,n = 103,0 = 0.4.

in which the least squares estimator incurs a parameter estima-
tion error of the order W31_ - even when provided with the frue
partition of covariates {Sj(ﬁ’f s+ B)}3-,. While this does
not constitute an information theoretic lower bound, it provides
strong evidence to suggest that our dependence on 7y, 1S
optimal at least when viewed in isolation. We verify this
intuition via simulation: in panel (d) of Figure 1, we observe
that on this example, the error of the final AM iterate varies
linearly with the quantity 1/73; .

The first term of the bound (14b) is an optimization error
that is best interpreted in the noiseless case o = 0, wherein the
parameters ﬁ@, e ,B,(:) converge at a geometric rate to the
true parameters 37, ..., 3, as verified in panel (a) of Figure 1.
In particular, in the noiseless case, we obtain exact recovery
of the parameters provided n > C'-5% log(n/d). Thus, the
“sample complexity” of parameter recovery is linear in the
dimension d, which is optimal (panel (a) verifies this fact).
In the well-balanced case, the dependence on k is quartic, but
lower bounds based on parameter counting suggest that the
true dependence ought to be linear. Again, we are not aware
of whether the dependence on m,j, in the noiseless case is
optimal; our simulations shown in panel (a) suggests that the
sample complexity depends inversely on m,i,, and so closing
this gap is an interesting open problem. When o > 0, we have

an overall sample size requirement

k k5 2
n > cmax {d,10logn} - max{%, JQM—I;} :=nam(c).

(16)

As a final remark, note that Theorem 1 holds under Gaussian
covariates and when the true parameters 37, ..., 3} are fixed
independently of the covariates. In our companion paper [1],
it is shown that both of these features of the result can be
relaxed, i.e., AM converges geometrically even under a milder
covariate assumption, and this convergence occurs for all true
parameters that are geometrically similar.

B. Initialization

In this section, we provide guarantees on the initialization
method described in Algorithms 2 and 3 in Theorems 2 and 3,
respectively. .

Consider the matrices U and M defined in Algorithm 2.
Algorithm 2 is a moment method: we extract the top k
principal components of a carefully chosen moment statistic of
the data to obtain a subspace estimate U. Spectral algorithms
such as these have been used to obtain initializations in a wide
variety of non-convex problems [43], [52], [53] to obtain an
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accurate estimate of the subspace spanned by the unknown
parameters. It is well-known that the performance of the
algorithm in recovering a k-dimensional subspace depends
on A,(E[M]), which is the k-th largest eigenvalue of the
population moment E[M]. We show in the proof (see the
discussion following Lemma 7) that there is a strictly positive
scalar « such that

—~

M (E[M]) > 7. a7
It should be stressed that we obtain an explicit expression
for v as a function of the various problem parameters (in
equation (49) of the proof) that is, a priori,® independent of
the ambient dimension d.

This characterization is the main novelty of our contribution,
and allows us to establish the following guarantee on the
PCA algorithm. We let U* € R%** denote a matrix whose
orthonormal columns span the linear subspace spanned by the
vectors 67,..., 07, and define the quantity

1= 0; by} . 18
¢ = max {167, + |bjl} (18)

Theorem 2: There is a universal constant C such that U

satisfies the bound

kdlog®(nk)
n

2 2
007 - v )i < 0 (255
v
with probability greater than 1—Cn =10,

The proof of Theorem 2 is provided in Appendix C.
We have thus shown that the projection matrix U*(U*) " onto
the true subspace spanned by the vectors 67,...,0; can be
estimated at the parametric rate via our PCA procedure. Note
tllat this is useful when £ < d, since otherwise we have
U = U* = I4. The guarantee of this theorem is illustrated
via simulation in panel (a) of Figure 2.

Let us now turn to establishing a guarantee on Algorithm 3
when it is given a (generic) subspace estimate U as input.
Since the model (1) is only identifiable up to a relabeling of
the individual parameters, we can only hope to show that a
suitably permuted set of the initial parameters is close to the
true parameters. Toward that end, let Py denote the set of all
permutations from [k] — [k], and let

k )
dist ({BJ(U) }jzl ’ {6; }§=1) PePy

k
. 0 *
= 1min Z Hﬁ](b()j) - ﬁj H2
j=1
(19

denote the minimum distance attainable via a relabeling of the
parameters. With this notation in place, we are now ready to
state our result for parameter initialization. In it, we assume
that the input matrix U is fixed independently of the samples
used to carry out the search procedure; again, recall that
U=U"=1;if k> d.

8While this may seem surprising—after all, the unknown parameters
07, ..., 0% live in dimension d—all the interesting action is confined to the
k dimensional subspace spanned by these parameters and ~y is a function of
the geometry induced by the parameters on this subspace.
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Theorem 3: Let k = k A d. Suppose we set 0 < r <
A2 10g™ V2 (k/Tmin)

min B ];,3 s that
~ A7r3/.2
[][]—r —U*(U* T - < min
||| ( ) P — 8Bmaxk2

. k .
and note that it suffices to set M = (1 + %) . Then there is
a tuple of universal constants (c1,c2) such that if

3 5 ) kS
IOg (Wmin/k),o' mlOgM},

min

nzclmax{d ]Z

min

then
. " )k
min dist ({Cﬁj }j=1 {5 }j=1>

E\? PN
<o () e, (241007 v R)

2log M
+%}
n

with probability exceeding 1 —c1k exp (—czn%).

We prove Theorem 3 in Appendix D. Combining Theo-
rems 2 and 3 with some algebra then allows us to prove
a guarantee for the initialization procedure that combines
Algorithms 2 and 3 in sequence. In particular, fix a positive
scalar € < A. Then combining the theorems shows that if (for
an appropriately large universal constant c), we have

Bmaxk3 10g1/2 (k/ﬂ'min)

k
M=|14+¢c 572 > , and the sample size n is
greater than
dk 0%k k M
ninit(€, M, ¢) : = cmax{7r 5 1og(7r . )log(T),

k k"B?2

3 max 2 2

dlog”®(nk) log(—7Tmin ) 7’)/271'1511:62 (0" +¢ )},
(20)

k ,
then min.~q dist ({cﬁj(-o)}j:l AB; }jl) < €2 with proba-

bility greater than 1—cn~'°. Equipped with this guarantee on
our initialization step, we are now in a position to state an
end-to-end guarantee on our overall methodology in the next
section.

C. Overall Algorithmic Guarantee

Assume without loss of generality that the identity permu-
tation minimizes the distance measure dist, so that 5](-0) is
the estimate of the parameter 3; for each j € [k]. Recall
the statistical error 0, (d, k, mmin) defined in equation (15),
which is, up to a constant factor, the final (squared) radius of
the ball to which the AM update converges when initialized
suitably, and the notation nam(c) and nini(e, M, c) from
equations (16) and (20), respectively. We now state a guarantee
for our overall procedure that runs Algorithms 2, 3, and 1 in
that sequence; we omit the proof since it follows by simply
putting together the pieces from Theorem 1 and the discussion
above.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 26,2023 at 08:45:00 UTC from IEEE Xplore. Restrictions apply.



1860

2
F

T=Ur U7

lvu

0 1 i T T

1.5 2

5d/n 102

(a)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

I I
—F— rand-aM

% —F— PCA+rs+AM  [|
Q.
I
A
0 B—0—Hf—F"]
40 60 80 100

Repetitions M
(b)

Fig. 2. Simulation of the PCA and overall guarantees. We assume that the true parameter matrix ©* = A*(U *)T for a R¥*F matrix U* and an invertible
A* € RFXkand that Algorithm 2 returns a subspace estimate U. Panel (a) reveals the subspace estimation error as a function of d/n, which is corroborated
by Theorem 2. In panel (b), we compare the performance of our overall algorithm (in red) with that of AM with repeated random initialization [12] (in blue)
averaged over 50 trials. We fix k = 3, d = 50, n = 35kd and o = 0.1. For a sufficiently large M, both schemes perform in a similar fashion.

Corollary 1: Let k = k Ad. There exist universal constants
c1 and co such that with

Bmaxl_f4 10g1/2 (k/ﬂ—min)
11/2 ’

min

3
o
n > max {ninit (02 2m7017M> , NAM (61)}

M =

1+Cl

1
and T() =C1 IOg (m) s

then the combined algorithm satisfies, simultaneously for all
T > To, the bound

k
Pr ZHﬂJ(T) _5;H2 Z Cl(sn,a(da ka’ﬂ_min)
7j=1

78 k2
<e (n—10 + kexp (—@n%) + W) .

We thus obtain, an algorithm that when given a number
of samples that is near-linear in thg: ambient dimension,
achieves the rate d,, ,(d, k, Tmin) = %’ii log(kd)log(n/kd)
of estimation of all kd parameters in squared /o norm. This
convergence is illustrated in simulation in Figure 2, in which
we choose k = 3, d = 50 and n = 35kd. Interestingly, panel
(b) of this figure shows that our provable multi-step algorithm
has performance similar to the algorithm that runs AM with
repeated random initializations.

The  computational complexity of our overall
algorithm (with exact matrix inversions) is given by

@) (k‘nd2 log (W) + (J,\f) -nd), where we also

assume that the k top eigenvectors of the matrix M are
computed exactly in Algorithm 2. This guarantee can also
be extended to the case where the linear system is solved up
to some numerical precision by (say) a conjugate gradient
method and the eigenvectors of M are computed using
the power method, thereby reducing the computational
complexity. Such an extension is standard and we do not
detail it here.

D. Proof Sketch and Technical Challenges

Let us first sketch, at a high level, the ideas required to
establish guarantees on the AM algorithm. We need to control
the iterates of the AM algorithm without sample-splitting
across iterations, and so the iterates themselves are random
and depend on the sequence of random variables (&;,€;)7 ;.
A popular and recent approach to handling this issue in
related iterative algorithms (e.g., [25]) goes through two steps:
first, the population update, corresponding to running (12a)-
(12b) in the case n — oo, is analyzed, after which the
random iterates in the finite-sample case are shown to be
close to their (non-random) population counterparts by using
concentration bounds for the associated empirical process. The
main challenge in our setting is that the population update is
quite non-trivial to write down since it involves a delicate
understanding of the geometry of the covariate distribution
induced by the maxima of affine functions. We thus resort to
handling the random iterates directly, thereby sidestepping the
calculation of the population operator entirely.

In order to convey the principal difficulties associated with
our approach, let us present a bound on the error obtained
after running a single step of the algorithm, starting at the
parameters (31, ..., and obtaining, as a result of one step
of the algorithm, the parameters ﬁf ,...,B,j. We use the
shorthand notation S; : = S;(31,...,Bk), and let P=j(s, . 3,)
denote the projection matrix onto the range of the matrix =g;.

Let y* denote the vector with entry ¢ given by
maxyerr) (i, B7). We have
||ESJ (ﬁ]—i_ - 6;)”2 = ||PEJ(517---15k)ySJ B ESJ ﬁJ*HQ

= |P=i(s,....095, + Pei(sr....p0 €5, — Es, 85 |1

< 2||P5j(517---15k)(y§j - Esjﬂ;)HQ + 2||P5j([317~~,5k)63y H2

<2[yg, — Es‘ﬁ;HQ + 2| Pisy....50€8; 1 (21
where we have used the fact that the projection operator is

non-expansive on a convex set.
Let

{{&, Be) = max} : = {(517 Be) = gg[%@, ﬁu>}
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for each i € [n], ¢ € [k] denote a convenient shorthand for
these events. The first term on the RHS of inequality (21) can
be written as

> (- (& B

i€s;
< Z Z 1{(&, B;) = max and (&, B) = max
i=1 54

X <£’L7 ﬂ;’ - 5;>2a

where the inequality accounts for ties. Each indicator random
variable is bounded, in turn, as

1 {( i, B3j) = max and (§;, B;/) = max}
1{(&, Bj) = (& Bjr) and (&, 7)) > (&, B7)}
1{(&, B — By) - (& B; — B}) < 0}.

Switching the order of summation yields the bound

>y (&, 6))°

i€ S,

< > > {6 8- B (& B - B <0}
J'g#g =1

x (&, B — B2

Recalling our notation for the minimum eigenvalue of a
symmetric matrix, the LHS of inequality (21) can be bounded
as

<
<

125,85 = BDIP = Auin (24,Zs, ) - 187 - ;12

Putting together the pieces yields, for each j € [k], the
pointwise bound
1 =T = *
aAmin (‘:‘—Srj‘:‘Sj) ) ||ﬁ]+ - Bj H2
n
< >0 Y 1 {(& B = Byr) - & B — By) <0}
J'gl#g =1
X (&, B; = B7) + | Piar...poes; |1

Up to this point, note that all steps of the proof were
deterministic. Observe from equation (22) that in order to
obtain an error bound on the next parameter, we need
to control three distinct quantities: (a) the noise term
| P=ia,,....80) €55 | 2. (b) the prediction error of the noise-
less problem, given by a pairwise sum of terms of the
form 1 {<£’La ﬂj - ﬁj'> ’ <£lv 6]* - ﬁ;’> < O}<£la 6]* - /8;/>27

and (c) the minimum eigenvalue of the covariate matrix

(22)

restricted to the set S;, denoted by Amin (EE]ESJ). Since
the set S; is in itself random and depends on the pair (Z,¢)
(since the current parameters were obtained over the course of
running the algorithm), obtaining such a bound is especially
challenging.

For step (a)—handled by Lemma 3—we apply standard
concentration bounds for quadratic forms of sub-Gaussian
random variables in conjunction with bounds on the growth
Sfunctions of multi-class classifiers [54]. Crucially, this affords
a uniform bound on the noise irrespective of which iterate
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the alternating minimization update is run from. To show step
(b)—in Lemma 4—we generalize a result of Waldspurger [23].
Finally, the key difficulty in step (c) is to control the spectrum
of random matrices, rows of which are drawn from (randomly)
truncated variants of the Gaussian distribution. The expectation
of such a random matrix can be characterized by appealing
to tail bounds on the non-central y? distribution, and the
Gaussian covariate assumption additionally allows us to show
that an analogous result holds for the random matrix with high
probability (see Lemma 5). Here, our initialization condition
is crucial: the aforementioned singular value control suffices
for the sub-matrices formed by the true parameters, and we
translate these bounds to the sub-matrices generated by ran-
dom parameters by appealing to the fact that the initialization
is sufficiently close to the truth.

Having discussed our proof of the AM update in some
detail, let us now turn to a brief discussion of the techniques
used to prove Theorems 2 and 3. As mentioned before, our
proof of Theorem 2 relies on a lower bound on the eigengap
of the population moment. We obtain such a lower bound
by appealing to classical moment calculations for suitably
truncated Gaussian distributions [45]. Translating these cal-
culations into an eigengap is quite technical, and involves
the isolation of many properties of the population moments
that may be of independent interest. As briefly alluded to in
Section II, the heart of the technical difficulty is due to the
fact that max function is not differentiable, and so moments
cannot be calculated by repeated applications of Stein’s lemma
like in related problems [43], [52], [55].

In order to establish Theorem 3, we crucially use the
scale-invariance property of the initialization along with some
arguments involving empirical process theory to show that the
goodness-of-fit statistic employed in the algorithm is able to
isolate a good initialization. Establishing these bounds requires
us to relate the prediction and estimation errors in the problem
(in Lemma 16), which may be of independent interest.

IV. DISCUSSION

We conclude this portion of the paper with short discussions
of prediction error guarantees, a comparison with adaptivity in
convex regression, related models, and future directions.

A. Guarantees on Prediction Error

While our principal focus in this paper was on estimation
of the unknown parameters {07, b} ?-’:1, the complementary
question of prediction error is also interesting and important.
In particular, suppose that we produce the max-affine function
estimate ¢4 given by oMM (2) 1= max;cp ((z, 0;) +
Ej) for each € R?, and measure its performance via the
prediction error

3@ () - o),

i=1

(23)

where ¢*(z) = max;cy ((z, 07) + bj) denotes the “true”
function. When ¢* belongs to the sub-class of k-piece affine
functions induced by parameters in the set Byo(7min, A, K)
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and the covariates are drawn from a Gaussian distribution,
our results imply (via Theorem 1, and by using Lemma 16 to
translate our estimation error guarantee into a prediction error
guarantee) the rate

1~ kd
= 3™ (@) - 67 (20))° < Clmins A, 1) —

n n

i=1

x log(kd)log(n/kd). (24)

At least in principle, an explicit dependence on my,;, should
not be expected in the prediction error, since if a particular
pair of parameters (6, b) attains the maximum extremely rarely
(resulting in a small value of 7y,;,), then we may simply drop
these parameters from the estimate (and estimate the function
with the maximum of the remaining k£ — 1 pieces) without
affecting the prediction error significantly. Indeed the minimax
risk of prediction (without any requirements of computational
efficiency) is known to be independent of the geometry of the
problem instance (see, e.g., [16]).

We also note that polynomial-time algorithms with small
prediction error are known, without any dependence on 7.
In particular, [56, Theorem 1.8] shows that the sample com-
plexity for obtaining e-accurate estimates in prediction error is
bounded by n < exp {c1(k/€)'°6*} d° for absolute constants
c1 and cy. While the dependence on both € and d can likely be
improved,’ these results provide additional evidence that the
prediction error is much less sensitive to the geometry of the
instance than the estimation error considered in this paper.

B. Comparison With Algorithms for Convex Regression

As mentioned earlier, the most standard estimatgr in convex
regression is the convex least squares estimator ¢(*) defined
as in (6) which can be computed efficiently as shown in [19],
[21]. The performance of ¢!'®) in the max-affine regression
model (1) has been the subject of some interest in the literature
on adaptivity of shape-constrained estimators (see [57] for an
overview of results of this type). These results mainly focus
on the prediction error:

L3 @) - 6 @)

as opposed to estimation of the parameters 07,07, j = 1,...,k
which is our main focus. There is actually no natural way of
obtaining parameter estimates from ¢(%) as ¢(') will typically
be a maximum of a strictly larger than k number of affine
functions. Let us now compare our results with the existing
results on the prediction error of the convex least squares
estimator. When d = 1, it has been showed by [58] and [59]
that

klogn

1 n N

- Z(qﬁ('s)(xi) - (@) < —
i=1

with high probability assuming that {z;};_, are uniformly

spaced on the interval [0, 1]. For d > 2, Han and Wellner [9]
Note that unlike our paper, this work makes only boundedness assumptions

on the covariates, and their focus is not on achieving the optimal dimen-
sion/sample size dependence.
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studied the adaptivity properties of ¢®') which is the least
squares estimator over the class of bounded convex functions
which is different from ¢(®) and computationally tricky to
compute. However, [9] showed that unless d < 4,

3@ w2 — ¢ () < Coun= 4 logm)
i=1

with high probability assuming that the covariates are drawn
from a distribution supported on a convex polytope with
m simplices (the constant pre-factor C,, depends on m).
Comparing these two results with our result on the prediction
error (24), we see that when d = 1, our results in the prediction
error are strictly weaker than those of prior work [58], [59],
but as soon as d > 2, they are significantly stronger than
existing adaptivity results [9], at least for a sub-class of k-
affine functions. We emphasize once again that the focus of
the body of work differs from ours, and so the comparison
presented above is necessarily incomplete.

A parallel line of work (including our own) eschews the
c-LSE (and its variants) entirely and pursues a different
avenue to alleviate the curse of dimensionality,'” by directly
fitting convex functions consisting of a certain number of
affine pieces [10], or more broadly, by treating the number
of affine functions as a tuning parameter to be chosen in
a data-dependent fashion via cross-validation [11]. Hannah
and Dunson [11] showed that performing estimation under a
carefully chosen sequence of models of the form (1) via their
“convex adaptive partitioning”, or CAP estimator is able to
obtain consistent prediction rates for general convex regression
problems. However, it is unclear if the CAP estimator is able
to avoid the curse of dimensionality in the special case when
the true function is k-piece affine.

C. Related Models

Models closely related to (1) also appear in second price
auctions, where an item having d features is bid on and sold
to the highest bidder at the second highest bid [60], [61].
Assuming that each of k user groups bids on an item and
that each bid is a linear function of the features, one can use
a variant of the model (1) with the max function replaced
by the second order statistic to estimate the individual bids
of the user groups based on historical data. Another related
problem is that of multi-class classification [54], in which
one of k labels is assigned to each sample based on the
argmax function, i.e., for a class of functions F, we have
the model Y = argmax; <, f;(X) for j distinct functions
fi,-.., [r € F. When F is the class of linear functions based
on d features, this can be viewed as the “classification” variant
of our regression problem.

The model (1) can also be seen as a special case of
multi-index models [62], [63] as well as mixture-of-experts
models [64], [65]. Multi-index models are of the form ¥ =
g((07, X),..., (0}, X)) + € for an unknown function g and

10Note that setting k ~ nd/(4+d) e can (essentially) recover the entire
class of convex functions from the maxima of k affine functions (see, e.g.,
Baldzs [12]), so interesting parametric structure is only expected to emerge
when k is essentially constant, or grows very slowly with n.
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this function ¢ is taken to be the max(-) function in the
model (1). In the mixture-of-experts model, the covariate
space is partitioned into k regions via certain gating functions,
and the observation model is given by k distinct regression
functions: one on each region. The model (1) is clearly a
member of this class, since the max(-) function implicitly
defines a partition of R? depending on which of the k linear
functions of X attains the maximum, and on each of these
partitions, the regression function is linear in X.

D. Future Directions

In this paper, we analyzed a natural alternating minimization
algorithm for estimating the maximum of unknown affine
functions, and established that it enjoys local linear con-
vergence to a ball around the optimal parameters. We also
proposed an initialization based on PCA followed by random
search in a lower-dimensional space. An interesting open
question is if there are other efficient methods besides random
search that work just as well post dimensionality reduction.
Another interesting question has to do with the necessity of
dimensionality reduction: in simulations (see, e.g., Figure 2),
we have observed that if the AM algorithm is repeatedly
initialized in (d+1)-dimensional space without dimensionality
reduction, then the number of repetitions required to obtain an
initialization from which it succeeds (with high probability) is
similar to the number of repetitions required after dimension-
ality reduction. This suggests that our (sufficient) initialization
condition (14a) may be too stringent, and that the necessary
conditions on the initialization to ensure convergence of the
AM algorithm are actually much weaker. We leave such a
characterization for future work, but note that some such
conditions must exist: the AM algorithm when run from a
single random initialization, for instance, fails with constant
probability when k£ > 3. Understanding the behavior of the
randomly initialized AM algorithm is also an open problem
in the context of phase retrieval [23], [66].

We note that once again that the Gaussian assumption
made in this paper for convenience of analysis can be relaxed
to allow (for instance) log-concave covariate distributions,
which includes the uniform distribution on [—1, 1] common in
nonparametric statistics. Such an extension requires significant
technical effort and the structure of the proof also changes
slightly; simultaneously, the dependence of the eventual error
bounds on the parameter i, is also different in the more
general setting. In particular, Lemmas 4-6 in the current paper
must be extended, and this requires, among other things,
an analysis of random matrices whose rows are drawn from
a (truncated) small-ball distribution. Our companion paper [1]
is also concerned with the universal setting in which guaran-
tees are proved uniformly over all choices of parameters once
the covariates have been drawn, in contrast to the setting of
the current paper in which parameters are fixed in advance.
Universal guarantees are commonly sought out in statistical
signal processing applications, including phase retrieval [53].

In the broader context of max-affine estimation, it is also
interesting to analyze other non-convex procedures (e.g. gra-
dient descent) to obtain conditions under which they obtain
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accurate parameter estimates. The CAP estimator of Hannah
and Dunson [11] and the adaptive max-affine partitioning
algorithm of Balazs [12] are also interesting procedures for
estimation under these models, and it would be interesting
to analyze their performance when the number of affine
pieces k is fixed and known. For applications in which the
dimension d is very large, it is also interesting to study the
model with additional restrictions of sparsity on the unknown
parameters—such problems are known to exhibit interesting
statistical-computational gaps even in the special case of sparse
phase retrieval (see, e.g., Cai et al. [67]). We also note that in
practice, and especially for convex regression, the parameter
k would be unknown and must be estimated (say) via cross-
validation, and understanding such a data-driven estimator is
an important direction of future work.

We now present proofs of our main results. We assume
throughout that the sample size n is larger than some universal
constant. Values of constants ¢, ¢1, ¢, . .. may change from line
to line. Statements of our theorems, for instance, minimize the
number of constants by typically using one of these to denote
a large enough constant, and another to denote a small enough
constant.

APPENDIX A
TECHNICAL RESULTS CONCERNING THE GLOBAL LSE
In this section, we provide a proof of the existence of the
global least squares estimator that was stated in the main text.
We also state and prove a lemma that shows that the global
LSE is a fixed point of the AM update under a mild technical
condition.

A. Proof of Lemma 1
Fix data (z1,91),..., (zn, yn) and let

n 2
yi —max(&;, v; >
; ( e )
denote the objective function in (5) with & := (z;,1). The
goal is to show that a global minimizer of L(v1,...,Vk)

L(’yl,...,’yk) =

over vi,...,7 € RIT! exists. For vq,...,7 € R let
S7,...,S] denote a fixed partition of [n] having the property
that

(€ ) = max(&i, 7)  for every j € [K] and i € 5.
ue

Also, let B;’,,B,Z denote the solution to the following
constrained least squares problem:

minimize ,
1yeens Bk Z Z EL Bj»
J=1lies]
subject to  (&i, 3;) > (&, Bu),u,j € [k, i € S].
Note that the above quadratic problem is feasible as vy, ..., 7k
satisfies the constraint and, consequently, ﬁl,...,ﬁk exists

uniquely for every ~i,...,7 € R%l. Note further that,

by construction,

L (33,...,5;) < L(71,- ., 7k)-

Restrictions apply.
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and that the set
= {(B\Y,...,//B\Zj) : 71)"'77]@ 6 Rd+1}

is finite because Bf, . ,B,Z depends on i,...,7: only
through the partition S7,...,S; and the number of possible
such partitions of [n] is obviously finite. Finally, it is evident
that

(AgS)ﬂ" ) ](JS)) argmin L(ﬂlavﬂk)
(B1,.-.8k)EA
is a global minimizer of L(y1,...,7k) as
L(A§|S)7"',A£|S))<L( 7"'7Bg)§L(717"',7k)

for every 71, ...,7%. This concludes the proof of Lemma 1.

B. Fixed Point of AM Update

The following lemma establishes that the global LSE is a
fixed point of the AM update under a mild technical condition.

Lemma 2: Consider the global least squares estimator (5).
Suppose that the k values (&;, 5 )y forj =1,...,k are distinct
for each i € [n]. Then

Z (yi—

i€8;(BY,....3)

ﬁ( 5 € argmin (&, 8))? for everyj € [k].

ﬁERd +1

(25)

Proof: Tt 1s clearly enough to prove (25) for j = 1.

Suppose that 51 does not minimize the least squares criterion
over S; (6 ls), cey ,(Cls)). Let
[ . 2
A eargmin YT (yi— (&, )
BERIH1 i€ (BY....50)

,B%)

be any other least squares minimizer over S (B;'S), .
and let, for e > 0,
(A( s) A('S))
1)

When € > 0 is sufficiently small, we have

B =B 4+

S (B By B = S;(B .. B) for every j € [K]

due to the no ties assumption and the fact that 51 and

Ags) can be made arbitrarily close as ¢ becomes small.
Thus, if

n

2
3 (s s )

U(ﬂl,...,ﬂk) =
=1
(€, B;)?,

= Z Z (yi —

JE[K] €8 (B1s--Bk)
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then

U(Bh BSS) sy A](JS))

OO

722 ieS; (1,88 ....B)

= Z yi — (&> »§1>)2

yi — (&, 51>)2

2

i€S1(B1,857....B")

—~ 2
i — (&, 5]('|S)>)

i€s, (§§I5)7’*éls) .“73785))
(I
SOUEEED'S ~ (e A7)
]22 ieSj(Bgs),Ags)...,a;gs))
|
< Z - (& (S)>)

’\'(Is) BSS))

1€851 (BTIS) 1FPo
O INEDY
~(Is) ~~~,B;(CIS>)

322 jes, (B B
( A(ls) 7ﬂ2ls o A}gls))

- <€17 BJOS)))Q

where the strict inequality above comes from the fact that 51
: oo 2(ls) 7(Is)
is closer to the least squares solution 7, ~ compared to 3;

This leads to a contradiction as the criterion function is smaller
than its value at a global minimizer, thereby concluding the
proof. O

APPENDIX B
PROOF OF THEOREM 1

Let us begin by introducing some shorthand notation, and
providing a formal statement of the probability bound guar-
anteed by the theorem. For a scalar w*, vectors u* € R4
and v* = (u*, w*) € R and a positive scalar 7, let

By« (r) = {U € R Hﬁ Z‘)H I < 7“} , and let
z (r; {8 }f=1)
— {ﬂl; .. ﬂk (S Rd-'rl :de >0 C(ﬂi — 5]) = 8,877,8;‘(7")}

for all 1 <4 # j < k. Also, use the shorthand

sup Z 18 — g3 |12

B0, ez (r) j=1

k
STl — pz)? |, and

j=1

Iy (r; {ﬂ;‘}f:l) i=

-(3)

6n,o(da k7 7Tmin) L= 0'2

kd
- log(kd)log(n/kd)

min

to denote the error tracked over iterations (with ¢* denoting
the smallest ¢ > 0 such that ¢(8; — ;) € Bgy—p: (r) for all
1 <14 # 7 < k), and a proxy for the final statistical rate,
respectively.

Theorem 1 states that there are universal constants ¢; and
co such that if the sample size obeys the condition
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n > nam(c1), then we have

Pr{r&alx 9y ( {6 }J 1) > (315n a(d k 77111111)}

776 k2
(kexp (—c n I:;“) + W) )

Let us assume, without loss of generality, that the scalar
c* above is equal to 1. It is convenient to state and prove
another result that guarantees a one-step contraction, from
which Theorem 1 follows as a corollary. In order to state this
result, we assume that one step of the alternating minimization
update (12a)-(12b) is run starting from the parameters {3, }le

L We use the shorthand

mln

(26)

. k
to produce the next iterate { ﬂ;f}j:

vy =0 5,
v;,; = B — 5, and
5 pr

Also recall the definitions of the geometric quantities (A, k).
The following proposition guarantees the one step contraction
bound.

Proposition 1: There exist universal constants c¢; and
co such that

(a) If the sample size satisfies the bound n >
¢ max ,logn - — K }, then for all parameters {/3; }le
satlsfymg

ijd' _Uﬁ j/ 3/2 He; _6;’H 7Tr6n1n
S T T H E e
J J ’U]’j/ vj,j/
(27a)

we have, simultaneously for all pairs 1 < j # ¢ < k, the
bound

N 2
*
H”j,e - ”MH

||9;K - QEHQ min
. 2
v vl Vg0 = Vg s
o g it i it
= 195 =65l 167 — 671l
o kd
+ N log(n/d) (27b)

min

with probability exceeding 1 —c; ( kexp (—CQnWIZQ 2 + Z—i)

min

(b) If the sample size satisfies the bound n >
€1 max ,logm - } then for all parameters {; }?:1
satlsfymg e e

m ij,j/ — Vi log3/2 167 — 65| < Toin

nax - S5
1<k (|05 =0 va" — V5 y

(28a)

1865
we have the overall estimation error bound
k 3 k
dolIBF-BIP< g (Z 18; ﬁ;|2>
i=1 i=1
5 kd
+c10°— - log(k)log(n/dk)  (28b)
with probability exceeding 1 — ¢y (k exp (—ch ’ZZ ) + Z—i)
Let us briefly comment on why Proposmorr;) " implies

Theorem 1 as a corollary. Clearly, equations (28a) and (28b)
in conjunction show that the estimation error decays geometri-
cally after running one step of the algorithm. The only remam-
ing detail to be verified is that the next iterates {ﬂJr} _
also satisfy condition (27a) provided the sample size is large
enough; in that case, the one step estimation bound (28b) can
be applied recursively to obtain the final bound (14b).

With the constant co from the proposition, let r;, be
the largest value in the interval [0,e™3/2] such that
5 10g®%(1 /1) < ¢ sz
in the interval [0, e3/2] such that r, log®*(1/ry) <
Bounds on both of these values will be used repeatedly later
on.

Assume that the current parameters satisfy the bound (27a).
Choosing n > 4rd/m3. and applying inequality (27b),
we have, for each pair 1 < j # ¢ < k, the bound

Similarly, let r, be the largest value

H”;'fe ~ e
16 — 07117
2
<L Z v — HUW e
= 4k 105 — 9* H2 167 — 6511
ey (n/d)
+ c1—o0“———1log(n/d
A ?ninn
1 o?
< Era +c]— A Wl?}lin log(n/d).
Further, if n > Co?— A 7 for a sufficiently large constant
C', we have
Hv;tf B v;’ZH 2
<y,
[N

Thus, the parameters {ﬂ+} satisfy inequality (27a) for the
sample size choice required by Theorem 1. Finally, noting, for
a pair of small enough scalars (a, ), the implication

b
a < §log_3/2(1/b) — alog®?(1/a) <,

and adjusting the constants appropriately to simplify the prob-
ability statement completes the proof of the theorem. It now
remains to establish Proposition 1.

A. Proof of Proposition 1
Recall that we denote by

Sj(ﬁlv te 7ﬂk)_{]— S 1 § n: <£’Lv ﬂj> = max (<£'w ﬂu>)}a

1<u<k
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the indices of the rows for which 3; attains the maximum,
and we additionally keep this sets disjoint by breaking ties
lexicographically. To lighten notation, we use the shorthand

=1 (6,

Recall the notation

’ﬂk) L= Esj(ﬁlvuwﬁk)'

-

introduced before, and the definitions of the pair of scalars
(ra, ). To be agnostic to the scale invariance of the problem,
we set ¢ = 1 and define the set of parameters

By« (r) = {v € R, 7”1) Gl
(]

I(r) = {ﬂl;“'»ﬂk:vi,j € Byy (r) forall 1 <i##j< k},

and use the shorthand Z,, : = Z(r,) and Z, : = Z(r), to denote
the set of parameters satisfying conditions (27a) and (28a),
respectively,

Finally, recall the deterministic bound (22) established in
Section III-D, restated below for convenience.

)18 = B2

< 3 S {E v

J'g'#5 i=1

1
_>\min(E E
2
E“ ]J <0} &ir v ]J>

+ |‘PEJ(617"'1/[3k)€Sj H2

It suffices to show high probability bounds on the various
quantities appearing in this bound. First, we claim that the
noise terms are uniformly bounded as

k
Pr su P= €
{51,...,B£Rd+1 X—;H = B (P ’Bk)H

> 262k(d + 1) log(kd) log(n/kd)} < (”)_1, and

kd
Pr{
B,...

-1
> 20°%k(d + 1)1og(n/d)} < (Z) for each j € [k].
(29a.11)

(29a.1)

sup o BES; (B i) I

| Pia,..
BreRI+L

Second, we show that the indicator quantities are simultane-
ously bounded for all j,j’ pairs. In particular, we claim that
there exists a tuple of universal constants (C, ¢y, ¢, ') such
that for each positive scalar » < 1/24, we have

Pr {31 S] 75.]/ < k?, Vj 4! S vi‘ '_/(7“) :

Z Z {&,UH

Jligt#g =1

g’w j_] <O} fi? _]j>2

ULIHQ}

(29b)

> C'max{d,nr log®?(1/r)} Z 0,50 —
33 A3

< (];> {"6_02" +e max{d?lmogn}} '
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Finally, we show a bound on the LHS of the bound (22)
by handling the singular values of (random) sub-matrices
of = with a uniform bound. In particular, we claim that
there are universal constants (C,c¢,c’) such that if n >

CmaX{T, logn - —62—} then for each j € [k], we have

min

P inf man gee ey T Ej sy
' { Br. e, (B (8 Br) (B Br))
76
<Crd.n } < cexp (—cn ];nzm) 110, (29¢)

Notice that claim (29a.I) implicitly defines a high probabil-
ity event £(®1), claim (29a.II) defines high probability events
EJ(G'H), claim (29b) defines a high probability event £®)(r),
and claim (29c) defines high probability events EJ(C). Define
the intersection of these events as

r =D N TN NN 7,
j€[k]

JE[K]
and note that the claims in conjunction with the union
bound guarantee that if the condition on the sample

holds, then for all

70 k2
2 )JFW)

where we have adjusted constants appropriately in stating
the bound. We are now ready to prove the two parts of the
proposition.

a) Proof of part (a): Work on the event £(r,). Normal-
izing inequality (22) by n and using claims (29a.Il). (29b),
and (29¢) with » = r, then yields, simultaneously for all
j € [k], the bound

size n > ¢; max

—,logn - —&-

r < ry, we have

Pr{&€(r)} 21—« <k exp <—02n

185 = 551
d .
< Cmax{ﬁ. : 10g3/2(1/7“a)} D Mg = vl
min’ " Tmin J':5'#5

+ C'0? log(n/d)
(i) cd 1 .
Smax{m 4]“{&} Z 4HUj7j' —'Uj:j’HQ

Jg#J
+ C'0? log(n/d),

where in step (i), we have used the definition of the quantity
rq. Using this bound for the indices j, ¢ in conjunction with
the definition of the quantity s proves inequality (27b). O]

b) Proof of part (b): We now work on the event &(ry)
and proceed again (see equation (22)) from the bound

. d
167 - 1 < Cmax{ "

min
> vy —v

33" #3

1og3/2(1/rb)}

min

2
+ 3—nHPEJ(51,~w3k)ESJ H :

min

* 2
il
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Summing over j € [k] and using the fact that |ja + b||* <
2||a||? + 2]|b||?, we obtain

kd  kr
Znﬂ* 5|2<cmax{ﬂ3 )
515, 1 SR
j=1 mln Jelk]
<3 ZII[)’] 517 | + C'0* gtk ogn k),

min

where in step (ii), we have used the definition of the quantity
ry, the bound n > Ckd/n3, , and claim (29a.). This
completes the proof. O
We now prove each of the claims in turn. This constitutes
the technical meat of our proof, and involves multiple technical
lemmas whose proofs are postponed to the end of the section.
c) Proof of claims (29a.) and (29a.I1): We begin by
stating a general lemma about concentration properties of the
noise.
Lemma 3: Consider a random variable z € R™ with i.i.d.
o-sub-Gaussian entries, and a fixed matrix £ € R7?*(d+1),
Then, we have

sup | Pzi(8y,....81) %
B, ﬁkeRdH Z | (Bas.--sB) H
< 202k:(d + 1) log(kd) log(n/kd) (30a)
with probability greater than 1 — ( M d)fl and
P=;
- LETCRRERECICS a0ll”
< 20°k(d 4 1) log(n/d) (30b)

with probability greater than 1 — (Z)_l

Here z5,(s,,..p5,) denotes the restriction of z onto the
coordinates denoted by the set S;(f1,. .., k). The proof of
the claims follows directly from Lemma 3, since the noise
vector (here we instantiate z by e, which is sub-Gaussian) €
is independent of the matrix =, and Z;, C (Rd“)@k. O

d) Proof of claim (29b): We now state a lemma that
directly handles indicator functions as they appear in the claim.

Lemma 4: Let u* € R? and w* € R, and consider a fixed
parameter v* = (u*, w*) € RI*!. Then there are univer-
sal constants (cq,co,c3,cq) such that for all positive scalars
r < 1/24, we have

(% Z?:l 1 {<£la ’U> : <£lv ’U*> < 0}<£“ ’U*>2)

lo — |2

1
< -rnax{g,rlog?’/2 (—)}
n r

—co max{d,10logn} __

sup
vEB,* (7")

with probability exceeding 1 — cie
c3 ne~ ", Here, we adopt the convention that 0/0 = 0.

Applying Lemma 4 with v = v;; and v* = v}, for
all pairs (j,j') and using a union bound directly yields the
claim. O
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e) Proof of claim (29c): For this claim, we state three
technical lemmas pertaining to the singular values of ran-
dom matrices whose rows are formed by truncated Gaussian
random vectors. We let vol(K) denote the volume of a set
K C R? with respect to d-dimensional standard Gaussian
measure, i.e., with vol(K) = Pr{Z € K} for Z ~ N (0, ).

Lemma 5: Suppose n vectors {x;}}_, are drawn i.i.d. from
N(0,1;), and K C R is a fixed convex set. Then there exists
a tuple of universal constants (i, cz) such that if vol®(K)n >
c1dlog? (1/ vol(K)), then

Amin ( Z &i&; ) > co ool (K)n
iz, €K
probability

with than 1 —
4
c1 exp (—czn%) — 1 exp(—can - vol(K)).
For a pair of scalars (w,w’) and d-dimensional vectors
(u,u'), define the wedge formed by the d + 1-dimensional
vectors v = (u, w) and v' = (v/, w') as the region

u) +w) - ((z,

and let Ws = {W = W(v,v') : vol(W) < ¢} denote the
set of all wedges with Gaussian volume less than §. The next
lemma bounds the maximum singular value of a sub-matrix
formed by any such wedge.

Lemma 6: There is a tuple of universal constants (cq, ¢2)

such that if n > ¢; max {d, 105%” }, then

greater

W(v,v') = {z € R?: ((x, u'y +w') <0},

o

i, EW

g:) < cln\/g

Sup )\max
WeWws

with probability greater than 1 — exp(—cand?) —n
We are now ready to proceed to a proof of claim (29c). For
convenience, introduce the shorthand notation

—10

=55 (BT, Bk)

to denote the set of indices corresponding to observations
generated by the true parameter ;. Letting AAB :=
(A\ B)J(B\ A) denote the symmetric difference between
two sets A and B, we have

=T = =T — =T —
>\min (:*Sj \:*Sj) Z )\min (:S; :S;) _>\max (\:S;‘ASJ\:S;ASJ)~

Recall that by definition, we have
SIAS; = {z (&, B7)} = max and (&;, §;) # max}

U{z &y B;) # max and (;, Bj) = max}
< U {i:&, vp0 (&, vy <0}
7' €K\

c U{ xzeW(m”vﬂ)}

S

€1V
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Putting together the pieces, we have

_T — _T —
)\min (:SJ :*Sj) Z Amin (:S; :S;f)

=D Amax >, &
J'#I i:a’,'j,EW(U;’j,,Uj“?/)
(32)
Now by Lemma 9, the definition of the set Z;, and the

definition of r,, we have

6.
vol (W (v} 1, v5,50)) < nmy log!/2(1/m) < C%.

Owing to the sample size assumption n >
Cmax 1 d, kQI:GL.” }, the conditions of Lemma 6 are
satisfied, and aﬁnﬁﬁying it yields

3
Z T i
sup )\max §z‘§¢ S ’I’LC%
vj gt EB,U* . (’I“a) - .
33 'L.fI,'j,eW(Uj’J/ﬂ)j’]/)

6
with probability exceeding 1 —n 10 —exp ( cn ,‘:‘“) More-

over, Lemma 5 guarantees the bound i, (ES*ES;) >
J

com - w2, so that putting together the pieces, we have
inf Ami (ET,ES,.) > Cer —Cnk—22 mm
Bi,BrETy S k

> C(7.(-1’1’111’1 7 (33)

6
with probability greater than 1—cexp (—cnﬂg‘;“) — n 10
These assertions hold provided

ko k%1
nZCmaX{d~3—, Gogn}’
min Tmin
and this completes the proof. O

Having proved the claims, we turn to proofs of our technical
lemmas.

1) Proof of Lemma 3: In this proof, we assume that o = 1;
our bounds can finally be scaled by o2.

It is natural to prove the bound (30b) first followed
by bound (30a). First, consider a fixed set of parameters
{B1,.-., Pk} Then, we have

1P=s6...0 255 ) = |00 265",

where U € RIZ'1*(d+1) denotes a matrix with orthonormal
columns that span the range of =7 (8, ..., B¢).

Applying the Hanson-Wright inequality for independent
sub-Gaussians (see [68, Theorem 2.1]) and noting that
IUUT || < v/d+ 1 we obtain

Pr{UU 25| = (@+1) +} < e,

for each ¢ > 0. In particular, this implies that the random
variable ||[UU " zg;||” is sub-exponential.

This tail bound holds for a fixed partition of the rows of
=; we now take a union bound over all possible partitions.
Toward that end, define the sets

Sj:{Sj(ﬂl,...,ﬂk) 2B, .-, Pk € Rdﬂ}, for each j € [k].
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From Lemma 11, we have the bound |S7| < 2¢kdlog(en/d),
Thus, applying the union bound, we obtain

Pr sup HP =i (B, ﬂk)ZS7|| (d+1)+t¢
B, Bk ERITL
S |8j|e—m‘

and substituting ¢t = ck(d + 1) log(n/d) and performing some
algebra establishes bound (30b).

In order to establish bound (30a), we once again consider
the random variable Z?zl ||P5j(,31w,gk)zng2 for a fixed
set of parameters {f1, ..., 0r}. Note that this is the sum of
k independent sub-exponential random variables and can be
thought of as a quadratic form of the entire vector z. So once
again from the Hanson-Wright inequality, we have

P Pz j 1
' B, ’S,BliIé]RdHZH (Brye-,Br) %59 H 2 k(d+1)+
S efct/k)
for all ¢ > 0.

Also define the set of all possible partitions of the n points
via the max-affine function; we have the set

S= {Sl(ﬁlw"aﬁk)wﬂs’k(ﬁlw")ﬁk’) . ﬁhwﬂk S Rd+1} .

Lemma 12 yields the bound |S| < gckdlog(kd)log(n/kd) = anq

combining a union bound with the high probability bound

above establishes bound (30a) after some algebraic manip-

ulation. O
2) Proof of Lemma 4: Let v, = v — v*; we have

1{<£’L7 ’U> : <£’L} ’U*> S 0}<£1; ’U*>2
< 1{(&, v) - (&, v") S OHE&, W)
< 1{{&, W) = (& v*)? H & )

Define the (random) set K, = {i : (&, 7,)2 > (&, v*)?}; we
have the bound

* 1 —_
—Zl{ (€ v) - (&, v7) < OH& ") < — |2k, 70
We now show that the quantity ||Zx,7,||? is bounded uni-
formly for all v € B,«(r) for small enough r. Recall that u*
is the “linear” portion of v*, and let m = max{d, 10logn,n -

(167 - y/log(1/r)} (note that m depends implicitly on 7).
We claim that for all € (0,1/24], we have

PI‘{ sup |KU| > m} < Je—cmax{d,10logn} + cne—c’n7

UGBU* (7")
(34a)
|Erw|?
Pr U sup 5— > (2d +20mlog(n/m))
g werttt @l
|TT§m w#0
< efcmax{d,IOIOgn}. (34b)

Taking these claims as given, the proof of the

lemma is immediate, since Z < —1 g0 that

m  —  16rlog(1/r)’
log(n/m) < C'log(1/r).
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a) Proof of claim (34a): By definition of the set K,
we have

Pr{ sup |K,|>m}
vEB,* (1)
< Z Pr{3v € By (r) : |Erwl® > ||Erv*|?}
TC[n]:
|T|>m
vl 12271 [IErv* |12
Prq3v e By (r): >
2 { e T e P PR P E
\T_\>m
2 IErvll®  |IErv*|?
< 2 PT{HUEB R
TC[n]: Y
|T|>m
< 2 | Pryve B ()
TC[n): Y
|T|>m

zwa+m+m2}
+Pr{||“T ”2” < (Vd+ \/W+tT)2}>,

where the final step follows by the union bound and holds for
all positive scalars {7 }pc[,). For some fixed subset T of size
?, we have the tail bounds,

Srwl? () :
Pr sup I TwQH > (\/E—l- \/Z—f—t)Q < 26_t2/2,
werdtt [l
w#0
(35a)
=ru*2 (ii)
Pr {% < 66} < (e6)"/? for all § > 0, (35b)

for all ¢ > 0, where step (i) follows from the sub-Gaussianity

of the covariate matrix (see Lemma 13), and step (ii) from a

tail bound for the non-central x? distribution (see Lemma 14).
Substituting these bounds yields

Pr{ sup |K,|>m}
vEB,* (1)
" | Vi vit i)
< Z <Z> 2e~ /2 4 (er2 Wd+ Vit ) X +to) )
l=m+1 L
n r ¢
< Z <Z> 2e1/2 4 <2r- 7\/E+\/Z+t£>
L=m+1 L \/Z

Recall that ¢, was a free (non-negative) variable to be chosen.
We now split the proof into two cases and choose this
parameter differently for the two cases.
b) Case 1, m < { < n/e: Substituting the choice ¢, =
Llog(n/¢), we obtain

(Z) 9et3/2 (27«. v+ Vit +\/\/;+ ”)Z

(M) (n> | <2r_ ﬂ+5¢fw>e

n ¢
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—
=

IN
~I13

(5“4 @ (2r- (1+ 5/ogn/ 1)
2 ( )_Ce + <Z> . (127" log(n/ﬁ))e

< (%)766 + (12 (%) r log(n/ﬁ))e,

where step (i) follows from the bound m > d, and step
(i) from the bound ¢ < n/e.

Now note that the second term is only problematic for small
¢.For all ¢ > m =n- (167 - /log(1/r)), we have

¢
(12 (%) r 10g(n/£)) < (3/4)".
The ﬁzrst term, on the other hand, satisfies the bound
(2) "< (3/4)" for sufficiently large n.
¢) Case 2, £ > n/e: In this case, setting t, = 2,/n for
each /¢ yields the bound

(Z) 2e~t/2 4 <2r~ %)Z

<2 <n/2> e~ 4 (12r)

7677,
<c )

where we have used the fact that d <n/2 and r < 1/24.
Putting together the pieces from both cases, we have shown
that for all » € (0,1/24], we have

~| 3

A

nje
Pr{ sup |K,|>m} <cne” n 4 Z (3/4)¢
vEByx(r) f=m+1

< Cnefc'n + 4(3/4)max{d,1010g n}7
thus completing the proof of the claim.
d) Proof of claim (34b): The proof of this claim follows
immediately from the steps used to establish the previous
claim. In particular, writing

Pro | U IIErwl? = 2d + 20mlog(n/m)
TC[n]: wiflw]|=1
T|<m

ser{ U U lerel?
TC[n]

w:||lw||=1
|TI<m

z(\/awmmf}
el U U
(=1

TC ]wHwH 1

> (Va+ i+ v/imogtn/m) |
(2) Qi ( ) exp{—2mlog(n/m)}

IErwlf?

ny-em - 4,101
SQ(E) < 2e cmax{d, ogn}’

where step (iv) follows from the tail bound (35a). O
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3) Proof of Lemma 5: The lemma follows from some
structural results on the truncated Gaussian distribution. Using
the shorthand vol := wvol(K) and letting ¢ denote the
d-dimensional Gaussian density, consider a random vec-
tor 7 drawn from the distribution having density h(y) =
L (y)1{y € K}, and denote its mean and second moment
matrix by p, and 3, respectively. Also denote the recentered
random variable by 7 = 7 — p-. We claim that

llr]|2 < Clog (1/ vol) (36a)
Cool? T <%, < (14 Clog(1/vol)) I, and
(36b)

T is c-sub-Gaussian for a universal constant c. (36¢)

Taking these claims as given for the moment, let us prove the
lemma.

The claims (36a) and (36¢) taken together imply that the
random variable 7 is sub-Gaussian with parameter (? < 2¢2 +
2C'log (1/ vol). Now consider m i.i.d. draws of 7 given by
{m}; standard results (see, e.g., Vershynin [69, Remark
5.40], or Wainwright [70, Theorem 6.2]) yield the bound

1 & d d
Pr{IIIE me =Sl > ¢ <E 1/ - +5>}
=1

< 2exp (—enmin{g,6%}) .

Using this bound along with claim (36b) and Weyl’s inequality
yields

Amin <i an) > Cool* —¢? (i + wi + 6) 37)
mi4 m m

with probability greater than 1 — 2 exp (—cn min{d, §}).

Furthermore, when n samples are drawn from a standard
Gaussian distribution, the number m of them that fall in the
set K satisfies m > %n-no[ with high probability. In particular,
this follows from a straightforward binomial tail bound, which
yields

n - vol

Pr {m < } < exp(—cn - vol). (38)

log2(1/ vol)
vol3

with the bound (38) ensures that C pol? > %0’21 / % with high
probability. Setting § = C' vol? /o2 in inequality (37), we have

1 & C
)\min —_ ’LT > = [2
<miz;7'7'z ) = vo

with probability greater than 1 —2 exp (—cn vol? / 04). Putting
together the pieces thus proves the lemma. It remains to show
the various claims. O

a) Proof of claim (36a): Let 74 denote a random variable
formed as a result of truncating the Gaussian distribution to
a (general) set .4 with volume vol. Letting 1 4 denote its mean,
the dual norm definition of the /5 norm yields

Recall our choice n > Cd , which in conjunction

lnall = sup (v, pa)
veSd—1
< sup Elfv, 74)]
veSd—1
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Let us now evaluate an upper bound on the quantity
E[(v, T4)|. In the calculation, for any d-dimensional vector
y, we use the shorthand 3, := v'y and Yo = U\Tvy
for a matrix U\, € R¥*(d=1) having orthonormal columns
that span the subspace orthogonal to v. Letting A, C R
denote the projection of A onto the direction v, define the
set A\, (w) C R4 via

Ay (w) ={y. € R4y e Aand y, = w}.

Letting 14 denote the d-dimensional standard Gaussian pdf,
we have

El(v, T4)| = — / W)y
Y

vol
1
= vol |yv|¢(yv)¢d—1(y\v)dy
vol Jyeca
1
= a e, |yv|1/)(yv)
x ( / Ya-1(Y\o € A\v(yv))dy\v> dy,
Yo €A (Yo)
fyw)
0 1
< ool Yo [V (Yo) Ay, (39)
vo Yy EA,

where step (i) follows since f(y,) < 1 point-wise. On the
other hand, we have

ool = / () / Gardy,, | dy,
Yo EAy Yo €AY (Yo)

< / V(Yo)dyo.
Yp €A,
Combining inequalities (39) and (40) and letting w = y,,

an upper bound on ||, || can be obtained by solving the one-
dimensional problem given by

1
el < sup — / ol (aw)duw
scr vol Jes

(40)

s.t. (w)dw > vol.
weS

It can be verified that the optimal solution to the problem
above is given by choosing the truncation set S = (00, —3) U
[8,00) for some threshold 5 > 0. With this choice, the
constraint can be written as

21
vol < / P(w)dw < 2\/j—€ﬁ2/2,
|5 ™8

where we have used a standard Gaussian tail bound.
Simplifying yields the bound

B < 2+/log(C/ vol).

Furthermore, we have

1 C
— Jwlep(w)dw = — =712
vol |w|>p3 vol
0 @
~ 62 _ 1

< ¢y/log(1/ vol),
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where step (ii) follows from the bound Pr{Z > z} >

¥(z) (£ — &) valid for a standard Gaussian variate Z. Putting

z
together the pieces, we have

12 < clog(1/ vo).

|
b) Proof of claim (36b): Let us first show the upper
bound. Writing cov(7) for the covariance matrix, we have

ISl < WHeov ()l + Il 112

(iii)
< [ ]|, + C'log(1/ vol),

where step (iii) follows from the fact that cov(7) =< cov(Z),
since truncating a Gaussian to a convex set reduces its variance
along all directions [71], [72].

We now proceed to the lower bound. Let Px denote the
Gaussian distribution truncated to the set K. Recall that we
denoted the probability that a Gaussian random variable falls
in the set K by vol(K); use the shorthand vol = vol(K).
Define the polynomial

pu(r) = (2 = Ex~p, [X], u);

note that we are interested

infy,ega-1 Ex o, [pu(X)].
For 6 > 0, define the set

Ss:={x eR:p,(z) <0} CR%

Letting Z denote a d-dimensional standard Gaussian random
vector and using the shorthand o : = Ex..p, [X], we have

Pr{Z € S5} =Pr{(Z — a, u)* < §} (41)
:Pr{(a, u) — Vo < (Z, u) < {a, u)—l—\/g}

(42)
(o, u)+/8 D)
-/ la)de < 1/ 26,
(o, u) =8 m

where in the final step, we have used the fact that
P(x) < 1/4/27 for all x € R.
Consequently, we have

Expg [pu(X)]

in a lower bound on

(43)

— ~Ezlpu(2) 1{Z €KY

1
> mEZ[ u(Z) 1{Z € Kﬂsg}]

™ 1
> —E;[01{Z € KNS}

)
=—Pr{Z e K 5
ol I‘{ S 055}

(v) vol—4/26

> 5 il
- vol

Here, step (iv) follows from the definition of the set Ss, which
ensures that p, (z) > § for all x € S§. Step (v) follows as a
consequence of equation (43), since

2
Pr{Z € KNS5} = Pr{Z € K} -Pr{Z € S5} > vol—/=9.
s

Finally, choosing § = cvol? for a suitably small constant c,
we have Ex wp, [p.(X)] > C vol® for a fixed u € S?~!. Since
u was chosen arbitrarily, this proves the claim. O
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¢) Proof of claim (36¢): Since the random variable £ is
obtained by truncating a Gaussian random variable to a convex
set, it is 1-strongly log-concave. Thus, standard results [73,
Theorem 2.15] show that the random variable & is c-sub-
Gaussian. O
4) Proof of Lemma 6: For a pair of d + 1-dimensional
vectors (v,v’), denote by

nw (o) = #{i : zi € W(v,0")} (44)

the random variable that counts the number of points that fall
within the wedge W (v,v’); recall our notation W; for the
set of all wedges with Gaussian volume less than §. Since
each wedge is formed by the intersection of two hyperplanes,
applying Lemmas 10 and 11 in conjunction yields that there
are universal constants (¢, ¢’, C') such that

sup nw < con (45)

WeWs

with probability exceeding 1 — exp(—c'nd?), provided
n > 6%' In words, the maximum number of points that fall in
any wedge of volume § is linear in dn with high probability.

It thus suffices to bound, simultaneously, the maximum
singular value of every sub-matrix of = having (at most) cin
rows. Applying [44, Theorem 5.7] yields the bound'!

£ > < 10
Pr{s:?i}één Amax <Z &i&; ) > cln\/g} <n 10

€S

where we have used the lower bound n > c¢max{d,logn/d}
on the sample size.
Putting together the pieces, we have that if n >

cmax {d, loégzn }, then

sup )\max Z gz&: Scln\/g
Wews i, EW

with probability exceeding 1 — n =19

— exp(—c'né?). 0

APPENDIX C
PROOF OF THEOREM 2

We dedicate the first portion of the proof to a precise
definition of the quantity ~.

Let ©* € R**? denote a matrix with rows (65)7,j =
I,....k and let ¥ = ©*(©*)T € RF** We employ the
decomposition ©* = A*(U*)T, where A* € R*** is the
invertible matrix of coefficients and U* € R¥** is a matrix
of orthonormal columns. Note that for X ~ N(0,I;), the
vector in R with j-th component (X, 0¥) + b is distributed

Strictly speaking, [44, Theorem 5.7] applies to Gaussian random matrices,
i.e., without the appended column of ones. By multiplying each row of = with
an independent Rademacher RV (see the proof of Lemma 13) to obtain a sub-
Gaussian random matrix with the same singular values, and noting also that
the proof technique of [44, Theorem 5.7] relies on chaining and holds for a
sub-Gaussian random matrix, one can show that the same result also holds
for the matrix =.
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as Z +b* where Z ~ N(0,X) and the vector b* € R¥ collects
the scalars {07 }le in its entries. For Z ~ N (0,X), let

_ E [max(Z + b*)ZTx7'1]
VE [(max(Z +b%))2]-E[(ZT211)?]

denote the correlation coefficient between the maximum and
a particular linear combination of a multivariate Gaussian
distribution. Variants of such quantities have been studied
extensively in the statistical literature (see, e.g., James [74]).
For our purposes, the fact that max(Z+b*)Z # 0 for any finite
b*, coupled with a full-rank 3, ensure that p # 0 for any fixed
k. Also define the positive scalar ¢ : = \/E[(max(Z + b*))?],
which tracks the average size of our observations. Also recall
the quantity ¢ defined in the main section.

For each j € [k]| consider the zero-mean Gaussian random
vector with covariance (1-e —I)A*(A*)"(1-e] —I)T. This
is effectively a Gaussian that lives in k& — 1 dimensions, with
density that we denote by 1;(z1, x2, ..., 2-1,0, %41, ... Tk)
at point (x1,22,...,%j—1,0,241,...2%) (the density is not
defined elsewhere). Truncate this random vector to the region
{@; > b7 — b5 : i € [k]}; this results in the truncated Gaussian
density ¥;(x1,22,...,2j-1,0,2j41,...2) for each j € [k].

For any = € R* such that z; = 0, define

. o0 o0 oo
Fi(z) :/ / /
by bt b Jhr b
o0

i+17 Y

(46)

p

/ Vi(T1, . Tim1, T, Tig, - T ) AT,
by —b

. d$i+1d$i_1 . dJ?l (47)

to be the ¢-th marginal density of this truncated Gaussian
evaluated at the point x, with the convention that
FJ(-) = 0 everywhere. Also define the vector FJ by setting
its i-th entry to (F7); = F! (b; — bY).
Now let P denote the matrix with entries
P, = {(Fni/zk#(mk if i ] )
0 otherwise.
Note that the matrix P is the transition matrix of an irre-
ducible, aperiodic Markov chain, with one eigenvalue equal
to 1. Consequently, the matrix I — P is rank k& — 1. With this
setup in place, let

. 2 2 . y
:=min { p~0“, min E F7 Ap (X
Y 1 { 0 jElk’ . j( )k k( )

X \/)\k—l ((I—PT)(I—P))}

denote a positive scalar that will serve as a bound on our
eigengap.

Let M; = Emax(©*X +0*)X] and M, =
E [max(©*X +b*)(XX " — I,)] denote the expectations of
the first and second moment estimators, respectively.

For a random variable W ~ A/(b*,X), we often use the
shorthand

(49)
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Finally, collect the probabilities {m;}*_, defined in equa-
tion (9) in a vector 7 € R*. We use 1 to denote the all-ones
vector in k dimensions.

We are ready to state our two main lemmas.

Lemma 7: (a) The first moment satisfies

My=(©*)"n and (M, (0%)'S"1)=pg||(©*) TS "1]|.
(b) The second moment satisfies

Ms =0, Mg(@*)TZfll =0, rank(M3)=k—1 and

/\k,l(Mg)z?gEi]? STE | (D)
k]

% \/Mect (= PTY(I = P)).

We combine this lemma with a result that shows that the
empirical moments concentrate about their expectations.
Lemma 8: For an absolute constant C', we have

2
Pr{H]/W\l = M1H2 > C (0 +¢?) legT(nk)} < 5dn~'2,
(50a)

= dlog®(nk
Pr{|||M2 — Ma|2 > C (02 +<?) M} < bdn~—12,
n

-
(50b)

Lemma 7 is proved at the end of this section, and Lemma 8
is proved in Appendix G-A. For now, we take both lemmas
as given and proceed to a proof of Theorem 2.

Recall the matrix M = M7 ® M1+ My and let M = M7 ®
Mj+ M. By Lemma 7, the matrix M is positive semidefinite
with k£ non-zero eigenvalues. In particular, using the shorthand
0 := (0*)T¥~11, we have § € nullspace(M>), and so

0TME = (0, My)* = p* 2?0,
where the final inequality follows by part (a) of Lemma 7.
Thus, there is a k-dimensional subspace orthogonal to the

nullspace of M (and so the range of M is k dimensional). For
any unit vector v in this subspace, we have

v’ Mv > min{p®0®, \p_1(Ms)}.
Thus, the kth eigenvalue of M satisfies

Ak(M) > min{ p?0*, mi FI)g | A(2
00 2 min{ 2 mip | S | ()

N ) s

where the equality follows by definition (49). By Lemma 8,
we have

M — M

2 42| My ® My — My @ My

op op

dlog(nk)
n

2 < 2| My — M,

op —

<20 (o® +¢? logQ(nk))
—~ 2 o 4
+16 HM1 - M1H 1M + 4 HM1 - MIH

< (02 +¢? logQ(nk)) 7d 1ogn(nk;)’
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where the last two inequalities each hold with probability
greater than 1 — 2n 10,

We denote the estimated and true eigenspaces by U and U*,
respectively. Applying [75, Theorem 2] yields the bound

P PN 0% +¢2 l<:allog3 nk
(U f—UUTmfsc( ) (nk),

72 n
thereby proving the required result. O
We now proceed to a proof of Lemma 7.

A. Proof of Lemma 7

Recall our decomposition ©* = A*(U*)T, where U* €
R*F is a matrix of orthonormal columns, and A* € RF*k
is an invertible matrix of coefficients. Since we are always
concerned with random variables of the form ©*X with X
Gaussian, we may assume without loss of generality by the
rotation invariance of the Gaussian distribution that
U* = [ed ed... €f], where e denotes the ith standard
basis vector in R<.

We let X] = (X;, X;11,...,X;) denote a sub-vector of
the random vector X, so that by the above argument, we have
o' X £ A*xF.

a) Calculating M;:
we have

Using the shorthand Z = A*XF,

M; = Emax(0*X + b")X]
= U E[max(A* X} + b*)X]
=U*(A*) 'E[max(Z + b*)Z].

Now using Stein’s lemma,'? by a calculation similar to the
one performed also in Seigel [76] and Liu [77], we have

Elmax(Z + b*)Z] = X,

where 7 € RF is the vector of probabilities, the j-th of which
is given by equation (9), and we have used ¥ = A*(A4*)" =
(©*)(©*)T to denote the covariance matrix of Z.

Therefore, we have the first moment

_ U*(A*>—1A*(A*)Tﬂ_ _ (@*)TT{'.
b) Correlation bound: By computation, we have
<M1, (©")'S7'1) = E [max(Z + b*)(Z, £7'1)]
p-VE[(max(Z + b*))2] -
2 po- 09 TE 1],

E[{Z, £-11)?]
= po-

where step (i) follows from the definition (46) of the quantity
p, and step (ii) from explicitly calculating the expectation and
recalling the definition of p.

20ne can also derive My = (©*)T 7 directly applying Stein’s lemma
EXf(X) =EVf(X) to f(z) := max(©* X + b*) so that V f(z) equals
9; whenever x belongs to the region when j is maximized.
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c) Positive semidefiniteness of M;,: For some u € R4,
let f(X) = max(0*X + b) and g, (X) = (u, X)?. Since g,
is an even function, we have E[g,(X)X] = 0. Furthermore,
since both f and g, are convex, applying Lemma 15 (see
Appendix G) yields the bound

E[f(X)gu(X)] = E[f(X)]E[g.(X)],

so that substituting yields the bound
u' Emax(0*X +0) XX "u > v E[max(0*X + b)I]u.

Since this holds for all © € R?, we have shown that the matrix
E[max(0*X +b)(XX " — I)] is positive semidefinite.

d) Calculating M>: We now use Stein’s lemma to com-
pute an explicit expression for the moment Ms. By the
preceding substitution, we have

M, = ]E{max(A*Xf +b%)

X1 (Xl )T — I
Xg+1(Xf)T

Xy (X;?+T1)T
X (X )T = Tak

Iy,)] 0}

_ [E [max(A*X{ +b*)(XF(X) " -

0 0
Once again using the substitution Z = A*XF and
¥ = A*(A*)T, we have
My=U*(A*)"'E [max(Z + b*)(Z2Z " -%)] (A*)" (UM,

and applying Stein’s lemma yields

E [max(Z +b*)(ZZ" — %)) = £ =13,

where II € RF*F denotes a matrix with entry i,j given
by II;; = E[Z;1{Z; 4+ b} = max}], and the final equality
follows by symmetry of the matrix.

Simplifying further, we have
My = U*(A*)~'iA*(U™) .
e) Nullspace of M,: Notice that IT1 = E[Z] = 0, so that

Moy(0) T2 = U*(A*) " IA*(U*) TU*(A*) TS 711 = 0.
f) Rank of M; and bound on \;,_;(M>): By the previous
claim, we have rank(Ms) < k — 1. Furthermore, the matrix
M> has d — k eigenvalues equal to zero, and the other k of
its eigenvalues equal to those of II, all of which are positive
(by the PSD property of M>), and at least one of which is
zero. Thus, it suffices to work with the eigenvalues of II; in
particular, a lower bound on A1 (II) directly implies a lower
bound on A;_1(Ma).
Let us first show that A\;_1(IT) > 0. Since we know that
a zero-eigenvector of II is the all-ones vector 1, it suffices to
show that " Iz # 0 when (x, 1) = 0. We use the shorthand
x 1 1 to denote any such vector.
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We now explicitly evaluate the entries of the matrix II.
We denote the jth column of this matrix by II;. We have

II; = E[Z1 {Z; + b} = max}]
=E[1-Z;1{Z; + b; = max }|
—E[(1-Z; — Z)1{Z; 4+ b} = max}]
=1-E[Z;1{Z; + b; = max }]

—E[(1-Z; — 2)1{Z; +b; =max}]. (51

For any = | 1, we have 2" 1E[Z1 {Z + b* = max}]"1 =0,
so that in order to show that 2 T ITz = 0, it suffices to consider
just the second term in the expression (51).

In order to focus on this term, consider the matrix ¢ with
column j given by

®; =E[(1-Z; — 2)1{Z;~Z > b" — b} }].

where the indicator random variable above is computed
element-wise. We are interested in evaluating the eigenvalues
of the matrix —®.

The quantity ®; can be viewed as the first moment of
a (lower) truncated, multivariate Gaussian with (original)
covariance matrix

=(1 'e;r — I)A*(A*)T(l . ejT — I)T.

Recalling the column vectors F7 defined (in equation (47))
for each j € [k] and applying [78, (11)] (see also Tallis [45]
for a similar classical result), we may explicitly evaluate the

vector ®;, as

(I>j = I{jF]
(;) (1 eT I)A*(A*)TG]

where in step (iii), we have let G; denote a vector in R* with

entry ¢ given by

)it g A
(Gy)i = {Ek# (F7)j otherwise.

Letting G € R¥** denote the matrix with G, as its jth
column, and for x L 1, we have

2" (—®)r =2 Gz,

since once again, for each x 1 1, we have Tl -
e A*(A")T(1-ef —I)Tz=0.

Now consider the matrix XG. In order to show the claimed
bound, it suffices to show that 2 ' ¥ Gz #0ifz L 1. We show
this by combining two claims:

Claim 1: The nullspace of G is one-dimensional.

Claim 2: Both the left and right eigenvectors of XG that
correspond to this nullspace are not orthogonal to the 1 vector.

We show both claims concurrently. The nullspace of G
is clearly non-trivial, since 1TG = 0. Let us first show,
by contradiction, that the left eigenvector corresponding to this
nullspace dimension is not orthogonal to the all-ones vector.
Toward that z, denote the aforementioned left eigenvector
which also satisfies (ry, 1) = 0. By virtue of being a
left eigenvector, x, satisfies Xxy = 1, or in other words,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

xe = £ '1. Since z; L 1, we have 1'X1 =
contradicts the positive definiteness of .

It remains to establish that the null-space of G is in fact
only one-dimensional, and that its right eigenvector is not
orthogonal to the all-ones vector. Notice that we may write
the matrix as

0, but this

G = (I — P")diag(@),

where we recall the matrix P from equation (48). Since all
of the entries of P are positive and sum to 1 along the
rows, the matrix P can be viewed as the transition matrix
of a Markov chain. Furthermore, since this Markov chain
communicates, it is irreducible and aperiodic, with only one
eigenvalue equal to 1. Thus, the matrix I — PT is rank
k — 1, thereby establishing that the nullspace of G is one-
dimensional. Furthermore, the right eigenvector z, of G is a
non-negative vector by the Perron-Frobenius theorem, so that
it cannot satisfy (z,, 1) = 0.

We have thus established both claims, which together show
that A;_1(M2) # 0. Further noting that the matrix M is
positive semi-definite, we have

Amin(E)/ M1 [(T = PTY(T = P,

A M) > min G
k—1(M2) = JEk] 73"

and this completes the proof of the claim, and consequently,

the lemma. U

APPENDIX D
PROOF OF THEOREM 3

Recall the matrix V formed by appending a standard basis
vector to U. First, we show that there is a point among the
randomly chosen initializations that is sufficiently close to the
true parameters. Toward that end, let ¢y : = BmaXA (for reasons
that will be apparent shortly) and define 3° = Vv for each
IS [M] with M = {ﬂz}ge[]\j]. Let

B; := argmin||co — B7]|.
peM’
We claim that
— 5] < cor + Brax|UU T —

3 Ut (U*
max llcol3; o’

o (52)

Taking this claim as given for the moment, let us proceed
with the rest of the proof. Define the shorthand

2
,P(ﬁlw")ﬁk maX <€176>)

€[#]

(Jmax gz s ﬁ]

’L n/2+1

for each set of parameters f31,. .., 3, € R¥TL Let

9 n N 2
e(vy, ..., V) = argmin — Z (yi—cmax (&, Vyj>> ,
c>0 N JE[K]
i=n/2+1
and recall that (l/f, RN l/g) are the minimizers returned by
the algorithm; use the shorthand ¢! := c(v?, .. .,1/2). Note

that trivially, we have ¢! > 0 with probability tending to
1 exponentially in n, so that this pathological case in which
the initial partition is random can be ignored.
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Applying Lemma 17 from Appendix H-B yields the bound

Pr {P(cﬁ5§0), . cuﬁéo)) 201{ m>151 P(cVir,....cVu)
c
Vi,V €[M]

*t(VIog M + c1) }}

—cant(y/log M+
< e~c2n (v1og 01)7

valid for all ¢ > y/log M + ¢y and suitable universal constants

c1 and co. Setting t = +/logM + c¢;, we have on the
complementary event that
_ _ o2log M
P, ..., B8") < erPleobr,. .. cob) + o1 s
with probability greater than 1 — e~ 2", s
To complete the proof, let C(mmin, k) : = c2 (ﬂk for a

suitable constant co and apply Lemma 16 twice (note that here
we use the assumption n > CdT log? (k/7min)) in order to
obtain

>

JElk]

)

B |7 < C(mins k) - PR, .,

r,rg[r];] 16 —

o?log M
n

. C('/Tmim k‘) . {'P(Coﬁ_l, e 7COBk) +

2log M
<cp- C('/Tminv Z Og

QZ lleo3; — 851 +

7j=1

3 2log M
< c1 - C(Tmin, k) - {Zki max [|co; — 35 ||* + &}
J€(k] n

or® + Bl UT T —

U*(U*)T

(i)
<ec- C(Trminv k){4k (

2log M
+z_§a_}
n

2
op

on an event of suitably high probability, where step (ii) follows
from claim (52).

Finally, note that provided the RHS above is less than A2 /4,
each minimum on the LHS is attained for a unique index j’.
This condition is ensured by the sample size assumption of
the theorem; thus, we have

rcn>igl dist ({ ﬂ(o)} {ﬂ*} ) < c1 - C(Tmin, k)

PPN 2log M

< {8, (171007 v 2) + ML
n

Combining the various probability bounds then completes the
proof. O
g) Proof of claim (52): Recall that U* is a matrix of

orthonormal columns spanning the k-dimensional subspace

spanned by the vectors {67, ..., 6;}. Define the matrix
. |U* 0]
v=fo

for each j € [k], we have 37 = V*v; for some vector v} €
R*+1. Also define the rotation matrlx

_[0TUr o
o=["" 1)

1875

uuTur-U*t 0
0 0
*)T|| for any unitarily invariant norm

so that VO—V* = and we have |H70 -

V| = 00T -
- 1-

Now for each j € [k] and £ € [M
inequality yields

Ur(U

], applying the triangle

leoB’ — Bl < lleoV* — VOur|| + [VOv; — V|
< [leov* =0Vt || + i IIVO — V¥,
< cor + BmaXmUUT —U*(U*) s

where the last line follows by definition of the r-covering of
the set B**!, which ensures the existence of some index ¢
such that [|cor!—Ov5| < cor. O

APPENDIX E
FUNDAMENTAL LIMITS

In this section, we present two lower bounds: one on the
minimax risk of parameter estimation, and another on the risk
of the least squares estimator with side-information.

A. Minimax Lower Bounds

Recall our notation ©* for the matrix whose columns con-
sist of the parameters 07, ...,0;. Assume that the intercepts
by,..., by are identically zero, so that {; = z; and = = X.
For a fixed matrix X, consider the observation model

y = max (XO*) +¢ (53)

where y € R™, the noise € ~ N(0,0%I,,) is chosen indepen-
dently of X, and the max function is computed row-wise.

Proposition 2: There is an absolute constant C' such that
the minimax risk of estimation satisfies

de

inf sup E —|||X(@ o9z =cC

@ o ERkXd
Here, the expectation is taken over the noise €, and infimum
is over all measurable functions of the observations (X, y).
Indeed, when X is a random Gaussian matrix, it is well
conditioned and has singular values of the order y/n, so that
this bound immediately yields

kd

inf sup E {—|||@ CH |||2]
@ ©*cRkxd
Let us now provide a proof of the proposition.

Proof: The proof is based on a standard application of
Fano’s inequality (see, e.g., Wainwright [70, Chapter 15] and
Tsybakov [79, Chapter 2]). For a tolerance level § > 0 to be
chosen, we choose the local set

F= {XG) ceR™* | X0, < 46\/kn}

and let {XO',...,XOM} be a 26vkn-packing of the set
in the Frobenius norm. This can be achieved by packing the
j-th column Q; := {X6; ||| X6;|, < 46\/n} at level 26\/n
in ¢ norm for all j € [k]. Standard results yield the bound
log M > C - kdlog 2.
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For each i # j, we have

X0 -6/
20Vk < 1X(6" ~ )l < 85Vk. (54)
vn
Let P; = N (max(X(©7)),0%I,) denote the distribution
of the observation vector y when the true parameter is ©7.
We thus obtain

Du (P, | ;) = |max(X (67)) — max(X(67))||2

707 |

1 . .
< —[X(©7 - 092
5z 1X(© O,

where the inequality follows since the max function is
1-Lipschitz in /5 norm. Putting together the pieces yields

32k6%n

2 )

Dy (P || ;) < .

so that the condition
e > Dei(Pes || Por) +log2
log M

1
< Z
-2

is satisfied with the choice 62 = C#. Finally, applying
Fano’s inequality (see, e.g., [70, Proposition 15.2]) yields the
minimax lower bound

o2kd

infsupE | 1X(0 - 02| = c T (s5)
e o* n n

O

B. Performance of Unconstrained Least Squares With
Side-Information

In this section, we perform an explicit computation when
k = 3 and d = 2 to illustrate the cubic 7y, dependence
of the error incurred by the unconstrained least squares
estimator, even when provided access to the true partition
{85085, -, B}

We begin by defining our unknown parameters. For a scalar
a € (0,7/4), let

07 =sin(a) - e1,05 = cos(a) - e, and 05 = — cos(a) - ea,

and set b7 =0 for j = 1,2,3.
Now an explicit computation yields that the cone on which
07 attains the maximum is given by

Cri= {"’” €R?: (z, 67) > max(z, 9”}

jelk] Y
={z€R?:21 >0, |z2] < 21 tan(a)} .

Now consider a Gaussian random vector in R? truncated to
that cone. In particular, consider a two-dimensional random
variable W with density ¢ (x)1 {x € C1}/vol(C1), where
is the two-dimensional standard Gaussian density and vol(.S)
denotes the Gaussian volume of a set S. Note that we have
vol(C1) = o/ by construction.

Let us now compute the second order statistics of W, using
polar coordinates with R? denoting a 3 random variable. The
individual second moments take the form

E[W2] = gE[RQ] (%/ cos? ¢d¢> =1,

—Q

«
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and

E[W2] = “E[R? (% /a sin> ¢d¢)

= é (o —sin(2a0) /2) ~ a?.

On the other hand, the cross terms are given by

E[W, W] = ~E[R?] (i / sin(g) cos(¢)d¢>) —0.
o 27 J_,,
Thus, it can be verified that for all « € [0,7/4], the second
moment matrix of W has a tuple of singular values (1, ca?)
for an absolute constant c.

Let us now use this calculation to reason about the least
squares estimator. Drawing n samples from the Gaussian
distribution on R?, we expect ny ~ %n of them to fall in the
set C; with high probability. Collect these samples as rows of
a matrix X;. When n is large enough, i.e., on the order of
a~3, standard bounds (as in Section B-A.3) can be applied to
explicitly evaluate the singular values of the matrix n%X X
In particular, we have

1 1
A\ (—Xfxl) =c and X\ (—Xf)g) = ca’.
ny ny

We now provide the n; x 2 matrix X; as side informa-
tion to a procedure whose goal is to estimate the unknown
parameters. Clearly, given this matrix, a natural procedure
to run in order to estimate 67 is the (unconstrained) legst
squares estimator on these samples, which we denote by 6;.
As is well known, the rate obtained (in the fixed design
setting) by this estimator with o-sub-Gaussian noise is
given by

E (116 — 0311%] = o er(x] X1) !

where the last two relations hold with exponentially high
probability in n. We have thus shown that the unconstrained
least squares estimator (even when provided with additional
side information) attains an error having cubic dependence
on a ~ Tyin. While this does not constitute an information
theoretic lower bound, our calculation provides some evidence
for the fact that, at least when viewed in isolation, the
dependence of our statistical error bound (15) on i, is
optimal for Gaussian covariates.

APPENDIX F
BACKGROUND AND TECHNICAL LEMMAS
USED IN THE PROOF OF THEOREM 1

In this section, we collect statements and proofs of some
technical lemmas used in the proofs of our results concerning
the AM algorithm.
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A. Bounds on the “Volumes” of Wedges in R?

For a pair of scalars (w,w’) and d-dimensional vectors
(u,u’), recall that we define the wedge formed by the d + 1-
dimensional vectors v = (u, w) and v' = (u/, w') as the
region

W(v,v'") = {z € R": ((z, u) + w) - ({z, v') +w') < 0}.
Note that the wedge is a purely geometric object.

For any set C C R, let

= X
voi(€)=  Pr {XeC)

denote the volume of the set under the measure corresponding
to the covariate distribution.

We now bound the volume of a wedge for the Gaussian
distribution.

Lemma 9: Suppose that for a pair of scalars (w,w’),
d-dimensional vectors (u,u’), and v = (u, w) and v/ =
(v, w'), lo—o"] 1/2. Then, there is a positive

we have Tl
— ' 1/2( 2|[ull )
log
[l [[v— ']

constant C' such that
1) Proof of Lemma 9: Using the notation § = (z,
R to denote the appended covariate, we have

{<£a ’U> : <£7

where the probability is computed with respect to Gaussian
measure.

In order to prove a bound on this probability, we begin by
bounding the associated indicator random variable as

(€, v)?}
t}h, (56)

ool(W (v, ")) < cle =21l

1) €

pol(W(v,v")) = Pr V') <0},

1{<€’ U> : <€7 UI> < 0} < 1{<§7 v _U>

>
<S1{(& vV -0 >t +1{(& ) <

where inequality (56) holds for all ¢ > 0. In order to bound
the expectation of the second term, we write

Pr{(¢, o) <t} =Pr{lul’x2 <t}

<i>< ot )1/2
S|\ —=
[l

where x?2_. is a non-central chi-square random variable cen-
tered at o, and step (i) follows from standard x? tail bounds
(see Lemma 14).

It remains to control the expectation of the first term on the
RHS of inequality (56). We have

Pr{(¢ v —v)* >t}
<Pr{2(z, v —u)? +2(w —w)? >t}

t
<Pl =2 5~ o -}

1877

Now, invoking a standard sub-exponential tail bound on the
upper tail of a x? random variable yields

Pr{<§, v —v)? > t}

Co t 2
§clexp<—7{—— V=0 })

TR | [

C2 t 7112
SCleXp(—m{§—HU—U” })

Putting all the pieces together, we obtain

vol(W (v, v')) < ¢1 exp < o = o {t o —o'|? })

1/2
et

+ < 2) .
[l

Substituting ¢ = 2¢|jv — o'||* log(2]|ul|/||v — v'||), which is
a valid choice provided |UH_J|’| < 1/2, yields the desired

result. U

B. Growth Functions and Uniform Empirical Concentration

We now briefly introduce growth functions and uniform
laws derived from them, and refer the interested reader to
Mohri et al. [80] for a more in-depth exposition on these
topics.

We define growth functions in the general multi-class set-
ting [54]. Let X denote a set, and let F denote a family of
functions mapping X — {0, 1, ..., k—1}. The growth function
Il : N — R of F is defined via

lz(n) = LN @), f2), s flan)): f e FH-

In words, it is the cardinality of all possible labelings of n
points in the set X' by functions in the family F.

A widely studied special case arises in the case k = 2, with
the class of binary functions. In this case, a natural function
class F is formed by defining C to be a family of subsets of
X, and identifying each set C' € C with its indicator function
fo:=1¢: X — {0,1}. In this case, define F¢ = {fc: C €
C}. A bound on the growth function for such binary function
provides following guarantee for the uniform convergence for
the empirical measures of sets belonging to C.

Lemma 10 (Theorem 2 in [81]): Let C be a family of subsets
of a set X. Let u be a probability measure on X', and let
fom, 1= % >, 6x, be the empirical measure obtained from
m independent copies of a random variable X with distribution
. For every u such that m > 2/u?, we have

17 HTp €

Pr{sup |fim (C) — u(C)] > u} <Az, (2m) exp(—mu?/16).
cecC
(57)

We conclude this section by collecting some results on
the growth functions of various function classes. For our
development, it will be specialized to the case X = R.

Define the class of binary functions F; as the set of all
functions of the form

Jop(z) 1= sgn((, 93 +0)+ 1;

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 26,2023 at 08:45:00 UTC from IEEE Xplore. Restrictions apply.



1878

specifically, let Fy := {fo: 0 € R%,b € R}. In particular,
these are all functions that can be formed by a d-dimensional
hyperplane.

Using the shorthand B = { By, ..
function

., Bi.}, define the binary

k
9ok bk (.13) = H f97:,b7: (l‘),
i=1

and the binary function class corresponding to the intersection
of k hyperplanes

Gr g ::{gg,f,b,f L01,....0, € R, bl,...,bkeR}.

Finally, we are interested in the argmax function over
hyperplanes. Here, define the function

mgr i (x) : = argmax ((6;, z) +b;) — 1,
JElk]

mapping R? + {0, ..., k—1}. The function class that collects
all such functions is given by

Mk::{mellc’bllc :91,...,9k€Rd, bl,...,kaR}.

The following results bound the growth functions of each of
these function classes. We first consider the function classes
Fr and Gy, for which bounds on the VC dimension directly
yield bounds on the growth function.

Lemma 11 (Sauer-Shelah (e.g. Section 3 of Mohri et
al. [80])): We have

NG
Iz, (n) < (d+ 1) , and (58)
k(d+1)
en
Hg, . (n) < <d+ 1> . (59

The second bound can be improved (see, e.g. [82]), but we
state the version obtained by a trivial composition of individual
halfspaces.

The following bound on the growth function of the class
M, is also known.

Lemma 12 (Theorem 3.1 of Daniely et al. [54]): For an
absolute constant C, we have

Mrt () < (Ck:(d+1)log(k:d)

> Ck(d+1)log(kd)

C. Singular Value Bound

We now state and prove a technical lemma that bound the
maximum singular value of a matrix whose rows are drawn
from a sub-Gaussian distribution.

Lemma 13: Suppose that the covariates are drawn i.i.d. from
a n-sub-Gaussian distribution. Then for a fixed subset S € [n]
of size ¢ and each t > 0, we have

Pr {Amax (E5Zs) =L+ (Vid + d + et)} < 2 tmin{t*}

where 77 = max {n, 1}.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

1) Proof of Lemma 13: Let {z}i_, denote i.i.d.
Rademacher variables, and collect these in an ¢-dimensional
vector z. Let D = diag(z) denote a diagonal matrix, and note
that by unitary invariance of the singular values, the singular
values of the matrix =g = DZg are the same as those of Zg.

By construction, the matrix =g has i.i.d. rows, and the i-th
row is given by z;(x;, 1). For a d + 1 dimensional vector
A= (A, w) with A € R? and w € R, we have

E exp((X, zi(4, 1)))}

ew w
2

Elexp(\, 20))) + S5 - Elexp(—(A, 2:))

= exp(INPP/2) - 5 (e 4+ )
< exp(IAI%72/2) - exp(u?/2) < exp([X|*7/2).

where we have used the fact that z; is zero-mean and 7 sub-
Gaussian. _

Since the rows of =g are i.i.d., zero-mean, and 7)-sub-
Gaussian, applying [70, Theorem 6.15] immediately yields the
lemma. |

D. Anti-Concentration of x*> Random Variable

The following lemma shows the anti-concentration of the
central and non-central y2 random variable.

Lemma 14: Let Z, and Zé denote central and non-central
x? random variables with ¢ degrees of freedom, respectively.
Then for all p € [0, ], we have

Pr{Z; <p} < Pr{Z <p} < (% exp (1 N 23))5/2

l
= exp <_§ {log;—;—i-%—l])

1) Proof of Lemma 14: The fact that Z 2 Zy follows from
standard results that guarantee that central y? random variables
stochastically dominate their non-central counterparts.

The tail bound is a simple consequence of the Chernoff
bound. In particular, we have for all A > 0 that

(60)

Pr{Z, < p} = Pr{exp(—AZ;) > exp(—\p)}
< exp(Ap)E [exp(—AZ)]

= exp(Ap)(1 +2X\) 5. (61)

where in the last step, we have used E [exp(—AZ;)] = (1 +
2)\)~%, which is valid for all A\ > —1/2. Minimizing the last
expression over A > (O then yields the choice \* = % f; -1/,

which is greater than O for all 0 < p < /. Substituting this
choice back into equation (61) proves the lemma. O]

APPENDIX G
BACKGROUND AND TECHNICAL LEMMAS USED
IN THE PROOF OF THEOREM 2

We begin by stating a result of Harge [83, Theorem 1.2]
(see also Hu [84]) that guarantees that convex functions of a
Gaussian random vector are positively correlated. We state it
below in the notation of the current paper.
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Lemma 15 ( [83]): Let f and g be two convex functions on
R4, and let X be a standard d-dimensional Gaussian vector.
Then

E[f(X)g(X)] = (1 + (m(g), m(f))E[f(X)]E[g(X)],
(62)

where for any d-variate function h, we have m(h) = %.

We also prove Lemma 8, which was used in the proof of
Theorem 2.

A. Proof of Lemma 8

We prove each bound separately. First, by the rotation
invariance of the Gaussian distribution, we may assume that
U* =[ef ... €], so that the max is computed as a function
of the k coordinates X7, ... Xy.

We also define some events that we make use of repeatedly
in the proofs. For each i € [n], define the events

& = {|zi ;| < 5+/log(2nk) for all 1 < j <k}, and
Fi = {Jei] < 50/Tog(@m)}.

Note that by standard sub-Gaussian tail bounds, we have
Pr{€} < 2n7'2 and Pr{Ff} < 2n~'2 for each i € [n].
For notational convenience, define for each 7 the modified
covariate z; = x; - 1{&;}.

We have

| max(0*z; +b*)| < CI%?;T 107 1[1/log(nk) + [0}
j

< (C\/W) s

almost surely, where in the second bound, we have used the
shorthand ¢ = max; (||0]|s + [|b]l1) as defined in equa-
tion (18). With this setup in place, we are now ready to prove
both deviation bounds.

1) Proof of Bound (50a): Let us first bound the deviation
of the first moment. We work with the decomposition

n/2
My—M;= - Z max(0*z;+b" )z, —E[max(0* X +b*) X

i=1

T}

i

n/2

2
=1 T2

By triangle inequality, it suffices to bound the norms of
each of the two sums separately. We now use the further
decomposition

T! = max(©*z; + b*)z; — max(0*z; + b*)z;

P;
+ max(0%z; + b")z; — E[max(0%z; + b")z;]
Qi
+ E[max(©*z; + b%)z;] — E[max(0*z; + b*)x;] .

R;

Since z; = x; with probability greater than 1 — 2n~'2, the
term P; = 0 on this event.

1879

Also, for each fixed j € [k], applying the Hoeffding
inequality yields the bound

2 n/2 nt?
P — il >ty <2 —————— 5 ¢ -
BB ;Q N eXp{ 802<2(log(nk))2}
On the other hand, for j € [d] \ [£], we have

n/2 n/2

2 2
o ZQi,j < §E Zzi,j
=1 i=1
n/2

2
=g ﬁ;xi’j .

Standard Gaussian tail bounds then yield

n/2

2 2
Pr E;QM > ¢ty/log(nk) §2exp{—%}

for each ¢ > 0. Putting together the pieces with a union bound
and choosing constants appropriately, we then have

1
+o C'(d — k)s? 1og(nk)} < 2dn~ 2,

It remains to handle the final terms { R, }?_,. Note that when
j ¢ [k], we have R; ; = 0. It therefore suffices to bound the
various R; ; terms when j € [k]. We have

|R; ;| = |E[max(©*z; + b%)z; 5]
— E[max (0 z; +b%)z; j1{&}]
— E[max(©xz; + b*)z; j1{&}]]
= |E[max(©*x; + b")x; ;1 {&;}]|
Expanding this further, we have

|Rij| < E[%%(K@L zi)| + b7 )2 511 {E7}]

SE [z jlll2il oo (197100 + 167l ) L {E77H]
= SE [Jzi sl 001 {E]}]

k
<< E(lwigllzielt {€}].

{=1

Note that for a pair (X7, X3) of i.i.d. random variables,
Jensen’s inequality yields the bounds

E[| X1 X2|1 { X1, Xo> A} <E[X?1{|X1|>A}]VA>0, and
E[|X11{|X1] > A\}] < E[X71{|X1| > A}]VA > 1.

Furthermore, if X is a standard Gaussian random variable,

then a simple calculation (see also Burkardt [85]) yields the
bound

1
—)\e*)‘2/2, for all A > V2.
2T

E[X? | X] 2 A < 5
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Putting together the pieces with A =5
|R; ;> < Ck*c*log(nk)(nk) 4,

log(2nk), we have

and summing over j € [k] yields the bound

n/2 2
= Z Ril| < Ck%2log(nk)(nk)=2*
Finally, putting together the pieces with a union
bound yields the desired bound on the random variable

2 /2 1

n Ei:l Tz J

The second term can be bounded more easily; in particular,
on the intersection of the events {F;};_,, we have

n/2 2 n/2 2
Z T2 < Co? logn Z T;
< Co? (d+ logn) 1ogn7

n
where the final bound holds with probability greater than 1 —
cn~ ', Finally, putting the bounds together yields the result.

2) Proof of Bound (50b): Once again, we decompose the
required term as

n/2
J/W\Q — My = Zmax x4+ bY) (xza:;r - Id)
e
9 n/2
+ - ;ei (xzsz — Id) .

We use the further decomposition

T =i + ki + pi

where,
¢; = max(0*z; + b*) (xlxzT — Id)
— max(©%z; + b¥) (zlz;r - 1),
ki = max(©*z; + b*) (zzz;r - Id)
— E[max(0*z; + b*) (zlzzT — Id)],
and
pi = E[max(©z; +b) (zzz;r —14)]
— Emax(0*z; + b*) (z;2] — I)].

As before, since z; = x; with probability greater than 1 —
2n =12, the term ¢; = 0 on this event.
Let us further decompose x; as

)y = (1) +,€(2) s ,,%(_3),
with

ngl) = (max(@*zi +0") +

§\/1og(nk)) 2i%
- E[ (max(@*zi +0°) + g\/m) zlz;r} ,
k2 = c\/log(Mk)E [2:2,] = I,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

and

K = (E[max(©*z +b*)

(2

—max(©*z + b)),

so that

1 2
|||—Zm|||op§m Z RO Zn“mw
n/2

2 (3)
Haast)
i=1
Since |max(©*z + b*)] < Cg

tor \/max(@*zi +b*) + Csy/log(nk)z; is well-defined and
bounded; sub-Gaussian concentration bounds [70] can there-
fore be applied to obtain

1 <& d d
1L 3 Al > ersognb)? {\/; vy 5} ]
i=1

< o exp (—n min(d, (52))

log(nk), the random vec-

where ¢ log(nk) = max(©*z; + b*) + log(nk) <
2¢log(nk). Reasoning similarly for the second term, we have

Ly d d
]P’{IIIE Z f%('z o > c16?(log(nk))? {\/; + - + 5}]
i=1

< ¢ exp (—nmin(é, 62)) .

2 we have

Combining these bounds setting § = c14/ 1,

n

2 1 2
125l + 12 Z 51l

i=1 z:l

< € (log(nh) {@ + g}

with probability at least 1—cexp (—c'd).

The term /@5-3), on the other hand, can be controlled
directly via Hoeffding’s inequality. Since max(©*z; 4+ b*) is
Cs+/log(nk) sub-Gaussian, we obtain

71/2

t2
22l 2 sy <vew{-31.

32

Choosing t = ¢4/ ‘”17# and putting together all the pieces,
we obtain

d+logn d-+logn
|||—Zm|||0p§0< @(M))Q{V BT S }

+ cs/log(nk) \/g

12

with probability at least 1—cn™
It remains to handle the terms { pz}fﬁ, and to do so, we use
a similar argument to before. We first bound the absolute value
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of the (p,

1pi(p, )| = [E[max(0* 2 + b*)z2; (p, )]
— Elmax(0*z; + b")z;x :(pa Q)1 {&}]
+ Emax(0*z; + b*)z;z; (p,q)1{EF}]|
= [Emax(0*z; + b*)z;z; (p, q)1{EF}|

q)th entry of each matrix as

Expanding this further, we have
lpi(p, @)l < Elmax([(67, @il + |br])|zipwig1{E7)]

<SR [z pi gl il o1 {EF ]

<SE ||zipwigl Y lwiell {€}
Le(k]

Also note that p,, = 0 unless p € [k],q € k]
Hence we finally need to control the terms of the form
E [|X]31{|X| > A}] for a standard Gaussian X. Substituting
A = b5y/log(nk), a simple calculation of truncated third
moment of standard Gaussian ([85]) yields

1pi(p, q)| < <log?(nk)(nk)=*°

and proceeding as before provides a strictly lower order bound
on [|pille than the remaining terms.
The term 77 can be bounded more easﬂy Specifically, on the

intersection of the events {F; }z 1> applying [70, Lemma
6.15], we have

n/2 n/2

2
ZTQHL.)*CU 10gn|||—zxff — 1|2
i=1
cH—logn+ (d+1ogn)2}

< Co? logn{ 5
n n

where the final bound holds with probability greater than
1—cn~!'2. Finally combining all the terms yield the desired
result. O

APPENDIX H
BACKGROUND AND TECHNICAL LEMMAS USED IN
THE PROOF OF THEOREM 3

In this section, we collect two technical lemmas that were
used to prove Theorem 3.

A. Prediction and Estimation Error

Here, we connect the prediction error to the estimation error,
which may be of independent interest. Recall our notation dist
for the minimum distance between parameters obtainable after
relabeling.

Lemma 16: There exists a tuple of universal constants
(c1,¢2) such that for each set of parameters [1,...,0; €
RA+1:

1) If n > c¢1d, then we have

2
L Z (maxte 5 - w57

JE[K]

< cldlst({ﬁj}jzl , {ﬁ*}jzl)
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with probability exceeding 1 — ¢ exp(—can).
3
2) If n> cld’-“T. log? (k/Tmin), then we have
min || —

(%) 2 iy
< — Z <max &, B5)

By |I?

2
?é%g]dfi, B >>

JE[K]
with probablhty exceeding 1 —
4
cikexp (—can Tmin

kTlog? (k/Tmin)

Proof: To prove the part 1 of the lemma, we leverage the
fact that the max function is 1-Lipschitz with respect to the
£o-norm. Consequently, we obtain

2
_ Z <maX 51,; 6] max<£’i; ﬂ;>>

JE[K] JE[K]
1 o 2
IS @ -ny
i=1j=1
where we have ordered the parameters such that

dist g{ﬁj}fl , {ﬁ;}le) is minimized. We now use
the fact that the rows of = are 1-sub-Gaussian (this is
restatement of the conclusion of Lemma 13) to complete the
proof.

We now proceed to a proof of part 2 of the lemma.
Recall the setup of Appendix C along with notation
({wi}p,, ©%,b%, 5*,). Specifically, we have 57 = (05, b%)
and (©*)T = [05 05...0;]. Similarly let 3; = (0;, b;) €
RI*! and © = [0 0 ...0;]. In the notation of Section B,
we define for each pair (O, b), the sets

S;(0,b) = {z’e ] :

for all j € [k]. We use the shorthand S} = S;(©*,b") and
S; = 5;(0,b) for the rest of the proof. By definition, we have

(x;,0;) +b; = max((xi,ﬂj/> +b5)
J'€[K]

= Z (max(0x; + b) — max(©*z; + b*))*

2 2

Le[K] ieSrnS,,
me[k] ‘

(07 23) +b7) — (B 1) + bm>)

S

1 . 2
= E Z Z (<5€7 £z> - <5m7 £z>>
Le(K] i€SrnSo,
me[k]
1
=~ > 1Bem(B7 = Bl
Le[k]
me k]

where we have let égm,, denote the sub-matrix of = with rows
indexed by the set S N Sy,. It is also useful to define the
convex sets

—{x ERY: (2,07) + b} = mgﬁ(@,@;‘/)—i—b;/)}, and

*
Kp -
Jj'elk

Km = {"IJ : <-’L'79m> +bm = ma’X(<x79j/> + b],)}
i’ €lk]
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for each pair (¢, m) € [k] x [k]. By definition, for each ¢ € [k],
there exists a corresponding index m, such that vol(K; N
Kpn,) > ™. Proceeding from above, we have

n

1
- Z (max(Ox; + b) — max(©*z; + b*))”
i=1
1 - . 2
> =3 [Beme 6 = 6l
Le[k]
1 =T = .
> E Z Amin (:‘ng‘:&me) Hﬁe - BYWHQ-
Le k]

Finally, applying Lemma 5 in conjunction with the bound
vol(K; N K,,,) > ™ we obtain that provided n > c¢d -

wks 1Og2(k/ﬂ-min)7 we have

3
min

. 3
=T = Tmin
)\min (‘:‘Z,m[:‘@,m/,) > ( A ) n

with probability exceeding 1 — c; exp (—CQTLW)
for each index ¢ € [k]. Taking a union bound over the k indices

and combining the pieces completes the proof. O]

B. Projection Onto a Finite Collection of Rays

Consider a vector 8* € R™ observed via the observation
model

y="0"+e,

where ¢ has independent, zero-mean, o-sub-Gaussian entries.
For a fixed set of M vectors {61,...,0y}, denote by C : =
{cb¢: ¢ > 0,0 € [M]} the set of all one-sided rays obtainable
with these vectors.

Now consider the projection estimate

Pe(y) = argmin [ly — 0%,
feC

which exists since the projection onto each ray exists. The
following lemma proves an oracle inequality on the error of
such an estimate.

Lemma 17: There are universal constants ¢, C, ¢; and
co such that

Pr{ IPc() 617 = clapin |0 - [+ o*t1og M + 1)
c

—nt(y/log M+c
S coe ( g 1)7

for all £t > Co(y/log M + ¢1).

Proof: We follow the standard technique for bounding the
error for non-parametric least squares estimators. From the
definition, we have

. 2
FPe(y) = argmin ||y — 0|
0eC
We substitute the expression for y and obtain

Pe(y) = argmax [2<e, 06"y — 116 — 6*|] .
6eC

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

To obtain an upper bound on || Pc(y) —6*||?, it is sufficient to
control the following quantity (e.g. see [86, Chapter 3], [70,
Chapter 13]):

E sup

0EC:||0—0%||<5

(€,0 — 9*>]

for some § > 0 to be chosen later. Since ¢ is o-sub-Gaussian,
we use Dudley’s entropy integral to control the term above.
We obtain

E sup

0EC:(|0—0+||<5

(€,0 — 9*>]

5
<Co [ ViogN {0 €[00 < 0], e
0

where N (e, S, l2) is the e-covering number of a compact set
S in ¢5 norm. Note that C contains scaled versions of M
fixed vectors {61,...,0)}. For a fixed 6;, with i € [M],
the covering number N (e, {ch; : ¢ € R, [|0; — 0*|| < &}, 42) is
equivalent to the covering number of a bounded interval (in
1 dimension). Using [87], this is (1 + 25—5) Since there are M
such fixed vectors, we obtain

0
N, {0eC,||0—0%|| <0},6) <CiM(1+ g)

Substituting, we obtain

E (€,0 —0%)

<Co ((5\/logM n 015) .
Now, the critical inequality ( [70, Chapter 13]) takes the form

So(y/log M + Cy) S 6.

Hence we can choose §g = Coo(y/log M + C7). Now, for
any t > dg, invoking [70, Theorem 13.13] yields the oracle
inequality

1Pe(y) = 0°[1* < c (10" = Pe(0")* + o*t(log M + c1))

sup
0eC:|0—6%]|<5

o : _n*12 2
c<rap61(rcl|9 |- +o t(logM—f—cl)),

with probability exceeding 1 — coe " (VIog M+c1) = which
proves the lemma. O

APPENDIX I
NP-HARDNESS OF REAL PHASE RETRIEVAL

Our discussion borrows from a similar proof established
in [46, Proposition 1] for mixtures of linear regressions. Recall
that with n ii.d observations {(x;,y;)}_;, the max-affine
model takes the form

= 005, 0] )
where {¢;}7; is a sequence of i.i.d zero mean sub-Gaussian
noise.

We now consider a special case, where £k = 2, b} =
b5 = 0, and 07 = —03, corresponding to the real phase
retrieval problem. Furthermore, we consider the noiseless case
e = 0. Our covariate matrix is given by X € R"*? and
the response vector by y € R™. We now show that even in
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this special case, there is family of instances (X, y) such that
solving the least squares problem (5) is NP-hard. In particular,
we say that a “solution” to the noiseless phase retrieval
problem exists on an instance (X,y) if the least squares
objective in equation (5) has minimum value zero.

Proposition 3: Deciding whether a problem instance (X, y)
has a solution to the noiseless phase retrieval problem
is NP-hard.

Proof: The proof follows from a reduction to the subset-
sum problem, the decision version of which is stated as
follows: given p numbers aq,...,a, € R, we must decide
if there exists a partition S C [p] such that

Sa=Ya

€S jeSse

For each p-dimensional vector a, we design a problem instance
(X,y) such that solving the noiseless (real) phase retrieval
problem on (X, y) implies deciding on the subset sum problem
specified by a.

To accomplish this, take n = 2p + 1 and d = p, and define
the instance

1, a
X=| 1 and y= |—a|,
1...1 0

where I, denotes the p x p identity matrix. By construc-
tion, finding a solution to the noiseless (real) phase retrieval
problem on this instance corresponds to finding a subset
S C [2p + 1] and a pair of vectors (67, 05) with 67 = —03,
such that Xg07 = ys, and Xge65 = yge. Here Xg and yg
are the sub-matrix and sub-vector of X and y respectively
restricted to the set S. Note that in general, the set S
cannot contain the index ¢ and p + i, since they correspond
to two mutually exclusive equations. From this observation,
we have 07(i) = {a;,—a;}, and 07(i) = —03(i), where
07 (i) and 63(i) denote the i-th coordinate of 6] and 63,
respectively.

As a consequence, if 0] (and 05 = —07) satisfies the first
2p equations in this system, then the final equation demands
that

D i) =0=") 05().
i€S jeSe
By construction, note that this is accomplished if and only if
D= a
i€s jese

and so a solution to the noiseless (real) phase retrieval prob-
lem on (X,y) yields a solution to the subset-sum problem,
as desired. O
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