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ABSTRACT
In this article, we study a generalization of the two-groups model in the presence of covariates—a problem
that has recently received much attention in the statistical literature due to its applicability in multiple
hypotheses testing problems. The model we consider allows for infinite dimensional parameters and offers
flexibility in modeling the dependence of the response on the covariates. We discuss the identifiability issues
arising in this model and systematically study several estimation strategies. We propose a tuning parameter-
free nonparametric maximum likelihood method, implementable via the expectation-maximization algo-
rithm, to estimate the unknown parameters. Further, we derive the rate of convergence of the proposed
estimators—in particular we show that the finite sample Hellinger risk for every ‘approximate’nonparamet-
ric maximum likelihood estimator achieves a near-parametric rate (up to logarithmic multiplicative factors).
In addition, we propose and theoretically study two ‘marginal’ methods that are more scalable and easily
implementable. We demonstrate the efficacy of our procedures through extensive simulation studies and
relevant data analyses—one arising from neuroscience and the other from astronomy. We also outline the
application of our methods to multiple testing. The companion R package NPMLEmix implements all the
procedures proposed in this article.
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1. Introduction

Consider independent and identically distributed (iid) obser-
vations Y1, . . . , Yn from the following two-component mixture
model:

Yi ∼ π̄F∗
1 + (1 − π̄)F0, for i = 1, . . . , n, (1)

where F0 is assumed to be a completely known distribution func-
tion (DF) while F∗

1 , along with π̄ , are the unknown quantities
of interest. We will call F0 the noise distribution, F∗

1 the signal
distribution and π , the signal proportion. Such a model has
received a lot of attention in the statistical literature, particularly
in the context of multiple testing problems (microarray analysis,
neuroimaging, etc.) where it is usually referred to as the two-
groups model (see, e.g., Storey 2002, 2003; Efron 2008; Cai and
Jin 2010; Efron 2010, chap. 2). In the multiple testing problem,
the obtained p-values or z-values (Yi’s as per (1)), from the
numerous (independent) hypotheses tests, have a Uniform(0, 1)

or N (0, 1) distribution (under the null hypothesis), which we
call F0, while their distribution (i.e., F∗

1 ) under the alternative is
unknown; here π̄ is the proportion of nonnull hypotheses. The
two-groups model has also been used in contamination prob-
lems, where the (unknown) distribution F∗

1 may be contami-
nated by the known distribution F0, yielding a sample drawn
from F as in (1) (see, e.g., Lemdani and Pons 1999; McLachlan
and Peel 2000; Dai and Charnigo 2007; Walker et al. 2009).

However, quite often in real applications, additional informa-
tion is available on each observation in the form of covariates
which is ignored by the two-groups model. The following two
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examples describe two such applications and illustrate the need
to model the observed covariates.

Example 1.1 (Neuroscience example). Scott et al. (2015) analyzed
data arising from a multi-unit recording experiment consisting
of measurements from 128 units (either neurons or multi-unit
groups) from the primary visual cortex of a rhesus macaque
monkey in response to visual stimuli (see Kelly et al. 2007 for
details). The goal of the experiment was to detect fine-time-
scale neural interactions (“synchrony”). The data consisted of
thousands of test statistics Yi’s, each one arising from testing the
null hypothesis of no interaction between a pair of units. Let
F0 be the null distribution of Yi (assumed to be known) and F∗

1
the unknown signal distribution. A natural approach for mod-
eling the distribution of Yi’s is via the two-groups model (see,
e.g., Scott et al. 2015). However, the dataset also included two
interesting covariates: (a) physical distance between units, and
(b) tuning curve correlation between units. Figure 1 illustrates
the relationship between the observed test statistics and the two
covariates. It clearly shows that the covariates are related to the
Yi’s. However, as was also observed by Scott et al. (2015), the
two-groups model (1) inappropriately ignores the known spatial
and functional relationships among the neurons. This motivates
the need to develop and study models that generalize (1) to
include covariates. We discuss this data and its analysis in more
detail in Section 7.1.

Example 1.2 (Astronomy example). Walker et al. (2009) analyzed
data on individual stars obtained from nearby dwarf spheroidal

© 2021 American Statistical Association
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Figure 1. Scatterplots of test statistics computed on each pair of units (higher is more significant), plotted against covariates: distance between units (left), tuning curve
correlation between units (right). The loess fit is overlaid upon each scatterplot, visually indicating that the test statistics are dependent upon covariate information.

(dSph) galaxies. The data contain measurements on line-of-
sight velocity (denoted by Y), projected distance from the center
of the dSph galaxy (denoted by X), and other variables (e.g.,
metallicity) for around 1000–2500 stars per dSph, including
some fraction of contamination from foreground Milky Way
stars (in the field of view of the dSph galaxy) (see, e.g., Walker,
Mateo, and Olszewski 2009). The primary goal is to identify
the dSph galaxy stars in the sample and recover their line-of-
sight velocity distribution. Due to foreground contamination,
Y is distributed marginally as in the two-component mixture
model (1); see the right panel of Figure 2. Here we plot the esti-
mated density (obtained using kernel density estimation) of the
observed Yi’s (for the Carina dSph) along with (scaled) f0—the
density of F0—which is known from the Besancon Milky Way
model (see Robin et al. 2003). However, the left panel of Figure 2,
which shows the scatterplot of X and Y , reveals that Y indeed
depends on X which the two-groups model fails to capture. In
this article, we develop a methodology that incorporates this
covariate information to yield: (a) better estimation of F∗

1 , the
distribution of the line-of-sight velocity for stars in the dSph;
and (b) more reliable “posterior” probability estimates of each
star (in the sample) being a dSph member; see Appendix F in
the supplementary materials for details.

Applications such as Examples 1.1 and 1.2 motivate the
need to generalize (1) to incorporate covariate information;
also see Schildknecht, Tabelow, and Dickhaus (2016) and Li
and Barber (2017) for two more relevant applications in neural
imaging and genetics data, respectively. Toward this direction,
suppose that (Y1, X1), . . . , (Yn, Xn) are iid having a distribution
on R×R

p (p ≥ 1). As studied in Scott et al. (2015) and Walker
et al. (2009), a natural way to model the joint distribution of
(Y , X) that generalizes (1) would be to consider

Y|X = x ∼ π∗(x)F∗
1 + (1 − π∗(x))F0 and X ∼ m, (2)

where:

1. m is a fixed probability measure supported on some space
X ⊆ R

p.

2. The random variable Y takes values in a subset Y of R (e.g.,
Y = [0, 1] or Y = R) and F0 �= F∗

1 are two DFs on R. We
assume that F0 is known (see Remark 1.2 for the case when F0
is not completely specified) and F∗

1 is unknown and belongs
to a parametric or nonparametric class F . Note that model
(2) assumes that F0 and F∗

1 do not depend on the covariates.
3. π∗ : X → [0, 1] is an unknown function belonging to a

parametric or nonparametric class of functions �.

The crucial difference between models (2) and (1) is that (2)
allows the prior probability of an observation coming from
the signal distribution to depend on the covariates. In fact,
model (2) is indeed a generalization of the two-groups model
(which is obtained by taking π∗(·) to be the constant function).
It is worth mentioning that (2) can be treated as a regression
model with a special structure: Suppose that Z is the unob-
servable latent variable corresponding to Y that decides which
of the two populations (F0 or F∗

1 ) Y is drawn from; that is,
Y|Z = 0 ∼ F0 and Y|Z = 1 ∼ F∗

1 . Then, under model (2), Y is
conditionally independent of X given Z; of course, Y is dependent
on X unconditionally. This observation can be interpreted in
the following way: Model (2) implies that X provides some
information about Y , but X does not provide any additional
information about Y if we knew the value of Z.

To motivate model (2) further, we mention a few special
cases of (2) that are of significant interest in the multiple testing
problem. Let us start with two natural examples of F and F0.

Decreasing densities: In this case, F denotes the class of all
DFs having a nonincreasing density on [0, 1] and F0 is the
uniform distribution on [0, 1]. This situation naturally arises
in multiple testing problems where Y denotes the p-value
corresponding to a hypothesis test and we assume that under
H0, the p-values have the uniform distribution on [0, 1] (see,
e.g., Genovese and Wasserman 2004; Efron 2010). Further,
in this problem it is quite natural to assume that, under the
alternative, the p-values will tend to be stochastically smaller
(or they will have a nonincreasing density on [0, 1]) (see,
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Figure 2. The left-hand figure shows the joint scatterplot of Y versus X . The right-hand plot shows the standard kernel density estimate of Y in this dataset with a scaled f0
overlaid in blue. This indicates that the tight point cloud to the top left on left figure comprises mostly of stars from Carina galaxy, while the sparser point cloud to bottom
center comprises mostly of stars from Milky Way. From the scatterplot, Carina stars are clearly more frequent at lower values of X (distance from center). Thus, a classification
procedure which uses X should be more accurate.

e.g., Schweder and Spjøtvoll 1982; Langaas, Lindqvist, and
Ferkingstad 2005). Let us denote the class of all distributions
with nonincreasing densities on [0, 1] by F↓.
Gaussian location mixtures: In this case,F ≡ FGauss denotes
the class of all Gaussian location mixtures, that is, any F∗

1 ∈
FGauss has the form F∗

1 (x) := ∫
�(x − θ)dG(θ) for x ∈ R

where G is some unknown probability measure on R and
� is the standard normal DF. Moreover, we take F0 := �

(see, e.g., Cai and Jin 2010; Scott et al. 2015). In the above, G
models the effect size distribution (see Appendix H.2 in the
supplementary materials for the details) and naturally arises
when dealing with z-scores (as opposed to p-values). Note
that FGauss contains all finite Gaussian location mixtures
(with unit variance).

Next we consider some natural models for the class �.

Constant functions: Let us first consider the case when �

consists of all constant functions. This reduces model (2) to
the well-known two-groups model (see (1)). We shall denote
this class by �≡.
Nondecreasing functions: Assume p = 1 and X is a subin-
terval of R. Quite often when testing a set of (ordered)
hypotheses, the practitioner may have reason to believe that
the test statistics earlier in the set are less likely to be signals
(see, e.g., Li and Barber 2016, 2017). In such a situation, it
is natural to consider � to be the class of all nondecreasing
functions on X . We shall denote this class by �↑.
Generalized linear model: In the absence of strong prior
information on the class �, a general modeling strategy
would be to consider the following class of functions: π(x) :=
g(β0+β�x) as (β0, β) varies overR×R

p. Here g : R → [0, 1]
is a fixed and known link function. We shall denote this class
of functions by �g. When g(z) := (1 + exp(−z))−1 (logistic
link), we shall denote �g by �logit. This is a special case of the
model considered in Scott et al. (2015). When g(z) := �(z),
we denote �g by �probit. We will study these classes in detail
in this article.

1.1. Our Contributions

In this article, we propose and study likelihood based methods
for estimating the functions π∗(·) and F∗

1 (and its density f ∗
1 ) as

described in model (2). We conduct a systematic study of the
statistical and computational properties of our proposed meth-
ods, which very naturally yield a multiple testing procedure; see
Appendix E in the supplementary materials. We summarize our
contributions below:

Identifiability: Model (2), as posited, need not be identifi-
able. In Section 2, we study identifiability of model (2) and
give easily verifiable necessary and sufficient conditions in
a rather general setting; see Lemma 2.1. In addition, we
demonstrate how to use Lemma 2.1 to prove identifiability
for a wide range of choices of � and F , including the ones
used in Scott et al. (2015) (see Lemma 2.2). To the best
of our knowledge, the issue of identifiability in (2) has not
been properly addressed before. Note that the two-groups
model, as posited in (1), is not identifiable (see, e.g., Genovese
and Wasserman 2004; Patra and Sen 2016). However, it is
interesting to note that the presence of covariates can make
model (2) identifiable.
Joint maximum likelihood: In Sections 3 and 4, we develop
a general (nonparametric) maximum likelihood based
procedure to estimate π∗ and f ∗

1 from iid observations drawn
according to model (2). We propose iterative procedures
based on the expectation-maximization (EM) algorithm
(see Dempster, Laird, and Rubin 1977; Lange 2016) to
compute the maximum likelihood estimates (MLEs). Our
procedure can handle both parametric and nonparametric
specifications for F and � and, in particular, covers the
important scenarios discussed above. The resulting estimates
of π∗ and f ∗

1 yield accurate estimators of the conditional
density of Y given X. We show in Theorem 3.1 that when
we maximize the likelihood over the nonparametric class
of all Gaussian location mixtures (FGauss), the resulting
estimator of this conditional density has a parametric rate
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of convergence, up to logarithmic factors (see Section 3.2).
In fact, Theorem 3.1 holds for a much larger class of
estimators (we call these approximate MLEs) which includes
the MLE as a special case. This generalization is important
for analyzing the statistical properties of our estimators as we
are dealing with a nonconvex optimization problem where
exact maximizers are computationally difficult to obtain. We
also propose specialized algorithms for solving the M-step
in the EM algorithm for estimating π∗ and f ∗

1 , depending on
the choices of � and F .
Marginal methods: We propose two other methods for
estimating π∗(·) and f ∗

1 that are based on appropriately
marginalizing the joint distribution of (X, Y); see Section 5
for the details. These marginal methods bypass the joint
maximization of the likelihood (which is a nonconvex
problem in general) and are easily implementable. These
marginal methods can also be successfully used to properly
initialize the EM algorithm to compute the joint MLE. We
establish a finite sample risk bound of our estimator of f ∗

1
(see Theorem 5.1) and derive the asymptotic distribution of
the coefficient vector for certain parametrically specified link
functions π∗(·) (see Theorem 5.2).

Even though we can handle nonparametric classes F (and
�), both our proposed methods—namely, the joint maximiza-
tion and marginal procedures—are tuning parameter-free, and
are thus completely automated.

Simulations and real data examples: We conduct extensive
simulation studies (see Section 6) that point to the superior
performance of the proposed estimators, when compared
to its competitors. A direct consequence of our proposed
methodology is a comprehensive procedure that addresses
the multiple testing problem (see Appendix E in the sup-
plementary materials). We demonstrate the accuracy of the
estimated local false discovery rate (lFDR) through extensive
simulations. Further, we analyze the two real data examples
introduced above (see Sections 7.1 and Appendix F). These
illustrate the applicability of our methods. Both marginal
methods and the joint maximum likelihood method have
been implemented in the companion R package NPMLEmix
(see Deb et al. 2020) which is available on CRAN; see https://
CRAN.R-project.org/package=NPMLEmix. It also includes
relevant codes for all our simulations and data analyses.

Before considering estimation in the framework of (2), as we
have done above, it is natural to ask: “Do the covariates indeed
have any effect in the multiple testing problem?” and “Does the
signal distribution, that is, the distribution of the nonnull p-
values/z-values, depend on the covariates?” In Appendices B
and C (see the supplementary materials), we show that the above
questions can be reformulated as hypothesis testing problems
and we propose natural testing procedures to address them.

The accompanying supplementary materials contain proofs
of our main results, detailed discussions on some of the algo-
rithms we propose in the article and additional computational
studies. Before ending this subsection, we would like to point out
two important aspects of our proposals in this article, through
the following two remarks.

Remark 1.1. In our problem setting (see (2)), the (oracle) opti-
mal testing procedure should reject hypotheses with low lFDRs;
see Basu et al. (2018) where the authors view the multiple testing
problem from a decision theoretical perspective and prove such
an optimality result. Thus, we focus on accurate estimation of
lFDRs (and the associated model parameters). This is the crucial
point of difference between our approach and some of the more
recent papers in this area (see Barber and Candès 2015; Lei
and Fithian 2016; Ignatiadis and Huber 2017). We believe that
methods focusing primarily on finite sample FDR control can
sometimes be quite conservative.

Remark 1.2 (Estimating an empirical null). In Efron (2004) and
Scott and Berger (2006), the authors have observed that the
theoretical null (e.g., specifying F0 as the CDF of a standard
normal or uniform distribution) poorly describes many datasets
and consequently, an “empirical null” needs to be estimated.
Such an example of an “empirical null” would be when F0 is
known to be the CDF of a N (μ, σ 2) distribution with μ and
σ 2 unknown. One of the strengths of our approach is that
our proposed methodology can deal with the estimation of an
empirical null by a simple preprocessing step (just like FDRreg
in Scott and Berger (2006)). We provide a concrete example in
our neural synchrony data analysis (see Section 7) where the
maximum likelihood approach proposed in Efron (2004) has
been used to estimate an empirical null (similar to Scott and
Berger (2006)).

1.2. Literature Review

The two-groups mixture model (without covariates) has been
studied and applied extensively (see, e.g., McLachlan, Bean, and
Peel 2002; Storey 2002, 2003; Efron 2004, 2008, 2010, chap. 2;
Genovese and Wasserman 2004; Johnstone and Silverman 2004;
Meinshausen and Rice 2006; Scott and Berger 2006; Müller,
Parmigiani, and Rice 2007; Robin et al. 2007; Walker et al.
2009; McLachlan and Wockner 2010; Patra and Sen 2016).
However, in a variety of multiple testing applications, as in our
motivating applications, there is often additional information
available on the individual test statistics (e.g., p-values or z-
scores)—for example, the p-values may be naturally ordered,
grouped, contain inherent clusters, etc. A natural strategy to
incorporate such auxiliary information is through the use of
weights corresponding to p-values (see, e.g., Genovese, Roeder,
and Wasserman 2006; Hu, Zhao, and Zhou 2010; Benjamini and
Bogomolov 2014; Dobriban 2016). We believe that modeling the
weights can itself be a difficult problem in the absence of strong
prior information and there is no generally accepted strategy.
These limitations have prompted some recent advances in this
area which we discuss below.

Ignatiadis et al. (2016) proposed grouping the hypotheses
and choosing weights for each group so as to maximize the
number of rejections after a usual reweighing procedure.
In Ignatiadis (2018), using a slightly modified censoring p-value
based approach, the authors are able to guarantee finite sample
FDR control. Such p-value masking techniques have also been
used in Li and Barber (2016) and Lei and Fithian (2016). These
articles actually consider a further generalization of model (2)
where the distribution of nonnull p-values are allowed to

https://CRAN.R-project.org/package=NPMLEmix
https://CRAN.R-project.org/package=NPMLEmix


1824 N. DEB ET AL.

depend on the covariates. However, their proposed methods are
geared toward guaranteeing finite sample FDR control whereas
we take a more direct approach by proposing natural models
(see, e.g., �g, �↑, F↓, FGauss) for p-values or z-scores and
focus on accurate estimation of the unknown quantities. This is
particularly useful if the analyst is also interested in estimating
the distribution of the nonnull p-values, for example, in the
contamination problem mentioned in Example 1.2. Moreover,
our approach avoids grouping hypotheses based on covariates
(which may be difficult if the covariate space is complex) and
does not need the choice of any tuning parameters.

The article (Scott et al. 2015) is perhaps the closest to our
work. The authors use � = �logit, F0 = � and F =
FGauss and illustrate the superiority of such a model over the
traditional two-groups model (1) in terms of signal detection
through extensive simulations and by analyzing the neural syn-
chrony data (Example 1.1). The big difference between our
article and Scott et al. (2015) is that our main recommended
procedure is based on (nonparametric) MLE while their recom-
mended procedure (which they call FDRreg) is more like one
of our marginal ones (see Appendix H.1 in the supplementary
materials for the details). Note that Scott et al. (2015) also pro-
posed a full Bayes procedure and an empirical Bayes procedure.
We, however, resort to a frequentist approach and obtain esti-
mators by maximizing the likelihood function. Moreover, Scott
et al. (2015) did not provide any theoretical guarantees for their
estimators (as we do in Theorem 3.1). In Section 6, we argue
through extensive simulations that our method yields more
accurate estimates of π∗(·), f ∗

1 and lFDRs (particularly when the
“signal” varies significantly with the covariates).

2. Identifiability in Model (2)

Identifiability issues arise naturally in the study of mixture mod-
els (see, e.g., Teicher 1961; Titterington, Smith, and Makov 1985,
sec. 3.1) and model (2) is no exception. We detail these issues
in this section before proceeding to estimate π∗(·) ∈ � and
F∗

1 ∈ F from model (2).
Recall that X ∼ m having supportX ⊂ R

p. For a fixed π(·) ∈
� and F1 ∈ F , let Pπ ,F1 denote the joint distribution of (X, Y)

defined in (2). Also let P := P(�,F) denote the class {Pπ ,F1 :
π ∈ �, F1 ∈ F}. The main issue with identifiability arises from
the fact that, in general, it is possible to represent a given P ∈ P
as Pπ ,F1 for two (or more) different choices of π ∈ � and F1 ∈
F .

Definition 2.1 (Identifiability). We say that P(π∗,F∗
1 ) ∈ P(�,F)

is identifiable if for every function (π , F1) ∈ � × F , the
condition P(π∗,F∗

1 ) = P(π ,F1) implies π(x) = π∗(x) for m-almost
everywhere (a.e.) x, and F1(y) = F∗

1 (y) for all y ∈ R.

Although model (2) has been considered before by Scott et
al. (2015) there has not been a rigorous study of the associated
identifiability issues. The following lemma characterizes identi-
fiability in the setting of (2).

Lemma 2.1. Let π , π ′ be two functions from X to [0, 1] and let
F1, F′

1 be two DFs on R. Consider the following two statements:

(a) The probability distributions Pπ ,F1 and Pπ ′,F′
1

are identical.
(b) There exists a real number c �= 1 such that

π ′(x) = π(x)/(1 − c) for m-a.e. x, and (3)

F′
1(y) = cF0(y) + (1 − c)F1(y) for every y ∈ R. (4)

Then,

1. The second statement (b) always implies the first one (a).
2. If we have the conditions F0 �= F1 and π(x) > 0 with positive

probability under m (or F0 �= F′
1 and π ′(x) > 0 with positive

probability under m), then the first statement (a) implies the
second statement (b).

Remark 2.1 (Nonidentifiability under two-groups model without
covariates). When � := �≡ and F denotes any of the classes
F↓ or FGauss, then the model P(π∗,F∗

1 ) ∈ P(�,F), where π∗ ∈
(0, 1), is not identifiable. This is an immediate consequence of
Lemma 2.1 and has also been observed in Genovese and Wasser-
man (2004) and Patra and Sen (2016), among others. Thus,
for many nonparametric classes F , the absence of covariate
information always leads to a nonidentifiable model and it is
not possible to recover π̄ . However, there is indeed a way of
defining an identifiable mixing proportion in these problems
(see, e.g., Genovese and Wasserman 2004; Patra and Sen 2016).

Remark 2.2 (Nonidentifiability under two-groups model with
covariates). Quite often there is a natural ordering among
the hypotheses to be tested (see, e.g., Li and Barber 2016). In
this scenario, a natural choice for the parameters in model (2)
are � := �↑, F0 ∼ Uniform(0, 1) and F := F↓. In
this setting Lemma 2.1 immediately yields that the model
P(π∗,F∗

1 ) ∈ P(�,F), where π∗(x) < δ < 1 for m-a.e. x ∈ X
(for some δ), is not identifiable. As a result, for the multiple
testing problem when we have p-values for each test, the natural
model F0 ∼ Uniform(0, 1) and F := F↓ is nonidentifiable if
we model the nonnull proportion as a nondecreasing function
of the covariates.

Remark 2.3 (Presence of covariates can restore identifiability). Let
π∗ ∈ � and F∗

1 ∈ F . Lemma 2.1 shows that if cπ∗(·) does
not belong to �, for any c ∈ (0, 1), then P(π∗,F∗

1 ) is identifiable.
This shows that for many reasonable model classes � and F ,
the presence of covariates (if we can model the observed data
correctly) can lead to identifiability. Some examples of such
model classes are provided below.

Let us recall the definitions of �logit, �probit, F↓, and
FGauss from Section 1. In the following discussion, we will
use Lemma 2.1 to investigate the issue of identifiability (in the
sense of Definition 2.1) in model (2) when � = �logit or �probit
and F = FGauss or F↓. The following result states that under
some assumptions onX and m, the probability measure P(π∗,F∗

1 ),
where π∗ ∈ �logit or �probit, F∗

1 ∈ FGauss or F↓, is identifiable
as long as π∗(·) is not a constant function for m-a.e. x and
F∗

1 �= F0.

Lemma 2.2. Consider the class of distributions P(�,F), with
� := �g where g(x) = (1 + exp(−x))−1 or g(x) = �(x),
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and F := FGauss or F↓. Suppose that the set X contains a non-
empty open subsetX ′ ofRp such that the probability measure m
assigns strictly positive probability to every open ball contained
in X ′. Assume that F0 �= F∗

1 and π∗ ∈ �g is given by π∗(x) :=
g(β∗

0 + (β∗)�x) for x ∈ X and some (β∗
0 , β∗) ∈ R × R

p. Then
P(π∗,F∗

1 ) is identifiable if β∗ �= 0.

It is worth noting that the assumption on m in Lemma 2.2—
namely, there exists an open set X ′ such that m assigns posi-
tive probability to every non-empty open subset of X ′, is not
very stringent as any absolutely continuous (with respect to
the Lebesgue measure) distribution satisfies this. The other key
assumption in Lemma 2.2 is that β∗ �= 0. This means that if
the covariates are relevant (i.e., β∗ �= 0), then identifiability
is restored; compare this with the two-groups model (which
corresponds to β∗ = 0) in which case we already know that (1)
is not identifiable.

However, the way Lemma 2.2 has been stated, it may not
accommodate all discrete covariates alongside the test statistics
(p-values or z-scores). Corollary H.1 (also see Appendix H.3 in
the supplementary materials) is aimed at addressing this issue.
In the supplementary materials, we present a simple example
(see Remark H.1) which shows that in the presence of discrete
covariates, without certain additional assumptions, model (2)
may fail to be identifiable.

3. (Nonparametric) Maximum Likelihood Estimation

In this section, we propose and discuss our main estimation
strategy—maximum likelihood—for estimating the unknown
parameters in model (2), and state our main theoretical result
on the estimation accuracy of our proposed estimators. We will
assume in this section that every F ∈ F admits a probability
density on R and will denote the class of probability densities
corresponding to DFs in F by F. Our main examples for F
will be FGauss and F↓; we have already seen that these classes
arise naturally in multiple testing problems. Our examples for
� will be �≡, �g and �↑. Further, we will denote by FGauss
and F↓ the classes of densities corresponding to FGauss and F↓,
respectively. As we will show, the nonparametric classes FGauss
and F↓ lend themselves to tuning parameter-free estimation
through the method of maximum likelihood. Further, for esti-
mation in the class FGauss we establish an almost parametric rate
of convergence of the MLE (see Theorem 3.1).

3.1. Maximum Likelihood Estimation

Let us denote by f ∗
1 the unknown density of F∗

1 . This reduces
model (2) to

Y|X = x ∼ π∗(x)f ∗
1 + (1 − π∗(x))f0 and X ∼ m, (5)

where f0 is a known density (corresponding to the DF F0), and
π∗(·) ∈ � and f ∗

1 ∈ F are the unknown parameters of interest.
Here, we discuss estimation of (π∗, f ∗

1 ) based on the principle
of maximum likelihood. For any π ∈ �, f1 ∈ F, let us denote
the normalized log-likelihood at (π , f1), up to a constant not

depending on the parameters, by

	(π , f1) := 1
n

n∑
i=1

log
(
π(Xi)f1(Yi) + (1 − π(Xi))f0(Yi)

)
(6)

and consider the MLE
(
π̂ , f̂1

)
:= argmax

π∈�,f1∈F
	(π , f1). (7)

As F and � can be nonparametric classes of functions, the
estimator (π̂ , f̂1) can be thought of as the nonparametric (NP)
MLE in model (5). However, the optimization problem in (7)
is often nonconvex which makes it difficult to guarantee the
convergence of algorithms to global maximizers. To bypass this
issue, we define another class of estimators: call any estimator
(π̂A, f̂ A

1 ) satisfying

n∏
i=1

(
1 − π̂A(Xi)

)
f0(Yi) + π̂A(Xi)f̂ A

1 (Yi)

(1 − π∗(Xi))f0(Yi) + π∗(Xi)f ∗
1 (Yi)

≥ 1 (8)

an approximate NPMLE (AMLE). In other words, (π̂A(·), f̂ A
1 ) is

an AMLE if it yields a higher likelihood (as in (6)) compared to
the true model parameters (π∗(·), f ∗

1 ).

3.2. Gaussian Location Mixtures

Let us specialize to the case where f0 is standard normal, f ∗
1 ∈

FGauss and π∗ ∈ � for some class of functions �. Note that
this setting has received a lot of attention in the multiple testing
literature (see Scott et al. 2015). In the following discussion,
we quantify the Hellinger accuracy of any AMLE in estimating
(π∗, f ∗

1 ). As is common in regression problems, we state our
results conditional on the covariates X1, . . . , Xn. For each i =
1, . . . , n, and any π̃ ∈ �, f̃1 ∈ FGauss, define h2

i
(
(π̃ , f̃1), (π∗, f ∗

1 )
)

as
∫ (√

(1 − π̃(Xi))f0(y) + π̃(Xi)f̃1(y)

−
√

(1 − π∗(Xi))f0(y) + π∗(Xi)f ∗
1 (y)

)2
dy.

Thus, h2
i
(
(π̂ , f̂1), (π∗, f ∗

1 )
)

denotes the squared Hellinger dis-
tance between the true and estimated conditional density of
Yi given Xi. Our loss function will be the average of h2

i , for
i = 1, . . . , n:

D2
(
(π̃ , f̃1), (π∗, f ∗

1 )
)

:= 1
n

n∑
i=1

h2
i

(
(π̃ , f̃1), (π∗, f ∗

1 )
)

. (9)

Our main result below gives a nonasymptotic finite sample
upper bound on D((π̃ , f̃1), (π∗, f ∗

1 )) conditional on the covari-
ates X1, . . . , Xn. The bound will involve the complexity of the
class � as measured through covering numbers and metric
entropy (see van der Vaart and Wellner 1996, chap. 2, pp. 83–
86 for the definitions).
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Theorem 3.1. Suppose that the data (X1, Y1), . . . , (Xn, Yn) are
drawn from model (5) for some π∗ ∈ � and f ∗

1 ∈ FGauss which
can be written as f ∗

1 (x) = ∫
φ(x − u)dG∗(u), x ∈ R, for some

probability measure G∗ that is supported on [−M, M] for some
M > 0, where φ(·) denotes the standard normal density. Also
let M∗ := max(M,

√
log n). Define the sequence {εn} as

ε2
n := n−1 max(

M∗(log n)3/2, inf
γ>0

{
n√

γ M∗ + H(γ , �n, L∞)
})

,

where H(γ , �n, L∞) is the γ -metric entropy of the class of n-
dimensional vectors �n := {(π(X1), . . . , π(Xn)) : π ∈ �} with
respect to the uniform metric. Then, given an AMLE (π̂A, f̂ A

1 )

for estimating (π∗, f ∗
1 ), there exists a universal positive constant

K such that for every t ≥ 1 and n ≥ 2, we have

P

{
D

(
(π̂A, f̂ A

1 ), (π∗, f ∗
1 )

)
≥ tKεn

∣∣∣∣X1, . . . , Xn

}
≤ 2n−t2

.

(10)
Moreover, there exists a universal positive constant C such that
for every n ≥ 2, we have

E

[
D2

(
(π̂A, f̂ A

1 ), (π∗, f ∗
1 )

)∣∣∣∣X1, . . . , Xn

]
≤ Cε2

n. (11)

Remark 3.1. Note that (π̂ , f̂1) as defined in (7) clearly satisfies
(8) and thus Theorem 3.1 implies that (10) and (11) are true with
(π̂A, f̂ A

1 ) replaced by (π̂ , f̂1).

Remark 3.2. The optimization problem in (7) is nonconvex and
thus there may be multiple local maxima. Consequently, our
proposed algorithms (see Section 4) do not guarantee conver-
gence to a global maximizer. Therefore, Theorem 3.1 is of partic-
ular importance (more generally useful in estimation involving
nonconvex optimization problems) as it establishes finite sam-
ple risk bounds for any AMLE. Moreover, our simulations in
Section 6 and Appendix H.5 (in the supplementary materials)
illustrate that our proposed algorithms almost always yield esti-
mates that are AMLEs.

Remark 3.3. Under suitable technical assumptions, the same
proof technique as that of Theorem 3.1 can be adopted to
yield near-parametric rates of convergence for other location
mixtures (beyond Gaussian), that is, when f ∗

1 ∈ FK where

FK := {f : f (y) =
∫

K(y − θ) dG(θ), G(·) is a probability

distribution}.

Another class of interest is when f ∗
1 ∈ F↓, as often used in p-

value modeling (see, e.g., Schweder and Spjøtvoll 1982; Langaas,
Lindqvist, and Ferkingstad 2005; Cao, Chen, and Zhang 2020).
Note that the metric entropy of F↓ is larger than that of FGauss.
Consequently, we do not expect a near-parametric rate of esti-
mation for the conditional density, although our current proof
does not cover this case.

The above theorem might look a bit abstract at first glance.
Let us consider a typical function class � to demonstrate the
conclusions of Theorem 3.1. Let � be given by a generalized

linear model, that is, each function π ∈ � is of the form
x �→ g(x�β) for some β ∈ R

p and known link function g(·).
Then Theorem 3.1 gives a parametric rate of convergence p/n,
up to a logarithmic factor of n, in the average Hellinger metric
(see (9)), for all standard choices of g(·). This is illustrated in the
subsequent corollary and remarks.

Corollary 3.1. Suppose g : R → [0, 1] is a fixed link function
that is Lipschitz with some constant L > 0, that is, |g(z1) −
g(z2)| ≤ L|z1 − z2|, for all z1, z2 ∈ R. Suppose that the
covariate space X is contained in a p-dimensional Euclidean
ball of radius T and that the function class � is given by
{πβ : β ∈ R

p, ‖β‖ ≤ R} for some R > 0 where πβ(x) :=
g(x�β) for x ∈ X . Then, under the same assumptions on
f ∗
1 as in Theorem 3.1, inequalities (10) and (11) both hold

with ε2
n = 1

n max
(
M∗(log n)3/2, M∗ + p log

(
1 + 2LTRn2)) .

The quantities L, M, R, and T can be taken to be either fixed or
changing with n.

Remark 3.4. The most common example of the link function g
in Theorem 3.1 is the logistic link given by g(z) := (1 + e−z)−1,
for z ∈ R. This function g is clearly Lipschitz with constant
L = 1 because |g′(z)| = ez(1 + ez)−2 ≤ 1 for every z ∈
R. Another example of the link function g(·) in Theorem 3.1
is the probit link given by g(z) := �(z) for z ∈ R. This
function g is also Lipschitz with constant L = (2π)−1/2 because
|g′(z)| = 1√

2π
exp(−z2/2) ≤ (2π)−1/2, for every z ∈ R.

Both the logit and probit links arise from symmetric (about
0) densities which may sometimes be undesirable, specially in
some survival models. As a result, often the complementary log-
log link is recommended in survival models (e.g., Jenkins 1995).
In this case g(z) := 1 − exp

(− exp(z)
)
, z ∈ R. Observe that

|g′(z)| ≤ 1. Therefore, Corollary 3.1 applies to all the three link
functions above.

Remark 3.5. If L, M, R, and T are all constant, then the rate εn
given by Corollary 3.1 is parametric up to logarithmic factors in
n.

In the following section, we describe an iterative approach
based on the EM algorithm (Dempster, Laird, and Rubin
1977; McLachlan and Peel 2000; Lange 2016) to compute the
MLE described in (7). We had also looked into an alternative
maximization based approach for solving (7). Our simulations
revealed that the EM algorithm significantly and consistently
outperformed the alternative maximization scheme. Hence, we
only describe the details of the EM based algorithm.

4. EM Algorithm for Joint Likelihood Maximization

Let us first recall a familiar setting from Section 1. Consider
n independent but unobserved (latent) Bernoulli random vari-
ables Z1, Z2, . . . , Zn such that P(Zi = 1|Xi) = π∗(Xi) for
some π∗(·) ∈ � and suppose that the conditional densities
of (Yi|Zi = 1, Xi) and (Yi|Zi = 0, Xi) are f ∗

1 and f0, respec-
tively. The EM algorithm then, proceeds as follows. We first
write down the “complete data” likelihood which involves the
joint density of our observed data {(Yi, Xi)}n

i=1 and the latent
variables Z1, . . . , Zn. Observe that the joint (complete) average
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Algorithm 3.1 EM implementation of (7)

Input {(Yi, Xi)}n
i=1 and initial estimates π(0), f (0)

1
k ← 1
repeat

E-step: w(k)
i ← π(k−1)(Xi)f (k−1)

1 (Yi)

π(k−1)(Xi)f (k−1)
1 (Yi) + (

1 − π(k−1)(Xi)
)

f0(Yi)
, i = 1, 2, . . . , n.

M-step: π(k) ← π̂EM(w(k), �) and f (k)
1 ← f̂EM(w(k),F)

k ← k + 1

until convergence of w(k) = (w(k)
1 , . . . , w(k)

n ).

log-likelihood of (Xi, Yi, Zi), for i = 1, . . . , n, equals

1
n

n∑
i=1

{
Zi log

[
π(Xi)f1(Yi)

]+(1−Zi) log
[
(1 − π(Xi))f0(Yi)

] }
,

where we have ignored some terms that do not depend on the
parameters of interest. Observe that the conditional expectation
of Zi given the data can be expressed as

Eπ∗,f ∗
1
[Zi|Yi = y, Xi = x] = π∗(x)f ∗

1 (y)
π∗(x)f ∗

1 (y) + (1 − π∗(x))f0(y)
,

for i = 1, . . . , n. (12)
As the random variables Zi’s are unobserved, we replace them
in the log-likelihood in the E-step of the algorithm by their
conditional expectations evaluated as in (12) with π∗(·) and f ∗

1
replaced by their estimates from the previous iteration; see Algo-
rithm 3.1 for details. The obtained expected log-likelihood func-
tion is then maximized in the M-step of the algorithm with
respect to both the parameters π ∈ � and f1 ∈ F. We provide
the corresponding pseudo-code for the EM algorithm below.

In Algorithm 3.1, for any w = (w1, . . . , wn) ∈ [0, 1]n,

π̂EM(w, �) := argmax
π∈�

1
n

n∑
i=1

[
wi log π(Xi)

+(1 − wi) log (1 − π(Xi))
]

, and (13)

f̂EM(w,F) := argmax
f1∈F

1
n

n∑
i=1

[
wi log f1(Yi)

+(1 − wi) log f0(Yi)
]

. (14)
When the classes � and F are convex (e.g., � := �↑, F :=
FGauss or F↓), the optimization problems (13) and (14) are also
convex in π and f1, respectively. Further, due to the particular
form of the expected log-likelihood, this joint maximization
breaks into two isolated maximization problems, that is, prob-
lems (13) and (14) are decoupled. Hence, solving (13) (or (14))
requires no knowledge of F (or �). Therefore, both of the above
problems are usually more tractable than (7). we defer the more
specific details about the implementations of (13) and (14) to
the Appendix (see Sections A.1 and A.2). However, as (7) is a
nonconvex problem we cannot guarantee the convergence of
our EM algorithm to the global maximizer. Moreover, we need
proper initial estimates of (π∗, f ∗

1 ) to start the iterative scheme
in the EM algorithm (see Section 3.2). In Sections 5.1 and 5.2, we
describe two easily implementable procedures that can be used
as starting points for the EM algorithm.

5. Marginal Methods

Maximizing the joint likelihood (of (X, Y); see (6)) can be com-
putationally expensive, especially when dealing with nonpara-
metric classes for � or F. Further, the EM algorithm proposed
in Section 4 to find the MLEs is iterative in nature and can get
stuck at a local maxima, different from the global maximizer
(as the underlying optimization problem is nonconvex). In this
subsection, we propose two novel marginal methods that bypass
the joint estimation of π∗(·) and f ∗

1 . As the name suggests,
these methods do not deal with a joint maximization problem;
instead they use properties of model (5) to isolate each of the
parameters and estimate them separately. Both the proposed
methods are conceptually simple and easy to implement. They
also provide good estimates for the true parameters in model (5);
in Section 6, we compare their performance to FDR regression
(see Scott et al. 2015). Our marginal methods can also be used
to obtain preliminary estimators of π∗(·) and f ∗

1 which can then
be chosen as starting points for the EM algorithm outlined in
Section 4 (see Algorithm 3.1).

5.1. Marginal Method—I

To motivate this decoupled approach, first observe that the
marginal distribution of Y in model (2) has the form (1) where
π̄ := EX∼m[π(X)], which is the standard two-groups model
with unknown F∗

1 and π̄ . The above observation can be used to
directly estimate f ∗

1 (the density of F∗
1 ), bypassing the estimation

of π∗(·). Observe that, if π̄ ≡ α were known (assume π > 0),
estimation of f ∗

1 ∈ F could be accomplished by maximizing the
marginal likelihood of the Yi’s, that is,

f̂ (α)
1 := argmax

f1∈F
1
n

n∑
i=1

log
(
αf1(Yi) + (1 − α)f0(Yi)

)
. (15)

The above optimization problem is indeed computationally
more tractable—note that for function classes F that are convex
(e.g., FGauss and F↓) (15) is a convex program and can be
solved efficiently. For instance, we may directly use the convex
optimization technique outlined in Section A.2.1 to solve (15)
if F = FGauss.

Once we obtain an estimator f̂ (α)
1 of f ∗

1 , we can maximize the
joint log-likelihood just as a function of π(·) ∈ � to obtain
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π̂ (α) := argmax
π∈�

1
n

n∑
i=1

log

(
π(Xi)f̂ (α)

1 (Yi) + (1 − π(Xi))f0(Yi)
)

. (16)

Problem (16) is also tractable for a variety of choices of �. In
particular, if � := �↑, one can once again use the convex opti-
mization strategy discussed in Section A.5 in the supplementary
materials, whereas if � := �logit, we can use the BFGS method
discussed in Section A.1.1. Based on the above discussion, we
end up with one-step estimators π̂ (α) and f̂ (α)

1 of π∗ and f ∗
1

(respectively), if we knew the value of π̄ ≡ α.
In practice π̄ may not be known, in which case we will need to

estimate π̄ from the data to estimate f ∗
1 using (15). As we are now

in the well-known two-groups model, there are many estimators
available for π̄ (see, e.g., Zhang 1990; Storey 2002; Langaas,
Lindqvist, and Ferkingstad 2005; Tang and Zhang 2005; Efron
2010; Patra and Sen 2016). However, the estimation of π̄ is a dif-
ficult problem when F is nonparametric (e.g., when F = FGauss
orF↓) and there is no known

√
n-consistent estimator of π̄ with

finite variance (see, e.g., Nguyen and Matias 2014). Note that,
when f0 ∈ F and F is convex (e.g., f0(·) = φ(·), F = FGauss), we
cannot obtain a consistent estimator of π̄ by maximizing (15)
jointly with respect to f1 and α (as the likelihood in such a case
will always be maximized at α = 1). In fact, π̄ is a parameter
for which a lower (honest) confidence bound can be provided
easily (see, e.g., Genovese and Wasserman 2004; Meinshausen
and Rice 2006; Patra and Sen 2016) but an upper confidence
bound is difficult to obtain (see, e.g., Donoho 1988 for a unified
treatment of such “one-sided” parameters).

The methods for estimating π̄ cited above do not use the
covariate information available in our model. Based on exten-
sive simulation studies (see Section 6), we believe that incor-
porating covariate information in the estimation of π can lead
to a better estimator. In the following display, we propose a
possible strategy to estimate π̄ that uses the joint likelihood
of the available data. Note that as defined, both (15) and (16),
depend on α ∈ (0, 1]. We can now consider the “profiled” one-
dimensional MLE of π̄ :

ˆ̄π = arg max
α∈(0,1]

1
n

n∑
i=1

log

(
π̂ (α)(Xi)f̂ (α)

1 (Yi) + (1 − π̂ (α)(Xi))f0(Yi)
)

, (17)

where f̂ (α)
1 (·) is defined in (15), and π̂ (α)(·) is defined in (16). To

solve problem (17), we recommend a grid search over the unit
interval (0, 1]. One may also start with a standard estimator of
π (using any of the methods from the references cited above),
and restrict the grid search to a suitably small neighborhood of
the initial estimate.

Below we state a theoretical result which gives finite sample
risk bounds for the estimated marginal density of Y . In fact, the
following can be interpreted as an estimation accuracy result in
the two-groups model (without covariates), that is, model (1)
when an upper bound for the signal proportion (π̄) is known.

Theorem 5.1. Suppose that the data (X1, Y1), . . . , (Xn, Yn) are
drawn from model (5) for some π∗ ∈ � and f ∗

1 ∈ F = FGauss

which can be written as f ∗
1 (x) = ∫

φ(x − u)dG∗(u), for x ∈
R, and for some probability measure G∗ supported on [−M, M]
(for some M > 0). If π ≤ α ≤ 1, we have

E

[
h2

((
α, f̂ (α)

1

)
,
(
π , f ∗

1
))]

≤ C
n

max
(
M∗(log n)3/2, M∗ + log n

)
,

where C is a universal constant, M∗ = max (M,
√

log n) and

h2
((

α, f̂ (α)
1

)
,
(
π , f ∗

1
))

:=
∫ (√

(1 − α)f0(y) + αf̂ (α)
1 (y)

−
√

(1 − π)f0(y) + π f ∗
1 (y)

)2
dy.

Consequently, if π̄ was known, that is, α = π̄ , then we further
have

E

[∫ ∣∣f̂ (π̄)
1 (y) − f ∗

1 (y)
∣∣ dy

]

≤ 4Cπ̄−1
√

n
·
√

max
(
M∗(log n)3/2, M∗ + log n

)
.

Remark 5.1. If M does not change with n in Theorem 5.1, then,
for n ≥ 3, we have E

[
h2

((
α, f̂ (α)

1

)
,
(
π , f ∗

1
))]

≤ C′(log n)2/n,
where C′ is a constant free of n but depending on M. In particu-
lar, C′ can be taken as C(M + 1). A similar conclusion holds for
E

[∫ ∣∣f̂ (π̄)
1 (y) − f ∗

1 (y)
∣∣ dy

]
.

5.2. Marginal Method—II

In the previous marginal procedure, we isolated the effect of the
unknown density f ∗

1 and used the marginal distribution of Y
to estimate f ∗

1 . In this subsection we describe a procedure that
targets the estimation of π∗(·) first. Observe that the regression
function of Y on X is

E(Y|X = x) = (1 − π∗(x))μ0 + π∗(x)μ∗, (18)

where μ0 := EY∼F0 [Y] and μ∗ := EY∼F∗
1
[Y]. Here μ0 is

known (as F0 is known) but μ∗ is unknown. Thus, the regression
function isolates the effect of π∗(·), modulo the estimation of
μ∗. If μ∗ �= μ0 and π∗(·) is not a constant function, (18) poses
a nonlinear regression problem and we can use the method of
least squares to estimate (π∗, μ∗):

(π̂ , μ̂) := argmin
π∈�,μ∈R

n∑
i=1

(
Yi − μ0 − π(Xi)(μ − μ0)

)2
. (19)

An application of van der Vaart (1998, Theorem 5.23) then
yields the following result. For the sake of completeness, we
present a proof of the above result in Appendix I.7 (in the
supplementary materials).

Theorem 5.2. Suppose that (X, Y) has a joint distribution
described by (5) where π∗(·) ∈ �g, that is, π∗ ≡ π∗

β∗(x) =
g(x�β∗). Also assume that Y and each component of X has
a finite fourth moment. Let g(·) be thrice differentiable and
the ith derivative of g(·) satisfy supλ∈R |g(i)(λ)| ≤ ci for some
constants ci, i = 0, 1, 2, 3. (Note that c0 can be chosen as
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1.) Further assume � ⊂ R
p+1 is a fixed compact set and

θ∗ ≡ (β∗, μ∗) ∈ int(�) is identifiable from (18) in the sense
that θ �= θ∗ implies that μg(X�β) �= μ∗g(X�β∗) with positive
probability under the measure m. Then, the LSE θ̂n, defined
in (19), is

√
n-consistent, and has an asymptotically normal

limit given by
√

n(θ̂n − θ∗) d→ N (0, V−1
θ∗ (E[ṁθ∗ṁ�

θ∗ ])V−1
θ∗ ) as

n → ∞. Here mθ (X, Y) := −(Y −μπ∗
β(X))2, ṁθ = ∇θ mθ and

Vθ := E[∇2
θ mθ (X, Y)] is assumed to be invertible at θ∗.

Corollary 5.1. Recall the choices for g(·) in Remark 3.4: g(z) =
(1 + exp(−z))−1, g(z) = �(z), and g(z) = 1 − exp(− exp(z)).
It is straight-forward to check that all these three functions
satisfy the assumptions on g(·) in Theorem 5.2. As a result,
the asymptotic normality of the LSE θ̂n (stated in Theorem 5.2)
holds for these three choices of g(·).

Once π̂(·) is estimated, we can use the joint likelihood of
(X, Y) to estimate f ∗

1 (plugging in the value of π̂(·)): f̂1 :=
argmaxf1∈F

∑n
i=1 log

[
π̂(Xi)f1(Yi) + (1 − π̂(Xi))f0(Yi)

]
. The

optimization problems discussed in this section can be solved
based on the methods discussed in Appendix A.1 in the supple-
mentary materials. As the least squares problem in (19) can be
nonconvex, we recommend fixing μ and optimizing over π(·)
followed by a grid search in the space of μ. In the following we
discuss in detail the estimation of π∗.

6. Simulations

In this section, we discuss the implementation of our meth-
ods and compare their performances with the closest exist-
ing method in the literature, namely FDRreg in Scott et al.
(2015). We use version 0.2 of the FDRreg package (see Scott
2015). We have additionally compared our methods to AdaPT
(see Lei and Fithian 2016) and the method proposed in Boca
and Leek (2018). However, due to space constraints, we defer
these additional simulations to the supplementary materials (see
Appendix G). Further, see Appendix D where we compare our
methods with the above competitors under model misspecifica-
tions.

In our simulations here, we confine ourselves to π∗(·) ∈
�logit and f ∗

1 ∈ FGauss (as in Scott et al. (2015)). In fact, most
of our simulation settings are borrowed from Scott et al. (2015).
Additional simulations that highlight the usefulness of (5) over
the two-groups model can be found in the supplementary mate-
rials (see Appendix B).

6.1. Estimation of Parameters and Multiple Hypotheses
Testing

We now document an extensive set of simulations investigating
the performance of all our proposed methods: (i) the first
marginal method based on profile likelihood maximization
(Marginal-I), (ii) the second marginal method based on
nonlinear regression (Marginal-II), and (iii) the full MLE
(fMLE) implemented via the EM algorithm (see the end of this
section for a discussion on the initialization scheme). We also
compare our methods to FDRreg, proposed in Scott et al. (2015).

To evaluate the performance of these methods we compute six
different metrics, described below. We use (π̌ , f̌1) to denote
any generic estimator of (π∗, f ∗

1 ). We also use ľi to denote any
generic estimator of l∗i , where l∗i , the lFDR of the ith observation,
is defined as one minus the right hand side in (12) (we discuss
the importance of the vector (l∗1, . . . , l∗n) in greater detail in
Appendix E of our supplementary materials). The first three
metrics below are directly aimed at understanding the accuracy
in the estimation of π∗, f ∗

1 and the lFDR’s, respectively.

(a) Root mean squared error (RMSE) in estimating the vector
(π∗(X1), . . . , π∗(Xn)):[ 1

n
∑n

i=1 E(π̌(Xi) − π∗(Xi))2]1/2 .
(b) RMSE in estimating the vector (f ∗

1 (Y1), . . . , f ∗
1 (Yn)):[

1
n

∑n
i=1 E(f̌1(Yi) − f ∗

1 (Yi))2
]1/2

.
(c) RMSE in estimating the vector (l∗1, . . . , l∗n):

[ 1
n

∑n
i=1

E(ľi − l∗i )2]1/2. Here ľi’s are evaluated as one minus the right
hand side of (12) with (π∗(·), f ∗

1 ) replaced by (π̌(·), f̌1).

Further, we consider three more measures that are aimed at
understanding the efficacy of these methods for the purpose of
post-estimation multiple testing.

(d) Underestimation in the vector of lFDRs (l∗1, . . . , l∗n):
1
n

∑n
i=1 E(l∗i − ľi)+. In multiple testing problems, such

underestimation may result in too many hypotheses being
rejected which may lead to inflated measures of Type I
error, such as FDR. Thus, for an efficient multiple testing
procedure, we would expect this underestimation metric to
be large.

(e) FDR: E
[

Number of false rejections
Total number of rejections

]
.

(f) True positive rate (TPR):

E

[
Number of true rejections

Total number of nonnull hypotheses

]
.

Measures (e) and (f) can be interpreted as analogs of Type I error
and power, respectively. Note that, methods that yield higher
values of TPR while keeping FDR under a certain specified
threshold, should be considered more effective.

We consider the following choices for π∗(x) := [1 +
exp(−s(x))]−1: (A) s(x1, x2) = −2 + 3.5x2

1 − 3.5x2
2; (B)

s(x1, x2) = −3 + 1.5x1 + 1.5x2; (C) s(x1, x2) = −1 + 9(x1 −
0.5)2 − 5|x2|; (D) s(x1, x2) = 20(x1 − 0.75).

For the nonnull density f ∗
1 we choose the following: (i)

f ∗
1 = 0.4N (−1.25, 3) + 0.2N (0, 5) + 0.4N (1.25, 3); (ii)

f ∗
1 = 0.3N (0, 1.1) + 0.4N (0, 2) + 0.3N (0, 10); (iii) f ∗

1 =
2−1N (0.5, 1) + 3−1N (1, 1.1) + 6−1N (1.5, 2); (iv) f ∗

1 =
0.48N (−2, 2) + 0.04N (0, 17) + 0.48N (2, 2).

Most of the settings mentioned above, in particular, (A)
and (B) for s(·, ·), and (i), (ii) and (iv) for f ∗

1 , have been bor-
rowed from Scott et al. (2015). The settings (A)–(D) capture
a broad spectrum of relationships between the covariates and
the response: for instance, the graph of π∗(·) corresponding to
scenario (B) seems relatively flat as (x1, x2) varies, whereas the
graph of π∗(·) from scenario (D) shows a steep change in π∗(·)
as x1 exceeds 0.6. Scenarios (A) and (C) are in between these two
extremes. Through Figures 3 and H.10 (in the supplementary
materials), and Figures H.8 and H.9 (see Appendix H.8 in
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Figure 3. Each subplot shows the performances of FDRreg (in yellow), Marginal-I or M-I (in red), Marginal-II or M-II (in blue) and fMLE (in green) based on the six metrics
(a)–(f ) in row-major order. The four subplots are obtained for the four different choices of f∗1 , namely (i)–(iv) (in row-major order); UEE there stands for underestimation
error from metric (d); the choice of s(·) was fixed at setting (A). For metrics (a)–(d), boxplots are constructed based on 200 replicates. For metrics (e) and (f ), the plots show
average false discovery and true positive rates computed over 200 replicates for a grid of nominal levels {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}. In the plot depicting FDR (metric
(e)), the gray dashed line indicates the nominal level.

the supplementary materials) we illustrate the performance of
FDRreg, Marginal-I, Marginal-II, and fMLE in these diverse
simulation settings. We observe that our proposed methods
consistently outperform FDRreg, in terms of most of the metrics
(a)–(f) as discussed above, more so when π∗(·) varies signifi-
cantly with (x1, x2).

For each pair of parameters (π∗, f ∗
1 ), we implement the

methods—Marginal-I, Marginal-II, fMLE, and FDRreg—on
200 independent replicates each with sample size n = 104.
In each replicate, two-dimensional covariates Xi = (Xi1, Xi2),
i = 1, . . . , n, are drawn uniformly at random from the unit
square, that is, [0, 1]2. Then {Yi}n

i=1 are drawn independently
from the mixture density π∗(Xi)f ∗

1 + (1 − π∗(Xi))f0. In our
simulations we model the covariates, expanded from two
dimensions to six dimensions, via basis splines with three
degrees of freedom (using a logistic link) as in Scott et al. (2015).

Recall that to compute the fMLE, one has to solve a noncon-
vex optimization problem and a good starting point is necessary.
We initialize this iterative method by choosing the estimate with
the highest likelihood value obtained from the other procedures,
namely, Marginal-I, Marginal-II, and FDRreg. The EM algo-
rithm is then run for 500 iterations or until convergence (i.e.,
the iterative change in the norm of the vector of the estimated
lFDRs falls below 10−6). Our results are illustrated in Figure 3
(and in Figures H.8, H.9, and H.10 in Appendix H.8). In Table
H.4 (see Appendix H.8), we show that Marginal-I most often has
the highest likelihood value and thus serves as the initializer for
fMLE. With the exception of setting (D)(i), in the same table,
we also note that FDRreg was rarely used to initialize fMLE.
This shows that, across our simulation settings, estimates from
Marginal-I and Marginal-II consistently yield higher likelihoods
than those from FDRreg.
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6.1.1. Estimation of Model Parameters
We begin our discussion by considering the RMSEs in esti-
mating the unknowns π∗(·), f ∗

1 , and l∗i ’s, as defined in the
metrics (a)–(c); see Figures 3 and H.10 (in the supplementary
materials). Note that, fMLE is almost always the most accurate
estimator as it results in lower RMSEs (except in Figure H.8(d) in
the supplementary materials where FDRreg performs the best).
Even Marginal-I and Marginal-II yield better estimates than
FDRreg in most settings; except in Figures H.8(d) and H.9(d) for
Marginal-I, and in Figures 3(d), H.8(a), H.8(c), and H.9(d) for
Marginal-II (see Appendix H.8 in the supplementary materials).

In the interest of fairness however, we point out two specific
caveats. First, Figure H.8(d) shows an example where fMLE is
outperformed by FDRreg. However, a closer inspection reveals
that by slightly tweaking the above simulation setting we observe
a completely different outcome, that is, fMLE performs much
better than FDRreg (see Appendix H.7 in the supplementary
materials for more details). Second, although our methods
outperform FDRreg in almost all the settings, they are in
general more time consuming to compute than FDRreg. This
is expected because FDRreg does not fully use the covariate
information while estimating f ∗

1 , while our methods utilize this
covariate information, solving a more complex optimization
problem in the process (see Appendix H.8 in the supplementary
materials for details).

6.1.2. Multiple Hypotheses Testing
Having established the superiority of fMLE for the purposes of
estimating the model parameters, we now move our attention
to the application of each of these methods for the purpose
of multiple hypotheses testing. As described in Appendix E
in the supplementary materials, multiple hypotheses testing is
conducted in these settings by estimating the lFDR of each
observation and then constructing a set of rejections based
on these lFDRs. An overwhelming observation based on the
metrics (d)–(f) is the conservatism of FDRreg. In this context,
conservatism refers to whether a method leads to substantially
lower false rejections than the nominal FDR level it has been
set to, and consequently suffers a loss in power. Indeed, in
most of the simulations, the underestimation corresponding to
FDRreg is almost zero, implying that it regularly overestimates
the true lFDRs. As such, false null hypotheses are often accepted
by FDRreg, leading to low power (TPR). Thus, based on these
simulations it is evident that the FDRreg method frequently
produces heavily biased estimates of lFDR, with the bias directed
such that FDR control is satisfied but TPR is low.

In contrast, fMLE and the marginal methods do not exhibit
such a behavior. Indeed, in all figures except in Figures H.8(a),
H.8(b), and H.8(c) in the supplementary materials, Marginal-
I, Marginal-II, and fMLE maintain (or only marginally exceed)
the nominal level in FDR and are further able to correctly reject
more false hypotheses (higher TPR) as compared to FDRreg. We
reiterate that one of our goals in the investigation of likelihood
based methodology in model (5), beyond the estimation of
model parameters, is to construct more powerful multiple test-
ing procedures utilizing the information present in the covari-
ates. As such, we conclude that in most settings, fMLE provides
a valid, more powerful multiple testing procedure than FDRreg.

6.2. Related Discussions and Recommendations

In addition to the discussions in this section so far, there are
two important observations which we believe augment the util-
ity and reliability of our methods. First, recall the statement
of Theorem 3.1. The near-parametric rates that we derive there,
for estimating the conditional distribution of Y given X, hold
for all AMLEs. A natural question arises: “Do our proposed
methods yield AMLEs in practice?” In Appendix H.5, we show
results from extensive simulations that illustrate the consistency
with which all of our methods (particularly fMLE) result in
AMLEs. Second, recall the statement of Remark 3.2 which high-
lights that the fMLE method solves a nonconvex optimization
problem. Therefore, a natural question to ask during imple-
mentation is whether the proposed iterative (EM) algorithm is
sensitive to the proposed starting points (Marginal-I, Marginal-
II, or FDRreg). In Appendix H.6 (see the supplementary mate-
rials), our simulations demonstrate that the fMLE approach
yields estimates which are mostly stable across the suggested
initializations.

Based on our detailed simulation studies (and theoretical
results), we would recommend the fMLE method to estimate
the unknowns in (5) and consequently address the multiple
hypotheses testing problem, especially for moderate sample
sizes (at least up to n = 105). We believe that Marginal-I is
possibly the most reliable candidate for producing estimates
that may be used to initialize the EM algorithm for computing
the fMLEs. It must be pointed out though that we expect the
estimates from Marginal-I and Marginal-II initializations of
the EM algorithm to be pretty similar; see Appendix H.6 for
details. For very large datasets (n over a million), we suggest
using Marginal-I instead of fMLE.

Note that, if the two-groups model (1) is adequate for the
data, the estimates produced by fMLE (and also FDRreg) can
be unreliable, due to identifiability issues (as discussed in Sec-
tion 2). Therefore, we recommend using the distance covariance
based method (see Appendix B in the supplementary materials)
first, to understand whether model (1) is adequate, before pro-
ceeding with our proposed methodology. However even under
identifiability, estimates from model (5) (based on Marginal-I,
Marginal-II, fMLE, FDRreg) may turn out to be highly variable
(unless n is very large) if the model is nearly nonidentifiable
(see Appendix H.7 in the supplementary materials for some
discussion on this issue).

7. Real Data Example

7.1. Neuroscience Application

Recall the multiple testing problem discussed in Example 1.1
where we have data arising from the firing rate of 128 V1 neu-
rons in an anesthetized monkey in response to a visual stimulus
(see https://github.com/jgscott/FDRreg/data). The data consists
of 7004 test statistics, each one corresponding to a test of the null
hypothesis of no interaction between a neuron pair. The dataset
also includes two interesting covariates which capture the spa-
tial and functional relationships among neurons: (a) distance
between units, and (b) tuning curve correlation between units;
for a more detailed understanding of this experiment (see Kelly

https://github.com/jgscott/FDRreg/data
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Figure 4. Top left panel: The plot of π̂∗(·) against x�β̂ (obtained from fMLE) for the two methods: FDRreg and fMLE (with initializations Marginal-I and Marginal-II) where
β̂ is computed using fMLE. Top center and top right panels: Plots of fitted marginal densities for fMLE and FDRreg, respectively. Bottom left panel: The plot of lFDRs from
FDRreg and fMLE with the test statistics plotted along the x-axis. The horizontal line indicates the threshold for rejection for the two methods (which are essentially the
same ≈ 0.31). Bottom center panel: Plot of lFDRs from FDRreg versus the same from fMLE (points above and below the y = x line have been colored using red and black,
respectively). Bottom right panel: Plot shows the rejection sets plotted across the test statistic for fMLE and FDRreg.

et al. 2007). The primary goal of this study was to detect spiking
synchrony among neuron pairs.

For our analysis, we will use the same data processing as
has been thoroughly outlined in Scott et al. (2015, secs. 4.2
and 5). In particular, we use a basis spline expansion on the
covariates and model the null distribution as a Gaussian with
mean and variance estimated using Efron’s method of maximum
likelihood (see, e.g., Efron 2004). The estimates turn out to be
μ (mean) = 0.61 and σ 2 (variance) = 0.66. We model the joint
distribution of (Z, X) (here Z := (Y−μ)/σ denotes the centered
and scaled test statistic and X denotes the covariate) as in (2)
with F0 = �(·), π∗(·) ∈ �logit and F∗

1 ∈ FGauss. This is
slightly different from the approach in Scott et al. (2015) where
the authors directly model Y—they take F0 as N (μ, σ 2) and
F∗

1 (y) := ∫
�

(
y−μ−θ

σ

)
dG(θ), where μ and σ are the same

as above and G is an unknown DF. To estimate the parameters
in our model, we use the methods discussed in Sections 4,
5.1, and 5.2. We then apply the multiple testing proposal from

Appendix E with these estimates. We use a nominal level of
α = 0.1 in our analysis (same as in Scott et al. (2015)). Figure 4
illustrates our findings.

The top left panel in Figure 4 shows that the estimate of π∗(·)
from fMLE is in general higher than that from FDRreg. From
the top center and right panels it looks as though the marginally
fitted density from FDRreg fits the data slightly better. However,
on observing the test statistic values between −1 and −2, we find
that FDRreg estimates a nontrivial contribution of the signal
density in that region (see the blue solid line in that region).
This leads to smaller lFDRs corresponding to Y values between
−1 and −2 (see the bottom left panel) which seems rather
counterintuitive. The bottom center panel offers more insight
into this observation. Among the 7004 test statistics, the lFDR
estimates corresponding to fMLE actually turn out to be higher
in over 4000 cases compared to those from FDRreg. However,
almost all these cases correspond to points in the top right
corner of the bottom center panel (below the y = x line). So, the
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fMLE procedure essentially yields higher lFDRs for test statistics
which are highly unlikely to be signals.

Correspondingly, the lFDRs based on fMLE are smaller (than
FDRreg) in the more critical regions (i.e., where both lFDR
estimates are small). In the same plot, observe a sparse clus-
ter near the lower right corner. These points correspond to
test statistics in [−2, −1] for which FDRreg yields much lower
lFDRs as compared to fMLE. The plot in the bottom right panel
illustrates the rejection sets from the two methods. Observe that
fMLE admits more rejections than FDRreg. In particular, fMLE
rejects 220 more hypotheses (all in the range of test statistics
values between 1 and 3). FDRreg rejects 5 more hypotheses
all of which correspond to Y values in [−2, −1], which as we
mentioned before, seems somewhat counterintuitive. Overall,
the fMLE procedure rejects 970 hypotheses out of 7004, at a
nominal level of 0.1, whereas FDRreg rejects 755.

Supplementary Materials

The supplementary material, which is available online, contains proofs of
our main results, detailed discussions on some of the algorithms we propose
in the paper, and additional computational studies.
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