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Abstract— Max-affine regression refers to a model where the
unknown regression function is modeled as a maximum of k

unknown affine functions for a fixed k ≥ 1. This general-
izes linear regression and (real) phase retrieval, and is closely
related to convex regression. We study this problem in the
high-dimensional setting assuming that k is a fixed constant,
and focus on the estimation of the unknown coefficients of the
affine functions underlying the model. We analyze a natural
alternating minimization (AM) algorithm for the non-convex
least squares objective when the design is Gaussian. We show
that the AM algorithm, when initialized suitably, converges with
high probability and at a geometric rate to a small ball around
the optimal coefficients. In order to initialize the algorithm,
we propose and analyze a combination of a spectral method
and a search algorithm in a low-dimensional space, which may
be of independent interest. The final rate that we obtain is
near-parametric and minimax optimal (up to a polylogarithmic
factor) as a function of the dimension, sample size, and noise
variance. In that sense, our approach should be viewed as a
direct and implementable method of enforcing regularization to
alleviate the curse of dimensionality in problems of the convex
regression type. Numerical experiments illustrate the sharpness
of our bounds in the various problem parameters.

Index Terms— Max-affine regression, alternating minimization,
dimension reduction, iterative optimization.

I. INTRODUCTION

M
AX-AFFINE regression refers to the regression model

Y = max
1≤j≤k

(
hX, θ∗j i + b∗j

)
+ � (1)
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where Y is a univariate response, X is a d-dimensional

vector of covariates and � models zero-mean noise that is

independent of X . We assume that k ≥ 1 is a known integer

and study the problem of estimating the unknown parameters

θ∗1 , . . . , θ
∗
k ∈ Rd and b∗1, . . . , b

∗
k ∈ R from independent

observations (x1, y1), . . . , (xn, yn) drawn according to the

model (1). Furthermore, we assume for concreteness1 in this

paper that the covariate distribution is standard Gaussian, with

xi
i.i.d.∼ N (0, Id).
Let us provide some motivation for studying the model (1).

When k = 1, equation (1) corresponds to the classical linear

regression model. When k = 2, the intercepts b∗2 = b∗1 = 0,

and θ∗2 = −θ∗1 = θ∗, the model (1) reduces to

Y = |hX, θ∗i| + �. (2)

The problem of recovering θ∗ from observations drawn

according to the above model is known as (real) phase

retrieval—variants of which arise in a diverse array of science

and engineering applications [2]–[5]—and has associated with

it an extensive statistical and algorithmic literature.

To motivate the model (1) for general k, note that the

function x 7→ max1≤j≤k(hx, θ∗j i + b∗j ) is always a convex

function and, thus, estimation under the model (1) can be

used to fit convex functions to the observed data. Indeed,

the model (1) serves as a parametric approximation to the

non-parametric convex regression model

Y = φ∗(X) + �, (3)

where φ∗ : Rd → R is an unknown convex function. It is well-

known that convex regression suffers from the curse of dimen-

sionality unless d is small, which is basically a consequence

of the fact that the metric entropy of natural totally bounded

sub-classes of convex functions grows exponentially in d
(see, e.g., [6]–[8]). To overcome this curse of dimensionality,

one would need to work with more structured sub-classes of

convex functions. Since convex functions can be approximated

to arbitrary accuracy by maxima of affine functions, it is

reasonable to regularize the problem by considering only those

convex functions that can be written as a maximum of a

fixed number of affine functions. Constraining the number

of affine pieces in the function therefore presents a simple

method to enforce structure, and such function classes have

been introduced and studied in the convex regression literature

(see e.g., [9]). This assumption directly leads to our model (1),

and it has been argued by [10]–[12] that the parametric

model (1) is a tractable alternative to the full non-parametric

1Our companion paper [1] weakens distributional assumptions on the
covariates, but this requires significantly more technical effort.
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convex regression model (3) in common applications of convex

regression to data arising in economics, finance and operations

research where d is often moderate to large.

Another motivation for the model (1) comes from the prob-

lem of estimating convex sets from support function measure-

ments. The support function of a compact convex set K ⊆ Rd

is defined by hK(x) : = supu∈Khx, ui for d-dimensional unit

vectors x. The problem of estimating an unknown compact,

convex set K∗ from noisy measurements of hK∗(·) arises

in certain engineering applications such as robotic tactile

sensing and projection magnetic resonance imaging (see,

e.g., [13]–[15]). Specifically, the model considered here is

Y = hK∗(X) + �,

and the goal is to estimate the set K∗ ⊆ Rd. As in convex

regression, this problem suffers from a curse of dimensionality

unless d is small, as is evident from known minimax lower

bounds [16]. To alleviate this curse, it is natural to restrict

K∗ to the class of all polytopes with at most k extreme

points for a fixed k; such a restriction has been studied as

a special case of enforcing structure in these problems by Soh

and Chandrasekharan [17]. Under this restriction, one is led

to the model (1) with b∗1 = · · · = b∗k = 0, since if K∗ is the

polytope given by the convex hull of θ∗1 , . . . , θ
∗
k ∈ Rd, then

its support function is equal to x 7→ max1≤j≤khx, θ∗j i.
Equipped with these motivating examples, our goal is to

study a computationally efficient estimation methodology for

the unknown parameters of the model (1) from i.i.d obser-

vations (xi, yi)
n
i=1. Before presenting our contributions, let

us first rewrite the observation model (1) by using more

convenient notation, and use it to describe existing estimation

procedures for this model. Denote the unknown parameters by

β∗
j : = (θ∗j , b∗j ) ∈ Rd+1 for j = 1, . . . , k and the observations

by (ξi, yi) for i = 1, . . . , n, where ξi : = (xi, 1) ∈ Rd+1.

In this notation, the observation model takes the form

yi = max
1≤j≤k

hξi, β∗
j i + �i, for i = 1, 2, . . . , n. (4)

Throughout the paper, we assume that in addition to the

covariates being i.i.d. standard Gaussian, the noise variables

�1, . . . , �n are independent random variables drawn from

a (univariate) distribution that is zero-mean and sub-Gaussian,

with unknown sub-Gaussian parameter σ.

Let us now describe existing estimation procedures for max-

affine regression. The most obvious approach is the global

least squares estimator, defined as any minimizer of the least

squares criterion

(bβ(ls)
1 , . . . , bβ(ls)

k ) ∈ argmin
β1,...,βk∈Rd+1

nX

i=1

�
yi − max

1≤j≤k
hξi, βji

�2

.

(5)

It is easy to see (see Lemma 1 to follow) that a global

minimizer of the least squares criterion above always exists but

it will not—at least in general—be unique, since any relabeling

of the indices of a minimizer will also be a minimizer. While

the least squares estimator has appealing statistical properties

(see, e.g. [16]–[18]), the optimization problem (5) is non-

convex. Furthermore, for a worst-case choice of covariates, the

problem can be shown to be NP-hard2 via a reduction from

the subset-sum problem. Consequently, we focus on settings

where the covariates are drawn i.i.d. (in which this hardness no

longer applies), and in particular, we assume that the covariate

distribution is Gaussian.

It is interesting to compare (5) to the optimization problem

used to compute the least squares estimator in the more general

convex regression model (3), given by

bφ(ls) ∈ argmin
φ

nX

i=1

(yi − φ(xi))
2
, (6)

where the minimization is over all convex functions φ. In sharp

contrast to the problem (5), the optimization problem (6)

is convex [19], [20] and can be solved efficiently for fairly

large values of the pair (d, n) [21]. Unfortunately however,

the utility of bφ(ls) in estimating the parameters of the max-

affine model is debatable, as it is unclear how one may obtain

estimates of the true parameters β∗
1 , . . . , β∗

k from bφ(ls), which

typically will not be a maximum of only k affine functions.

Three heuristic techniques for solving the non-convex

optimization problem (5) were empirically evaluated by

Balázs [12, Chapters 6 and 7], who compared running times

and performance of these techniques on a wide variety of real

and synthetic datasets for convex regression. The first tech-

nique is the alternating minimization algorithm of Magnani

and Boyd [10], the second technique is the convex adaptive

partitioning (or CAP) algorithm of Hannah and Dunson [11],

and the third is the adaptive max-affine partitioning algo-

rithm proposed by Balázs himself [12]. The simplest and

most intuitive of these three methods is the first alternating

minimization (AM) algorithm, which is an iterative algorithm

for estimating the parameters β∗
1 , . . . , β∗

k and forms the focus

of our study. In the t-th iteration of the algorithm, the current

estimates β
(t)
1 , . . . , β

(t)
k are used to partition the observation

indices 1, . . . , n into k sets S
(t)
1 , . . . , S

(t)
k such that j ∈

argmaxu∈[k]hξi, β
(t)
u i for every i ∈ S

(t)
j . For each 1 ≤ j ≤ k,

the next estimate β
(t+1)
j is then obtained by performing a

least squares fit (or equivalently, linear regression) to the data

(ξi, yi), i ∈ S
(t)
j . More intuition and a formal description of the

algorithm are provided in Section II. Balázs found that when

this algorithm was run on a variety of datasets with multiple

random initializations, it compared favorably with the state of

the art in terms of its final predictive performance—see, for

example, Figures 7.4 and 7.5 in the thesis [12], which show

encouraging results when the algorithm is used to fit convex

functions to datasets of average wages and aircraft profile

drag data, respectively. In the context of fitting convex sets to

support function measurements, Soh and Chandrasekaran [17]

recently proposed and empirically evaluated a similar algo-

rithm in the case of isotropic covariates. However, to the best

of our knowledge, no theoretical results exist to support the

performance of such a technique.

In this paper, we present a theoretical analysis of the AM

algorithm for recovering the parameters of the max-affine

2We provide a proof of this in Appendix I for completeness.
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regression model when the covariate distribution is Gaussian.3

This assumption forms a natural starting point for the study

of many iterative algorithms in related problems [22]–[25],

and is also quite standard in theoretical investigations of

multidimensional regression problems. Note that the AM

algorithm described above can be seen as a generalization of

classical AM algorithms for (real) phase retrieval [26], [27],

which have recently been theoretically analyzed in a series

of papers [22]–[24] for Gaussian designs. The AM—and

the closely related expectation maximization,4 or EM—

methodology is widely used for parameter estimation in miss-

ing data problems [28], [29] and mixture models [30], includ-

ing those with covariates such as mixtures-of-experts [31] and

mixtures-of-regressions [32] models. Theoretical guarantees

for such algorithms have been established in multiple statistical

contexts [25], [33]–[35]; in the case when the likelihood is not

unimodal, these are typically of the local convergence type.

In particular, algorithms of the EM type return, for many such

latent variable models, minimax-optimal parameter estimates

when initialized in a neighborhood of the optimal solution

(e.g., [32], [36], [37]); conversely, these algorithms can get

stuck at spurious fixed points when initialized at random [38].

In some specific applications of EM to mixtures of two

Gaussians [39], [40] and mixtures of two regressions [41],

however, it has been shown that randomly initializing the

EM algorithm suffices in order to obtain consistent parameter

estimates. Here, we establish guarantees on the AM algorithm

for max-affine regression that are of the former type: we prove

local geometric convergence of the AM iterates when initial-

ized in a neighborhood of the optimal solution. We analyze

the practical variant of the algorithm in which the steps are

performed without sample-splitting. As in the case of mixture

models [32], [42], we use spectral methods to obtain such an

initialization.

A. Contributions

Let us now describe our results in more detail. To simplify

the exposition, we state simplified corollaries of our theorems;

for precise statements, see Section III. We prove in Theorem 1

that for each � > 0, the parameter estimates β
(t)
1 , . . . , β

(t)
k

returned by the AM algorithm at iteration t satisfy, with high

probability, the inequality

kX

j=1

kβ(t)
j − β∗

j k2 ≤ � + C(β∗
1 , . . . , β∗

k)
σ2kd

n
log(kd) log

� n

kd

	

(7)

for every t ≥ log4/3

��k
j=1 kβ

(0)
j −β∗

j k2

�

�
, provided that the

sample size n is sufficiently large and that the initial estimates

3In our companion paper [1], we weaken this assumption on the covariate
distribution.

4Indeed, for many problems, the EM algorithm reduces to AM in the
noiseless limit, and AM should thus be viewed as a variant of EM that uses
hard-thresholding to determine values of the latent variables.

satisfy the condition

min
c>0

max
1≤j≤k

kcβ(0)
j − β∗

j k2 ≤ 1

k
c(β∗

1 , . . . , β∗
k). (8)

Here C(β∗
1 , . . . , β∗

k) and c(β∗
1 , . . . , β∗

k) are constants depend-

ing only on the true parameters β∗
1 , . . . , β∗

k , and their explicit

values are given in Theorem 1. The constant c in equation (8)

endows the initialization with a scale-invariance property:

indeed, scaling all parameters β
(0)
1 , . . . , β

(0)
k by the same

positive constant c produces the same initial partition of

subsets S
(0)
1 , . . . , S

(0)
k , from which the algorithm proceeds

identically.

Treating k as a fixed constant, inequality (7) implies, under

the initialization condition (8), that the parameter estimates

returned by AM converge geometrically to within a small ball

of the true parameters, and that this error term is nearly the

parametric risk σ2d
n up to a logarithmic factor. The initial-

ization condition (8) requires the distance between the initial

estimates and the true parameters to be at most a specific

(k-dependent) constant. It has been empirically observed that

there exist bad initializations under which the AM algorithm

behaves poorly (see, e.g., [10], [12]) and assumption (8) is

one way to rule these out.

A natural question based on our Theorem 1 is whether

it is possible to produce preliminary estimates β
(0)
1 , . . . , β

(0)
k

satisfying the initialization condition (8). Indeed, one such

method is to repeatedly initialize parameters (uniformly) at

random within the unit ball Bd+1; Balázs empirically observed

in a close relative of such a scheme (see Figure 6.6 in his the-

sis [12]) that increasing the number of random initializations is

often sufficient to get the AM algorithm to succeed. However,

reasoning heuristically, the number of repetitions required to

ensure that one such random initialization generates parame-

ters that satisfy condition (8) increases exponentially in the

ambient dimension d, and so it is reasonable to ask if, in large

dimensions, there is some natural form of dimensionality

reduction that allows us to perform this step in a lower-

dimensional space.

When5 k < d, we show that a natural spectral method

(described formally in Algorithm 2) is able to reduce the

dimensionality of our problem from d to k. In particular, this

method returns an orthonormal basis of vectors bU1, . . . , bUk

such that the k-dimensional linear subspace spanned by

these vectors accurately estimates the subspace spanned by

the vectors θ∗1 , . . . , θ
∗
k. We form the matrix bU : = [bU1 :

· · · : bUk] by collecting these vectors as its columns, and in

order to account for the intercepts, further append such a

matrix to form the matrix bV : =


bU 0
0 1

�
∈ R(d+1)×(k+1).

Finally, we construct a covering of the (k + 1)-dimensional

unit ball M = {ν`, ` = 1, . . . , M} and search it for a

“good” set of initial parameters. To that end, we evalu-

ate (on an independent set of samples) the goodness-of-

fit statistic minc≥0

P
i(yi−c max1≤j≤k hξi, bV νji)2 for each

ν1, . . . , νk ∈ M, where the minimization over the constant c

5If k ≥ d, then this dimensionality reduction step can be done away with
and one can implement the search routine directly.
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accounts for the scale-invariance property alluded to above.

Letting ν]
1, . . . , ν

]
k denote the minimizers, we then return the

initializer β
(0)
j = bV ν]

j for j = 1, . . . , k.

Our algorithm can thus be viewed as a variant of the

repeated random initialization evaluated by Balázs [12], but

incurs significantly smaller computational cost, since we only

run the full-blown iterative AM algorithm once. Note that our

algorithm treats the radius of the covering (and subsequently

its size M ) as a tuning parameter to be chosen by the

statistician, similar to Balázs [12], but we show a concrete

upper bound on M that is sufficient to guarantee convergence.

In particular, we show that in order to produce an initialization

satisfying condition (8) with high probability, it suffices to

choose M as a function only of the number of affine pieces k
and other geometric parameters of the problem (and indepen-

dently of the sample size n and ambient dimension d when

k ≤ d).

To produce our overall guarantee, we combine the initial-

ization with the AM algorithm in Corollary 1, showing that

provided the sample size scales linearly in the dimension (with

a multiplicative pre-factor that depends polynomially on k and

other problem-dependent parameters), we obtain estimates that

are accurate up to the parametric risk. Our algorithm is also

computationally efficient when k is treated as a fixed constant.

From a technical standpoint, our results for the AM algo-

rithm are significantly more challenging to establish than

related results in the literature [23], [25], [43], [44]. First,

it is technically very challenging to compute the population

operator [25]—corresponding to running the AM update in the

infinite sample limit—in this setting, since the max function

introduces intricate geometry in the problem that is difficult

to reason about in closed form. Second, we are interested in

analyzing the AM update without sample-splitting, and so can-

not assume that the iterates are independent of the covariates;

the latter assumption has been used fruitfully in the literature

to simplify analyses of such algorithms [22], [24], [43].

Third, and unlike algorithms for phase retrieval [23], [44],

our algorithm performs least squares using sub-matrices of

the covariate matrix that are chosen depending on our ran-

dom iterates. Accordingly, a key technical difficulty of the

proof, which may be of independent interest, is to control

the spectrum of these random matrices, rows of which are

drawn from (randomly) truncated variants of the Gaussian

distribution.

Our spectral initialization algorithm is also a natural estima-

tor based on the method-of-moments, and has been used in a

variety of non-convex problems [32], [36], [37]. However, our

guarantees for this step are once again non-trivial to establish.

In particular, the eigengap of the population moment (on which

the rates of the estimator depend) is difficult to compute in

our case since the max function is not differentiable, and so

it is not clear that higher order moments return reasonable

estimates even in the infinite sample limit (see Section II).

However, since we operate exclusively with Gaussian covari-

ates, we are able to use some classical moment calculations

for truncated Gaussian distributions [45] in order to bound

the eigengap. Translating these calculations into an eigengap

is quite technical, and involves the isolation of many properties

of the population moments that may be of independent

interest.

Finally, it is important to note that owing to the scale

invariance of our initialization condition (8) and goodness-

of-fit statistic, our search scheme does not require a bound on

the size of the parameters; it suffices to initialize parameters

uniformly within the unit ball. This is in contrast to other

search procedures employed for similar problems [46], [47],

which are based on covering arguments and require a bound

on the maximum norm of the unknown parameters.

B. Organization

The rest of the paper is organized as follows. Section II

describes the problem setup and our methodology (including

the AM algorithm and initialization methods) in more detail.

In Section III, we present our main theoretical results and their

consequences, complementing our discussion with figures that

verify that our results are borne out in simulation. An overview

of the main ideas behind our proofs is given in Section III-D.

We conclude the main paper with a discussion in Section IV

of some related models and future directions. Full proofs of

our results are presented in the supplementary material in

Sections B-D, with further technical details relegated to the

later sections of the appendix.

C. Notation

For a positive integer n, let [n] : = {1, 2, . . . , n}. For a

finite set S, we use |S| to denote its cardinality. All logarithms

are to the natural base unless otherwise mentioned. For two

sequences {an}∞n=1 and {bn}∞n=1, we write an � bn if there

is a universal constant C such that an ≤ Cbn for all n ≥ 1.

The relation an � bn is defined analogously, and we use

an ∼ bn to indicate that both an � bn and an � bn hold

simultaneously. We use c, C, c1, c2, . . . to denote universal

constants that may change from line to line. For a pair of

vectors (u, v), we let u⊗v : = uv> denote their outer product.

We use k·k to denote the `2 norm unless otherwise stated.

Denote by Id the d × d identity matrix. We let 1 {E} denote

the indicator of an event E . Let sgn(t) denote the sign of

a scalar t, with the convention that sgn(0) = 1. Let λi(Γ)
denote the i-th largest eigenvalue of a symmetric matrix Γ.

Let Sd−1 : =


v ∈ Rd : kvk = 1

�
denote the unit sphere in

d-dimensions, and use Bd : =


v ∈ Rd : kvk ≤ 1

�
to denote

the d-dimensional unit ball. Finally, we use the shorthand

a ∧ b := min(a, b) and a ∨ b := max(a, b) for two scalars

a and b.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we formally introduce the geometric para-

meters underlying the max-affine regression model, as well as

the methodology we use to perform parameter estimation.

A. Model and Geometric Parameters

We work throughout with the observation model defined in

equation (4); recall that our covariates are drawn i.i.d. from
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a standard Gaussian distribution, and that our noise is σ-sub-

Gaussian. We let X ∈ Rn×d denote the covariate matrix with

row i given by the vector xi, and collect the responses in a

vector y ∈ Rn.

Recall that ξi = (xi, 1) ∈ Rd+1 for each i ∈ [n]; the matrix

of appended covariates Ξ ∈ Rn×(d+1) is defined by appending

a vector of ones to the right of the matrix X . Our primary goal

is to use the data (X, y)—or equivalently, the pair (Ξ, y)—to

estimate the underlying parameters {β∗
j }k

j=1.

An important consideration in achieving such a goal is the

“effective” sample size with which we observe the parameter

β∗
j . Toward that end, for X ∼ N (0, Id), let

πj(β
∗
1 , ., β∗

k) : = Pr{hX, θ∗j i + b∗j = max
j0∈[k]

(
hX, θ∗j0 i + b∗j0

)
}

(9)

denote the probability with which the j-th parameter β∗
j =

(θ∗j , b∗j ) attains the maximum. Note that the event on which

more than one of the parameters attains the maximum has

measure zero, except in the case where β∗
i = β∗

j for some

i 6= j. We explicitly disallow this case and assume that the

parameters β∗
1 , . . . , β∗

k are distinct. Let

πmin(β∗
1 , . . . , β∗

k) : = min
j∈[k]

πj(β
∗
1 , . . . , β∗

k), (10)

and assume that we have πmin(β∗
1 , . . . , β∗

k) > 0; in other

words, we ignore vacuous cases in which some parameter is

never observed. Roughly speaking, the sample size of the para-

meter that is observed most rarely is given by minj∈[k] πjn ∼
n · πmin(β∗

1 , . . . , β∗
k), and so the error in estimating this

parameter should naturally depend on πmin(β∗
1 , . . . , β∗

k).
By definition, we always have πmin(β∗

1 , . . . , β∗
k) ≤ 1/k.

Since we are interested in performing parameter estimation

under the max-affine regression model, a few geometric quan-

tities also appear in our bounds, and serve as natural notions

of “signal strength” and “condition number” of the estima-

tion problem. The signal strength is given by the minimum

separation

∆(β∗
1 , . . . , β∗

k) = min
j,j0:j 6=j0

��θ∗j − θ∗j0
��2 ;

we also assume that ∆ is strictly positive, since otherwise,

a particular parameter is never observed. To denote a natural

form of conditioning, define the quantities

κj(β
∗
1 , . . . , β∗

k) =
maxj0 6=j

��θ∗j − θ∗j0
��2

minj0 6=j

���θ∗j − θ∗j0
���

2 ,

with κ(β∗
1 , . . . , β∗

k) = maxj∈[k] κj(β
∗
1 , . . . , β∗

k). Finally, let

Bmax(β
∗
1 , . . . , β∗

k) : = maxj∈[k] kβ∗
j k denote the maximum

norm of any unknown parameter. We often use the shorthand

πmin = πmin(β∗
1 , . . . , β∗

k), ∆ = ∆(β∗
1 , . . . , β∗

k),

κ = κ(β∗
1 , . . . , β∗

k), and Bmax = Bmax(β
∗
1 , . . . , β∗

k)

when the true parameters β∗
1 , . . . , β∗

k are clear from context.

B. Methodology

As discussed in the introduction, the most natural estimation

procedure from i.i.d. samples (ξi, yi)
n
i=1 of the model (4) is

the least squares estimator (5). The following lemma (which

does not seem to have been explicitly stated previously in

the literature, except in the case k = 2 [18], [48]) proves

that the least squares estimator (bβ(ls)
1 , . . . , bβ(ls)

k ) always exists.

Note, however, that it will not be unique in general since any

relabeling of a minimizer is also a minimizer.

Lemma 1: The least squares estimator
�
bβ(ls)
1 , . . . , bβ(ls)

k

	

exists for every dataset (Ξ, y).
We postpone the proof of Lemma 1 to Appendix A. In spite

of the fact that the least squares estimator always exists, the

problem (5) is non-convex and NP-hard in general. The AM

algorithm presents a tractable approach towards solving it in

the statistical setting that we consider.

1) Alternating Minimization: We now formally describe the

AM algorithm proposed by Magnani and Boyd [10]. For each

β1, . . . , βk, define the sets

Sj(β1, . . . , βk) :=

�
i ∈ [n] : j = min argmax

1≤u≤k
(hξi, βui)

�

(11)

for j = 1, . . . , k. In words, the set Sj(β1, . . . , βk) contains the

indices of samples on which parameter βj attains the maxi-

mum; in the case of a tie, samples having multiple parameters

attaining the maximum are assigned to the set with the smallest

corresponding index (i.e., ties are broken in the lexicographic

order6). Thus, the sets {Sj(β1, . . . , βk)}k
j=1 define a partition

of [n]. The AM algorithm employs an iterative scheme where

one first constructs the partition Sj

�
β

(t)
1 , . . . , β

(t)
k

	
based

on the current iterates β
(t)
1 , . . . , β

(t)
k and then calculates the

next parameter estimate β
(t+1)
j by a least squares fit to the

dataset {(ξi, yi), i ∈ Sj(β
(t)
1 , . . . , β

(t)
k )}. The algorithm (also

described below as Algorithm 1) is, clearly, quite intuitive and

presents a natural approach to solving (5).

As a sanity check, Lemma 2 (stated and proved in Appen-

dix A) shows that the global least squares estimator (5) is

a fixed-point of this iterative scheme under a mild technical

assumption.

We also note that the AM algorithm was proposed by

Soh [49] in the context of estimating structured convex sets

from support function measurements. It should be viewed as a

generalization of a classical algorithm for (real) phase retrieval

due to Fienup [27], which has been more recently analyzed

in a series of papers [22], [23] for Gaussian designs. While

some analyses of AM algorithms assume sample-splitting

across iterations (e.g. [22], [24], [43]), we consider the more

practical variant of AM run without sample-splitting, since

the update (12a)-(12b) is run on the full data (Ξ, y) in every

iteration.

6In principle, it is sufficient to define the sets Sj(β1, . . . , βk), j ∈ [k] as
any partition of [n] having the property that hξi, βji = maxu∈[k]hξi, βui
for every j ∈ [k] and i ∈ Sj(β1, . . . , βk); here “any” means that ties can
be broken according to an arbitrary rule, and we have chosen this rule to be
the lexicographic order in equation (11).
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Algorithm 1 Alternating Minimization for Estimating

Maximum of k Affine Functions

Input: Data {ξi, yi}n
i=1; initial parameter estimates

β
(0)
1 , . . . , β

(0)
k ; number of iterations T .

Output: Final estimator of parameters bβ1, . . . , bβk.

1 Initialize t ← 0.

repeat

2 Compute maximizing index sets

S
(t)
j = Sj(β

(t)
1 , . . . , β

(t)
k ), (12a)

for each j ∈ [k], according to equation (11).

3 Update

β
(t+1)
j ∈ argmin

β∈Rd+1

X

i∈S
(t)
j

(yi − hξi, βi)2 , (12b)

for each j ∈ [k].
until t = T ;

4 Return bβj = β
(T )
j for each j ∈ [k].

2) Initialization: The alternating minimization algorithm

described above requires an initialization. While the algorithm

was proposed to be run from a random initialization with

restarts [10], [17], we propose to initialize the algorithm from

parameter estimates that are sufficiently close to the optimal

parameters. This is similar to multiple procedures to solve non-

convex optimization problems in statistical settings (e.g., [25],

[50]), that are based on iterative algorithms that exhibit local

convergence to the unknown parameters. Such algorithms

are typically initialized by using a moment method, which

(under various covariate assumptions) returns useful parameter

estimates.

Algorithm 2 PCA for k-Dimensional Subspace Initializa-

tion When k < d

Input: Data {ξi, yi}n
i=1.

Output: Matrix bU ∈ Rd×k having orthonormal columns

that (approximately) span the k dimensional

subspace spanned by the vectors θ∗1 , . . . , θ
∗
k.

1 Compute the quantities

cM1 =
2

n

n/2X

i=1

yixi and cM2 =
2

n

n/2X

i=1

yi

(
xix

>
i − Id

)
,

(13)

and let cM = cM1 ⊗ cM1 + cM2; here, Id denotes the d × d
identity matrix and ⊗ denotes the outer product.

2 Perform the eigendecomposition cM = bP bΛ bP>, and use

the first k columns of bP (corresponding to the k largest

eigenvalues) to form the matrix bU ∈ Rd×k. Return bU .

Our approach to the initialization problem is similar, in that

we combine a moment method with search in a min{k, d}
space. For convenience of analysis, we split the n samples

into two equal parts—assume that n is even without loss of

generality—and perform each of the above steps on different

samples so as to maintain independence between the two steps.

The formal algorithm is presented in two parts as Algorithms 2

and 3. In Algorithm 2, we address the case k < d; if

k ≥ d, then it suffices to return bU = Id and proceed directly

to Algorithm 3.

In related problems [32], [36], [43], [51], a combination

of a second order and third order method (involving tensor

decomposition) is employed to obtain parameter estimates in

one shot. Take the problem of learning generalized linear

models [51] as an example; here, the analysis of the moment

method relies on the link function being (at least) three times

differentiable so that the population moment quantities can

be explicitly computed. After showing that these expecta-

tions are closed form functions of the unknown parameters,

matrix/tensor perturbation tools are then applied to show that

the empirical moments concentrate about their population

counterparts. However, in our setting, the max function is not

differentiable, and so it is not clear that higher order moments

return reasonable estimates even in expectation since Stein’s

lemma (on which many of these results rely) is not applicable7

in this setting. Nevertheless, we show that the second order

moment returns a k-dimensional subspace that is close to the

true span of the parameters {θ∗j }k
j=1; the degree of closeness

depends only on the geometric properties of these parameters.

Algorithm 3 Low-Dimensional Search

Input: Data {ξi, yi}n
i=1, subspace estimate bU ∈ R

d×k∧d

having orthonormal columns that (approximately)

span the k ∧ d dimensional subspace

span(θ∗1 , . . . , θ∗k), and radius of covering r.

Output: Initial estimator of parameters β
(0)
1 , . . . , β

(0)
k .

1 Choose M points M = {ν`, ` = 1, . . . , M} such that

they form an r-covering of the (k ∧ d + 1)-dimensional

unit ball B
k∧d+1, i.e., with min`∈[M ] kv − ν`k ≤ r for all

v ∈ B
k+1. Let

bV =


bU 0
0 1

�

be a matrix in R(d+1)×(k∧d+1) having orthonormal

columns.

2 Compute the k parameters

ν]
1, ., ν

]
k ∈ argmin

ν1,.,νk∈M

2

n

�
min
c≥0

nX

i=n/2+1

(yi−c max
j∈[k]

hξi, bV νji)2
�

.

3 Return the (d + 1)-dimensional parameters

β
(0)
j = bV ν]

j for each j ∈ [k].

Let us also briefly discuss Algorithm 3, which corresponds

to performing a brute force search in (k ∧ d + 1)-dimensional

7A natural workaround is to use Stein’s lemma on the infinitely differentiable
“softmax” surrogate function, but our approach to this involved balancing the
estimation error (which, in turn, involves derivatives of the softmax function)
and approximation error terms, and led to suboptimal dependence on the
dimension.
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space to obtain the final initialization. First, note that a

covering of the set Bk∧d+1 can be constructed in time that

is exponential in k∧d in a variety of ways including repeated

random trials. Second, note that we use the mean squared error

on a holdout set (corresponding to samples n/2+1 through n)

to select the final parameter estimates. In particular, we eval-

uate the error in a scale-invariant fashion; the computation

of the optimal constant c in step 2 of the algorithm can be

performed in closed form for each fixed choice of the tuple

(ν1, . . . , νk), since for a pair of vectors (u, v) having equal

dimension, we have

argmin
c≥0

ku−cvk2 = max

� hu, vi
kvk2

, 0

�
.

A key parameter that governs the performance of our search

procedure is the radius of the covering r, and the resulting

cardinality of the covering set M . We show in the sequel

that it suffices to take r depending only on k ∧ d and other

geometric parameters in the problem, which also bounds

M independently of the ambient dimension for problems in

which k � d.

Our overall algorithm should be viewed as a variant of the

AM algorithm with random restarts. When the covering set

M is generated by random sampling and k is small relative to

the dimension, the algorithm inherits similar empirical perfor-

mance (see panel (b) of Figure 2 to follow), while significantly

reducing the computational cost, since operations are now

performed in ambient dimension k + 1, and the iterative AM

algorithm is run only once overall. It also produces parameter

estimates with theoretical error guarantees. Having stated the

necessary background and described our methodology, we now

proceed to statements and discussions of our main results.

III. MAIN RESULTS

In this section, we present our main theoretical results for

the methodology introduced in Section II.

A. Local Geometric Convergence of Alternating Minimization

We now establish local convergence results for the AM

algorithm. Recall the definition of the parameters (πmin, ∆, κ)
introduced in Section II, and the assumption that the covariates

{xi}n
i=1 are drawn i.i.d. from the standard Gaussian distribu-

tion N (0, Id). Throughout the paper, we assume that the true

parameters β∗
1 , . . . , β∗

k are fixed.

Theorem 1: There exists a tuple of universal constants

(c1, c2) such that if the sample size satisfies the bound

n ≥ c1 max {d, 10 log n}max

�
kκ

π3
min

, σ2 k5κ2

∆π15
min

�
,

then for all initializations β
(0)
1 , . . . , β

(0)
k satisfying the bound

min
c>0

max
1≤j 6=j0≤k

���c
�
β

(0)
j − β

(0)
j0

	
−
(
β∗

j − β∗
j0

)���
kθ∗j − θ∗j0k

≤ c2
π6

min

k2κ
log−3/2

�
k2κ

π6
min

�
, (14a)

the estimation error at all iterations t ≥ 1 is simultaneously

bounded as

kX

j=1

kβ(t)
j − β∗

j k2 ≤
�

3

4

�t
⎛


kX

j=1

kc∗β(0)
j − β∗

j k2

⎞


+ c1σ
2 kd

π3
minn

log(kd) log(n/kd) (14b)

with probability exceeding 1−c2

�
k exp

�
−c1n

π6
min

k2

	
+ k2

n7

	
.

Here, the positive scalar c∗ minimizes the LHS of inequal-

ity (14a).

See Appendix B for a concise mathematical statement of

the probability bound.

Let us interpret the various facets of Theorem 1. As men-

tioned before, it is a local convergence result, which requires

the initialization β
(0)
1 , . . . , β

(0)
k to satisfy condition (14a).

In the well-balanced case (with πmin ∼ 1/k) and treating

k as a fixed constant, the initialization condition (14a) posits

that the parameters are a constant “distance” from the true

parameters. Notably, closeness is measured in a relative sense,

and between pairwise differences of the parameter estimates as

opposed to the parameters themselves; the intuition for this is

that the initialization β
(0)
1 , . . . , β

(0)
k induces the initial partition

of samples S1(β
(0)
1 , . . . , β

(0)
k ), . . . , Sk(β

(0)
1 , . . . , β

(0)
k ), whose

closeness to the true partition depends only on the relative

pairwise differences between parameters, and is also invariant

to a global scaling of the parameters. It is also worth noting

that local geometric convergence of the AM algorithm is

guaranteed uniformly from all initializations satisfying con-

dition (14a). In particular, the initialization parameters are

not additionally required to be independent of the covariates

or noise, and this allows us to use the same n samples for

initialization of the parameters.

Let us now turn our attention to the bound (14b), which

consists of two terms. In the limit t → ∞, the final parameters

provide an estimate of the true parameters that is accurate to

within the second term of the bound (14b). Up to a constant,

this is the statistical error term

δn,σ(d, k, πmin) = σ2 kd

π3
minn

log(kd) log(n/kd) (15)

that converges to 0 as n → ∞, thereby providing a consistent

estimate in the large sample limit. Notice that the dependence

of δn,σ(d, k, πmin) on the tuple (σ, d, n) is minimax-optimal

up to the logarithmic factor log(n/d), since a matching lower

bound can be proved for the linear regression problem when

k = 1. In Proposition 2, (see Appendix E) we also show a

parametric lower bound on the minimax estimation error for

general k, of the order σ2 kd/n. Panel (c) of Figure 1 verifies

in a simulation that the statistical error depends linearly on

d/n. The dependence of the statistical error on the pair

(k, πmin) is more involved, and we do not yet know if these are

optimal. As discussed before, a linear dependence of πmin is

immediate from a sample-size argument; the cubic dependence

arises because the sub-matrices of Ξ chosen over the course

of the algorithm are not always well-conditioned, and their

condition number scales (at most) as π2
min. In Appendix E-B,

we show a low-dimensional example (with d = 2 and k = 3)

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 26,2023 at 08:45:00 UTC from IEEE Xplore.  Restrictions apply. 



1858 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

Fig. 1. Convergence of the AM with Gaussian covariates— in panel (a), we plot the noiseless sample complexity of AM; we fix
��β∗

i

�� = 1 for all i ∈ [k],

σ = 0 and πmin = 1/k. We say β∗
i is recovered if

���β(t)
i − β∗

i

��� ≤ 0.01. For a fixed dimension d, we run a linear search on the number of samples n, such

that the empirical probability of success over 100 trials is more than 0.95, and output the least such n. In panel (b), we plot the optimization error (in blue)�k
j=1 kβ

(t)
j −β

(T )
j k2 and the deviation from the true parameters (in red)

�k
j=1

���β(t)
j − β∗

j

���
2

/σ2 over iterations t for different σ (0.15, 0.25, 0.4, 0.5), with

k = 5, d = 100, T = 50 and n = 5d, and averaged over 50 trials. Panel (c) shows that the estimation error at T = 50 scales at the parametric rate d/n, where
we have chosen a fixed k = 5 and σ = 0.25. Panel (d) shows the variation of this error as a function of πmin where we fix k = 3, d = 2, n = 103, σ = 0.4.

in which the least squares estimator incurs a parameter estima-

tion error of the order 1
π3
minn

even when provided with the true

partition of covariates {Sj(β
∗
1 , . . . , β∗

k)}3
j=1. While this does

not constitute an information theoretic lower bound, it provides

strong evidence to suggest that our dependence on πmin is

optimal at least when viewed in isolation. We verify this

intuition via simulation: in panel (d) of Figure 1, we observe

that on this example, the error of the final AM iterate varies

linearly with the quantity 1/π3
min.

The first term of the bound (14b) is an optimization error

that is best interpreted in the noiseless case σ = 0, wherein the

parameters β
(t)
1 , . . . , β

(t)
k converge at a geometric rate to the

true parameters β∗
1 , . . . , β∗

k , as verified in panel (a) of Figure 1.

In particular, in the noiseless case, we obtain exact recovery

of the parameters provided n ≥ C kd
π3
min

log(n/d). Thus, the

“sample complexity” of parameter recovery is linear in the

dimension d, which is optimal (panel (a) verifies this fact).

In the well-balanced case, the dependence on k is quartic, but

lower bounds based on parameter counting suggest that the

true dependence ought to be linear. Again, we are not aware

of whether the dependence on πmin in the noiseless case is

optimal; our simulations shown in panel (a) suggests that the

sample complexity depends inversely on πmin, and so closing

this gap is an interesting open problem. When σ > 0, we have

an overall sample size requirement

n ≥ c max {d, 10 logn} · max

�
kκ

π3
min

, σ2 k5κ2

∆π15
min

�
: =nAM(c).

(16)

As a final remark, note that Theorem 1 holds under Gaussian

covariates and when the true parameters β∗
1 , . . . , β∗

k are fixed

independently of the covariates. In our companion paper [1],

it is shown that both of these features of the result can be

relaxed, i.e., AM converges geometrically even under a milder

covariate assumption, and this convergence occurs for all true

parameters that are geometrically similar.

B. Initialization

In this section, we provide guarantees on the initialization

method described in Algorithms 2 and 3 in Theorems 2 and 3,

respectively.

Consider the matrices bU and cM defined in Algorithm 2.

Algorithm 2 is a moment method: we extract the top k
principal components of a carefully chosen moment statistic of

the data to obtain a subspace estimate bU . Spectral algorithms

such as these have been used to obtain initializations in a wide

variety of non-convex problems [43], [52], [53] to obtain an
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accurate estimate of the subspace spanned by the unknown

parameters. It is well-known that the performance of the

algorithm in recovering a k-dimensional subspace depends

on λk(E[cM ]), which is the k-th largest eigenvalue of the

population moment E[cM ]. We show in the proof (see the

discussion following Lemma 7) that there is a strictly positive

scalar γ such that

λk(E[cM ]) ≥ γ. (17)

It should be stressed that we obtain an explicit expression

for γ as a function of the various problem parameters (in

equation (49) of the proof) that is, a priori,8 independent of

the ambient dimension d.

This characterization is the main novelty of our contribution,

and allows us to establish the following guarantee on the

PCA algorithm. We let U∗ ∈ Rd×k denote a matrix whose

orthonormal columns span the linear subspace spanned by the

vectors θ∗1 , . . . , θ
∗
k, and define the quantity

ς : = max
j∈[k]



kθ∗j k1 + |b∗j |

�
. (18)

Theorem 2: There is a universal constant C such that bU
satisfies the bound

|||bU bU> − U∗(U∗)>|||2
F
≤ C

�
σ2 + ς2

γ2

�
kd log3(nk)

n

with probability greater than 1−Cn−10.

The proof of Theorem 2 is provided in Appendix C.

We have thus shown that the projection matrix U∗(U∗)> onto

the true subspace spanned by the vectors θ∗1 , . . . , θ
∗
k can be

estimated at the parametric rate via our PCA procedure. Note

that this is useful when k ≤ d, since otherwise we have
bU = U∗ = Id. The guarantee of this theorem is illustrated

via simulation in panel (a) of Figure 2.

Let us now turn to establishing a guarantee on Algorithm 3

when it is given a (generic) subspace estimate bU as input.

Since the model (1) is only identifiable up to a relabeling of

the individual parameters, we can only hope to show that a

suitably permuted set of the initial parameters is close to the

true parameters. Toward that end, let Pk denote the set of all

permutations from [k] → [k], and let

dist

�n
β

(0)
j

ok

j=1
,


β∗

j

�k

j=1

�
: = min

P∈Pk

kX

j=1

kβ(0)
P (j) − β∗

j k2

(19)

denote the minimum distance attainable via a relabeling of the

parameters. With this notation in place, we are now ready to

state our result for parameter initialization. In it, we assume

that the input matrix bU is fixed independently of the samples

used to carry out the search procedure; again, recall that
bU = U∗ = Id if k > d.

8While this may seem surprising—after all, the unknown parameters
θ∗1 , . . . , θ∗k live in dimension d—all the interesting action is confined to the
k dimensional subspace spanned by these parameters and γ is a function of
the geometry induced by the parameters on this subspace.

Theorem 3: Let k̄ = k ∧ d. Suppose we set 0 ≤ r ≤
∆π

5/2
min log−1/2(k/πmin)

8Bmaxk̄3 , that

|||bU bU> − U∗(U∗)>|||op ≤
∆π

3/2
min

8Bmaxk2

and note that it suffices to set M =
(
1 + 1

r

)k̄
. Then there is

a tuple of universal constants (c1, c2) such that if

n ≥ c1 max

�
d

k3

π3
min

log2(πmin/k), σ2 k3

π3
min∆2

log M

�
,

then

min
c>0

dist

�n
cβ

(0)
j

ok

j=1
,


β∗

j

�k

j=1

�

≤ c1

�
k

πmin

�3�
4kB2

max

�
r2 + |||bU bU> − U∗(U∗)>|||2

op

	

+
σ2 log M

n

�

with probability exceeding 1−c1k exp
�
−c2n

π4
min

k4 log2(k/πmin)

	
.

We prove Theorem 3 in Appendix D. Combining Theo-

rems 2 and 3 with some algebra then allows us to prove

a guarantee for the initialization procedure that combines

Algorithms 2 and 3 in sequence. In particular, fix a positive

scalar � ≤ ∆. Then combining the theorems shows that if (for

an appropriately large universal constant c), we have

M =

�
1 + cBmaxk

3 log1/2(k/πmin)

�π
5/2
min

�k

, and the sample size n is

greater than

ninit(�, M, c) : = c max

�
dk

πmin
,

σ2k5

π5
min�2

log(
k

πmin
) log(

M

δ
),

d log3(nk) log(
k

πmin
)

k7B2
max

γ2π5
min�

2
(σ2 + ς2)

�
,

(20)

then minc>0 dist

�n
cβ

(0)
j

ok

j=1
,


β∗

j

�k

j=1

�
≤ �2 with proba-

bility greater than 1−cn−10. Equipped with this guarantee on

our initialization step, we are now in a position to state an

end-to-end guarantee on our overall methodology in the next

section.

C. Overall Algorithmic Guarantee

Assume without loss of generality that the identity permu-

tation minimizes the distance measure dist, so that β
(0)
j is

the estimate of the parameter β∗
j for each j ∈ [k]. Recall

the statistical error δn,σ(d, k, πmin) defined in equation (15),

which is, up to a constant factor, the final (squared) radius of

the ball to which the AM update converges when initialized

suitably, and the notation nAM(c) and ninit(�, M, c) from

equations (16) and (20), respectively. We now state a guarantee

for our overall procedure that runs Algorithms 2, 3, and 1 in

that sequence; we omit the proof since it follows by simply

putting together the pieces from Theorem 1 and the discussion

above.
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Fig. 2. Simulation of the PCA and overall guarantees. We assume that the true parameter matrix Θ∗ = A∗(U∗)> for a Rd×k matrix U∗ and an invertible

A∗ ∈ Rk×k , and that Algorithm 2 returns a subspace estimate �U . Panel (a) reveals the subspace estimation error as a function of d/n, which is corroborated
by Theorem 2. In panel (b), we compare the performance of our overall algorithm (in red) with that of AM with repeated random initialization [12] (in blue)
averaged over 50 trials. We fix k = 3, d = 50, n = 35kd and σ = 0.1. For a sufficiently large M , both schemes perform in a similar fashion.

Corollary 1: Let k̄ = k∧d. There exist universal constants

c1 and c2 such that with

M =

�
1 + c1

Bmaxk̄
4 log1/2(k/πmin)

π
11/2
min

�k̄

,

n ≥ max

�
ninit

�
c2

π3
min

k̄
, c1, M

�
, nAM(c1)

�

and T0 = c1 log

�
1

δn,σ(d, k, πmin)

�
,

then the combined algorithm satisfies, simultaneously for all

T ≥ T0, the bound

Pr

⎧
⎨

⎩

kX

j=1

kβ(T )
j − β∗

j k2 ≥ c1δn,σ(d, k, πmin)

⎫
⎬

⎭

≤ c1

�
n−10 + k exp

�
−c2n

π6
min

k2

�
+

k2

n7

�
.

We thus obtain, an algorithm that when given a number

of samples that is near-linear in the ambient dimension,

achieves the rate δn,σ(d, k, πmin) = σ2kd
π3
minn

log(kd) log(n/kd)

of estimation of all kd parameters in squared `2 norm. This

convergence is illustrated in simulation in Figure 2, in which

we choose k = 3, d = 50 and n = 35kd. Interestingly, panel

(b) of this figure shows that our provable multi-step algorithm

has performance similar to the algorithm that runs AM with

repeated random initializations.

The computational complexity of our overall

algorithm (with exact matrix inversions) is given by

O
�
knd2 log

�
1

δn,σ(d,k,πmin)

	
+
(
M
k

)
· nd
	

, where we also

assume that the k top eigenvectors of the matrix cM are

computed exactly in Algorithm 2. This guarantee can also

be extended to the case where the linear system is solved up

to some numerical precision by (say) a conjugate gradient

method and the eigenvectors of cM are computed using

the power method, thereby reducing the computational

complexity. Such an extension is standard and we do not

detail it here.

D. Proof Sketch and Technical Challenges

Let us first sketch, at a high level, the ideas required to

establish guarantees on the AM algorithm. We need to control

the iterates of the AM algorithm without sample-splitting

across iterations, and so the iterates themselves are random

and depend on the sequence of random variables (ξi, �i)
n
i=1.

A popular and recent approach to handling this issue in

related iterative algorithms (e.g., [25]) goes through two steps:

first, the population update, corresponding to running (12a)-

(12b) in the case n → ∞, is analyzed, after which the

random iterates in the finite-sample case are shown to be

close to their (non-random) population counterparts by using

concentration bounds for the associated empirical process. The

main challenge in our setting is that the population update is

quite non-trivial to write down since it involves a delicate

understanding of the geometry of the covariate distribution

induced by the maxima of affine functions. We thus resort to

handling the random iterates directly, thereby sidestepping the

calculation of the population operator entirely.

In order to convey the principal difficulties associated with

our approach, let us present a bound on the error obtained

after running a single step of the algorithm, starting at the

parameters β1, . . . , βk and obtaining, as a result of one step

of the algorithm, the parameters β+
1 , . . . , β+

k . We use the

shorthand notation Sj : = Sj(β1, . . . , βk), and let PΞj(β1,...,βk)

denote the projection matrix onto the range of the matrix ΞSj .

Let y∗ denote the vector with entry i given by

max`∈[k] hξi, β∗
` i. We have

kΞSj(β
+
j − β∗

j )k2 = kPΞj(β1,...,βk)ySj − ΞSj β
∗
j k2

= kPΞj(β1,...,βk)y
∗
Sj

+ PΞj(β1,...,βk)�Sj − ΞSj β
∗
j k2

≤ 2kPΞj(β1,...,βk)(y
∗
Sj

− ΞSj β
∗
j )k2 + 2kPΞj(β1,...,βk)�Sjk2

≤ 2ky∗
Sj

− ΞSj β
∗
j k2 + 2kPΞj(β1,...,βk)�Sjk2, (21)

where we have used the fact that the projection operator is

non-expansive on a convex set.

Let

{hξi, β`i = max} : =

�
hξi, β`i = max

u∈[k]
hξi, βui

�
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for each i ∈ [n], ` ∈ [k] denote a convenient shorthand for

these events. The first term on the RHS of inequality (21) can

be written as
X

i∈Sj

(y∗
i − hξi, β∗

j i)2

≤
nX

i=1

X

j0:j0 6=j

1



hξi, βji = max and hξi, β∗

j0 i = max
�

× hξi, β∗
j0 − β∗

j i2,

where the inequality accounts for ties. Each indicator random

variable is bounded, in turn, as

1


hξi, βji = max and hξi, β∗

j0 i = max
�

≤ 1


hξi, βji ≥ hξi, βj0i and hξi, β∗

j0 i ≥ hξi, β∗
j i
�

≤ 1



hξi, βj − βj0 i · hξi, β∗

j − β∗
j0i ≤ 0

�
.

Switching the order of summation yields the bound
X

i∈Sj

(y∗
i − hξi, β∗

j i)2

≤
X

j0:j0 6=j

nX

i=1

1



hξi, βj − βj0i · hξi, β∗

j − β∗
j0i ≤ 0

�

× hξi, β∗
j − β∗

j0 i2.

Recalling our notation for the minimum eigenvalue of a

symmetric matrix, the LHS of inequality (21) can be bounded

as

kΞSj(β
+
j − β∗

j )k2 ≥ λmin

�
Ξ>

Sj
ΞSj

	
· kβ+

j − β∗
j k2.

Putting together the pieces yields, for each j ∈ [k], the

pointwise bound

1

2
λmin

�
Ξ>

Sj
ΞSj

	
· kβ+

j − β∗
j k2

≤
X

j0:j0 6=j

nX

i=1

1


hξi, βj − βj0i · hξi, β∗

j − β∗
j0i ≤ 0

�

× hξi, β∗
j − β∗

j0i2 + kPΞj(β1,...,βk)�Sjk2. (22)

Up to this point, note that all steps of the proof were

deterministic. Observe from equation (22) that in order to

obtain an error bound on the next parameter, we need

to control three distinct quantities: (a) the noise term

kPΞj(β1,...,βk)�Sjk2, (b) the prediction error of the noise-

less problem, given by a pairwise sum of terms of the

form 1



hξi, βj − βj0i · hξi, β∗

j − β∗
j0 i ≤ 0

�
hξi, β∗

j − β∗
j0 i2,

and (c) the minimum eigenvalue of the covariate matrix

restricted to the set Sj , denoted by λmin

�
Ξ>

Sj
ΞSj

	
. Since

the set Sj is in itself random and depends on the pair (Ξ, �)
(since the current parameters were obtained over the course of

running the algorithm), obtaining such a bound is especially

challenging.

For step (a)—handled by Lemma 3—we apply standard

concentration bounds for quadratic forms of sub-Gaussian

random variables in conjunction with bounds on the growth

functions of multi-class classifiers [54]. Crucially, this affords

a uniform bound on the noise irrespective of which iterate

the alternating minimization update is run from. To show step

(b)—in Lemma 4—we generalize a result of Waldspurger [23].

Finally, the key difficulty in step (c) is to control the spectrum

of random matrices, rows of which are drawn from (randomly)

truncated variants of the Gaussian distribution. The expectation

of such a random matrix can be characterized by appealing

to tail bounds on the non-central χ2 distribution, and the

Gaussian covariate assumption additionally allows us to show

that an analogous result holds for the random matrix with high

probability (see Lemma 5). Here, our initialization condition

is crucial: the aforementioned singular value control suffices

for the sub-matrices formed by the true parameters, and we

translate these bounds to the sub-matrices generated by ran-

dom parameters by appealing to the fact that the initialization

is sufficiently close to the truth.

Having discussed our proof of the AM update in some

detail, let us now turn to a brief discussion of the techniques

used to prove Theorems 2 and 3. As mentioned before, our

proof of Theorem 2 relies on a lower bound on the eigengap

of the population moment. We obtain such a lower bound

by appealing to classical moment calculations for suitably

truncated Gaussian distributions [45]. Translating these cal-

culations into an eigengap is quite technical, and involves

the isolation of many properties of the population moments

that may be of independent interest. As briefly alluded to in

Section II, the heart of the technical difficulty is due to the

fact that max function is not differentiable, and so moments

cannot be calculated by repeated applications of Stein’s lemma

like in related problems [43], [52], [55].

In order to establish Theorem 3, we crucially use the

scale-invariance property of the initialization along with some

arguments involving empirical process theory to show that the

goodness-of-fit statistic employed in the algorithm is able to

isolate a good initialization. Establishing these bounds requires

us to relate the prediction and estimation errors in the problem

(in Lemma 16), which may be of independent interest.

IV. DISCUSSION

We conclude this portion of the paper with short discussions

of prediction error guarantees, a comparison with adaptivity in

convex regression, related models, and future directions.

A. Guarantees on Prediction Error

While our principal focus in this paper was on estimation

of the unknown parameters {θ∗j , b∗j}k
j=1, the complementary

question of prediction error is also interesting and important.

In particular, suppose that we produce the max-affine function

estimate bφ(MA) given by bφ(MA)(x) : = maxj∈[k] (hx, bθji +
bbj) for each x ∈ Rd, and measure its performance via the

prediction error

1

n

nX

i=1

(bφ(ls)(xi) − φ∗(xi))
2, (23)

where φ∗(x) = maxj∈[k] (hx, θ∗j i + b∗j ) denotes the “true”

function. When φ∗ belongs to the sub-class of k-piece affine

functions induced by parameters in the set Bvol(πmin, ∆, κ)
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and the covariates are drawn from a Gaussian distribution,

our results imply (via Theorem 1, and by using Lemma 16 to

translate our estimation error guarantee into a prediction error

guarantee) the rate

1

n

nX

i=1

(bφ(MA)(xi) − φ∗(xi))
2 ≤ C(πmin, ∆, κ)

kd

n

× log(kd) log(n/kd). (24)

At least in principle, an explicit dependence on πmin should

not be expected in the prediction error, since if a particular

pair of parameters (θ, b) attains the maximum extremely rarely

(resulting in a small value of πmin), then we may simply drop

these parameters from the estimate (and estimate the function

with the maximum of the remaining k − 1 pieces) without

affecting the prediction error significantly. Indeed the minimax

risk of prediction (without any requirements of computational

efficiency) is known to be independent of the geometry of the

problem instance (see, e.g., [16]).

We also note that polynomial-time algorithms with small

prediction error are known, without any dependence on πmin.

In particular, [56, Theorem 1.8] shows that the sample com-

plexity for obtaining �-accurate estimates in prediction error is

bounded by n ≤ exp


c1(k/�)log k

�
dc2 for absolute constants

c1 and c2. While the dependence on both � and d can likely be

improved,9 these results provide additional evidence that the

prediction error is much less sensitive to the geometry of the

instance than the estimation error considered in this paper.

B. Comparison With Algorithms for Convex Regression

As mentioned earlier, the most standard estimator in convex

regression is the convex least squares estimator bφ(ls) defined

as in (6) which can be computed efficiently as shown in [19],

[21]. The performance of bφ(ls) in the max-affine regression

model (1) has been the subject of some interest in the literature

on adaptivity of shape-constrained estimators (see [57] for an

overview of results of this type). These results mainly focus

on the prediction error:

1

n

nX

i=1

(bφ(ls)(xi) − φ∗(xi))
2

as opposed to estimation of the parameters θ∗j , b∗j , j = 1, . . . , k
which is our main focus. There is actually no natural way of

obtaining parameter estimates from bφ(ls) as bφ(ls) will typically

be a maximum of a strictly larger than k number of affine

functions. Let us now compare our results with the existing

results on the prediction error of the convex least squares

estimator. When d = 1, it has been showed by [58] and [59]

that

1

n

nX

i=1

(bφ(ls)(xi) − φ∗(xi))
2 ≤ k log n

n

with high probability assuming that {xi}n
i=1 are uniformly

spaced on the interval [0, 1]. For d ≥ 2, Han and Wellner [9]

9Note that unlike our paper, this work makes only boundedness assumptions
on the covariates, and their focus is not on achieving the optimal dimen-
sion/sample size dependence.

studied the adaptivity properties of bφ(bls) which is the least

squares estimator over the class of bounded convex functions

which is different from bφ(ls) and computationally tricky to

compute. However, [9] showed that unless d ≤ 4,

1

n

nX

i=1

(bφ(bls)(xi) − φ∗(xi))
2 ≤ Cmn−4/d(log n)d+4

with high probability assuming that the covariates are drawn

from a distribution supported on a convex polytope with

m simplices (the constant pre-factor Cm depends on m).

Comparing these two results with our result on the prediction

error (24), we see that when d = 1, our results in the prediction

error are strictly weaker than those of prior work [58], [59],

but as soon as d ≥ 2, they are significantly stronger than

existing adaptivity results [9], at least for a sub-class of k-

affine functions. We emphasize once again that the focus of

the body of work differs from ours, and so the comparison

presented above is necessarily incomplete.

A parallel line of work (including our own) eschews the

c-LSE (and its variants) entirely and pursues a different

avenue to alleviate the curse of dimensionality,10 by directly

fitting convex functions consisting of a certain number of

affine pieces [10], or more broadly, by treating the number

of affine functions as a tuning parameter to be chosen in

a data-dependent fashion via cross-validation [11]. Hannah

and Dunson [11] showed that performing estimation under a

carefully chosen sequence of models of the form (1) via their

“convex adaptive partitioning”, or CAP estimator is able to

obtain consistent prediction rates for general convex regression

problems. However, it is unclear if the CAP estimator is able

to avoid the curse of dimensionality in the special case when

the true function is k-piece affine.

C. Related Models

Models closely related to (1) also appear in second price

auctions, where an item having d features is bid on and sold

to the highest bidder at the second highest bid [60], [61].

Assuming that each of k user groups bids on an item and

that each bid is a linear function of the features, one can use

a variant of the model (1) with the max function replaced

by the second order statistic to estimate the individual bids

of the user groups based on historical data. Another related

problem is that of multi-class classification [54], in which

one of k labels is assigned to each sample based on the

argmax function, i.e., for a class of functions F , we have

the model Y = argmax1≤j≤k fj(X) for j distinct functions

f1, . . . , fk ∈ F . When F is the class of linear functions based

on d features, this can be viewed as the “classification” variant

of our regression problem.

The model (1) can also be seen as a special case of

multi-index models [62], [63] as well as mixture-of-experts

models [64], [65]. Multi-index models are of the form Y =
g(hθ∗1 , Xi, . . . , hθ∗k, Xi) + � for an unknown function g and

10Note that setting k ∼ nd/(4+d), we can (essentially) recover the entire
class of convex functions from the maxima of k affine functions (see, e.g.,
Balázs [12]), so interesting parametric structure is only expected to emerge
when k is essentially constant, or grows very slowly with n.
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this function g is taken to be the max(·) function in the

model (1). In the mixture-of-experts model, the covariate

space is partitioned into k regions via certain gating functions,

and the observation model is given by k distinct regression

functions: one on each region. The model (1) is clearly a

member of this class, since the max(·) function implicitly

defines a partition of Rd depending on which of the k linear

functions of X attains the maximum, and on each of these

partitions, the regression function is linear in X .

D. Future Directions

In this paper, we analyzed a natural alternating minimization

algorithm for estimating the maximum of unknown affine

functions, and established that it enjoys local linear con-

vergence to a ball around the optimal parameters. We also

proposed an initialization based on PCA followed by random

search in a lower-dimensional space. An interesting open

question is if there are other efficient methods besides random

search that work just as well post dimensionality reduction.

Another interesting question has to do with the necessity of

dimensionality reduction: in simulations (see, e.g., Figure 2),

we have observed that if the AM algorithm is repeatedly

initialized in (d+1)-dimensional space without dimensionality

reduction, then the number of repetitions required to obtain an

initialization from which it succeeds (with high probability) is

similar to the number of repetitions required after dimension-

ality reduction. This suggests that our (sufficient) initialization

condition (14a) may be too stringent, and that the necessary

conditions on the initialization to ensure convergence of the

AM algorithm are actually much weaker. We leave such a

characterization for future work, but note that some such

conditions must exist: the AM algorithm when run from a

single random initialization, for instance, fails with constant

probability when k ≥ 3. Understanding the behavior of the

randomly initialized AM algorithm is also an open problem

in the context of phase retrieval [23], [66].

We note that once again that the Gaussian assumption

made in this paper for convenience of analysis can be relaxed

to allow (for instance) log-concave covariate distributions,

which includes the uniform distribution on [−1, 1]d common in

nonparametric statistics. Such an extension requires significant

technical effort and the structure of the proof also changes

slightly; simultaneously, the dependence of the eventual error

bounds on the parameter πmin is also different in the more

general setting. In particular, Lemmas 4-6 in the current paper

must be extended, and this requires, among other things,

an analysis of random matrices whose rows are drawn from

a (truncated) small-ball distribution. Our companion paper [1]

is also concerned with the universal setting in which guaran-

tees are proved uniformly over all choices of parameters once

the covariates have been drawn, in contrast to the setting of

the current paper in which parameters are fixed in advance.

Universal guarantees are commonly sought out in statistical

signal processing applications, including phase retrieval [53].

In the broader context of max-affine estimation, it is also

interesting to analyze other non-convex procedures (e.g. gra-

dient descent) to obtain conditions under which they obtain

accurate parameter estimates. The CAP estimator of Hannah

and Dunson [11] and the adaptive max-affine partitioning

algorithm of Balázs [12] are also interesting procedures for

estimation under these models, and it would be interesting

to analyze their performance when the number of affine

pieces k is fixed and known. For applications in which the

dimension d is very large, it is also interesting to study the

model with additional restrictions of sparsity on the unknown

parameters—such problems are known to exhibit interesting

statistical-computational gaps even in the special case of sparse

phase retrieval (see, e.g., Cai et al. [67]). We also note that in

practice, and especially for convex regression, the parameter

k would be unknown and must be estimated (say) via cross-

validation, and understanding such a data-driven estimator is

an important direction of future work.

We now present proofs of our main results. We assume

throughout that the sample size n is larger than some universal

constant. Values of constants c, c1, c
0, . . . may change from line

to line. Statements of our theorems, for instance, minimize the

number of constants by typically using one of these to denote

a large enough constant, and another to denote a small enough

constant.

APPENDIX A

TECHNICAL RESULTS CONCERNING THE GLOBAL LSE

In this section, we provide a proof of the existence of the

global least squares estimator that was stated in the main text.

We also state and prove a lemma that shows that the global

LSE is a fixed point of the AM update under a mild technical

condition.

A. Proof of Lemma 1

Fix data (x1, y1), . . . , (xn, yn) and let

L(γ1, . . . , γk) :=

nX

i=1

�
yi − max

j∈[k]
hξi, γji

�2

denote the objective function in (5) with ξi := (xi, 1). The

goal is to show that a global minimizer of L(γ1, . . . , γk)
over γ1, . . . , γk ∈ Rd+1 exists. For γ1, . . . , γk ∈ Rd+1, let

Sγ
1 , . . . , Sγ

k denote a fixed partition of [n] having the property

that

hξi, γji = max
u∈[k]

hξi, γui for every j ∈ [k] and i ∈ Sγ
j .

Also, let bβγ
1 , . . . , bβγ

k denote the solution to the following

constrained least squares problem:

minimize
β1,...,βk

kX

j=1

X

i∈Sγ
j

(yi − hξi, βji)2

subject to hξi, βji ≥ hξi, βui, u, j ∈ [k], i ∈ Sγ
j .

Note that the above quadratic problem is feasible as γ1, . . . , γk

satisfies the constraint and, consequently, bβγ
1 , . . . , bβγ

k exists

uniquely for every γ1, . . . , γk ∈ Rd+1. Note further that,

by construction,

L
�
bβγ
1 , . . . , bβγ

k

	
≤ L(γ1, . . . , γk).
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and that the set

∆ :=
n
(bβγ

1 , . . . , bβγ
k ) : γ1, . . . , γk ∈ R

d+1
o

is finite because bβγ
1 , . . . , bβγ

k depends on γ1, . . . , γk only

through the partition Sγ
1 , . . . , Sγ

k and the number of possible

such partitions of [n] is obviously finite. Finally, it is evident

that

(bβ(ls)
1 , . . . , bβ(ls)

k ) = argmin
(β1,...,βk)∈∆

L(β1, . . . , βk)

is a global minimizer of L(γ1, . . . , γk) as

L
�
bβ(ls)
1 , . . . , bβ(ls)

k

	
≤ L

�
bβγ
1 , . . . , bβγ

k

	
≤ L(γ1, . . . , γk)

for every γ1, . . . , γk. This concludes the proof of Lemma 1.

B. Fixed Point of AM Update

The following lemma establishes that the global LSE is a

fixed point of the AM update under a mild technical condition.

Lemma 2: Consider the global least squares estimator (5).

Suppose that the k values hξi, bβls
j i for j = 1, . . . , k are distinct

for each i ∈ [n]. Then

bβ(ls)
j ∈ argmin

β∈Rd+1

X

i∈Sj(�β(ls)
1 ,...,�β(ls)

k )

(yi−hξi, βi)2 for everyj ∈ [k].

(25)

Proof: It is clearly enough to prove (25) for j = 1.

Suppose that bβ(ls)
1 does not minimize the least squares criterion

over S1(bβ(ls)
1 , . . . , bβ(ls)

k ). Let

bγ(ls)
1 ∈ argmin

β∈Rd+1

X

i∈S1(�β(ls)
1 ,...,�β(ls)

k )

(yi − hξi, βi)2

be any other least squares minimizer over S1(bβ(ls)
1 , . . . , bβ(ls)

k )
and let, for � > 0,

eβ1 := bβ(ls)
1 + �

�
bγ(ls)
1 − bβ(ls)

1

	
.

When � > 0 is sufficiently small, we have

Sj(eβ1, bβ(ls)
2 . . . , bβ(ls)

k ) = Sj(bβ(ls)
1 , . . . , bβ(ls)

k ) for every j ∈ [k]

due to the no ties assumption and the fact that eβ1 and
bβ(ls)
1 can be made arbitrarily close as � becomes small.

Thus, if

U(β1, . . . , βk) :=

nX

i=1

�
yi − max

j∈[k]
hξi, βji

�2

=
X

j∈[k]

X

i∈Sj(β1,...,βk)

(yi − hξi, βji)2 ,

then

U(eβ1, bβ(ls)
2 . . . , bβ(ls)

k ) =
X

i∈S1(�β1,�β(ls)
2 ...,�β(ls)

k )

�
yi − hξi, eβ1i

	2

+
X

j≥2

X

i∈Sj(�β1,�β(ls)
2 ...,�β(ls)

k )

�
yi − hξi, bβ(ls)

j i
	2

=
X

i∈S1(�β(ls)
1 ,�β(ls)

2 ...,�β(ls)
k )

�
yi − hξi, eβ1i

	2

+
X

j≥2

X

i∈Sj(�β(ls)
1 ,�β(ls)

2 ...,�β(ls)
k )

�
yi − hξi, bβ(ls)

j i
	2

<
X

i∈S1(�β(ls)
1 ,�β(ls)

2 ...,�β(ls)
k )

�
yi − hξi, bβ(ls)

1 i
	2

+
X

j≥2

X

i∈Sj(�β(ls)
1 ,�β(ls)

2 ...,�β(ls)
k )

�
yi − hξi, bβ(ls)

j i
	2

= U(bβ(ls)
1 , bβ(ls)

2 . . . , bβ(ls)
k )

where the strict inequality above comes from the fact that eβ1

is closer to the least squares solution bγ(ls)
1 compared to bβ(ls)

1 .

This leads to a contradiction as the criterion function is smaller

than its value at a global minimizer, thereby concluding the

proof.

APPENDIX B

PROOF OF THEOREM 1

Let us begin by introducing some shorthand notation, and

providing a formal statement of the probability bound guar-

anteed by the theorem. For a scalar w∗, vectors u∗ ∈ Rd

and v∗ = (u∗, w∗) ∈ Rd+1, and a positive scalar r, let

Bv∗(r) =
n
v ∈ R

d+1 : kv−v∗k
ku∗k ≤ r

o
, and let

I
�
r;


β∗

j

�k

j=1

	

=
n
β1, . . . βk ∈ R

d+1 : ∃c > 0 : c(βi − βj) ∈ Bβ∗
i −β∗

j
(r)
o

for all 1 ≤ i 6= j ≤ k. Also, use the shorthand

ϑt

�
r;


β∗

j

�k

j=1

	
: = sup

β
(0)
1 ,...,β

(0)
k ∈I(r)

kX

j=1

kβ(t)
j − β∗

j k2

−
�

3

4

�t
⎛


kX

j=1

kc∗β(0)
j − β∗

j k2

⎞

 , and

δn,σ(d, k, πmin) : = σ2 kd

π3
minn

log(kd) log(n/kd)

to denote the error tracked over iterations (with c∗ denoting

the smallest c > 0 such that c(βi − βj) ∈ Bβ∗
i −β∗

j
(r) for all

1 ≤ i 6= j ≤ k), and a proxy for the final statistical rate,

respectively.

Theorem 1 states that there are universal constants c1 and

c2 such that if the sample size obeys the condition
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n ≥ nAM(c1), then we have

Pr

�
max
t≥1

ϑt

�
c2

π6
min

k2κ
;


β∗

j

�k

j=1

�
≥ c1δn,σ(d, k, πmin)

�

≤ c2

�
k exp

�
−c1n

π6
min

k2

�
+

k2

n7

�
. (26)

Let us assume, without loss of generality, that the scalar

c∗ above is equal to 1. It is convenient to state and prove

another result that guarantees a one-step contraction, from

which Theorem 1 follows as a corollary. In order to state this

result, we assume that one step of the alternating minimization

update (12a)-(12b) is run starting from the parameters {βj}k
j=1

to produce the next iterate


β+

j

�k

j=1
. We use the shorthand

v∗i,j = β∗
i − β∗

j ,

vi,j = βi − βj , and

v+
i,j = β+

i − β+
j .

Also recall the definitions of the geometric quantities (∆, κ).
The following proposition guarantees the one step contraction

bound.

Proposition 1: There exist universal constants c1 and

c2 such that

(a) If the sample size satisfies the bound n ≥
c1 max

n
dk

π3
min

, log n · k2

π6
min

o
, then for all parameters {βj}k

j=1

satisfying

max
1≤j 6=j0≤k

��vj,j0 − v∗j,j0
��

kθ∗j − θ∗j0k
log3/2

⎛
 kθ∗j − θ∗j0k���vj,j0 − v∗j,j0

���

⎞
≤ c2

π6
min

k2κ
,

(27a)

we have, simultaneously for all pairs 1 ≤ j 6= ` ≤ k, the

bound

���v+
j,` − v∗j,`

���
2

kθ∗j − θ∗`k2
≤ max

�
dκ

π3
minn

,
1

4k

�

×

⎛


kX

j0=1

��vj,j0 − v∗j,j0
��2

kθ∗j − θ∗j0k2
+

���v`,j0 − v∗`,j0
���

2

kθ∗` − θ∗j0k2

⎞


+ c1
σ2

∆

kd

π3
minn

log(n/d) (27b)

with probability exceeding 1−c1

�
k exp

�
−c2n

k2

π6
min

	
+ k2

n7

	
.

(b) If the sample size satisfies the bound n ≥
c1 max

n
dk

π3
min

, log n · k2

π6
min

o
, then for all parameters {βj}k

j=1

satisfying

max
1≤j 6=j0≤k

��vj,j0 − v∗j,j0
��

kθ∗j − θ∗j0k
log3/2

⎛

 kθ∗j − θ∗j0k���vj,j0 − v∗j,j0
���

⎞

≤ c2
π6

min

k2
,

(28a)

we have the overall estimation error bound

kX

i=1

kβ+
j − β∗

j k2 ≤ 3

4
·
�

kX

i=1

kβj − β∗
j k2

�

+ c1σ
2 kd

π3
minn

log(k) log(n/dk) (28b)

with probability exceeding 1−c1

�
k exp

�
−c2n

k2

π6
min

	
+ k2

n7

	
.

Let us briefly comment on why Proposition 1 implies

Theorem 1 as a corollary. Clearly, equations (28a) and (28b)

in conjunction show that the estimation error decays geometri-

cally after running one step of the algorithm. The only remain-

ing detail to be verified is that the next iterates


β+

j

�k

j=1
also satisfy condition (27a) provided the sample size is large

enough; in that case, the one step estimation bound (28b) can

be applied recursively to obtain the final bound (14b).

With the constant c2 from the proposition, let rb be

the largest value in the interval [0, e−3/2] such that

rb log3/2(1/rb) ≤ c2
π6
min

k2 . Similarly, let ra be the largest value

in the interval [0, e−3/2] such that ra log3/2(1/ra) ≤ c2
π6
min

k2κ .

Bounds on both of these values will be used repeatedly later

on.

Assume that the current parameters satisfy the bound (27a).

Choosing n ≥ 4κd/π3
min and applying inequality (27b),

we have, for each pair 1 ≤ j 6= ` ≤ k, the bound
���v+

j,` − v∗j,`

���
2

kθ∗j − θ∗`k2

≤ 1

4k

⎛


kX

j0=1

��vj,j0 − v∗j,j0
��2

kθ∗j − θ∗j0k2
+

���v`,j0 − v∗`,j0
���

2

kθ∗` − θ∗j0k2

⎞


+ c1
σ2

∆
σ2 kd

π3
minn

log(n/d)

≤ 1

2
r2
a + c1

σ2

∆

kd

π3
minn

log(n/d).

Further, if n ≥ Cσ2 kd
π3
min∆r2

a
for a sufficiently large constant

C, we have
���v+

j,` − v∗j,`

���
2

kθ∗j − θ∗` k2
≤ r2

a.

Thus, the parameters


β+

j

�k

j=1
satisfy inequality (27a) for the

sample size choice required by Theorem 1. Finally, noting, for

a pair of small enough scalars (a, b), the implication

a ≤ b

2
log−3/2(1/b) =⇒ a log3/2(1/a) ≤ b,

and adjusting the constants appropriately to simplify the prob-

ability statement completes the proof of the theorem. It now

remains to establish Proposition 1.

A. Proof of Proposition 1

Recall that we denote by

Sj(β1, . . . , βk) :=

�
1 ≤ i ≤ n : hξi, βji = max

1≤u≤k
(hξi, βui)

�
,
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the indices of the rows for which βj attains the maximum,

and we additionally keep this sets disjoint by breaking ties

lexicographically. To lighten notation, we use the shorthand

Ξj(β1, . . . , βk) : = ΞSj(β1,...,βk).

Recall the notation

Bv∗(r) =

�
v ∈ R

d+1 :
kv − v∗k
ku∗k ≤ r

�

introduced before, and the definitions of the pair of scalars

(ra, rb). To be agnostic to the scale invariance of the problem,

we set c∗ = 1 and define the set of parameters

I(r) =
n

β1, . . . , βk : vi,j ∈ Bv∗
i,j

(r) for all 1 ≤ i 6= j ≤ k
o

,

and use the shorthand Ia : = I(ra) and Ib : = I(rb), to denote

the set of parameters satisfying conditions (27a) and (28a),

respectively,

Finally, recall the deterministic bound (22) established in

Section III-D, restated below for convenience.

1

2
λmin

�
Ξ>

Sj
ΞSj

	
· kβ+

j − β∗
j k2

≤
X

j0 :j0 6=j

nX

i=1

1


hξi, vj,j0 i · hξi, v∗j,j0 i ≤ 0

�
hξi, v∗j,j0 i2

+ kPΞj(β1,...,βk)�Sjk2.

It suffices to show high probability bounds on the various

quantities appearing in this bound. First, we claim that the

noise terms are uniformly bounded as

Pr

�
sup

β1,...,βk∈Rd+1

kX

j=1

kPΞj(β1,...,βk)�Sj(β1,...,βk)k2

≥ 2σ2k(d + 1) log(kd) log(n/kd)

�
≤
�

n

kd

�−1

, and

(29a.I)

Pr

�
sup

β1,...,βk∈Rd+1

kPΞj(β1,...,βk)�Sj(β1,...,βk)k2

≥ 2σ2k(d + 1) log(n/d)

�
≤
�

n

d

�−1

for each j ∈ [k].

(29a.II)

Second, we show that the indicator quantities are simultane-

ously bounded for all j, j0 pairs. In particular, we claim that

there exists a tuple of universal constants (C, c1, c2, c
0) such

that for each positive scalar r ≤ 1/24, we have

Pr

�
∃1 ≤ j 6= j0 ≤ k, vj,j0 ∈ Bv∗

j,j0
(r) :

X

j0 :j0 6=j

nX

i=1

1



hξi, vj,j0 i · hξi, v∗j,j0 i ≤ 0

�
hξi, v∗j,j0i2

≥ C max{d, nr log3/2(1/r)}
X

j0:j0 6=j

kvj,j0 − v∗j,j0k2

�

≤ c1

�
k

2

�n
ne−c2n + e−c0 max{d,10 log n}

o
. (29b)

Finally, we show a bound on the LHS of the bound (22)

by handling the singular values of (random) sub-matrices

of Ξ with a uniform bound. In particular, we claim that

there are universal constants (C, c, c0) such that if n ≥
C max

n
dk

π3
min

, log n · k2

π6
min

o
, then for each j ∈ [k], we have

Pr

�
inf

β1,...,βk∈Ib

λmin

(
Ξj(β1, . . . , βk)> · Ξj(β1, . . . , βk)

)

≤ Cπ3
minn

�
≤ c exp

�
−cn

π6
min

k2

�
+ c0n−10. (29c)

Notice that claim (29a.I) implicitly defines a high probabil-

ity event E(a.I), claim (29a.II) defines high probability events

E(a.II)
j , claim (29b) defines a high probability event E(b)(r),

and claim (29c) defines high probability events E(c)
j . Define

the intersection of these events as

E(r) : = E(a.I)
\
⎛

\

j∈[k]

E(a.II)
j

⎞

\

E(b)(r)
\
⎛

\

j∈[k]

E(c)
j

⎞
,

and note that the claims in conjunction with the union

bound guarantee that if the condition on the sample

size n ≥ c1 max
n

dk
π3
min

, log n · k2

π6
min

o
holds, then for all

r ≤ rb, we have

Pr {E(r)} ≥ 1 − c1

�
k exp

�
−c2n

π6
min

k2

�
+

k2

n7

�
,

where we have adjusted constants appropriately in stating

the bound. We are now ready to prove the two parts of the

proposition.

a) Proof of part (a): Work on the event E(ra). Normal-

izing inequality (22) by n and using claims (29a.II). (29b),

and (29c) with r = ra then yields, simultaneously for all

j ∈ [k], the bound

kβ+
j − β∗

j k2

≤ C max

�
d

π3
minn

,
ra

π3
min

log3/2(1/ra)

� X

j0 :j0 6=j

kvj,j0 − v∗j,j0k2

+ C0σ2 kd

π3
minn

log(n/d)

(i)

≤ max

�
Cd

π3
minn

,
1

4kκ

� X

j0:j0 6=j

kvj,j0 − v∗j,j0k2

+ C0σ2 kd

π3
minn

log(n/d),

where in step (i), we have used the definition of the quantity

ra. Using this bound for the indices j, ` in conjunction with

the definition of the quantity κ proves inequality (27b).

b) Proof of part (b): We now work on the event E(rb)
and proceed again (see equation (22)) from the bound

kβ+
j − β∗

j k2 ≤ C max

�
d

π3
minn

,
rb

π3
min

log3/2(1/rb)

�

X

j0:j0 6=j

kvj,j0 − v∗j,j0k2 +
C

π3
minn

kPΞj(β1,...,βk)�Sjk2.
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Summing over j ∈ [k] and using the fact that ka + bk2 ≤
2kak2 + 2kbk2, we obtain

kX

j=1

kβ+
j − β∗

j k2 ≤ C max

�
kd

π3
minn

,
krb

π3
min

log3/2(1/rb)

�

×

⎛


kX

j=1

kβj − β∗
j k2

⎞

+
C

π3
minn

X

j∈[k]

kPΞj(β1,...,βk)�Sjk2

(ii)

≤ 3

4

⎛


kX

j=1

kβj − β∗
j k2

⎞

+ C0σ2 kd

π3
minn

log(k) log(n/kd),

where in step (ii), we have used the definition of the quantity

rb, the bound n ≥ Ckd/π3
min, and claim (29a.I). This

completes the proof.

We now prove each of the claims in turn. This constitutes

the technical meat of our proof, and involves multiple technical

lemmas whose proofs are postponed to the end of the section.

c) Proof of claims (29a.I) and (29a.II): We begin by

stating a general lemma about concentration properties of the

noise.

Lemma 3: Consider a random variable z ∈ Rn with i.i.d.

σ-sub-Gaussian entries, and a fixed matrix Ξ ∈ Rn×(d+1).

Then, we have

sup
β1,...,βk∈Rd+1

kX

j=1

kPΞj(β1,...,βk)zk2

≤ 2σ2k(d + 1) log(kd) log(n/kd) (30a)

with probability greater than 1 −
(

n
kd

)−1
and

sup
β1,...,βk∈Rd+1

max
j∈[k]

kPΞj(β1,...,βk)zSj(β1,...,βk)k2

≤ 2σ2k(d + 1) log(n/d) (30b)

with probability greater than 1 −
(
n
d

)−1
.

Here zSj(β1,...,βk) denotes the restriction of z onto the

coordinates denoted by the set Sj(β1, . . . , βk). The proof of

the claims follows directly from Lemma 3, since the noise

vector (here we instantiate z by �, which is sub-Gaussian) �

is independent of the matrix Ξ, and Ib ⊆
(
Rd+1

)⊗k
.

d) Proof of claim (29b): We now state a lemma that

directly handles indicator functions as they appear in the claim.

Lemma 4: Let u∗ ∈ Rd and w∗ ∈ R, and consider a fixed

parameter v∗ = (u∗, w∗) ∈ Rd+1. Then there are univer-

sal constants (c1, c2, c3, c4) such that for all positive scalars

r ≤ 1/24, we have

sup
v∈Bv∗ (r)

(
1
n

Pn
i=1 1 {hξi, vi · hξi, v∗i ≤ 0}hξi, v∗i2

)

kv − v∗k2

≤ c1 · max

�
d

n
, r log3/2

�
1

r

��

with probability exceeding 1 − c1e
−c2 max{d,10 log n} −

c3 ne−c4n. Here, we adopt the convention that 0/0 = 0.

Applying Lemma 4 with v = vj,j0 and v∗ = v∗j,j0 for

all pairs (j, j0) and using a union bound directly yields the

claim.

e) Proof of claim (29c): For this claim, we state three

technical lemmas pertaining to the singular values of ran-

dom matrices whose rows are formed by truncated Gaussian

random vectors. We let vol(K) denote the volume of a set

K ⊆ Rd with respect to d-dimensional standard Gaussian

measure, i.e., with vol(K) = Pr{Z ∈ K} for Z ∼ N (0, Id).
Lemma 5: Suppose n vectors {xi}n

i=1 are drawn i.i.d. from

N (0, Id), and K ⊆ R
d is a fixed convex set. Then there exists

a tuple of universal constants (c1, c2) such that if vol
3(K)n ≥

c1d log2 (1/ vol(K)), then

λmin

�
X

i:xi∈K

ξiξ
>
i

�
≥ c2 vol

3(K) · n

with probability greater than 1 −
c1 exp

�
−c2n

vol
4(K)

log2(1/ vol(K))

	
− c1 exp(−c2n · vol(K)).

For a pair of scalars (w, w0) and d-dimensional vectors

(u, u0), define the wedge formed by the d + 1-dimensional

vectors v = (u, w) and v0 = (u0, w0) as the region

W (v, v0) = {x ∈ R
d : (hx, ui + w) · (hx, u0i + w0) ≤ 0},

and let Wδ = {W = W (v, v0) : vol(W ) ≤ δ} denote the

set of all wedges with Gaussian volume less than δ. The next

lemma bounds the maximum singular value of a sub-matrix

formed by any such wedge.

Lemma 6: There is a tuple of universal constants (c1, c2)

such that if n ≥ c1 max
n

d, log n
δ2

o
, then

sup
W∈Wδ

λmax

�
X

i:xi∈W

ξiξ
>
i

�
≤ c1n

√
δ

with probability greater than 1 − exp(−c2nδ2) − n−10.

We are now ready to proceed to a proof of claim (29c). For

convenience, introduce the shorthand notation

S∗
j : = Sj (β∗

1 , . . . , β∗
k)

to denote the set of indices corresponding to observations

generated by the true parameter β∗
j . Letting A∆B : =

(A \ B)
S

(B \ A) denote the symmetric difference between

two sets A and B, we have

λmin

�
Ξ>

Sj
ΞSj

	
≥ λmin

�
Ξ>

S∗
j
ΞS∗

j

	
−λmax

�
Ξ>

S∗
j ∆Sj

ΞS∗
j ∆Sj

	
.

Recall that by definition, we have

S∗
j ∆Sj =

�
i : hξi, β∗

j i} = max and hξi, βji 6= max}
[

{i : hξi, β∗
j i 6= max and hξi, βji = max

�

⊆
[

j0∈[k]\j

{i : hξi, v∗j,j0i · hξi, vj,j0 i < 0}

⊆
[

j0∈[k]\j

{i : xi ∈ W
(
v∗j,j0 , vj,j0

)
}. (31)
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Putting together the pieces, we have

λmin

�
Ξ>

Sj
ΞSj

	
≥ λmin

�
Ξ>

S∗
j
ΞS∗

j

	

−
X

j0 6=j

λmax

⎛


X

i:xi∈W
�

v∗
j,j0

,vj,j0

� ξiξ
>
i

⎞
 .

(32)

Now by Lemma 9, the definition of the set Ib, and the

definition of rb, we have

vol
(
W
(
v∗j,j0 , vj,j0

))
≤ nrb log1/2(1/rb) ≤ C

π6
min

k2
.

Owing to the sample size assumption n ≥
C max

n
d, k2 log n

π6
min

o
, the conditions of Lemma 6 are

satisfied, and applying it yields

sup
vj,j0∈Bv∗

j,j0
(ra)

λmax

⎛


X

i:xi∈W
�

v∗
j,j0

,vj,j0

� ξiξ
>
i

⎞
 ≤ nC

π3
min

k

with probability exceeding 1−n−10−exp
�
−cn

π6
min

k2

	
. More-

over, Lemma 5 guarantees the bound λmin

�
Ξ>

S∗
j
ΞS∗

j

	
≥

c2n · π3
min, so that putting together the pieces, we have

inf
β1,...,βk∈Ib

λmin

�
Ξ>

Sj
ΞSj

	
≥ c2nπ3

min−Cnk
π3

min

k

≥ Cπ3
min n, (33)

with probability greater than 1−c exp
�
−cn

π6
min

k2

	
− n−10.

These assertions hold provided

n ≥ C max

�
d · k

π3
min

,
k2 log n

π6
min

�
,

and this completes the proof.

Having proved the claims, we turn to proofs of our technical

lemmas.

1) Proof of Lemma 3: In this proof, we assume that σ = 1;

our bounds can finally be scaled by σ2.

It is natural to prove the bound (30b) first followed

by bound (30a). First, consider a fixed set of parameters

{β1, . . . , βk}. Then, we have
��PΞj(β1,...,βk)zSj

��2 =
��UU>zSj

��2 ,

where U ∈ R|Ξj|×(d+1) denotes a matrix with orthonormal

columns that span the range of Ξj(β1, . . . , βk).
Applying the Hanson-Wright inequality for independent

sub-Gaussians (see [68, Theorem 2.1]) and noting that

|||UU>|||F ≤
√

d + 1 we obtain

Pr
n��UU>zSj

��2 ≥ (d + 1) + t
o
≤ e−ct,

for each t ≥ 0. In particular, this implies that the random

variable
��UU>zSj

��2 is sub-exponential.

This tail bound holds for a fixed partition of the rows of

Ξ; we now take a union bound over all possible partitions.

Toward that end, define the sets

Sj =


Sj(β1, . . . , βk) : β1, . . . , βk ∈ R

d+1
�

, for each j∈ [k].

From Lemma 11, we have the bound |Sj | ≤ 2ckd log(en/d).

Thus, applying the union bound, we obtain

Pr

�
sup

β1,...,βk∈Rd+1

��PΞj(β1,...,βk)zSj

��2 ≥ (d + 1) + t

�

≤ |Sj |e−ct,

and substituting t = ck(d + 1) log(n/d) and performing some

algebra establishes bound (30b).

In order to establish bound (30a), we once again consider

the random variable
Pk

j=1

��PΞj(β1,...,βk)zSj

��2 for a fixed

set of parameters {β1, . . . , βk}. Note that this is the sum of

k independent sub-exponential random variables and can be

thought of as a quadratic form of the entire vector z. So once

again from the Hanson-Wright inequality, we have

Pr

⎧
⎨

⎩ sup
β1,...,βk∈Rd+1

kX

j=1

��PΞj(β1,...,βk)zSj

��2 ≥ k(d + 1) + t

⎫
⎬

⎭

≤ e−ct/k

for all t ≥ 0.

Also define the set of all possible partitions of the n points

via the max-affine function; we have the set

S =


S1(β1, . . . , βk), ., Sk(β1, . . . , βk) : β1, ., βk ∈ R

d+1
�

.

Lemma 12 yields the bound |S| ≤ 2ckd log(kd) log(n/kd), and

combining a union bound with the high probability bound

above establishes bound (30a) after some algebraic manip-

ulation.

2) Proof of Lemma 4: Let γv = v − v∗; we have

1 {hξi, vi · hξi, v∗i ≤ 0}hξi, v∗i2

≤ 1 {hξi, vi · hξi, v∗i ≤ 0}hξi, γvi2

≤ 1


hξi, γvi2 ≥ hξi, v∗i2

�
hξi, γvi2.

Define the (random) set Kv = {i : hξi, γvi2 > hξi, v∗i2}; we

have the bound

1

n

nX

i=1

1 {hξi, vi · hξi, v∗i ≤ 0}hξi, v∗i2 ≤ 1

n
kΞKvγvk2.

We now show that the quantity kΞKvγvk2 is bounded uni-

formly for all v ∈ Bv∗(r) for small enough r. Recall that u∗

is the “linear” portion of v∗, and let m = max{d, 10 logn, n ·
(16r ·

p
log(1/r)} (note that m depends implicitly on r).

We claim that for all r ∈ (0, 1/24], we have

Pr

�
sup

v∈Bv∗ (r)

|Kv| > m

�
≤ 4e−cmax{d,10 log n} + cne−c0n,

(34a)

Pr

⎧
⎨

⎩

[

T⊆[n]:
|T |≤m

sup
ω∈R

d+1

ω 6=0

kΞT ωk2

kωk2
≥ (2d + 20m log(n/m))

⎫
⎬

⎭

≤ e−c max{d,10 log n}. (34b)

Taking these claims as given, the proof of the

lemma is immediate, since n
m ≤ 1

16r log(1/r) , so that

log(n/m) ≤ C log(1/r).
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a) Proof of claim (34a): By definition of the set Kv,

we have

Pr{ sup
v∈Bv∗ (r)

|Kv| > m}

≤
X

T⊆[n]:
|T |>m

Pr


∃v ∈ Bv∗(r) : kΞT γvk2 ≥ kΞT v∗k2

�

=
X

T⊆[n]:
|T |>m

Pr

�
∃v ∈ Bv∗(r) :

kγvk2

ku∗k2

kΞT γvk2

kγvk2
≥ kΞT v∗k2

ku∗k2

�

≤
X

T⊆[n]:
|T |>m

Pr

�
∃v ∈ Bv∗(r) : r2 kΞT γvk2

kγvk2
≥ kΞT v∗k2

ku∗k2

�

≤
X

T⊆[n]:
|T |>m

�
Pr

�
∃v ∈ Bv∗(r) :

kΞT γvk2

kγvk2

≥ (
√

d +
p
|T | + tT )2

�

+ Pr

�kΞT v∗k2

ku∗k2
≤ r2(

√
d +
p
|T | + tT )2

��
,

where the final step follows by the union bound and holds for

all positive scalars {tT }T⊆[n]. For some fixed subset T of size

`, we have the tail bounds,

Pr

⎧
⎨

⎩
sup

ω∈R
d+1

ω 6=0

kΞT ωk2

kωk2
≥ (

√
d +

√
` + t)2

⎫
⎬

⎭

(i)

≤ 2e−t2/2,

(35a)

Pr

�kΞT v∗k2

ku∗k2
≤ δ`

�
(ii)

≤ (eδ)`/2 for all δ ≥ 0, (35b)

for all t ≥ 0, where step (i) follows from the sub-Gaussianity

of the covariate matrix (see Lemma 13), and step (ii) from a

tail bound for the non-central χ2 distribution (see Lemma 14).

Substituting these bounds yields

Pr{ sup
v∈Bv∗ (r)

|Kv| > m}

≤
nX

`=m+1

�
n

`

�⎡

⎣2e−t2`/2 +

�
er2 · (

√
d +

√
` + t`)

2

`

�`/2
⎤

⎦

≤
nX

`=m+1

�
n

`

�⎡
⎣2e−t2`/2 +

�
2r ·

√
d +

√
` + t`√
`

�`
⎤
⎦ .

Recall that t` was a free (non-negative) variable to be chosen.

We now split the proof into two cases and choose this

parameter differently for the two cases.

b) Case 1, m ≤ ` < n/e: Substituting the choice t` =
4
p

` log(n/`), we obtain

�
n

`

�⎡
⎣2e−t2`/2 +

�
2r ·

√
d +

√
` + t`√
`

�`
⎤
⎦

≤
�n

`

	−c`

+

�
n

`

�
·
�

2r ·
√

d + 5
p

` log(n/`)√
`

�`

(i)

≤
�n

`

	−c`

+

�
n

`

�
·
�
2r · (1 + 5

p
log(n/`))

	`

(ii)

≤
�n

`

	−c`

+

�
n

`

�
·
�
12r ·

p
log(n/`)

	`

≤
�n

`

	−c`

+
�
12
�en

`

	
r ·
p

log(n/`)
	`

,

where step (i) follows from the bound m ≥ d, and step

(ii) from the bound ` ≤ n/e.

Now note that the second term is only problematic for small

`. For all ` ≥ m = n · (16r ·
p

log(1/r)), we have

�
12
�en

`

	
r ·
p

log(n/`)
	`

≤ (3/4)
`
.

The first term, on the other hand, satisfies the bound(
n
`

)−c` ≤ (3/4)
`

for sufficiently large n.

c) Case 2, ` ≥ n/e: In this case, setting t` = 2
√

n for

each ` yields the bound

�
n

`

�⎡

⎣2e−t2`/2 +

�
2r ·

√
d +

√
` + t`√
`

�`
⎤

⎦

≤ 2

�
n

n/2

�
e−2n + (12r)

`

≤ ce−c0n,

where we have used the fact that d ≤ n/2 and r ≤ 1/24.

Putting together the pieces from both cases, we have shown

that for all r ∈ (0, 1/24], we have

Pr{ sup
v∈Bv∗(r)

|Kv| > m} ≤ cne−c0n +

n/eX

`=m+1

(3/4)`

≤ cne−c0n + 4(3/4)max{d,10 log n},

thus completing the proof of the claim.

d) Proof of claim (34b): The proof of this claim follows

immediately from the steps used to establish the previous

claim. In particular, writing

Pr

⎧
⎨
⎩

[

T⊆[n]:
|T |≤m

[

ω:kωk=1

kΞT ωk2 ≥ 2d + 20m log(n/m)

⎫
⎬
⎭

≤ Pr

� [

T⊆[n]:
|T |≤m

[

ω:kωk=1

kΞT ωk2

≥
�√

d +
√

m +
p

4m log(n/m)
	2
�

≤
mX

`=1

Pr

� [

T⊆[n]:
|T |=`

[

ω:kωk=1

kΞT ωk2

≥
�√

d +
√

m +
p

4m log(n/m)
	2
�

(iv)

≤ 2

mX

`=1

�
n

`

�
exp{−2m log(n/m)}

≤ 2
� n

m

	−cm

≤ 2e−cmax{d,10 log n},

where step (iv) follows from the tail bound (35a).
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3) Proof of Lemma 5: The lemma follows from some

structural results on the truncated Gaussian distribution. Using

the shorthand vol : = vol(K) and letting ψ denote the

d-dimensional Gaussian density, consider a random vec-

tor τ drawn from the distribution having density h(y) =
1

vol
ψ(y)1 {y ∈ K}, and denote its mean and second moment

matrix by μτ and Στ , respectively. Also denote the recentered

random variable by eτ = τ − μτ . We claim that

kμτk2 ≤ C log (1/ vol) , (36a)

C vol
2 ·I �Στ � (1 + C log(1/ vol)) I, and

(36b)

eτ is c-sub-Gaussian for a universal constant c. (36c)

Taking these claims as given for the moment, let us prove the

lemma.

The claims (36a) and (36c) taken together imply that the

random variable τ is sub-Gaussian with parameter ζ2 ≤ 2c2 +
2C log (1/ vol). Now consider m i.i.d. draws of τ given by

{τi}m
i=1; standard results (see, e.g., Vershynin [69, Remark

5.40], or Wainwright [70, Theorem 6.2]) yield the bound

Pr

�
||| 1

m

mX

i=1

τiτ
>
i − Στ |||op ≥ ζ2

�
d

m
+

r
d

m
+ δ

��

≤ 2 exp
(
−cn min{δ, δ2}

)
.

Using this bound along with claim (36b) and Weyl’s inequality

yields

λmin

�
1

m

mX

i=1

τiτ
>
i

�
≥ C vol

2 −ζ2

�
d

m
+

r
d

m
+ δ

�
(37)

with probability greater than 1 − 2 exp
(
−cn min{δ, δ2}

)
.

Furthermore, when n samples are drawn from a standard

Gaussian distribution, the number m of them that fall in the

set K satisfies m ≥ 1
2n·vol with high probability. In particular,

this follows from a straightforward binomial tail bound, which

yields

Pr

�
m ≤ n · vol

2

�
≤ exp(−cn · vol). (38)

Recall our choice n ≥ Cd log2(1/ vol)
vol3

, which in conjunction

with the bound (38) ensures that C vol
2 ≥ 1

8σ2
q

d
m with high

probability. Setting δ = C vol
2 /σ2 in inequality (37), we have

λmin

�
1

m

mX

i=1

τiτ
>
i

�
≥ C

2
vol

2

with probability greater than 1−2 exp
(
−cn vol

4 /σ4
)
. Putting

together the pieces thus proves the lemma. It remains to show

the various claims.

a) Proof of claim (36a): Let τA denote a random variable

formed as a result of truncating the Gaussian distribution to

a (general) set A with volume vol. Letting μA denote its mean,

the dual norm definition of the `2 norm yields

kμAk = sup
v∈Sd−1

hv, μAi

≤ sup
v∈Sd−1

E|hv, τAi|.

Let us now evaluate an upper bound on the quantity

E|hv, τAi|. In the calculation, for any d-dimensional vector

y, we use the shorthand yv : = v>y and y\v : = U>
\vy

for a matrix U\v ∈ Rd×(d−1) having orthonormal columns

that span the subspace orthogonal to v. Letting Av ⊆ R

denote the projection of A onto the direction v, define the

set A\v(w) ⊆ Rd−1 via

A\v(w) = {y\v ∈ R
d−1 : y ∈ A and yv = w}.

Letting ψd denote the d-dimensional standard Gaussian pdf,

we have

E|hv, τAi| =
1

vol

Z

y∈A
|y>v|ψd(y)dy

=
1

vol

Z

y∈A
|yv|ψ(yv)ψd−1(y\v)dy

=
1

vol

Z

yv∈Av

|yv|ψ(yv)

×
�Z

y\v∈A\v(yv)

ψd−1(y\v ∈ A\v(yv))dy\v

�

| {z }
f(yv)

dyv

(i)

≤ 1

vol

Z

yv∈Av

|yv|ψ(yv)dyv, (39)

where step (i) follows since f(yv) ≤ 1 point-wise. On the

other hand, we have

vol =

Z

yv∈Av

ψ(yv)

�Z

y\v∈A\v(yv)

ψd−1dy\v

�
dyv

≤
Z

yv∈Av

ψ(yv)dyv. (40)

Combining inequalities (39) and (40) and letting w = yv,

an upper bound on kμτk can be obtained by solving the one-

dimensional problem given by

kμτk ≤ sup
S⊆R

1

vol

Z

w∈S
|w|ψ(w)dw

s.t.

Z

w∈S
ψ(w)dw ≥ vol .

It can be verified that the optimal solution to the problem

above is given by choosing the truncation set S = (∞,−β)∪
[β,∞) for some threshold β > 0. With this choice, the

constraint can be written as

vol ≤
Z

|w|≥β

ψ(w)dw ≤ 2

r
2

π

1

β
e−β2/2,

where we have used a standard Gaussian tail bound.

Simplifying yields the bound

β ≤ 2
p

log(C/ vol).

Furthermore, we have

1

vol

Z

|w|≥β

|w|ψ(w)dw =
C

vol
e−β2/2

(ii)

�
β3

β2 − 1

≤ c
p

log(1/ vol),
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where step (ii) follows from the bound Pr{Z ≥ z} ≥
ψ(z)

(
1
z − 1

z3

)
valid for a standard Gaussian variate Z . Putting

together the pieces, we have

kμτk2 ≤ c log(1/ vol).

b) Proof of claim (36b): Let us first show the upper

bound. Writing cov(τ) for the covariance matrix, we have

|||Στ |||op ≤ ||| cov(τ)|||op + kμτk2

(iii)

≤ |||I|||op + C log(1/ vol),

where step (iii) follows from the fact that cov(τ) � cov(Z),
since truncating a Gaussian to a convex set reduces its variance

along all directions [71], [72].

We now proceed to the lower bound. Let PK denote the

Gaussian distribution truncated to the set K . Recall that we

denoted the probability that a Gaussian random variable falls

in the set K by vol(K); use the shorthand vol = vol(K).
Define the polynomial

pu(x) = hx − EX∼PK [X ], ui2;
note that we are interested in a lower bound on

infu∈Sd−1 EX∼PK [pu(X)].
For δ > 0, define the set

Sδ : = {x ∈ R
d : pu(x) ≤ δ} ⊆ R

d.

Letting Z denote a d-dimensional standard Gaussian random

vector and using the shorthand α : = EX∼PK [X ], we have

Pr{Z ∈ Sδ} = Pr


hZ − α, ui2 ≤ δ

�
(41)

= Pr
n
hα, ui −

√
δ ≤ hZ, ui ≤ hα, ui +

√
δ
o

(42)

=

Z hα, ui+
√

δ

hα, ui−
√

δ

ψ(x)dx ≤
r

2

π
δ, (43)

where in the final step, we have used the fact that

ψ(x) ≤ 1/
√

2π for all x ∈ R.

Consequently, we have

EX∼PK [pu(X)] =
1

vol
EZ [pu(Z) 1 {Z ∈ K}]

≥ 1

vol
EZ [pu(Z) 1 {Z ∈ K ∩ Sc

δ}]
(iv)

≥ 1

vol
EZ [δ1 {Z ∈ K ∩ Sc

δ}]

=
δ

vol
Pr{Z ∈ K ∩ Sc

δ}

(v)

≥ δ
vol−

q
2
π δ

vol
.

Here, step (iv) follows from the definition of the set Sδ , which

ensures that pu(x) ≥ δ for all x ∈ Sc
δ . Step (v) follows as a

consequence of equation (43), since

Pr{Z ∈ K∩Sc
δ} = Pr{Z ∈ K}−Pr{Z ∈ Sδ} ≥ vol−

r
2

π
δ.

Finally, choosing δ = c vol
2 for a suitably small constant c,

we have EX∼PK [pu(X)] ≥ C vol
2 for a fixed u ∈ Sd−1. Since

u was chosen arbitrarily, this proves the claim.

c) Proof of claim (36c): Since the random variable ξ is

obtained by truncating a Gaussian random variable to a convex

set, it is 1-strongly log-concave. Thus, standard results [73,

Theorem 2.15] show that the random variable eξ is c-sub-

Gaussian.

4) Proof of Lemma 6: For a pair of d + 1-dimensional

vectors (v, v0), denote by

nW (v,v0) = #{i : xi ∈ W (v, v0)} (44)

the random variable that counts the number of points that fall

within the wedge W (v, v0); recall our notation Wδ for the

set of all wedges with Gaussian volume less than δ. Since

each wedge is formed by the intersection of two hyperplanes,

applying Lemmas 10 and 11 in conjunction yields that there

are universal constants (c, c0, C) such that

sup
W∈Wδ

nW ≤ cδn (45)

with probability exceeding 1 − exp(−c0nδ2), provided

n ≥ C
δ2 . In words, the maximum number of points that fall in

any wedge of volume δ is linear in δn with high probability.

It thus suffices to bound, simultaneously, the maximum

singular value of every sub-matrix of Ξ having (at most) cδn
rows. Applying [44, Theorem 5.7] yields the bound11

Pr

�
max

S:|S|≤cδn
λmax

�
X

i∈S

ξiξ
>
i

�
≥ c1n

√
δ

�
≤ n−10,

where we have used the lower bound n ≥ c max{d, log n/δ}
on the sample size.

Putting together the pieces, we have that if n ≥
c max

n
d, log n

δ2

o
, then

sup
W∈Wδ

λmax

�
X

i:xi∈W

ξiξ
>
i

�
≤ c1n

√
δ

with probability exceeding 1 − n−10 − exp(−c0nδ2).

APPENDIX C

PROOF OF THEOREM 2

We dedicate the first portion of the proof to a precise

definition of the quantity γ.

Let Θ∗ ∈ Rk×d denote a matrix with rows (θ∗j )T , j =

1, . . . , k and let Σ = Θ∗(Θ∗)> ∈ Rk×k. We employ the

decomposition Θ∗ = A∗(U∗)>, where A∗ ∈ Rk×k is the

invertible matrix of coefficients and U∗ ∈ Rd×k is a matrix

of orthonormal columns. Note that for X ∼ N(0, Id), the

vector in Rk with j-th component hX, θ∗j i+ b∗j is distributed

11Strictly speaking, [44, Theorem 5.7] applies to Gaussian random matrices,
i.e., without the appended column of ones. By multiplying each row of Ξ with
an independent Rademacher RV (see the proof of Lemma 13) to obtain a sub-
Gaussian random matrix with the same singular values, and noting also that
the proof technique of [44, Theorem 5.7] relies on chaining and holds for a
sub-Gaussian random matrix, one can show that the same result also holds
for the matrix Ξ.
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as Z +b∗ where Z ∼ N(0, Σ) and the vector b∗ ∈ Rk collects

the scalars


b∗j
�k

j=1
in its entries. For Z ∼ N (0, Σ), let

ρ =
E
6
max(Z + b∗)Z>Σ−1

1
7

p
E [(max(Z + b∗))2] · E [(Z>Σ−11)2]

(46)

denote the correlation coefficient between the maximum and

a particular linear combination of a multivariate Gaussian

distribution. Variants of such quantities have been studied

extensively in the statistical literature (see, e.g., James [74]).

For our purposes, the fact that max(Z+b∗)Z 6= 0 for any finite

b∗, coupled with a full-rank Σ, ensure that ρ 6= 0 for any fixed

k. Also define the positive scalar % : =
p

E[(max(Z + b∗))2],
which tracks the average size of our observations. Also recall

the quantity ς defined in the main section.

For each j ∈ [k] consider the zero-mean Gaussian random

vector with covariance (1 ·e>j −I)A∗(A∗)>(1 ·e>j −I)>. This

is effectively a Gaussian that lives in k − 1 dimensions, with

density that we denote by eψj(x1, x2, . . . , xj−1, 0, xj+1, . . . xk)
at point (x1, x2, . . . , xj−1, 0, xj+1, . . . xk) (the density is not

defined elsewhere). Truncate this random vector to the region

{xi ≥ b∗i −b∗j : i ∈ [k]}; this results in the truncated Gaussian

density ψj(x1, x2, . . . , xj−1, 0, xj+1, . . . xk) for each j ∈ [k].
For any x ∈ Rk such that xj = 0, define

F j
i (x) =

Z ∞

b∗1−b∗j

· · ·
Z ∞

b∗i−1−b∗j

Z ∞

b∗i+1−b∗j

· · ·

..

Z ∞

b∗k−b∗j

ψj(x1, . . . , xi−1, x, xi+1, . . . , xk)dxk

. . . dxi+1dxi−1 . . . dx1 (47)

to be the i-th marginal density of this truncated Gaussian

evaluated at the point x, with the convention that

F j
j (·) = 0 everywhere. Also define the vector F j by setting

its i-th entry to (F j)i = F j
i (b∗i − b∗j ).

Now let P denote the matrix with entries

Pi,j =

�
(F j)i/

P
k 6=j(F

j)k if i 6= j

0 otherwise.
(48)

Note that the matrix P is the transition matrix of an irre-

ducible, aperiodic Markov chain, with one eigenvalue equal

to 1. Consequently, the matrix I − P is rank k − 1. With this

setup in place, let

γ : = min

�
ρ2%2, min

j∈k

⎛

X

k 6=j

(F j)k

⎞
λk(Σ)

×
q

λk−1 ((I − P>)(I − P ))

�
(49)

denote a positive scalar that will serve as a bound on our

eigengap.

Let M1 = E [max(Θ∗X + b∗)X ] and M2 =
E
6
max(Θ∗X + b∗)(XX> − Id)

7
denote the expectations of

the first and second moment estimators, respectively.

For a random variable W ∼ N (b∗, Σ), we often use the

shorthand

{Wj = max} : = {Wj ≥ Wi for all 1 ≤ i ≤ k}.

Finally, collect the probabilities {πj}k
j=1 defined in equa-

tion (9) in a vector π ∈ R
k. We use 1 to denote the all-ones

vector in k dimensions.

We are ready to state our two main lemmas.

Lemma 7: (a) The first moment satisfies

M1 =(Θ∗)>π and hM1, (Θ∗)>Σ−1
1i=ρ%

��(Θ∗)>Σ−1
1

�� .

(b) The second moment satisfies

M2 � 0, M2(Θ
∗)>Σ−1

1 = 0, rank(M2) = k − 1 and

λk−1(M2) ≥ min
j∈k

⎛

X

k 6=j

(F j)k

⎞
λk(Σ)

×
q

λk−1 ((I − P>)(I − P )).

We combine this lemma with a result that shows that the

empirical moments concentrate about their expectations.

Lemma 8: For an absolute constant C, we have

Pr

����cM1 − M1

���
2

≥ C
(
σ2 + ς2

) d log2(nk)

n

�
≤ 5dn−12,

(50a)

Pr

�
|||cM2 − M2|||2op

≥ C
(
σ2 + ς2

) d log3(nk)

n

�
≤ 5dn−12.

(50b)

Lemma 7 is proved at the end of this section, and Lemma 8

is proved in Appendix G-A. For now, we take both lemmas

as given and proceed to a proof of Theorem 2.

Recall the matrix cM = cM1⊗cM1 +cM2 and let M = M1⊗
M1+M2. By Lemma 7, the matrix M is positive semidefinite

with k non-zero eigenvalues. In particular, using the shorthand

θ̄ : = (Θ∗)>Σ−1
1, we have θ̄ ∈ nullspace(M2), and so

θ̄>Mθ̄ = hθ̄, M1i2 = ρ2%2kθ̄k2,

where the final inequality follows by part (a) of Lemma 7.

Thus, there is a k-dimensional subspace orthogonal to the

nullspace of M (and so the range of M is k dimensional). For

any unit vector v in this subspace, we have

v>Mv ≥ min{ρ2%2, λk−1(M2)}.
Thus, the kth eigenvalue of M satisfies

λk(M) ≥ min

�
ρ2%2, min

j∈k

⎛

X

k 6=j

(F j)k

⎞
λk(Σ)

q
λk−1 ((I − P>)(I − P ))

�
= γ,

where the equality follows by definition (49). By Lemma 8,

we have

|||cM − M |||2
op
≤ 2|||cM2 − M2|||2op

+ 2|||cM1 ⊗ cM1 − M1 ⊗ M1|||2op

≤ 2C
(
σ2 + ς2 log2(nk)

) d log(nk)

n

+ 16
���cM1 − M1

���
2

kM1k2 + 4
���cM1 − M1

���
4

≤ C0 (σ2 + ς2 log2(nk)
) d log(nk)

n
,
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where the last two inequalities each hold with probability

greater than 1 − 2n−10.

We denote the estimated and true eigenspaces by bU and U∗,

respectively. Applying [75, Theorem 2] yields the bound

|||U∗(U∗)> − bU bU>|||2
F
≤ C

�
σ2 + ς2

γ2

�
kd log3(nk)

n
,

thereby proving the required result.

We now proceed to a proof of Lemma 7.

A. Proof of Lemma 7

Recall our decomposition Θ∗ = A∗(U∗)>, where U∗ ∈
Rd×k is a matrix of orthonormal columns, and A∗ ∈ Rk×k

is an invertible matrix of coefficients. Since we are always

concerned with random variables of the form Θ∗X with X
Gaussian, we may assume without loss of generality by the

rotation invariance of the Gaussian distribution that

U∗ = [ed
1 ed

2 . . . ed
k], where ed

i denotes the ith standard

basis vector in Rd.

We let Xj
i = (Xi, Xi+1, . . . , Xj) denote a sub-vector of

the random vector X , so that by the above argument, we have

Θ∗X
d
= A∗Xk

1 .

a) Calculating M1: Using the shorthand Z = A∗Xk
1 ,

we have

M1 = E[max(Θ∗X + b∗)X ]

= U∗
E[max(A∗Xk

1 + b∗)X ]

= U∗(A∗)−1
E[max(Z + b∗)Z].

Now using Stein’s lemma,12 by a calculation similar to the

one performed also in Seigel [76] and Liu [77], we have

E[max(Z + b∗)Z] = Σπ,

where π ∈ R
k is the vector of probabilities, the j-th of which

is given by equation (9), and we have used Σ = A∗(A∗)> =
(Θ∗)(Θ∗)> to denote the covariance matrix of Z .

Therefore, we have the first moment

M1 = U∗(A∗)−1A∗(A∗)>π = (Θ∗)>π.

b) Correlation bound: By computation, we have

hM1, (Θ∗)>Σ−1
1i = E

6
max(Z + b∗)hZ, Σ−1

1i
7

(i)
= ρ ·

p
E [(max(Z + b∗))2] · E [hZ, Σ−11i2]

(ii)
= ρ% ·

��(Θ∗)>Σ−1
1

�� ,

where step (i) follows from the definition (46) of the quantity

ρ, and step (ii) from explicitly calculating the expectation and

recalling the definition of %.

12One can also derive M1 = (Θ∗)>π directly applying Stein’s lemma
EXf(X) = E∇f(X) to f(x) := max(Θ∗X + b∗) so that ∇f(x) equals
θ∗j whenever x belongs to the region when j is maximized.

c) Positive semidefiniteness of M2: For some u ∈ Rd,

let f(X) = max(Θ∗X + b) and gu(X) = hu, Xi2. Since gu

is an even function, we have E[gu(X)X ] = 0. Furthermore,

since both f and gu are convex, applying Lemma 15 (see

Appendix G) yields the bound

E[f(X)gu(X)] ≥ E[f(X)]E[gu(X)],

so that substituting yields the bound

u>
E[max(Θ∗X + b)XX>]u ≥ u>

E[max(Θ∗X + b)I]u.

Since this holds for all u ∈ R
d, we have shown that the matrix

E[max(Θ∗X + b)(XX> − I)] is positive semidefinite.

d) Calculating M2: We now use Stein’s lemma to com-

pute an explicit expression for the moment M2. By the

preceding substitution, we have

M2 = E



max(A∗Xk

1 + b∗)

×
8
Xk

1 (Xk
1 )> − Ik Xk

1 (Xd
k+1)

>

Xd
k+1(X

k
1 )> Xd

k+1(X
d
k+1)

> − Id−k

9�

=



E
6
max(A∗Xk

1 + b∗)(Xk
1 (Xk

1 )> − Ik)
7

0
0 0

�

Once again using the substitution Z = A∗Xk
1 and

Σ = A∗(A∗)>, we have

M2 =U∗(A∗)−1
E
6
max(Z + b∗)(ZZ>−Σ)

7
(A∗)−>(U∗)>,

and applying Stein’s lemma yields

E
6
max(Z + b∗)(ZZ> − Σ)

7
= ΣΙ> = ΙΣ,

where Ι ∈ Rk×k denotes a matrix with entry i, j given

by Ιi,j = E[Zi1


Zj + b∗j = max

�
], and the final equality

follows by symmetry of the matrix.

Simplifying further, we have

M2 = U∗(A∗)−1ΙA∗(U∗)>.

e) Nullspace of M2: Notice that Ι1 = E[Z] = 0, so that

M2(Θ
∗)>Σ−1

1 = U∗(A∗)−1ΙA∗(U∗)>U∗(A∗)>Σ−1
1 = 0.

f) Rank of M2 and bound on λk−1(M2): By the previous

claim, we have rank(M2) ≤ k − 1. Furthermore, the matrix

M2 has d − k eigenvalues equal to zero, and the other k of

its eigenvalues equal to those of Ι, all of which are positive

(by the PSD property of M2), and at least one of which is

zero. Thus, it suffices to work with the eigenvalues of Ι; in

particular, a lower bound on λk−1(Ι) directly implies a lower

bound on λk−1(M2).
Let us first show that λk−1(Ι) > 0. Since we know that

a zero-eigenvector of Ι is the all-ones vector 1, it suffices to

show that x>Ιx 6= 0 when hx, 1i = 0. We use the shorthand

x ⊥ 1 to denote any such vector.
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We now explicitly evaluate the entries of the matrix Ι.

We denote the jth column of this matrix by Ιj . We have

Ιj = E[Z1


Zj + b∗j = max

�
]

= E[1 · Zj1


Zj + b∗j = max

�
]

− E[(1 · Zj − Z)1


Zj + b∗j = max

�
]

= 1 · E[Zj1


Zj + b∗j = max

�
]

− E[(1 · Zj − Z)1


Zj + b∗j = max

�
]. (51)

For any x ⊥ 1, we have x>
1E[Z1 {Z + b∗ = max}]>1 = 0,

so that in order to show that x>Ιx 6= 0, it suffices to consider

just the second term in the expression (51).

In order to focus on this term, consider the matrix Φ with

column j given by

Φj = E[(1 · Zj − Z)1


Zj−Z ≥ b∗ − b∗j

�
].

where the indicator random variable above is computed

element-wise. We are interested in evaluating the eigenvalues

of the matrix −Φ.

The quantity Φj can be viewed as the first moment of

a (lower) truncated, multivariate Gaussian with (original)

covariance matrix

κj = (1 · e>j − I)A∗(A∗)>(1 · e>j − I)>.

Recalling the column vectors F j defined (in equation (47))

for each j ∈ [k] and applying [78, (11)] (see also Tallis [45]

for a similar classical result), we may explicitly evaluate the

vector Φj , as

Φj = κjF
j

(iii)
= (1 · e>j − I)A∗(A∗)>Gj

where in step (iii), we have let Gj denote a vector in Rk with

entry i given by

(Gj)i =

�
−(F j)i if j 6= iP

k 6=j(F
j)k otherwise.

Letting G ∈ Rk×k denote the matrix with Gj as its jth

column, and for x ⊥ 1, we have

x>(−Φ)x = x>ΣGx,

since once again, for each x ⊥ 1, we have x>
1 ·

e>j A∗(A∗)>(1 · e>j − I)>x = 0.

Now consider the matrix ΣG. In order to show the claimed

bound, it suffices to show that x>ΣGx 6= 0 if x ⊥ 1. We show

this by combining two claims:

Claim 1: The nullspace of G is one-dimensional.

Claim 2: Both the left and right eigenvectors of ΣG that

correspond to this nullspace are not orthogonal to the 1 vector.

We show both claims concurrently. The nullspace of G
is clearly non-trivial, since 1

>G = 0. Let us first show,

by contradiction, that the left eigenvector corresponding to this

nullspace dimension is not orthogonal to the all-ones vector.

Toward that x` denote the aforementioned left eigenvector

which also satisfies hx`, 1i = 0. By virtue of being a

left eigenvector, x` satisfies Σx` = 1, or in other words,

x` = Σ−1
1. Since x` ⊥ 1, we have 1

>Σ1 = 0, but this

contradicts the positive definiteness of Σ.

It remains to establish that the null-space of G is in fact

only one-dimensional, and that its right eigenvector is not

orthogonal to the all-ones vector. Notice that we may write

the matrix as

G = (I − P>) diag(G),

where we recall the matrix P from equation (48). Since all

of the entries of P are positive and sum to 1 along the

rows, the matrix P can be viewed as the transition matrix

of a Markov chain. Furthermore, since this Markov chain

communicates, it is irreducible and aperiodic, with only one

eigenvalue equal to 1. Thus, the matrix I − P> is rank

k − 1, thereby establishing that the nullspace of G is one-

dimensional. Furthermore, the right eigenvector xr of G is a

non-negative vector by the Perron-Frobenius theorem, so that

it cannot satisfy hxr , 1i = 0.

We have thus established both claims, which together show

that λk−1(M2) 6= 0. Further noting that the matrix M2 is

positive semi-definite, we have

λk−1(M2) ≥ min
j∈[k]

Gj,j · λmin(Σ)
q

λk−1[(I − P>)(I − P )],

and this completes the proof of the claim, and consequently,

the lemma.

APPENDIX D

PROOF OF THEOREM 3

Recall the matrix bV formed by appending a standard basis

vector to bU . First, we show that there is a point among the

randomly chosen initializations that is sufficiently close to the

true parameters. Toward that end, let c0 : = Bmax (for reasons

that will be apparent shortly) and define β` = bV ν` for each

` ∈ [M ] with M0 = {β`}`∈[M ]. Let

β̄j : = argmin
β∈M0

kc0β − β∗
j k.

We claim that

max
j∈[k]

kc0β̄j − β∗
j k ≤ c0r + Bmax|||bU bU> − U∗(U∗)>|||op. (52)

Taking this claim as given for the moment, let us proceed

with the rest of the proof. Define the shorthand

P(β1, . . . , βk) : =
2

n

nX

i=n/2+1

�
max
j∈[k]

hξi, βji − max
j∈[k]

hξi, β∗
j i
�2

for each set of parameters β1, . . . , βk ∈ Rd+1. Let

c(ν1, . . . , νk) : = argmin
c≥0

2

n

nX

i=n/2+1

�
yi−c max

j∈[k]
hξi, bV νji

�2

,

and recall that (ν]
1, . . . , ν

]
k) are the minimizers returned by

the algorithm; use the shorthand c] := c(ν]
1, . . . , ν

]
k). Note

that trivially, we have c] > 0 with probability tending to

1 exponentially in n, so that this pathological case in which

the initial partition is random can be ignored.
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Applying Lemma 17 from Appendix H-B yields the bound

Pr

�
P(c]β

(0)
1 , ., c]β

(0)
k )≥c1

�
min
c≥0

ν1,.,νk∈[M ]

P(cbV ν1, . . . , cbV νk)

+
σ2t(

√
log M + c1)

n

��

≤ e−c2nt(
√

log M+c1),

valid for all t ≥ √
log M + c1 and suitable universal constants

c1 and c2. Setting t =
√

log M + c1, we have on the

complementary event that

P(c]β
(0)
1 , . . . , c]β

(0)
k ) ≤ c1P(c0β̄1, . . . , c0β̄k) + c1

σ2 log M

n

with probability greater than 1 − e−c2n.

To complete the proof, let C(πmin, k) : = c2

�
k

πmin

	3

for a

suitable constant c2 and apply Lemma 16 twice (note that here

we use the assumption n ≥ Cd k3

π3
min

log2(k/πmin)) in order to

obtain
X

j∈[k]

min
j0∈[k]

kβ∗
j − c]β

(0)
j0 k2 ≤ C(πmin, k) · P(c]β

(0)
1 , . . . , β

(0)
k )

≤ c1 · C(πmin, k) ·
�
P(c0β̄1, . . . , c0β̄k) +

σ2 log M

n

�

≤ c1 · C(πmin, k) ·

⎧
⎨
⎩2

kX

j=1

kc0β̄j − β∗
j k2 +

σ2 log M

n

⎫
⎬
⎭

≤ c1 · C(πmin, k) ·
�

2k max
j∈[k]

kc0β̄j − β∗
j k2 +

σ2 log M

n

�

(ii)

≤ c1 · C(πmin, k)

�
4k
�
c2
0r

2 + B2
max|||bU bU> − U∗(U∗)>|||2

op

	

+
σ2 log M

n

�

on an event of suitably high probability, where step (ii) follows

from claim (52).

Finally, note that provided the RHS above is less than ∆2/4,

each minimum on the LHS is attained for a unique index j0.
This condition is ensured by the sample size assumption of

the theorem; thus, we have

min
c>0

dist

�n
cβ

(0)
j

ok

j=1
,


β∗

j

�k

j=1

�
≤ c1 · C(πmin, k)

×
�

4kB2
max

�
r2 + |||bU bU> − U∗(U∗)>|||2

op

	
+

σ2 log M

n

�
.

Combining the various probability bounds then completes the

proof.

g) Proof of claim (52): Recall that U∗ is a matrix of

orthonormal columns spanning the k-dimensional subspace

spanned by the vectors {θ∗1 , . . . , θ∗k}. Define the matrix

V ∗ =



U∗ 0
0 1

�
;

for each j ∈ [k], we have β∗
j = V ∗ν∗

j for some vector ν∗
j ∈

R
k+1. Also define the rotation matrix

O =


bU>U∗ 0
0 1

�
,

so that bV O−V ∗ =


bU bU>U∗ − U∗ 0
0 0

�
and we have kbV O−

V ∗k = kbU bU> − U∗(U∗)>k for any unitarily invariant norm

k · k.

Now for each j ∈ [k] and ` ∈ [M ], applying the triangle

inequality yields

kc0β
` − β∗

j k ≤ kc0
bV ν` − bV Oν∗

j k + kbV Oν∗
j − V ∗ν∗

j k
≤ kc0ν

`−Oν∗
j k + kν∗

j k|||bV O − V ∗|||op

≤ c0r + Bmax|||bU bU> − U∗(U∗)>|||op,

where the last line follows by definition of the r-covering of

the set Bk+1, which ensures the existence of some index `
such that kc0ν

`−Oν∗
j k ≤ c0r.

APPENDIX E

FUNDAMENTAL LIMITS

In this section, we present two lower bounds: one on the

minimax risk of parameter estimation, and another on the risk

of the least squares estimator with side-information.

A. Minimax Lower Bounds

Recall our notation Θ∗ for the matrix whose columns con-

sist of the parameters θ∗1 , . . . , θ∗k. Assume that the intercepts

b∗1, . . . , b
∗
k are identically zero, so that ξi = xi and Ξ = X .

For a fixed matrix X , consider the observation model

y = max (XΘ∗) + �, (53)

where y ∈ Rn, the noise � ∼ N (0, σ2In) is chosen indepen-

dently of X , and the max function is computed row-wise.

Proposition 2: There is an absolute constant C such that

the minimax risk of estimation satisfies

inf�Θ sup
Θ∗∈Rk×d

E



1

n
|||X(bΘ − Θ∗)|||2

F

�
≥ C

σ2kd

n
.

Here, the expectation is taken over the noise �, and infimum

is over all measurable functions of the observations (X, y).
Indeed, when X is a random Gaussian matrix, it is well

conditioned and has singular values of the order
√

n, so that

this bound immediately yields

inf�Θ sup
Θ∗∈Rk×d

E



1

n
|||bΘ − Θ∗|||2

F

�
≥ C

σ2kd

n
.

Let us now provide a proof of the proposition.

Proof: The proof is based on a standard application of

Fano’s inequality (see, e.g., Wainwright [70, Chapter 15] and

Tsybakov [79, Chapter 2]). For a tolerance level δ > 0 to be

chosen, we choose the local set

F =

�
XΘ ∈ R

n×k

:::: |||XΘ>|||F ≤ 4δ
√

kn

�

and let


XΘ1, . . . , XΘM

�
be a 2δ

√
kn-packing of the set

in the Frobenius norm. This can be achieved by packing the

j-th column Qj :=


Xθj | kXθjk2 ≤ 4δ

√
n
�

at level 2δ
√

n
in `2 norm for all j ∈ [k]. Standard results yield the bound

log M ≥ C1 · kd log 2.
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For each i 6= j, we have

2δ
√

k ≤ |||X(Θi − Θj)|||F√
n

≤ 8δ
√

k. (54)

Let Pj = N
(
max(X(Θj)), σ2In

)
denote the distribution

of the observation vector y when the true parameter is Θj .

We thus obtain

DKL(Pj k Pi) =
1

2σ2

��max(X(Θj)) − max(X(Θi))
��2

2

≤ 1

2σ2
|||X(Θj − Θi)|||2

F
,

where the inequality follows since the max function is

1-Lipschitz in `2 norm. Putting together the pieces yields

DKL(Pj k Pi) ≤
32kδ2n

σ2
,

so that the condition
1

M2

P
i,j DKL(PΘj k PΘk) + log 2

log M
≤ 1

2

is satisfied with the choice δ2 = C σ2d
n . Finally, applying

Fano’s inequality (see, e.g., [70, Proposition 15.2]) yields the

minimax lower bound

inf�Θ sup
Θ∗

E



1

n
|||X(bΘ − Θ∗)|||2

F

�
≥ C

σ2kd

n
. (55)

B. Performance of Unconstrained Least Squares With

Side-Information

In this section, we perform an explicit computation when

k = 3 and d = 2 to illustrate the cubic πmin dependence

of the error incurred by the unconstrained least squares

estimator, even when provided access to the true partition

{Sj(β
∗
1 , . . . , β∗

3)}3
j=1.

We begin by defining our unknown parameters. For a scalar

α ∈ (0, π/4), let

θ∗1 = sin(α) · e1, θ
∗
2 = cos(α) · e2, and θ∗3 = − cos(α) · e2,

and set b∗j = 0 for j = 1, 2, 3.

Now an explicit computation yields that the cone on which

θ∗1 attains the maximum is given by

C1 : =

�
x ∈ R

2 : hx, θ∗1i ≥ max
j∈[k]

hx, θ∗j i
�

=


x ∈ R

2 : x1 ≥ 0, |x2| ≤ x1 tan(α)
�

.

Now consider a Gaussian random vector in R2 truncated to

that cone. In particular, consider a two-dimensional random

variable W with density ψ(x)1 {x ∈ C1}/ vol(C1), where ψ
is the two-dimensional standard Gaussian density and vol(S)
denotes the Gaussian volume of a set S. Note that we have

vol(C1) = α/π by construction.

Let us now compute the second order statistics of W , using

polar coordinates with R2 denoting a χ2
2 random variable. The

individual second moments take the form

E[W 2
1 ] =

π

α
E[R2]

�
1

2π

Z α

−α

cos2 φdφ

�
= 1,

and

E[W 2
2 ] =

π

α
E[R2]

�
1

2π

Z α

−α

sin2 φdφ

�

=
1

α
(α − sin(2α)/2) ∼ α2.

On the other hand, the cross terms are given by

E[W1W2] =
π

α
E[R2]

�
1

2π

Z α

−α

sin(φ) cos(φ)dφ

�
= 0.

Thus, it can be verified that for all α ∈ [0, π/4], the second

moment matrix of W has a tuple of singular values (1, cα2)
for an absolute constant c.

Let us now use this calculation to reason about the least

squares estimator. Drawing n samples from the Gaussian

distribution on R2, we expect n1 ∼ α
π n of them to fall in the

set C1 with high probability. Collect these samples as rows of

a matrix X1. When n is large enough, i.e., on the order of

α−3, standard bounds (as in Section B-A.3) can be applied to

explicitly evaluate the singular values of the matrix 1
n1

X>
1 X1.

In particular, we have

λ1

�
1

n1
X>

1 X1

�
= c0 and λ2

�
1

n1
X>

1 X1

�
= cα2.

We now provide the n1 × 2 matrix X1 as side informa-

tion to a procedure whose goal is to estimate the unknown

parameters. Clearly, given this matrix, a natural procedure

to run in order to estimate θ∗1 is the (unconstrained) least

squares estimator on these samples, which we denote by bθ1.

As is well known, the rate obtained (in the fixed design

setting) by this estimator with σ-sub-Gaussian noise is

given by

E

h
kbθ1 − θ∗1k2

i
= σ2 tr(X>

1 X1)
−1

= σ2 1

n1

(
cα−2 + c0

)

∼ σ2 1

α3n
,

where the last two relations hold with exponentially high

probability in n. We have thus shown that the unconstrained

least squares estimator (even when provided with additional

side information) attains an error having cubic dependence

on α ∼ πmin. While this does not constitute an information

theoretic lower bound, our calculation provides some evidence

for the fact that, at least when viewed in isolation, the

dependence of our statistical error bound (15) on πmin is

optimal for Gaussian covariates.

APPENDIX F

BACKGROUND AND TECHNICAL LEMMAS

USED IN THE PROOF OF THEOREM 1

In this section, we collect statements and proofs of some

technical lemmas used in the proofs of our results concerning

the AM algorithm.
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A. Bounds on the “Volumes” of Wedges in Rd

For a pair of scalars (w, w0) and d-dimensional vectors

(u, u0), recall that we define the wedge formed by the d + 1-

dimensional vectors v = (u, w) and v0 = (u0, w0) as the

region

W (v, v0) = {x ∈ R
d : (hx, ui + w) · (hx, u0i + w0) ≤ 0}.

Note that the wedge is a purely geometric object.

For any set C ⊆ Rd, let

vol(C) = Pr
X∼N (0,Id)

{X ∈ C}

denote the volume of the set under the measure corresponding

to the covariate distribution.

We now bound the volume of a wedge for the Gaussian

distribution.

Lemma 9: Suppose that for a pair of scalars (w, w0),
d-dimensional vectors (u, u0), and v = (u, w) and v0 =

(u0, w0), we have
kv−v0k
kuk < 1/2. Then, there is a positive

constant C such that

vol(W (v, v0)) ≤ C
kv − v0k
kuk log1/2

�
2kuk

kv − v0k

�
.

1) Proof of Lemma 9: Using the notation ξ = (x, 1) ∈
Rd+1 to denote the appended covariate, we have

vol(W (v, v0)) = Pr{hξ, vi · hξ, v0i ≤ 0} ,

where the probability is computed with respect to Gaussian

measure.

In order to prove a bound on this probability, we begin by

bounding the associated indicator random variable as

1 {hξ, vi · hξ, v0i ≤ 0} ≤ 1


hξ, v0 − vi2 ≥ hξ, vi2

�

≤ 1


hξ, v0 − vi2 ≥ t

�
+ 1


hξ, vi2 ≤ t

�
, (56)

where inequality (56) holds for all t ≥ 0. In order to bound

the expectation of the second term, we write

Pr


hξ, vi2 ≤ t

�
= Pr

n
kuk2

χ2
nc ≤ t

o

(i)

≤
�

et

kuk2

�1/2

where χ2
nc is a non-central chi-square random variable cen-

tered at w
kuk , and step (i) follows from standard χ2 tail bounds

(see Lemma 14).

It remains to control the expectation of the first term on the

RHS of inequality (56). We have

Pr


hξ, v0 − vi2 ≥ t

�

≤ Pr


2hx, u0 − ui2 + 2(w0 − w)2 ≥ t

�

≤ Pr

�
ku − u0k2

χ2 ≥ t

2
− kv − v0k2

�
.

Now, invoking a standard sub-exponential tail bound on the

upper tail of a χ2 random variable yields

Pr


hξ, v0 − vi2 ≥ t

�

≤ c1 exp

�
− c2

ku − u0k2

�
t

2
− kv − v0k2

��

≤ c1 exp

�
− c2

kv − v0k2

�
t

2
− kv − v0k2

��
.

Putting all the pieces together, we obtain

vol(W (v, v0)) ≤ c1 exp

�
− c2

kv − v0k2

�
t

2
− kv − v0k2

��

+

�
et

kuk2

�1/2

.

Substituting t = 2c kv − v0k2
log(2kuk/kv − v0k), which is

a valid choice provided
kv−v0k
kuk < 1/2, yields the desired

result.

B. Growth Functions and Uniform Empirical Concentration

We now briefly introduce growth functions and uniform

laws derived from them, and refer the interested reader to

Mohri et al. [80] for a more in-depth exposition on these

topics.

We define growth functions in the general multi-class set-

ting [54]. Let X denote a set, and let F denote a family of

functions mapping X 7→ {0, 1, . . . , k−1}. The growth function

ΙF : N → R of F is defined via

ΙF (n) := max
x1,...,xn∈X

|{{f(x1), f(x2), . . . , f(xn)} : f ∈ F}| .

In words, it is the cardinality of all possible labelings of n
points in the set X by functions in the family F .

A widely studied special case arises in the case k = 2, with

the class of binary functions. In this case, a natural function

class F is formed by defining C to be a family of subsets of

X , and identifying each set C ∈ C with its indicator function

fC : = 1C : X → {0, 1}. In this case, define FC = {fC : C ∈
C}. A bound on the growth function for such binary function

provides following guarantee for the uniform convergence for

the empirical measures of sets belonging to C.

Lemma 10 (Theorem 2 in [81]): Let C be a family of subsets

of a set X . Let μ be a probability measure on X , and let

μ̂m := 1
m

Pm
i=1 δXi be the empirical measure obtained from

m independent copies of a random variable X with distribution

μ. For every u such that m ≥ 2/u2, we have

Pr

�
sup
C∈C

|μ̂m(C) − μ(C)| ≥ u

�
≤4ΙFC(2m) exp(−mu2/16).

(57)

We conclude this section by collecting some results on

the growth functions of various function classes. For our

development, it will be specialized to the case X = Rd.

Define the class of binary functions FH as the set of all

functions of the form

fθ,b(x) : =
sgn(hx, θi + b) + 1

2
;
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specifically, let FH : =


fθ,b : θ ∈ Rd, b ∈ R

�
. In particular,

these are all functions that can be formed by a d-dimensional

hyperplane.

Using the shorthand Bk
1 = {B1, . . . , Bk}, define the binary

function

gθk
1 ,bk

1
(x) : =

kY

i=1

fθi,bi(x),

and the binary function class corresponding to the intersection

of k hyperplanes

GHk : =
n
gθk

1 ,bk
1

: θ1, . . . , θk ∈ R
d, b1, . . . , bk ∈ R

o
.

Finally, we are interested in the argmax function over

hyperplanes. Here, define the function

mθk
1 ,bk

1
(x) : = argmax

j∈[k]

(hθj , xi + bj) − 1,

mapping Rd 7→ {0, . . . , k−1}. The function class that collects

all such functions is given by

Mk : =
n
mθk

1 ,bk
1

: θ1, . . . , θk ∈ R
d, b1, . . . , bk ∈ R

o
.

The following results bound the growth functions of each of

these function classes. We first consider the function classes

FH and GHk , for which bounds on the VC dimension directly

yield bounds on the growth function.

Lemma 11 (Sauer-Shelah (e.g. Section 3 of Mohri et

al. [80])): We have

ΙFH(n) ≤
�

en

d + 1

�d+1

, and (58)

ΙG
Hk

(n) ≤
�

en

d + 1

�k(d+1)

. (59)

The second bound can be improved (see, e.g. [82]), but we

state the version obtained by a trivial composition of individual

halfspaces.

The following bound on the growth function of the class

Mk is also known.

Lemma 12 (Theorem 3.1 of Daniely et al. [54]): For an

absolute constant C, we have

ΙMk
(n) ≤

�
en

Ck(d + 1) log(kd)

�Ck(d+1) log(kd)

.

C. Singular Value Bound

We now state and prove a technical lemma that bound the

maximum singular value of a matrix whose rows are drawn

from a sub-Gaussian distribution.

Lemma 13: Suppose that the covariates are drawn i.i.d. from

a η-sub-Gaussian distribution. Then for a fixed subset S ∈ [n]
of size ` and each t ≥ 0, we have

Pr
n
λmax

(
Ξ>

S ΞS

)
≥`+eη2(

√
`d + d + `t)

o
≤ 2e−` min{t,t2},

where eη = max {η, 1}.

1) Proof of Lemma 13: Let {zi}`
i=1 denote i.i.d.

Rademacher variables, and collect these in an `-dimensional

vector z. Let D = diag(z) denote a diagonal matrix, and note

that by unitary invariance of the singular values, the singular

values of the matrix eΞS = DΞS are the same as those of ΞS .

By construction, the matrix eΞS has i.i.d. rows, and the i-th
row is given by zi(xi, 1). For a d + 1 dimensional vector
eλ = (λ, w) with λ ∈ R

d and w ∈ R, we have

E

h
exp(heλ, zi(xi, 1)i)

i

=
ew

2
· E [exp(hλ, xii)] +

e−w

2
· E [exp(−hλ, xii)]

= exp(kλk2η2/2) · 1

2

(
ew + e−w

)

≤ exp(kλk2η2/2) · exp(w2/2) ≤ exp(keλk2eη2/2).

where we have used the fact that xi is zero-mean and η sub-

Gaussian.

Since the rows of eΞS are i.i.d., zero-mean, and eη-sub-

Gaussian, applying [70, Theorem 6.15] immediately yields the

lemma.

D. Anti-Concentration of χ2 Random Variable

The following lemma shows the anti-concentration of the

central and non-central χ2 random variable.

Lemma 14: Let Z` and Z 0
` denote central and non-central

χ2 random variables with ` degrees of freedom, respectively.

Then for all p ∈ [0, `], we have

Pr{Z 0
` ≤ p} ≤ Pr{Z` ≤ p} ≤

�p

`
exp
�
1 − p

`

		`/2

= exp

�
− `

2



log

`

p
+

p

`
− 1

��
(60)

1) Proof of Lemma 14: The fact that Z 0
`

st.
≤ Z` follows from

standard results that guarantee that central χ2 random variables

stochastically dominate their non-central counterparts.

The tail bound is a simple consequence of the Chernoff

bound. In particular, we have for all λ > 0 that

Pr{Z` ≤ p} = Pr{exp(−λZ`) ≥ exp(−λp)}
≤ exp(λp)E [exp(−λZ`)]

= exp(λp)(1 + 2λ)−
`
2 . (61)

where in the last step, we have used E [exp(−λZ`)] = (1 +
2λ)−

`
2 , which is valid for all λ > −1/2. Minimizing the last

expression over λ > 0 then yields the choice λ∗ = 1
2

�
`
p − 1

	
,

which is greater than 0 for all 0 ≤ p ≤ `. Substituting this

choice back into equation (61) proves the lemma.

APPENDIX G

BACKGROUND AND TECHNICAL LEMMAS USED

IN THE PROOF OF THEOREM 2

We begin by stating a result of Harge [83, Theorem 1.2]

(see also Hu [84]) that guarantees that convex functions of a

Gaussian random vector are positively correlated. We state it

below in the notation of the current paper.
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Lemma 15 ( [83]): Let f and g be two convex functions on

Rd, and let X be a standard d-dimensional Gaussian vector.

Then

E[f(X)g(X)] ≥ (1 + hm(g), m(f)i)E[f(X)]E[g(X)],

(62)

where for any d-variate function h, we have m(h) = E[Xh(X)]
E[h(X)] .

We also prove Lemma 8, which was used in the proof of

Theorem 2.

A. Proof of Lemma 8

We prove each bound separately. First, by the rotation

invariance of the Gaussian distribution, we may assume that

U∗ = [ed
1 . . . ed

k], so that the max is computed as a function

of the k coordinates X1, . . . Xk.

We also define some events that we make use of repeatedly

in the proofs. For each i ∈ [n], define the events

Ei = {|xi,j | ≤ 5
p

log(2nk) for all 1 ≤ j ≤ k}, and

Fi = {|�i| ≤ 5σ
p

log(2n)}.

Note that by standard sub-Gaussian tail bounds, we have

Pr{Ec
i } ≤ 2n−12 and Pr{Fc

i } ≤ 2n−12 for each i ∈ [n].
For notational convenience, define for each i the modified

covariate zi = xi · 1 {Ei}.

We have

|max(Θ∗zi + b∗)| ≤ C max
j∈[k]

kθ∗j k1

p
log(nk) + |b∗j |

≤
�
C
p

log(nk)
	

ς

almost surely, where in the second bound, we have used the

shorthand ς = maxj

(
kθ∗j k1 + kb∗jk1

)
as defined in equa-

tion (18). With this setup in place, we are now ready to prove

both deviation bounds.

1) Proof of Bound (50a): Let us first bound the deviation

of the first moment. We work with the decomposition

cM1−M1=
2

n

n/2X

i=1

max(Θ∗xi+b∗)xi−E[max(Θ∗X+b∗)X ]| {z }
T 1

i

+
2

n

n/2X

i=1

�ixi|{z}
T 2

i

.

By triangle inequality, it suffices to bound the norms of

each of the two sums separately. We now use the further

decomposition

T 1
i = max(Θ∗xi + b∗)xi − max(Θ∗zi + b∗)zi| {z }

Pi

+ max(Θ∗zi + b∗)zi − E[max(Θ∗zi + b∗)zi]| {z }
Qi

+ E[max(Θ∗zi + b∗)zi] − E[max(Θ∗xi + b∗)xi]| {z }
Ri

.

Since zi = xi with probability greater than 1 − 2n−12, the

term Pi = 0 on this event.

Also, for each fixed j ∈ [k], applying the Hoeffding

inequality yields the bound

Pr

⎧
⎨

⎩

::::::
2

n

n/2X

i=1

Qi,j

::::::
≥ t

⎫
⎬

⎭ ≤ 2 exp

�
− nt2

8C2ς2(log(nk))2

�
.

On the other hand, for j ∈ [d] \ [k], we have

::::::
2

n

n/2X

i=1

Qi,j

::::::
≤ ς

2

n

n/2X

i=1

zi,j

= ς

::::::
2

n

n/2X

i=1

xi,j

::::::
.

Standard Gaussian tail bounds then yield

Pr

⎧
⎨
⎩

::::::
2

n

n/2X

i=1

Qi,j

::::::
≥ ςt

p
log(nk)

⎫
⎬
⎭ ≤ 2 exp

�
−nt2

8

�

for each t ≥ 0. Putting together the pieces with a union bound

and choosing constants appropriately, we then have

Pr

�������
2

n

n/2X

i=1

Qi

������

2

≥ 1

n
· Ckς2(log(nk))2

+
1

n
· C0(d − k)ς2 log(nk)

�
≤ 2dn−12.

It remains to handle the final terms {Ri}n
i=1. Note that when

j /∈ [k], we have Ri,j = 0. It therefore suffices to bound the

various Ri,j terms when j ∈ [k]. We have

|Ri,j | = |E[max(Θ∗zi + b∗)zi,j ]

− E[max(Θ∗xi + b∗)xi,j1 {Ei}]
− E[max(Θ∗xi + b∗)xi,j1 {Ec

i }]|
= |E[max(Θ∗xi + b∗)xi,j1 {Ec

i }]|

Expanding this further, we have

|Ri,j | ≤ E[max
`∈[k]

(|hθ∗` , xii| + |b∗` |)|xi,j |1 {Ec
i }]

≤ E [|xi,j |kxik∞(kΘ∗k1,∞ + kb∗k∞)1 {Ec
i }]

= ςE [|xi,j |kxik∞1 {Ec
i }]

≤ ς

kX

`=1

E [|xi,j ||xi,`|1 {Ec
i }] .

Note that for a pair (X1, X2) of i.i.d. random variables,

Jensen’s inequality yields the bounds

E[|X1X2|1 {X1, X2≥λ}]≤E[X2
11 {|X1|≥λ}]∀λ≥0, and

E[|X1|1 {|X1| ≥ λ}] ≤ E[X2
11 {|X1| ≥ λ}]∀λ ≥ 1.

Furthermore, if X is a standard Gaussian random variable,

then a simple calculation (see also Burkardt [85]) yields the

bound

E[X2 | |X | ≥ λ] ≤ 1

2
√

2π
λe−λ2/2, for all λ ≥

√
2.
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Putting together the pieces with λ = 5
p

log(2nk), we have

|Ri,j |2 ≤ Ck2ς2 log(nk)(nk)−24,

and summing over j ∈ [k] yields the bound
������

2

n

n/2X

i=1

Ri

������

2

≤ Ck2ς2 log(nk)(nk)−24.

Finally, putting together the pieces with a union

bound yields the desired bound on the random variable��� 2
n

Pn/2
i=1 T 1

i

���.

The second term can be bounded more easily; in particular,

on the intersection of the events {Fi}n
i=1, we have

������
2

n

n/2X

i=1

T 2
i

������

2

≤ Cσ2 log n

������
2

n

n/2X

i=1

xi

������

2

≤ Cσ2 (d + log n) log n

n
,

where the final bound holds with probability greater than 1−
cn−10. Finally, putting the bounds together yields the result.

2) Proof of Bound (50b): Once again, we decompose the

required term as

cM2 − M2 =
2

n

n/2X

i=1

max(Θ∗xi + b∗)
(
xix

>
i − Id

)
| {z }

τ1
i

+
2

n

n/2X

i=1

�i

(
xix

>
i − Id

)
| {z }

τ2
i

.

We use the further decomposition

τ1
i = φi + κi + ρi

where,

φi = max(Θ∗xi + b∗)
(
xix

>
i − Id

)

− max(Θ∗zi + b∗)
(
ziz

>
i − Id

)
,

κi = max(Θ∗zi + b∗)
(
ziz

>
i − Id

)

− E[max(Θ∗zi + b∗)
(
ziz

>
i − Id

)
],

and

ρi = E[max(Θ∗zi + b∗)
(
ziz

>
i − Id

)
]

− E[max(Θ∗xi + b∗)
(
xix

>
i − Id

)
].

As before, since zi = xi with probability greater than 1 −
2n−12, the term φi = 0 on this event.

Let us further decompose κi as

κi = κ
(1)
i + κ

(2)
i + Id · κ(3)

i ,

with

κ
(1)
i =

�
max(Θ∗zi + b∗) + ς

p
log(nk)

	
ziz

>
i

− E


 �
max(Θ∗zi + b∗) + ς

p
log(nk)

	
ziz

>
i

�
,

κ
(2)
i = ς

p
log(nk)E

6
ziz

>
i

7
− Id,

and

κ
(3)
i = (E[max(Θ∗zi + b∗) − max(Θ∗zi + b∗)) ,

so that

||| 2
n

nX

i=1

κi|||op ≤ ||| 2
n

nX

i=1

κ
(1)
i |||op + ||| 2

n

nX

i=1

κ
(2)
i |||op

+

::::::
2

n

n/2X

i=1

κ
(3)
i

::::::
.

Since |max(Θ∗zi + b∗)| ≤ Cς
p

log(nk), the random vec-

tor

q
max(Θ∗zi + b∗) + Cς

p
log(nk)zi is well-defined and

bounded; sub-Gaussian concentration bounds [70] can there-

fore be applied to obtain

P



||| 1
n

nX

i=1

κ
(1)
i |||op ≥ c1ς

2(log(nk))2

�r
d

n
+

d

n
+ δ

��

≤ c2 exp
(
−n min(δ, δ2)

)

where ς1 log(nk) = max(Θ∗zi + b∗) + ς
p

log(nk) ≤
2ς log(nk). Reasoning similarly for the second term, we have

P



||| 1
n

nX

i=1

κ
(2)
i |||op ≥ c1ς

2(log(nk))2

�r
d

n
+

d

n
+ δ

��

≤ c2 exp
(
−n min(δ, δ2)

)
.

Combining these bounds setting δ = c1

q
d
n , we have

||| 2
n

nX

i=1

κ
(1)
i |||op + ||| 2

n

nX

i=1

κ
(2)
i |||op

≤ Cς2(log(nk))2

�r
d

n
+

d

n

�

with probability at least 1−c exp (−c0d).

The term κ
(3)
i , on the other hand, can be controlled

directly via Hoeffding’s inequality. Since max(Θ∗zi + b∗) is

Cς
p

log(nk) sub-Gaussian, we obtain

P

⎡
⎣

::::::
2

n

n/2X

i=1

κ
(3)
i

::::::
≥ ς
p

log(nk)t

⎤
⎦ ≤ 2 exp

�
−nt2

32

�
.

Choosing t = c
q

d+log n
n and putting together all the pieces,

we obtain

||| 2
n

nX

i=1

κi|||op ≤ Cς2(log(nk))2

�r
d + log n

n
+

d + log n

n

�

+ cς
p

log(nk)

r
d

n

with probability at least 1−cn−12.

It remains to handle the terms {ρi}n/2
i=1, and to do so, we use

a similar argument to before. We first bound the absolute value
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of the (p, q)th entry of each matrix as

|ρi(p, q)| = |E[max(Θ∗zi + b∗)ziz
>
i (p, q)]

− E[max(Θ∗xi + b∗)xix
>
i (p, q)1 {Ei}]

+ E[max(Θ∗xi + b∗)xix
>
i (p, q)1 {Ec

i }]|
= |E[max(Θ∗xi + b∗)xix

>
i (p, q)1 {Ec

i }]|
Expanding this further, we have

|ρi(p, q)| ≤ E[max
`∈[k]

(|hθ∗` , xii| + |b∗` |)|xi,pxi,q |1 {Ec
i }]

≤ ςE [|xi,pxi,q |kxik∞1 {Ec
i }]

≤ E

⎡

⎣|xi,pxi,q|
X

`∈[k]

|xi,`|1 {Ec
i }

⎤

⎦ .

Also note that ρp,q = 0 unless p ∈ [k], q ∈ [k].
Hence we finally need to control the terms of the form

E
6
|X |31 {|X | ≥ λ}

7
for a standard Gaussian X . Substituting

λ = 5
p

log(nk), a simple calculation of truncated third

moment of standard Gaussian ([85]) yields

|ρi(p, q)| ≤ ς log2(nk)(nk)−10,

and proceeding as before provides a strictly lower order bound

on |||ρi|||op than the remaining terms.

The term τ2
i can be bounded more easily. Specifically, on the

intersection of the events {Fi}n/2
i=1, applying [70, Lemma

6.15], we have

||| 2
n

n/2X

i=1

τ2
i |||2op

≤ Cσ2 log n||| 2
n

n/2X

i=1

xix
>
i − I|||2

op

≤ Cσ2 log n

�
d + log n

n
+

(d + log n)2

n2

�

where the final bound holds with probability greater than

1−cn−12. Finally combining all the terms yield the desired

result.

APPENDIX H

BACKGROUND AND TECHNICAL LEMMAS USED IN

THE PROOF OF THEOREM 3

In this section, we collect two technical lemmas that were

used to prove Theorem 3.

A. Prediction and Estimation Error

Here, we connect the prediction error to the estimation error,

which may be of independent interest. Recall our notation dist

for the minimum distance between parameters obtainable after

relabeling.

Lemma 16: There exists a tuple of universal constants

(c1, c2) such that for each set of parameters β1, . . . , βk ∈
Rd+1:

1) If n ≥ c1d, then we have

1

n

nX

i=1

�
max
j∈[k]

hξi, βji − max
j∈[k]

hξi, β∗
j i
�2

≤ c1dist({βj}k
j=1 , {β∗}k

j=1)

with probability exceeding 1 − c1 exp(−c2n).

2) If n ≥ c1d
k3

π3
min

log2(k/πmin), then we have

c2

�πmin

k

	3 X

j∈[k]

min
j0∈[k]

kβ∗
j − βj0k2

≤ 1

n

nX

i=1

�
max
j∈[k]

hξi, βji − max
j∈[k]

hξi, β∗
j i
�2

with probability exceeding 1 −
c1k exp

�
−c2n

π4
min

k4 log2(k/πmin)

	
.

Proof: To prove the part 1 of the lemma, we leverage the

fact that the max function is 1-Lipschitz with respect to the

`2-norm. Consequently, we obtain

1

n

nX

i=1

�
max
j∈[k]

hξi, βji − max
j∈[k]

hξi, β∗
j i
�2

≤ 1

n

nX

i=1

kX

j=1

(
ξ>i (βj − β∗

j )
)2

,

where we have ordered the parameters such that

dist
�
{βj}k

j=1 ,


β∗

j

�k

j=1

	
is minimized. We now use

the fact that the rows of Ξ are 1-sub-Gaussian (this is

restatement of the conclusion of Lemma 13) to complete the

proof.

We now proceed to a proof of part 2 of the lemma.

Recall the setup of Appendix C along with notation

({xi}n
i=1, Θ

∗, b∗, β∗, ). Specifically, we have β∗
j =

(
θ∗j , b∗j

)

and (Θ∗)> = [θ∗1 θ∗2 . . . θ∗k]. Similarly let βj = (θj , bj) ∈
Rd+1 and Θ> = [θ1 θ2 . . . θk]. In the notation of Section B,

we define for each pair (Θ, b), the sets

Sj(Θ, b) =

�
i ∈ [n] : hxi, θji + bj = max

j0∈[k]
(hxi, θj0i + bj0)

for all j ∈ [k]. We use the shorthand S∗
j = Sj(Θ

∗, b∗) and
bSj = Sj(Θ, b) for the rest of the proof. By definition, we have

1

n

nX

i=1

(max(Θxi + b) − max(Θ∗xi + b∗))2

=
1

n

X

`∈[k]
m∈[k]

X

i∈S∗
` ∩�Sm

�
(hθ∗` , xii + b∗l ) − (hθm, xii + bm)

�2

=
1

n

X

`∈[k]
m∈[k]

X

i∈S∗
` ∩�Sm

�
hβ∗

` , ξii − hβm, ξii
�2

=
1

n

X

`∈[k]
m∈[k]

keΞ`,m(β∗
` − βm)k2,

where we have let eΞ`,m denote the sub-matrix of Ξ with rows

indexed by the set S∗
` ∩ bSm. It is also useful to define the

convex sets

K∗
` : =

�
x ∈ R

d : hx, θ∗` i + b∗` = max
j0∈[k]

(hx, θ∗j0 i+b∗j0)

�
, and

Km : =

�
x : hx, θmi + bm = max

j0∈[k]
(hx, θj0 i + bj0)

�
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for each pair (`, m) ∈ [k]× [k]. By definition, for each ` ∈ [k],
there exists a corresponding index m` such that vol(K∗

` ∩
Km`

) ≥ πmin

k . Proceeding from above, we have

1

n

nX

i=1

(max(Θxi + b) − max(Θ∗xi + b∗))2

≥ 1

n

X

`∈[k]

���eΞ`,m`
(β∗

` − βm`
)
���

2

≥ 1

n

X

`∈[k]

λmin

�
eΞ>

`,m`
eΞ`,m`

	
kβ∗

` − βm`
k2

.

Finally, applying Lemma 5 in conjunction with the bound

vol(K∗
` ∩ Km`

) ≥ πmin

k , we obtain that provided n ≥ c1d ·
k3

π3
min

log2(k/πmin), we have

λmin

�
eΞ>

`,m`
eΞ`,m`

	
≥
�πmin

k

	3

· n

with probability exceeding 1 − c1 exp
�
−c2n

π4
min

k4 log2(k/πmin)

	

for each index ` ∈ [k]. Taking a union bound over the k indices

and combining the pieces completes the proof.

B. Projection Onto a Finite Collection of Rays

Consider a vector θ∗ ∈ Rn observed via the observation

model

y = θ∗ + �,

where � has independent, zero-mean, σ-sub-Gaussian entries.

For a fixed set of M vectors {θ1, . . . , θM}, denote by C : =
{cθ` : c ≥ 0, ` ∈ [M ]} the set of all one-sided rays obtainable

with these vectors.

Now consider the projection estimate

PC(y) = argmin
θ∈C

ky − θk2,

which exists since the projection onto each ray exists. The

following lemma proves an oracle inequality on the error of

such an estimate.

Lemma 17: There are universal constants c, C, c1 and

c2 such that

Pr

�
kPC(y)−θ∗k2 ≥ c(min

θ∈C

kθ − θ∗k2+σ2t(log M + c1))

�

≤ c2e
−nt(

√
log M+c1),

for all t ≥ Cσ(
√

log M + c1).
Proof: We follow the standard technique for bounding the

error for non-parametric least squares estimators. From the

definition, we have

PC(y) = argmin
θ∈C

ky − θk2 .

We substitute the expression for y and obtain

PC(y) = argmax
θ∈C

h
2h�, θ − θ∗i − kθ − θ∗k2

i
.

To obtain an upper bound on kPC(y)−θ∗k2, it is sufficient to

control the following quantity (e.g. see [86, Chapter 3], [70,

Chapter 13]):

E

8
sup

θ∈C:kθ−θ∗k≤δ

h�, θ − θ∗i
9

for some δ > 0 to be chosen later. Since � is σ-sub-Gaussian,

we use Dudley’s entropy integral to control the term above.

We obtain

E

8
sup

θ∈C:kθ−θ∗k≤δ

h�, θ − θ∗i
9

≤ Cσ

Z δ

0

p
log N (ε, {θ ∈ C, kθ − θ∗k ≤ δ}, `2)dε,

where N(�, S, `2) is the �-covering number of a compact set

S in `2 norm. Note that C contains scaled versions of M
fixed vectors {θ1, . . . , θM}. For a fixed θi, with i ∈ [M ],
the covering number N (ε, {cθi : c ∈ R, kθi − θ∗k ≤ δ}, `2) is

equivalent to the covering number of a bounded interval (in

1 dimension). Using [87], this is (1 + 2δ
ε ). Since there are M

such fixed vectors, we obtain

N (ε, {θ ∈ C, kθ − θ∗k ≤ δ}, `2) ≤ C1M(1 +
δ

ε
).

Substituting, we obtain

E

8
sup

θ∈C:kθ−θ∗k≤δ

h�, θ − θ∗i
9
≤ Cσ

�
δ
p

log M + C1δ
	

.

Now, the critical inequality ( [70, Chapter 13]) takes the form

δσ(
p

log M + C1) � δ2.

Hence we can choose δ0 = C2σ(
√

log M + C1). Now, for

any t ≥ δ0, invoking [70, Theorem 13.13] yields the oracle

inequality

kPC(y) − θ∗k2 ≤ c
(
kθ∗ − PC(θ∗)k2 + σ2t(log M + c1)

)

= c

�
min
θ∈C

kθ − θ∗k2 + σ2t(log M + c1)

�
,

with probability exceeding 1 − c2e
−nt(

√
log M+c1), which

proves the lemma.

APPENDIX I

NP-HARDNESS OF REAL PHASE RETRIEVAL

Our discussion borrows from a similar proof established

in [46, Proposition 1] for mixtures of linear regressions. Recall

that with n i.i.d observations {(xi, yi)}n
i=1, the max-affine

model takes the form

yi = max
1≤j≤k

(hxi, θ
∗
j i + b∗j ) + �i,

where {�i}n
i=1 is a sequence of i.i.d zero mean sub-Gaussian

noise.

We now consider a special case, where k = 2, b∗1 =
b∗2 = 0, and θ∗1 = −θ∗2 , corresponding to the real phase

retrieval problem. Furthermore, we consider the noiseless case

� = 0. Our covariate matrix is given by X ∈ Rn×d and

the response vector by y ∈ Rn. We now show that even in
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this special case, there is family of instances (X, y) such that

solving the least squares problem (5) is NP-hard. In particular,

we say that a “solution” to the noiseless phase retrieval

problem exists on an instance (X, y) if the least squares

objective in equation (5) has minimum value zero.

Proposition 3: Deciding whether a problem instance (X, y)
has a solution to the noiseless phase retrieval problem

is NP-hard.

Proof: The proof follows from a reduction to the subset-

sum problem, the decision version of which is stated as

follows: given p numbers a1, . . . , ap ∈ R, we must decide

if there exists a partition S ⊆ [p] such that

X

i∈S

ai =
X

j∈Sc

aj .

For each p-dimensional vector a, we design a problem instance

(X, y) such that solving the noiseless (real) phase retrieval

problem on (X, y) implies deciding on the subset sum problem

specified by a.

To accomplish this, take n = 2p + 1 and d = p, and define

the instance

X =

⎡
⎣

Ip

Ip

1 . . . 1

⎤
⎦ and y =

⎡
⎣

a
−a
0

⎤
⎦ ,

where Ip denotes the p × p identity matrix. By construc-

tion, finding a solution to the noiseless (real) phase retrieval

problem on this instance corresponds to finding a subset

S ⊆ [2p + 1] and a pair of vectors (θ∗1 , θ∗2) with θ∗1 = −θ∗2 ,

such that XSθ∗1 = yS , and XScθ∗2 = ySc . Here XS and yS

are the sub-matrix and sub-vector of X and y respectively

restricted to the set S. Note that in general, the set S
cannot contain the index i and p + i, since they correspond

to two mutually exclusive equations. From this observation,

we have θ∗1(i) = {ai,−ai}, and θ∗1(i) = −θ∗2(i), where

θ∗1(i) and θ∗2(i) denote the i-th coordinate of θ∗1 and θ∗2 ,

respectively.

As a consequence, if θ∗1 (and θ∗2 = −θ∗1) satisfies the first

2p equations in this system, then the final equation demands

that

X

i∈S

θ∗1(i) = 0 =
X

j∈Sc

θ∗2(j).

By construction, note that this is accomplished if and only if

X

i∈S

ai =
X

j∈Sc

aj ,

and so a solution to the noiseless (real) phase retrieval prob-

lem on (X, y) yields a solution to the subset-sum problem,

as desired.
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