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Key Points

e 5-min sampled GPS supplemented with InSAR resolves a shallow slow slip event, which
preceded the swarm by 2 — 15 hours.

e Seismicity was driven in the early stage by the slow slip event with non-linear expansion
and later by fluid with propagating back front.

e A stress-driven model explains the overall evolution of seismicity and provides
constraints on friction and fluid pressure.



20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

39

40
41
42
43
44
45
46
47
48
49
50
51

Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth
September 30, 2022

Abstract

Swarms are bursts of earthquakes without an obvious mainshock. Some have been observed to
be associated with transient aseismic fault slip, while others are thought to be related to fluids.
However, the association is rarely quantitative due to insufficient data quality. We use high-
quality GPS/GNSS, InSAR, and relocated seismicity to study a swarm of > 2,000 earthquakes
which occurred between September 30 and October 6, 2020, near Westmorland, California.
Using 5-min sampled GPS supplemented with InSAR, we document a spontaneous shallow M,,
5.2 slow slip event that preceded the swarm by 2 — 15 hours. The earthquakes in the early phase
were predominantly non-interacting and driven primarily by the slow slip event resulting in a
non-linear expansion. A stress-driven model based on the rate-and-state friction successfully
explains the overall spatial and temporal evolution of earthquakes, including the time lag
between the onset of the slow slip event and the swarm. Later, a distinct back front and a square
root of time expansion of clustered seismicity on en-echelon fault structures suggest that fluids
helped sustain the swarm. Static stress triggering analysis using Coulomb stress and statistics of
interevent times suggest that 45 — 65% of seismicity was driven by the slow slip event, 10 — 35%
by inter-earthquake interactions, and 10 — 30% by fluids. Our model also provides constraints on
the friction parameter and the pore pressure and suggests that this swarm behaved like an
aftershock sequence but with the mainshock replaced by the slow slip event.

Plain Language Summary

Over 2,000 earthquakes were recorded near Westmorland, California, between September 30 and
October 6, 2020. Such an increased level of earthquake activity is quite common in this region,
though the causes are not well-understood. Using available seismological data, satellite imagery,
and ground-based GPS/GNSS, we detect ground deformations a few hours before the increased
earthquake activity. We map these ground deformations to motion along the faults at a depth
shallower than 5 km. We show that this silent fault slip drove the earthquakes at a greater depth
of 5 — 8 km. The overall spatial and temporal evolution of the earthquakes can be largely
predicted based on the stress changes imparted by this silent fault slip. Statistical analysis of
earthquake activity and the expansion of the zone with no earthquake further suggest that fluids
played a significant role in sustaining the earthquake sequence. Though we can explain
earthquake activity after the initial ground deformations, what causes the initial fault motion at
depth and thus these ground deformations in the first place remains an open question.
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1 Introduction

Earthquakes are often seen to cluster in time and space. Many clusters have a clearly identifiable
mainshock followed by numerous smaller aftershocks. Others occur as a sustained burst of small
magnitude earthquakes lasting from hours to several years without an obvious mainshock,
referred to as a swarm (Mogi, 1963). The peak seismicity rate during swarms can reach > 10,000
times the background level with complex temporal evolution that cannot be explained by the
simple Omori-Utsu type power-law decay (Omori, 1894; Utsu, 1961) typical of mainshock-
aftershock sequences (Holtkamp & Brudzinski, 2011; Vidale & Shearer, 2006). Swarms also
often expand spatially (X. Chen et al., 2012) with a velocity ranging from m/day (e.g., Ross et
al., 2020) to km/hr (e.g., Roland & McGuire, 2009). Swarms can occur in a wide range of
geological settings, such as volcanoes (e.g., Shelly & Hardebeck, 2019; Wicks et al., 2011;
Yukutake et al., 2011), subduction zones (e.g., Holtkamp & Brudzinski, 2011; Hoskins et al.,
2021; Nishikawa & Ide, 2017), transform faults (e.g., Roland & McGuire, 2009), hydrothermal
systems (e.g., Heinicke et al., 2009), stable continental regions (Sharma et al., 2020), and
reservoirs with anthropogenic hydraulic stimulations (e.g., Im & Avouac, 2021; Wei et al.,
2015). In some cases, swarms can include larger destructive earthquakes (Chiaraluce et al., 2011;
Nishikawa & Ide, 2018). The epidemic-type aftershock sequence (ETAS) model (Ogata, 1988,
1992), based on empirical laws, can reproduce different regimes of seismicity evolution,
including standard Omori-type aftershocks and swarm sequences (Helmstetter & Sornette,
2002b). However, in terms of their mechanics, why spatiotemporal evolutions of swarms are
fundamentally different from mainshock-aftershock sequences remains poorly understood.

The seismicity evolution during a swarm is often thought to be governed by external aseismic
processes such as a slow slip event, fluid flow, magma intrusion, or a combination. Transient
aseismic fault slip in the form of a slow slip event can increase shear stress on neighboring fault
patches and has in particular been associated with swarms along oceanic transform faults (e.g.,
Roland & McGuire, 2009) and extensional or transtensional continental fault systems (e.g.,
Gualandi et al., 2017; Jiang et al., 2022; Lohman & McGuire, 2007; Martinez-Garzén et al.,
2021; Passarelli et al., 2015). Alternatively, elevated pore pressure from fluid flow or magmatic
intrusion can decrease effective normal stress, thus reducing fault strength and bringing the faults
closer to failure (e.g., Dieterich et al., 2000; Hubbert & Rubey, 1959; Nur & Booker, 1972). This
mechanism has been associated with swarms in volcanic (e.g., Cappa et al., 2009; Fischer et al.,
2014; Hainzl et al., 2016; Roman & Cashman, 2006; Shelly et al., 2013, 2016) and hydrothermal
settings (e.g., Audin et al., 2002; Got et al., 2011). Fluid-driven swarms are expected to expand
as a square root of time, as observed in seismicity induced by anthropogenic fluid injections
(e.g., Shapiro et al., 2002; Shapiro et al., 1997). In many examples, such as in the Corinth rift
(De Barros et al., 2020; Dublanchet & De Barros, 2021), in Nevada (Hatch et al., 2020), and in
situ fault slip reactivation experiments (Guglielmi et al., 2015), pore-pressure changes can induce
propagating slow slip fronts leading to a coupled process (e.g., Bhattacharya & Viesca, 2019;
Dublanchet, 2019; Larochelle et al., 2021; Saez et al., 2022; Yukutake et al., 2022). A few
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studies, such as those for the 2000 Izu volcanic swarm (Toda et al., 2002) and earthquakes on
Kilauea volcano, Hawaii (Segall et al., 2006), have demonstrated that nucleation models based
on rate-and-state friction (Dieterich, 1994; Heimisson & Segall, 2018) can explain how
seismicity responds to these external forcings.

In this study, we focus on the Westmorland swarm, which occurred between September 30 and
October 6, 2020, near Westmorland, California (Figure 1), in a setting (Section 2) where swarms
are common and where some have been associated with slow slip events (X. Chen & Shearer,
2011; Lohman & McGuire, 2007; Materna et al., 2022; Wei et al., 2015). We utilize a newly
available dataset, including seismic data, daily and 5-min sampled GPS position time series, and
interferometric synthetic aperture radar (InSAR), to image the time evolution of ground
deformations as the swarm unfolds (Section 3). This unique dataset and the advanced data
processing techniques allow us to extract the complete time evolution of ground deformation
during the swarm and explore the spatio-temporal relationship between seismicity and the slow
slip event in detail (Sections 4 and 5). Our observations and modeling results demonstrate that
the 2020 Westmorland swarm was driven predominantly in the early stage by the slow slip event
with limited inter-earthquake interactions and later by pore-pressure diffusion (Section 6).

2 Seismotectonic setting

The 2020 Westmorland swarm sequence began around 22:00 UTC on September 30, 2020, and
lasted for approximately 140 hours until 18:00 UTC on October 6, 2020. The sequence was
located in the Brawley Seismic Zone of the Salton Trough (Figure 1) along the North American-
Pacific plate boundary at the transition between the right-lateral strike-slip San Andreas Fault
(SAF) and the ridge transform system in the Gulf of California (Brothers et al., 2009). The
region hosts a mixture of left-lateral strike-slip step-over faults that connect shorter segments of
the main right-lateral strike-slip fault (Johnson & Hill, 1982), primarily accommodating the
extensional crustal stress field (Yang & Hauksson, 2013). The fault zone accounts for 17 mm/yr
of right-lateral shear parallel to the SAF (Crowell et al., 2013), roughly one-third of the long-
term plate rate (Argus et al., 2011; Bird, 2003). The Coachella segment of the SAF just north of
the Salton Trough has a very low seismicity rate and is generally regarded to be mostly locked
(e.g., Lindsey & Fialko, 2013), with the last major earthquake occurring about 320 years ago
(Rockwell et al., 2016). The frequent seismic swarms in the Salton Trough (Lohman & McGuire,
2007) pose concerns about the possibility of the swarms triggering a large earthquake on the
SAF (Hauksson et al., 2017).

In this region, the sedimentary cover is 5 km thick (Fuis et al., 1984) and composed mostly of
quartz and calcite (Younker et al., 1982). The basement comprises primarily metasedimentary
units (Fuis et al., 1984) that have undergone significant metamorphism due to a high temperature
gradient of 50 — 60 °C/km (Lachenbruch et al., 1985). Deeper than 10 — 16 km, the crust mainly
consists of diabase and gabbro (Fuis et al., 1984). Since mud pots and hydro-volcanic events are
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common in the Salton Trough (Robinson & Elders, 1976), abundant fluids and high geothermal
gradients could play a significant role in swarm initiation (Ben-Zion & Lyakhovsky, 2006).

3 Data processing
3.1 Seismicity

We use a machine learning workflow for earthquake monitoring (Ross & Cochran, 2021) to
build a high-resolution relocated seismicity catalog. We summarize the key steps and point to
references in which the methods are described in detail.

First, we aim to detect earthquakes on individual 3-component traces. We start from the raw
continuous waveform data from 47 regional seismic stations (Supporting Figure S2) processed
by the Southern California Earthquake Data Center (SCEDC, 2013) and apply a deep learning
phase detector/picker model originally trained by Ross et al. (2020). This network takes in 16-sec
windows of 3-component data and outputs the likelihood of P-waves and S-waves at each time
step. We set a threshold of the peak sigmoid probability of 0.5 to trigger a detection and record
the time at which the threshold is first exceeded. This is repeated for all stations and all days of
data. Next, we associate the detected phases at individual stations to particular earthquakes using
the PhaseLink deep learning-based association algorithm (Ross, Yue, et al., 2019). Because the
station distribution and local seismic velocity structure differ, we re-train the neural network
following Ross et al. (2019) and use the exact settings for the associator described in Ross &
Cochran (2021). Once the association process is completed, we locate the events using HypoSVI
(Smith et al., 2021), a variational Bayesian method. We use the Southern California Earthquake
Center (SCEC) Community Velocity Model CVM-H (Shaw et al., 2015) and keep all tunable
parameters the same as in Smith et al. (2021).

Finally, we relocate the seismicity with waveform cross-correlation. We correlate all possible
pairs of events using 1.0 sec windows starting 0.1 sec before each pick using 1 — 20 Hz filtered
waveforms. We retain differential times with a peak correlation coefficient of at least 0.6 and
have a correlation difference between the positive and negative maxima of at least 0.2. Then, we
use these differential times as the input to GrowClust (Trugman & Shearer, 2017), a cluster-
based double-difference relocation algorithm. Since GrowClust works only with 1D velocity
models, we use a model for the Imperial Valley from Fuis et al. (1984). In calculating the event-
pair similarity, we required the cross-correlation coefficient to be at least 0.7 and the number of
differential times to be at least 8.

Our method yields 2,282 detected events between September 30 — October 11, 2020, in
comparison to only 1,711 events in the Southern California Seismic Network (SCSN) catalog
(Hutton et al., 2010) during the same time interval (Supporting Figure S3). Among the detected
events, 1,373 of these could be relocated precisely. The spatial distribution of relocated
seismicity reveals a complex fault structure with a 162°-trending main fault and several en-
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echelon structures striking roughly perpendicular to the main fault (Figure 2). At depth > 6.5 km
(in the basement), the 162°-trending main fault shifts toward the North-South direction. These
structures are consistent with the focal mechanisms from the Southern California Seismic
Network (SCSN) catalog (Hutton et al., 2010). Our catalog does not include magnitudes since
many of these events are small, and we cannot confidently estimate their magnitudes.

3.2 GPS

This study utilizes daily and 5-min sampled Global Positioning System (GPS) position time
series in the International Terrestrial Reference Frame (ITRF) 2014 reference frame (Altamimi et
al., 2016) preprocessed by Nevada Geodetic Laboratory using final orbit solutions (Blewitt et al.,
2018). The original time series contains a transient geodetic signal at the time of the swarm and
various other signals (seasonal variations, co-seismic steps, common mode jitter). To make use
of these GPS data in studying the swarm, we need to separate the surface displacements related
to the swarm from those resulting from other sources. The key steps are summarized here.
Further details can be found in Supporting Text S1.

We first work with daily position time series between January 1, 2016, and November 25, 2020,
from 113 regional GPS stations (Supporting Figure S2). Using a trajectory model (Bevis &
Brown, 2014), we remove the long-term linear trend and the co-seismic and instrumental steps
(Supporting Table S1). Then, we extract the remaining non-linear signals unrelated to the swarm,
such as the seasonal signals and the common mode motion, using the modified variational
Bayesian Independent Component Analysis (vbICA) decomposition (Gualandi et al., 2016), a
blind source separation technique based on the original vbICA method (Choudrey & Roberts,
2003) but also takes into account data uncertainties and missing data (Chan et al., 2003) and has
recently been successfully applied to daily sampled GPS position time series (e.g., Gualandi et
al., 2017, 2020; Larochelle et al., 2018; Michel et al., 2019; Serpelloni et al., 2018). Each
isolated signal (i = 1,2, ...,R) is an independent component (IC) which includes a stationary
spatial function (Upxr) explaining the relative amplitudes of the signals for the M different
position time series (m = 1,2, ..., M), the relative strength of the IC comparing to other ICs
(Srxr), and a time function (Vr«g) describing signals variation with time (t = 1,2, ..., T). Since
we first want to extract only the signals unrelated to the swarm, data points during the time of
swarm (after 2020.732; September 25, 2020) from 34 stations within 45 km from the center of
the Westmorland swarm are not used in the vbICA decomposition. We choose to decompose the
signals unrelated to the swarm into 8 ICs (Figure S7) and they are all removed from the
detrended position time series. We run the vbICA decomposition again, this time for the purpose
of extracting deformations related to the swarm on a local-scale. Only the position time series
near the time of the swarm between 2020.65 and 2020.81 (August 27 — October 24, 2020) from
17 stations within 35 km from the center of the Westmorland swarm are used. We find that the
first IC dominates and by itself explains over 77.2% of data variance (Figure S9). Therefore, we
only keep this first IC and associate it with the swarm.



202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth
September 30, 2022

Since the extracted transient geodetic deformation started within one day from the onset of the
swarm, it is not sufficient to use daily position time series to determine whether the geodetic
deformation preceded the swarm or was coeval. We further improve the temporal resolution of
our results by using the 5-min sampled position time series, also processed by the Nevada
Geodetic Laboratory (Blewitt et al., 2018). Given larger uncertainties of the 5-min sampled
position time series, directly performing vbICA decomposition does not provide the best possible
result. Instead, we assert that the spatial function derived from the daily sampled position time
series is generalizable to the 5-min sampled position time series and perform a projection to
determine the associated time function with the 5-min temporal resolution. We further apply a
low-pass Savitzky-Golay filter (Savitzky & Golay, 1964) based on a moving polynomial fit to
mitigate high-frequency noises (Figure 3) and find a time lag of at least a few hours between the
onset of geodetic deformation and seismicity. This filtering technique is non-causal and,
therefore, does not temporally shift the onset of geodetic deformation. We further justify the
choice of filter later in Section 5.4. We find the iterative GPS processing procedures presented
here best suited for extracting the faint deformation related to the swarm. Raw and processed
GPS time series at different processing steps from selected stations and vbICA components can
be found in the Supporting Figures S4 — S11.

3.3 InSAR

To supplement the GPS measurements, we use the C-band Synthetic Aperture Radar (SAR)
images acquired over the region by the Sentinel-1A satellite during September and October
2020. A total of 5 images between September 9 and October 27, 2020, from ascending track 166,
frame 105, and 9 images between September 3 and October 27, 2020, from descending track
173, frame 480 were used. The original pixel size of the Sentinel-1 Single Look Complex (SLC)
images generally ranges between 2 — 5 meters, depending on the look angle of that pixel (see
European Space Agency, 2014 for details). To reduce the spatial noise and estimate the
coherence, all the Single Look Complex (SLC) images are averaged by a factor of 30 and 6
along range and azimuth, respectively, resulting in multi-look imagery with a pixel size of 70 m
by 84 m. Next, the multi-look images in each track are separately coregistered (Werner et al.,
2000) to a single reference image, which is chosen to minimize the total spatiotemporal baseline.
6 ascending and 20 descending interferograms are generated between all the possible pairs of
SAR imagery acquired before and after the significant part of the swarm event (Supporting Table
S3). The interferograms are then flattened using satellite ephemeris data and a Digital Elevation
Model (DEM) with 90 m resolution provided by the Shuttle Radar Topography Mission (SRTM)
(Farr et al., 2007) to remove the effects of a flat earth and surface topography (Franceschetti &
Lanari, 1999). A 2-D phase unwrapping algorithm proposed by C. W. Chen & Zebker (2001) is
used to recover the absolute values from ambiguous phase observations at the location of pixels
with coherence above 0.80.
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A set of wavelet-based filters are then used to remove the nuisance signal associated with various
sources of error in the unwrapped interferograms. The effect of residual DEM error, which
appears as a high-spatial-frequency noise, is reduced using a low-pass filter generated based on
the Legendre polynomial wavelets (Shirzaei, 2013). This filter applies a hard thresholding
operation to the high-pass sub-band (i.e., details components) of each decomposed unwrapped
interferogram. The spatially correlated nuisance terms are mainly caused by the atmospheric
delay and the orbital and satellite clock errors. To remove these errors, each unwrapped
interferogram is decomposed into its high-pass and low-pass sub-bands using a two-dimensional
multiresolution wavelet transformation (Mallat, 1989). The effect of orbital errors is removed by
fitting a ramp to the average component (i.e., the high-pass sub-band) through a robust
regression method (Shirzaei & Walter, 2011). The detail coefficients, on the other hand, are used
to correct the interferogram for the phase contributions from the topography-correlated
component of atmospheric delay. To this end, a multiresolution wavelet analysis is also applied
to the DEM of the study area, and the correlation between the resulting detail coefficients and
that of the interferogram is estimated. Next, the correlated coefficients are down-weighted and
fed into an inverse wavelet transformation to reconstruct the corrected unwrapped interferogram
(Shirzaei & Biirgmann, 2012). We further apply a Gaussian filter with a width of 7 km to each
interferogram to isolate the remaining spatially correlated errors in the unwrapped interferograms
(Hooper et al., 2007), which are mainly caused by the turbulent atmospheric delay.

The deformation at the location of each pixel in each of the flight directions is then estimated as
the weighted average of the displacements measured by individual interferograms (i.e., stacking),
where weight is determined by the calculated spatial coherence. To enable this, all the
interferograms are first interpolated at the location of all the pixels that had a coherence of 0.80
in at least one of the interferograms (i.e., the union of pixels). The resulting Line-Of-Sight (LOS)
displacements for ascending and descending tracks are shown in Figure 4.

To make the inversion more computationally amenable, we apply an equation-based quadtree
downsampling procedure (C. Wang et al., 2014) to reduce the number of surface deformation
observations while maintaining the essential features. This procedure is similar to the quadtree
downsampling (e.g., Jonsson et al., 2002) in that it starts with a regular grid and iteratively
subdivides the grid cells. However, the criteria for the subdivision of cells are based on fault
geometry and gradients of the observed displacements. We start by generating a coarse grid with
1 km spacing and calculating the Green’s function using the semi-analytical solutions for a
dislocation embedded in an elastic homogeneous half-space (Okada, 1985) at the four corner
points of each grid cell. We then compute the largest Green’s function differences (g;) and
largest displacement gradients (d;) for all the grid cells. Next, we select the grids above the 50™
percentile of g; and above the 10" percentile of d; and divide them into four quadrants. We repeat
this procedure until we have at least 2000 quadrants. Using this procedure on data points that are
within 15 km from the center of the swarm, we end up with 2590 cells. The location and
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displacement rate of the sample point associated with each quadrant is estimated as the average
coordinates and Line-of-Sight (LOS) rates of the enclosed points, respectively.

3.4 Geodetic slip inversion

We use the observed cumulative surface displacements over the entire period of the swarm from
both GPS and InSAR to invert for corresponding slip distribution at depth. Seismicity patterns
and focal mechanisms (Figure 2a-e, 5a-c) suggest that the swarm occurred on a system of
conjugate strike-slip faults dipping closely to vertical. We simplify this fault system with a fault
model consisting of two orthogonal vertical faults. The fault model is meshed as 1 km x 1 km
rectangular patches. The first fault (F1) is 22 patches long, 14 patches deep, and has a strike of
162°. The second fault (F2) is 16 patches long, 14 patches deep, and has a strike of 72° (Figure
6a — 6¢). The location and the strike of the two faults were chosen based on the discontinuity
observed in the InSAR data. The faults extend beyond the significant features visible in the
InSAR data and encompass the zone of observed seismicity.

Assuming an elastic homogenous medium, we can relate slip on the fault with ground
deformations using the linear equation:

d=6-m (1

where d is the data vector representing surface displacements at different spatial locations, G is
the Green’s functions matrix computed from the semi-analytical solutions for a dislocation
embedded in an elastic homogeneous half-space (Okada, 1985), and m is the model input vector
representing the amount of strike-slip and dip-slip on each fault patch. For InSAR data, the
Green’s functions are projected directly to the LOS displacements using the LOS unit vector at
each pixel.

To include multiple data sets simultaneously, each data type i (horizontal GPS, vertical GPS,
InSAR ascending, InSAR descending) is weighted by its variance (instrumental uncertainty
squared, 6/). We further impose the Laplacian smoothing to prevent unreasonably large spatial
variations in slips resulting from the tradeoffs between slips at the neighboring cells and zero-slip
along all fault boundaries that are not the free surface. The Laplacian is calculated using a
formulation from Huiskamp (1991) with 16 nearest neighbors. With these additional constraints,
we now seek to minimize the following cost function ® () for a slip model m:
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all data types

where |||, is the L2-norm, A is the Laplacian matrix, and A is the weight attributed to the
Laplacian smoothing constraint. Zero-slip constraints can be imposed by forcing non-diagonal
values in the Laplacian matrix corresponding to the boundary patches to zero. This minimization
problem can be written as a system of linear equations and can be solved with a matrix inversion.

We explore the range of possible slip models by varying the Laplacian weight A and compare the
tradeoff between the smoothness of the slip model and the misfit between the forward model and
the data using the L-curve criterion (Hansen, 1992). Additionally, we further evaluate the
reduced chi-squared for each data type i, defined as follow:

—> 1 —
Xreq,i (M) = no? |G- — di] €)

where n is the number of data points for data type i. The most appropriate model that does not
overfit or underfit would have a reduced chi-squared of one for every individual data type. To
properly account for errors in the a priori estimates of data uncertainties, the geodetic inversion is
performed iteratively, similar to the scheme adopted by Thomas et al. (2014). In the first
inversion, data uncertainty for all data types is assumed to be one. Afterward, the data
uncertainty for each data type is renormalized so that the corresponding reduced chi-squared for
that data type is equal to one. The subsequent inversion is then performed using the updated data
uncertainties. After a few iterations, the slip inversion should produce a reduced chi-squared that
converges to one.

4 Kinematics of the 2020 Westmorland swarm
4.1 Spatio-temporal evolution of seismicity

Our high-resolution seismicity catalog reveals the swarm’s complex migratory behaviors (Figure
5 and Supporting Movies S1-S3). A cluster of ~ 10 seismic events at 4.5 — 5.5 km depth
(Supporting Figure S12) were detected ~ 10 hr before the main swarm activity, which started on
September 30, 2020, at 21:57 UTC. The overall pattern can be described by an expansion of
seismicity forefront and back front, with sustained seismic activity in between lasting ~ 140 hr
(Figure 5d). Both fronts expanded non-linearly with a rapid onset followed by decaying
expansion rates, which we discuss more in Sections 5.3 and 5.7.

10
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Figure 5 shows the detailed spatio-temporal evolution of the swarm. During the first 20 hr, the
swarm expanded logarithmically along the main 162°-trending vertical fault zone, roughly 500-
m wide. The expansion was asymmetric, with a dominant northward along-strike propagation.
The along-dip expansion terminated at ~ 8 km. Coincident with the expansion along the main
fault, two adjacent 500-m wide steeply dipping structures parallel to the main fault forming a
flower structure were reactivated ~ 4 hr after the swarm activity started. Later at 25 and 55 hr,
en-echelon structures perpendicular to the main fault (structures E1 and E2 in blue boxes of
Figure 5a, respectively) were reactivated. Seismicity on these en-echelon structures was
localized along narrow zones no more than 200-m wide at a depth of ~ 6.5 km or deeper,
coinciding with the basement. Compared to the swarm duration, the reactivations were short-
lived and exhibited a non-linear migration front (blue lines annotated with E1 and E2 in Figure
5g). We also observed a seismicity gap between latitude 33.07 — 33.09°N that could be related to
the heterogeneity of stresses on the fault. All large earthquakes with M > 4, including the largest
M,, 4.93 event, were within the first 6 hr of the swarm, and they did not appear to cause any
significant changes in the seismicity rate (Supporting Figure S12). This could be partly due to
catalog incompleteness in the early period after large events (e.g., Hainzl, 2016).

4.2 Time-dependent geodetic slip model

The linear decomposition of the signal into a limited number of components, whether using a
PCA or an ICA, makes it very effective for carrying out an inversion of the time evolution of slip
(Kositsky & Avouac, 2010). Instead of epoch-by-epoch inversions, we can perform inversions
for only the spatial functions associated with each component (Uyx;), where 7 refers to a set of
all components representing the geodetic transient of interest. The time evolution of slip is
obtained by multiplying the slip models resulting from these inversions by S,V (see
Kositsky & Avouac, 2010 for details). Since only one component related to the swarm sequence
was extracted, our resulting model is stationary in space with cumulative moment varying
according to the time function V(t) retrieved from the vbICA decomposition (Figure 3). Our
preferred model (Figure 6) uses a Laplacian weight of 10%°, which yields the best trade-off
between data fitting and the smoothness of the solution (Figure 6e and Supporting Figure S13).
Although the details of slip distribution would vary if we were to choose a different Laplacian
weight, the total moment release is relatively well-constrained at M, 5.3-5.4 (Figure 6d). The
uncertainties assigned to each dataset following our iterative inversion (Section 3.4) are reported
in Table 1. After only one iteration, the reduced chi-squared for each data type gets close to unity
within 7% (Table 1). Therefore, no further iteration was deemed necessary. Further analysis on
the sensitivity of the results to the assumed fault geometries, checkerboard resolution test
(Léveéque et al., 1993), and variances estimation with jackknife test (Efron & Stein, 1981) are
provided in Supporting Text S2 and Supporting Figures S14 — 17.

Our slip model reveals conjugate faulting with right-lateral strike-slip motion along the 162°-
striking main fault F1 and left-lateral strike-slip motion along 72°-strike orthogonal fault F2 with
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peak slip occurring along F2 near the surface (Figure 6). To determine the slip modes observed,
we compare the geodetically resolved moment with the seismic moment. Since we do not
calculate magnitudes for our seismicity catalog, we use magnitudes from the SCSN catalog. The
additional events in our enhanced catalog are small and contribute only a small fraction to the
total seismic moment. We find that the relative contribution of the seismic and aseismic moment
vary systematically with depth. For the depth range of seismicity (5 — 10 km), the geodetically
resolved slip is equivalent to M, 5.13, roughly equal to the total moment release estimated from
the seismicity itself. This suggests that the slip mode for this depth range is predominantly
seismic. On the contrary, since there is only little seismicity above a depth of 5 km, the shallow
slipping region on F2 must be mostly aseismic. Cumulatively over the entire swarm period, the
aseismic moment release (My, 5.19) is ~ 20% larger than the seismic moment release (M, 5.13).

The predicted displacements from our preferred slip model show large misfits to the InSAR data
close to the faults suggesting that the fault zone is complex and cannot be modeled perfectly with
simple planar shear faults (Figure 7). The en-echelon step-over fault structures, prominent
dilatational motion in this region (Crowell et al., 2013), plastic deformation, and inhomogeneity
of elastic moduli could contribute to these misfits. However, we did not try to refine the model
further because we are chiefly interested in the effect of the aseismic processes on the evolution
of the swarm. Furthermore, the seismicity occurred in the basement, at ~ 5 km distance from the
peak aseismic slip, and stress changes there are not very sensitive to the detail of the source near
the surface.

GPS position time series with sub-daily resolution resolves that the onset of geodetic
deformation preceded the onset of seismicity by at least a few hours (Figures 3 and 6f). This
suggests that fault slip in the early period was aseismic. Moreover, since the moment release at
depth > 5 km is related predominantly to seismicity, the slow slip event was probably initiated in
the shallow portion of F2, where aseismic slip was the highest. Although it seems reasonable at
this point to conclude that the slow slip event triggered the swarm sequence, proximity in space
and time does not require a causal relationship. We explore further the relationship between the
slow slip event and the swarm sequence using triggering analysis and a stress-driven model in
Section 5. We also note that most geodetic moment releases terminated ~ 1 day after the swarm
began (Figure 6f). However, seismicity continued for ~ 5 more days, suggesting a secondary
mechanism other than the slow slip event that drove the latter part of the swarm.

Table 1. Data uncertainty (o;) and reduced chi-squared statistics of the misfit between
observations and the forward prediction of ground deformations (y7,;) calculated using the
preferred slip model after normalization of the data uncertainties (Figures 6b and 6c¢).

Data Type Uncertainty, o; | Reduced chi-squared, )(fed
GPS (horizontal) 0.4 mm 0.96
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GPS (vertical) 1.5 mm 1.07
InSAR (Ascending) 2.9 mm 0.95
InSAR (Descending) 2.1 mm 1.05
Combined N/A 1.00

5. Modeling the 2020 Westmorland swarm

The seismic and geodetic observations of the 2020 Westmorland swarm provide a unique
opportunity to study the mechanics of the swarm in detail. This section discusses the interplays
of the processes driving the swarm (the slow slip event, inter-earthquake static stress triggering,
and pore pressure diffusion) and quantifies their relative contributions in driving the seismicity.
We first show that the swarm was driven by the slow slip event rather than a result of cascade
triggering using static stress transfer (Sections 5.1 — 5.3). Next, we model the temporal evolution
of seismicity during the swarm sequence using stress changes from the slow slip event and a
stress-driven model based on rate-and-state friction (Sections 5.4 — 5.6). Then, we associate the
unexplained seismicity with pore pressure diffusion, which helps sustain the swarm sequence
(Section 5.7). Finally, our models provide constraints on the friction parameter and pore
pressure, which we compare with values independently derived from the responses of seismicity
to hydrological cycles and solid Earth tides (Section 5.8).

5.1 Aseismic slip driven vs. cascading failures

Two end-member scenarios explaining the spatial and temporal evolution of the swarm can be
envisioned. The first scenario postulates that the earthquakes are driven only by external
forcings, such as the slow slip event, through Coulomb Failure Stress changes (dCFS) with
minimal interactions between the earthquakes themselves. This scenario is similar to Dieterich’s
model of aftershocks (Dieterich, 1994), which assumes that all aftershocks are directly triggered
by a single mainshock. The second scenario postulates that an earthquake produces earthquakes
resulting in a series of cascading events (Ellsworth & Beroza, 1995). To distinguish which of
these mechanisms is dominant, we compute and compare dCFS induced on each seismic event
by the slow slip event and by all earthquakes preceding it to investigate which of these two end-
member scenarios is more likely. The hydrothermal setting of Westmorland, California, suggests
that the presence of fluids must be accounted for. All dCFS calculations in this study assume a
friction coefficient of 0.4, chosen to account approximately for the effect of a hydrostatic pore
pressure as is customary in such studies (King et al., 1994).

The computation of dCFS requires knowledge of the receiver’s fault plane. Since we did not
specifically determine focal mechanisms for this study, we restrict the analysis to 562 events
with reported SCSN focal mechanisms. This is valid because large events, which dominate the
stress transfer, are those with focal mechanisms. For each event, the fault plane is chosen to be
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the nodal plane from the focal mechanism that maximizes dCFS induced by each end-member
scenario. For scenario 2 of cascade triggering, since the fault plane of the current event depends
on dCFS from previous events and hence their fault planes which depend on all events before it,
errors from previous calculations would stack up rapidly. To prevent erroneous results from
staggering uncertainties, given that geodetically resolved slips at seismogenic depths are mostly
constrained on F1, we further assert that the fault planes of the first event and largest M4.9 event
are the nodal planes closer to right-lateral strike-slip motion along F1. Concerning locations, we
use the relocated locations from this study except for those with M > 4 in which we use the
locations from the SCSN catalog because we find their relocated locations inaccurate due to the
dissimilarity of the waveforms with other small events in the catalog.

Besides the receiver’s fault planes, we also need to know the properties of the sources. For
scenario 1 of slow slip driven, since aseismic slip dominates the shallower parts of the faults
(depth < 5 km) while seismicity dominates the deeper parts (depth > 5 km), the slow-slip source
is taken to be the top 5 km of the geodetic slip model. However, instead of temporally evolving
the slips according to the cumulative geodetic moment, we use the cumulative aseismic moment,
calculated by subtracting the cumulative seismic moment (magnitudes from SCSN catalog) from
the unfiltered cumulative geodetic moment and then filtered with the 3™ order Savitzky-Golay
filter with 50-hr window. For scenario 2 of cascade triggering, since we need focal mechanisms
to determine the source properties, we restrict the dCFS sources to only events with SCSN focal
mechanisms. We approximate the earthquake source as a circular crack with a uniform stress
drop Ao assumed to be 0.1 MPa, consistent with other regional earthquakes in the Brawley
Seismic Zone (Chen & Shearer, 2011; Hauksson, 2015), and the mean Coulomb stress drop of
our geodetic model (Supporting Figure S18) estimated using a formulation based on energy
considerations (Noda et al., 2013). Using stress drop and SCSN magnitudes, we estimate the
slipping area A and the amount of slip D using the scaling relation M, ~ Ag A3/? (Kanamori &
Anderson, 1975) and the definition of seismic moment My = uAD along with the assumed
crustal shear modulus u ~ 30 GPa. For simplicity in calculation, we further approximate the
circular rupture as a square of equal area and use semi-analytical solutions in an elastic half-
space to calculate dCFS (Okada, 1992). For a given event, the dCFS are calculated using all
events before it as sources, not just from the most recent event.

Using the outlined procedures, we find that dCFS induced on each seismic event by the slow slip
event is generally larger than those induced by all preceding earthquakes (Figure 8). This holds
even for scenario 2, where the fault planes were chosen to be more favorable for cascade
triggering. We find that up to 68% of events could be driven by the slow slip event, with the
median dCFS of 22 kPa (Figure 8a). About 22 — 35% of events can be attributed to inter-
earthquake static stress triggering. The remaining 9 — 14% of events have negative dCFS and are
neither encouraged by the slow slip event nor cascade triggering, requiring a third mechanism.
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Since stress drops for each event can vary over a few orders of magnitude, we further investigate
the sensitivity of our analysis to the assumed stress drop of 0.1 MPa. We find a systematic trend
with more events likely triggered by the slow slip event for lower stress drop. For the stress drop
Ao ranging from 0.1 — 3 MPa, at least 44% of events are encouraged by the slow slip event when
choosing the fault planes based on scenario 1 of slow slip driven and 35% of events for scenario
2 of cascade triggering (Supporting Figure S19). We acknowledge that the uncertainty in the
estimate of dCFS due to errors in hypocentral locations and focal mechanisms could bias the
analysis toward underestimating the performance of the cascade model (Hainzl et al., 2012).

5.2 Faulting type of seismic events

Our high-resolution seismicity catalog reveals the fault zone structure but not the faulting type of
each structure. Since dCFS induced at each event by the slow slip event is generally larger than
dCFS induced by all earthquakes preceding it (Section 5.1), we assert that the nodal planes with
larger dCFS induced by the slow slip event are the true fault planes (Scenario 1) and their
associated rakes describe the faulting type. From the 437 relocated events from this study with
matching SCSN focal mechanisms that are in the region with positive dCFS induced by the slow
slip event (Figure 9c¢), we classify 269 events as right-lateral strike-slip, 85 events as left-lateral
strike-slip, 55 events as normal faulting, and 28 events as reverse faulting (Figure 9). Even
though only 19% of events have right-lateral strike-slip motion, they include most large events
on the 162°-striking main fault F1 and makeup 94% of the total seismic moment release. The
remaining seismic moment release is accommodated by primarily left-lateral strike-slip events
on the en-echelon structures orthogonal to the main fault F1. Normal and reverse faulting
accounts for < 1% of the total seismic moment release. The relative ratio between the different
faulting types does not significantly change with time (Supporting Figure S20). The distribution
of fault planes selected to favor cascade triggering (scenario 2) is shown in Supporting Figures
S21 —S22.

5.3 Logarithmic expansion of seismicity controlled by the slow slip event

Our high-resolution relocated seismicity catalog reveals that seismicity during the swarm
expanded non-linearly with a rapid onset followed by decaying expansion rates (Figure 6d). The
insufficient spatial resolution of the non-relocated catalog could make these fronts appear to
expand linearly. To further distinguish whether the expansion is v/t or log(t) from the observed
seismicity is extremely difficult since envelopes of seismicity are not precisely defined
(Supporting Figure S23), though we think that log(t) expansion is more likely due to different
reasons. First, describing seismicity front as v/t expansion would require hydraulic diffusivity of
100 m%/s, which is outside of a commonly accepted range for fluid-driven swarms (e.g.,
Amezawa et al., 2021). Cascading earthquakes can also lead to an apparent diffusive expansion
of the seismicity (Helmstetter & Sornette, 2002a), but this is unlikely because static stress
triggering (Section 5.1) and statistics of times between earthquakes (Section 5.5) suggest that
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earthquakes are predominantly non-interacting. Second, the slow slip event began abruptly,
followed by a decaying slip rate, which can be reasonably modeled using an exponential decay
or a logarithmic function typically used for afterslip (Ingleby & Wright, 2017). Earthquakes
driven by afterslip are expected to expand as log(t) (Perfettini et al., 2018), as observed in
selected case studies (e.g., Frank et al., 2017; Kato & Obara, 2014; Peng & Zhao, 2009; Tang et
al., 2014).

To further investigate the possibility of the slow slip event controlling the expansion of the
seismicity front, we evaluate the time evolution of dCFS induced by the slow slip event (top 5
km of the geodetic slip model) along the main fault plane F1. The time evolution of the slow slip
event is assumed to be proportional to the time evolution of the aseismic moment calculated by
subtracting cumulative seismic moment (magnitudes from SCSN catalog) from the unfiltered
total geodetic moment and then filtered with the 3™ order Savitzky-Golay filter with 50-hr
window, similar to what we used previously in Section 5.1. We calculate dCFS for both the
right-lateral strike-slip plane F1 and the left-lateral strike-slip plane F2 to include events on en-
echelon structures and retain the maximum value at each gridded point (Figures 10a and 10b).
We assert that a certain threshold of dCFS is needed to nucleate a seismic event and track the
expansion of the different dCFS contours along F1. The results reveal that the contours expanded
non-linearly, roughly parallel to the observed seismicity front (relocated catalog from this study),
with rapid onset followed by a decaying expansion rate (Figures 10c and 10d and Supporting
Movie S4). The average dCFS required to trigger seismicity is estimated to be ~ 30 kPa, similar
to the median dCFS value of 22 kPa required to trigger seismicity estimated in Section 5.1
(Figure 8a). Regardless of which dCFS contour we pick, there is a time lag between the stress
changes and the observed seismicity, highlighting a finite nucleation time consistent with
earthquake nucleation models based on laboratory friction laws (e.g., Dieterich, 1994).

5.4 Seismicity rate evolution from a stress-driven model

We have shown in Section 5.3 that stress changes due to the slow slip event can explain the rapid
expansion of the seismicity front. Here, we further investigate the possibility of quantitatively
explaining the time evolution of seismicity rate using a stress-driven model based on one degree
of freedom spring-slider system close to failure (Dieterich, 1994; Heimisson & Segall, 2018),
hereafter referred to as “Dieterich’s model.” The friction coefficient y in this model evolves with
slip velocity V and a state variable 8 according to the rate-and-state formulation derived from
laboratory experiments sliding two rock surfaces or gouge layer (Dieterich, 1979, 1981; Ruina,
1983; see Marone, 1998 for review). Dieterich’s model further uses an approximation that the
product of slip velocity V and the state variable 6 is large compared to the critical slip distance
Dpgs, .., VO /Dgrs > 1, and assumes that the friction parameter a describing material resistance
to an increase in slip velocity (du/d(InV)) and initial effective normal stress o are uniform. The
seismicity rate R(t) on a fault would then respond to an evolving shear stress perturbation At(t)
according to the following equation (Dieterich, 1994; Heimisson & Segall, 2018):
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R(t) eA‘r(t)/acr
L tl [ edtt/a0 dx

(4)

where t, = ag /7, is the characteristic aftershock decay time for returning to steady-state, and r
is the background seismicity rate corresponding to a constant background stressing rate 7, prior
to the perturbation. When normal stress changes are small relative to the effective normal stress
o, we can substitute shear stress changes Atr(t) with the cumulative Coulomb Failure Stress
changes dCFS(t), which we use throughout our study (Dieterich et al., 2000; Heimisson &
Segall, 2018). Because the slip rate during the slow slip event is of a few mm/day, value orders
of magnitude larger than the mm/year geological slip rate associated with tectonic loading, we do
not consider background tectonic stressing in the stress changes term.

We further simplify the analysis by treating the observed seismicity as a point process and do not
consider spatial information. All detected events in our catalog, including those not relocated, are
used. The background seismicity rate r prior to the swarm is estimated from the SCSN catalog
(Supporting Figure S24) and then rescaled to our catalog using the total number of detected
events N during the swarm, i.€., Tour catalog = Tscsn * Nour catalog/ Nscsn- Since our slip model
is stationary, if the medium is assumed to be homogeneous, Atr(t) is proportional to the
cumulative moment release. We are left with only two fitting constants, the decay time t, and
the proportionality constant Aty,/ac between At(t)/ac and the normalized cumulative moment
release, where Aty = At(t = ) is the cumulative dCFS over the swarm duration. A set of
sensitivity tests (Supporting Figure S25) show that At,/ac controls the amount of time lag
between the slow slip event and seismicity while t, controls the maximum seismicity rate.

Even though Dieterich’s model assumes no interactions between sources, we can approximately
account for it by including dCFS induced by the earthquakes themselves in the driving shear
stress, such as those done in the numerical models of Ziv & Rubin (2003). Theoretically, this is
valid if magnitude statistics are not altered by stress perturbations (Heimisson, 2019). To assess
whether the inter-earthquake static stress transfer plays a vital role in driving the swarm, we
model the seismicity rate using both the stress changes from only the slow slip event (left panels
in Figures 11 and 12) and the stress changes from the total geodetically resolved slip which
includes also slips due to earthquakes (right panels in Figures 11 and 12). Similar to Sections 5.1
and 5.3, the cumulative aseismic moment used here is derived by subtracting the cumulative
seismic moment (magnitudes from the SCSN catalog) from the unfiltered cumulative geodetic
moment. Since Dieterich’s model is highly non-linear and hence affected by the high-frequency
noises, we compare 3 different methods to denoise the cumulative moment:

1) fitting with a Heaviside step function H(t —t;), representing an instantaneous
deformation end-member (Supporting Figure S26),
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2) fitting with an exponential function H(t — tg) - Aey, (1 — e~¢t0)/%exp) | representing a
continuous deformation (Figure 11), and

3) applying a Savitzky-Golay filter based on moving polynomial to remove high-frequency
noises (Figure 12)

Model fitting is done using a standard grid search to minimize the root-mean-squared error
(RMSE). Given that most of the geodetic moment release already terminated ~ 1 day after the
start of the swarm, attempting to fit the model with the seismicity rate from the entire swarm
duration leads to a significant underestimation of peak seismicity. The latter part of the swarm
requires a secondary driving mechanism without significant geodetic deformation, such as pore-
pressure diffusion (Section 5.7). We, therefore, choose to minimize RMSEs over only the first
day of swarm activity. We summarize the RMSE and best fit parameters (Aty/aoc and t,) for
various models in Table 2.

Our results suggest that the Heaviside step function (Supporting Figure S26) ignores the finite
duration of the slow slip event, gives large misfits to moment and seismicity rates, and yields
erroneous estimates of parameters. The models with exponential approximation (Figure 11)
capture the main features and could be used to provide reliable estimates of Aty/aoc and t,,
though the peak seismicity rate is underestimated due to the smoothing effects. The exponential
approximation can be useful when the details of the slip evolution are unavailable, as done in
Lohman & McGuire (2007). However, further studies could assess the generalizability of this
assumption as the model is an ad hoc analytical choice and is thus not based on any physical
mechanism. Models using directly the Savitzky-Golay filtered cumulative moment release
(Figure 12) best capture the detailed evolution of the seismicity rate. However, their misfit is
larger than the exponential approximation due to noises that still persist even after the filter is
applied. Furthermore, when comparing models driven by only slow slip event (left panels of
Figures 11, 12, S26) with models driven by total geodetically resolved slip (right panels of
Figures 11, 12, S26), we find that the latter performs better for all denoising methods tested. This
means that even though the slow slip event plays a significant role in driving the swarm, the
inter-earthquake static stress transfer is not negligible. We further quantify their relative
contribution using point process statistics in Section 5.5.

With our preferred denoising method being the Savitzky-Golay filter, we further assess the
effects of filtering parameters on the estimated parameters (Figure 12¢ — e and 12h —j). We vary
the window size from 1 — 100 hr, use polynomial orders 1, 3, and 5, and find the window size of
50 hr and 3" order polynomial preferable. While there are other options with smaller mean
squared error (MSE), we find that they start to overfit the noises (Supporting Figures S27 and
S28). If we were to choose such an overfitting model, it would not change the key conclusions of
the study. Using chi-squared criterion with 1o confidence interval (Ax? = AMSE = 3.53 for 3
degrees of freedom: Aty /ao, t,, and filtering window size) to estimate the uncertainties of the
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parameters, we find Aty/ac = 29735 and t, = 1.7%33 yr, when using a model driven by the slow
slip event and Aty/ac = 261}, and t, = 1.7*3% yr, when using a model driven by the total
geodetically resolved slip. It is not unexpected that the estimated t, is large compared to the
swarm duration as the area still has an elevated seismicity rate several months after the swarm
(Supporting Figure S29), though t, may still be overestimated as the stress releases from events
driven by pore-pressure diffusion are not accounted for in the model (Section 5.7). We discuss
more how these values compare with other studies in Section 5.8.

Table 2. Root-mean-squared error (RMSE) of seismicity rate modeling and the best fit
parameters for the different models tested in this study.

Driving stress Denoising method RMSE To/ao t, (yr)
Heaviside step function | 1387 10.0 8.6

Savitzky-Golay filter

(3 order, 50 hr) 1159 28.6 24
Heaviside step function 890 10.3 7.8
Total gleoc(iietilgally Exponential function 661 23.0 2.0
resolved sHp Savitzky-Golay filter ’34 26.2 17
(3" order, 50 hr) ' '
Total geodetically .
. . Savitzky-Golay filter 74
resolved slip (with (3% order, 50 hr) 702 (t./ac = 18) 1.1

threshold, Section 5.6)

Furthermore, given that the 5-min sampled position time series are considerably noisy (Figure
3c¢), the amount of time lag may be affected by the choice of filter used. We further quantify the
uncertainty range of the time lag using Dieterich’s model driven by an exponential stress change
with different onset times. By fitting the moment release with the exponential function, we find
that the best fit model has an onset with a time delay of 15 hours for those driven by only the
slow slip event (Figure 11c) and 6 hours for those driven by total geodetically resolved slip
(Figure 11g). Instead of selecting the best fit for the moment release, if we select the best fit
based on the observed seismicity rate, the time delay of the onset shrinks considerably for both
driving scenarios to 4 hours (Figure 11d) and 2 hours (Figure 11h), respectively. While misfits to
the moment release and the seismicity rate increase only gradually as the time lag becomes
longer, the misfits increase rapidly as the time lag becomes shorter than 2 hours. Therefore, the
analysis supports that the time lag between the slow slip event and seismicity exists and cannot
be an artifact of filtering. The best estimates yield a time lag between 2 — 15 hours, consistent
with the onset derived from filtering the geodetic deformation with a Savitzky-Golay filter.
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5.5 Seismicity as an inhomogeneous Poisson process

With Dieterich’s model (Section 5.4), the earthquakes are assumed to be fully characterized by
the Coulomb stress transfer. That is, seismicity follows an inhomogeneous Poisson process with
varying seismicity rates R(t)/r governed by equation 4. To test a posteriori if the observed
seismicity follows an inhomogeneous Poisson process, we examine the distribution of times
between consecutive seismic events At, hereafter referred to as the “interevent times.” In this
section, we continue to treat the observed seismicity as a point process and do not consider
spatial information. All detected events in our catalog, including those not relocated, are used.

For a homogeneous Poisson process with a constant seismicity rate A, the interevent times At are
expected to distribute exponentially, i.c., P(At) ~ Ae™*At. For an inhomogeneous Poisson
process with varying seismicity rates A(t), interevent times would appear on average to be
shorter than the exponential distribution due to apparent clustering, as seen in the observed
seismicity (Figure 13a). Any given inhomogeneous Poisson process can be converted to a
homogeneous one if the evolving Poisson rates can be estimated. In our case, we can use the
modeled seismicity rate R(t)/r from Section 5.4 that uses Savitzky-Golay filter as a denoising
method (Figure 12b, d). The interevent times of the converted homogeneous Poisson process,
referred to as the “modified interevent times,” can be calculated as follows: Aty oqified =
Atopserved - R(t)/r, where R(t)/r is the modeled seismicity rate. Using the modeled seismicity
rate from Dieterich’s model driven by the slow slip event (Figure 12b), the At oqifieqa follows
better the exponential distribution (Figure 13b) than the At pserveqa (Figure 13a). At odified
follows even better the exponential distribution (Figure 13c) if the modeled seismicity rate from
Dieterich’s model driven by the total geodetic deformation (Figure 12d) is used. Regardless of
the modeled seismicity rate used, Aty ogifieq 1S Still shorter than expected by the exponential
distribution suggesting that some level of clustered seismicity exists and is not captured by the
inhomogeneity of seismicity rates.

The amount of clustering beyond those expected from the Poisson process can be quantified by
fitting the interevent times distribution with a Gamma distribution, P(At) ~ C - At? ™1 - e At/B

where C = (,B’VI'()/))_1 and I'(x) is a Gamma function. If the interevent times At are normalized
so that At = 1, the fraction of clustered events is simply 1 —y, where y = 1/f and f is the
variance of the interevent times o7, (Hainzl et al., 2006; Molchan, 2005). The Gamma
distribution can explain clustering typically expected for aftershocks, but it fails to capture
clustering due to the inhomogeneity of Poisson rates (Figure 13d). After removal of
inhomogeneous Poisson rates using the modeled seismicity rate from Dieterich’s model driven
by the slow slip event (Figure 12b), we find that At q4ifiecq can be described by a Gamma
distribution with y = 0.6, meaning that the slow slip event can explain 60% of all events, leaving
40% of unexplained clustered events (Figure 13e). On the other hand, if the rates are taken from
Dieterich’s model driven by the total geodetic deformation (Figure 12d), Aty odifiea Can be

20



676
677
678
679
680

681
682
683
684
685
686
687
688
689
690
691
692
693

694

695
696
697
698
699
700
701
702
703
704

Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth
September 30, 2022

described by a Gamma distribution with y = 0.8, meaning that the geodetic deformations
(including both aseismic and seismic components) can explain 80% of all events, leaving only
20% unexplained clustered events (Figure 13f). The additional 20% of events explained by the
total geodetic deformation but not by the slow slip event must then be explained by stress
transfer from the seismic events, i.e., inter-earthquake static stress triggering.

To further assess the reliability of the amount of clustering, we assume that Dieterich’s model
perfectly fits the data and examine At gqifieq- If the seismicity perfectly follows an
inhomogeneous Poisson process, Atyogifieq WOuld be exactly exponentially distributed. Our
analysis finds that this is not the case. Approximately 10% of At ogifieq With shortest durations
are missing (Supporting Figure S30). Given that Atypgerveq < 15 seconds near the peak
seismicity, this is likely due to under detection. Further analysis using a temporal variation of
coefficient of variations (Kagan & Jackson, 1991) supports this interpretation (Supporting Text
S3 and Supporting Figure S31). Accounting for this 10% of missed events, stress transfer from
the slow slip event can explain at least 55% and potentially up to 64% of all events. The total
geodetic deformation can explain at least 73% and potentially up to 82% of all events, meaning
that ~ 10 — 25% can be explained with inter-earthquake static stress transfer. The remaining ~ 20
— 30% unexplained clustered events must then be accounted for by a secondary driver (Section
5.7).

5.6 Improving the model with stress threshold

Even though Dieterich’s model used in Section 5.4 can explain the overall evolution of the
seismicity rate, it did not explain the sharp onset well. Previous studies have also encountered
difficulty explaining the delayed onset and attributed it to the violation of the model assumptions
that the system is well above the steady-state limit and is accelerating toward instability (Candela
etal., 2019; Zhai et al., 2019). An introduction of thresholds in the form of critical stress (Bourne
& Oates, 2017; Dempsey & Riffault, 2019; Dempsey & Suckale, 2017; Heimisson et al., 2021)
or critical time (Zhai et al., 2019) can be implemented to improve the model. Introducing a
critical time is a proxy for reducing a stress threshold that is valid if the stress changes are
uniform in space. Here, we improve the model by adding a critical stress threshold 7. to equation
(4) following the formulation by Heimisson et al. (2021):

R(t
RO _oite <,
r
R(t) e(Ar(t)—A‘rC)/aa (5)
= ift > t.

r - l t (At(x)—-At.)/aoc
1+ r ) € dx
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where t, is the time when the stress threshold is first exceeded, i.e., At(t = t.) = At.. With this
modification, the longer time lag between the slow slip event and seismicity can be accounted for
by increasing the stress threshold (Supporting Figure S32). By minimizing the root-mean-
squared error (RMSE) over the swarm duration using a grid search, the best model yields a
negligible threshold (< 1kPa). If we minimize the RMSE over only the first seismicity peak (up
to the first day of the swarm), we find Atry/ac = At(t = ©)/ac = 74, At./ac = 18 and
t, = 1.1 yr (Supporting Figure S33), and the model better captures the seismicity’s sharp onset
(Figure 14a). Using the average dCFS of 30 kPa (Figures 8a and 10c-d) induced by the slow slip
event at locations where we have earthquakes as Az, we find ao ~ 0.4 kPa and hence Az, ~ 7.3
kPa, a factor of 4 smaller than Az,,.

To further assess the models, we generate two-dimensional synthetic catalogs of earthquakes
along the fault plane F1. The driving dCFS is allowed to vary spatially along plane F1 (Figure
10a) and temporally according to the filtered aseismic moment release (Figure 12a). For each
gridded cell, we calculate the expected seismicity rate using the best fit parameters from our
models (Figure 14a), and seismicity is generated using the inverse transform sampling method
(e.g., Zhuang & Touati, 2015). We refrain from using the total geodetically resolved slip in this
analysis because our model does not capture the non-stationary nature of fault slip. We can better
reproduce the spatial expansion of seismicity by enforcing the early part of fault slip to be a
shallow slow slip event, as evident from comparing the spatial distribution of seismic and
geodetic cumulative moment release (Section 4.2). Since Dieterich’s model is highly non-linear,
the response to the time evolution of the integrated slip in space is not equal to the integrated
response to the time evolution of slip at different spatial locations. Therefore, we cannot expect
the number of events in the synthetic catalogs to match the observed catalogs. However, the
synthetic catalogs can still capture first-order behaviors, such as the rapid expansion of
seismicity and the time lag between the onset of the slow slip event and the swarm (Figure 14b-
e). We find the time lag from the model that includes a stress threshold more consistent with
observations. Furthermore, we notice that the synthetic models cannot capture sharp boundaries
that mark the extent of seismicity because of the smoothing imposed on the geodetic slip model
used to calculate dCFS and the assumption that the seismicity productivity (the density of
triggered earthquakes per unit of Coulomb stress increase) is homogeneous.

5.7 Pore-pressure diffusion as a secondary driver

Even though the swarm lasted for about 6 days, our geodetic observations find no significant
surface deformation after the first day of the swarm. This, along with the poorer fit of the stress-
driven model (Section 5.4 and Figure 12g) and the clustering behaviors (Section 5.5 and
Supporting Figure S31), suggests that the latter phase of the swarm was driven by a secondary
mechanism unrelated to the observed slow slip event. Abundant fluids in this hydrothermal area
(Deane & Lynch, 2020) and the observation of a propagating back front marking an expansion of
a zone of seismicity quiescence (Figures 5d and 15a), which is commonly observed in borehole
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fluid injection scenarios after the injection has terminated (e.g., Dahm et al., 2010; Parotidis et
al., 2004, 2005; Shapiro & Dinske, 2009), leads us to propose pore-pressure diffusion as a
possible secondary driver of the swarm.

With a point source fluid injection, we expect a leading seismicity front following the pore-
pressure diffusion front with a square root of time expansion after the injection has started and a
trailing propagating back front after the injection has terminated. A simple two-dimensional
diffusive model (Parotidis et al., 2004) predicts that the back front 73,,., would expand as a
function of time t according to the following equation:

raek (£) = 4-D-t-(t£—1)-ln< ‘ ) ®)

0 t—1to

where D is the hydraulic diffusivity and ¢, is the injection duration.

The back front is visible in our observations, but the leading front is not clear (Figure 15a). We
attempt to fit the back front, assuming that the pore-pressure diffusion is mainly constrained
along the 162°-striking main fault F1. A possible set of parameters that would fit well the back
front include an injection location that is < 1 km from the first relocated seismic event, a
diffusivity of 4 m?/s, and an injection duration of 20 hr. The inferred leading seismicity front,
Trrone (£) = V4Dt, passes through the inferred origins (yellow and red stars in Figure 15) of
seismicity expansion observed along the en-echelon fractures (structures E1 and E2 in blue
boxes of Figure 5a with associated seismicity expansion annotated in Figure 5g). Given the
proximity between the inferred injection location and the first seismic event, pore-pressure
diffusion could be initiated by a seal that was broken because of the same stress changes that
triggered the seismicity, similar to the scenario proposed for the Cahuilla swarm (Ross et al.,
2020). Then, the en-echelon fractures were reactivated as the pore-pressure diffusion front
arrived. However, given the obscured leading seismicity front, it is also plausible that fluids may
have pre-existed in the main fault zone. The seals to the en-echelon fractures could then have
broken arbitrarily in time, draining the fluids from the main fault zone and leading to the
seismicity back front. The over-pressurized fault could also explain the poorer fit to Dieterich’s
model because normal stress changes may be larger relative to the effective normal stress,
violating one of the model assumptions.

Upon reactivation of the en-echelon fractures, seismicity on these structures appears to expand as
\/t with inferred hydraulic diffusivities ranging from 1 — 3 m%/s (Figure 15b-c), slightly different
from the 4 m*/s inferred for the main fault. The different diffusivities and hence the different
permeabilities between the main fault and the en-echelon structures suggest that this fault zone is
anisotropic, which could be caused by stress levels on the faults (e.g., Acosta et al., 2020), or
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geometry and maturity of the structures (e.g., Acosta & Violay, 2020; Caine et al., 1996; Jeanne
et al., 2013).

The diffusivity values over the entire fault zone range from 1 — 4 m%/s, consistent with other
swarms with a duration of a few days (Amezawa et al., 2021). This corresponds to permeabilities
~ 10" = 10" m? and porosity ~ 0.01 — 0.2 (Supporting Figure S34), similar to the values
inferred from fluid-driven seismicity in other regions (e.g., Amezawa et al., 2021; Audin et al.,
2002). These inferred permeabilities are quite large for intact rocks, but they are not unexpected
for fractured metasedimentary rocks (e.g., Wong et al., 2013; Younker et al., 1982), particularly
at low effective normal stresses (e.g., when pressurized fluids have permeated the fracture). In
fractures subjected to low effective normal stress, fault slip can increase permeability by more
than one order of magnitude (e.g., Guglielmi et al., 2015; Im et al., 2018; Lee & Cho, 2002; Yeo
et al., 1998) due to low mechanical closure and low wear production rates, though this is not the
case for fractures subjected to high effective normal stress (e.g., Acosta et al., 2020; Rutter &
Mecklenburgh, 2018). The rapid migration of seismicity streaks (at times 25, 28, and 32 hr in
Figure 15b) resembles features observed in other swarms, and that could be evidence of coupling
between pore-pressure diffusion and the slow slip events (e.g., De Barros et al., 2020;
Dublanchet & De Barros, 2021) that were too insignificant to detect with current geodetic
instrumentations. The velocities of these rapid migrations are between 0.6 — 0.8 km/hr, which is
the same order-of-magnitude as the slow slip driven seismicity front observed along the main
fault F1.

Because there is only minor inter-earthquake triggering (Sections 5.1 and 5.4), we can exclude
the cascade model of earthquakes (Helmstetter & Sornette, 2002a) as a cause of the observed
migration of the seismicity. Additionally, such a model would not produce a back front. Another
possible interpretation of this zone of seismicity quiescence is stress shadow resulting from
negative dCFS (Harris & Simpson, 1996, 1998, 2002). However, since most of the total dCFS
was due to the slow slip event and large earthquakes that occurred within the first day of the
swarm, this mechanism cannot explain how this zone continued to grow at a much later time.
Therefore, we interpret that the slow slip event drove the early part of the sequence and fluid
drove the latter, similar to the aftershocks of the 2010 My, 7.2 El Mayor-Cucapah earthquake
(Ross et al., 2017).

5.8 Estimating the friction parameter and stress conditions

Some fault properties, such as the frictional rate-and-state parameter a responsible for the
nucleation process, cannot typically be measured in situ and require extrapolation from
laboratory measurements (Marone, 1998). Other properties, such as the effective normal stress o,
in-situ measurements are possible at shallow crustal depth but are very costly (e.g., Guglielmi et
al., 2015). Studying the seismicity response to a known stress perturbation offers the possibility
of estimating the product of the fault frictional rate-and-state parameter a and the in-situ
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effective normal stress g, providing constraints on fault properties. Some studies have estimated
these parameters using seismicity responses to magmatic intrusions (Toda et al., 2002), solid
Earth tidal or seasonal oscillations (Ader & Avouac, 2013; Bettinelli et al., 2008), reservoir
loading (Rinaldi et al., 2020), slow slip events (Lohman & McGuire, 2007; Segall et al., 2006),
or afterslip (Cattania et al., 2015). In this study, fitting seismicity rates with Dieterich’s models
with and without stress threshold gives us the parameter At,/ac (Table 2). Using the average
dCFS induced by the slow slip event at locations where we have earthquakes (~ 30 kPa, see
Figures 8a and 10c-d) as Az, we can calculate the corresponding product ac (Table 3).

The estimates of parameter ac from this study are between 0.4 — 1.2 kPa (Table 3), which is
relatively small. For example, if we assume a ~ 0.001, a lower bound value typical of laboratory
measurements (Marone, 1998), and use the overburden normal stress at 5 km of ~ 150 MPa, we
expect ac ~ 150 kPa. This suggests that either pore pressure is very large (99% of overburden
stress), or the faults in the basement would have very small a (~ 0.00001), or a combination of
both factors. Smaller a means that the earthquakes can nucleate with smaller driving stress.

To further validate our estimates of ao, we compare them with independent order-of-magnitude
inferences using responses of seismicity to semi-diurnal (12-hr) tidal and annual hydrological
stressing, which have been observed in natural faults (e.g., Ader & Avouac, 2013; Cochran et al.,
2004; Tanaka et al., 2002; W. Wang et al., 2022; Wilcock, 2001) and in the laboratory (e.g.,
Bartlow et al., 2012; Beeler & Lockner, 2003; Chanard et al., 2019; Noél et al., 2019). We
expect a larger response for smaller ac (e.g., Ader et al., 2014; Beeler & Lockner, 2003;
Heimisson & Avouac, 2020). To estimate the periodic variations of seismicity rate in the
Westmorland area (latitude 32.98 — 33.12°N, longitude 115.50 — 115.65°W), we use the Quake
Template Matching (QTM) seismicity catalog (Ross, Trugman, et al., 2019). Since aftershocks
are seismicity responses to the stress changes from the mainshocks, which are non-periodic, we
first remove them by using the nearest-neighbor declustering approach (Zaliapin & Ben-Zion,
2013, 2020) based on a space-time-magnitude metric (Baiesi & Paczuski, 2004; Zaliapin et al.,
2008) with a Gutenberg-Richter b-value estimated using maximum likelihood (Aki, 1965), as
detailed in Supporting Text S4 and Supporting Figure S35. Then, we determine the amount of
seismicity rate variation for a given periodicity using the Schuster p-value (Ader & Avouac,
2013; Schuster, 1897) and estimate the parameter ac (Table 3) that best relates the periodic
stressing to the observed seismicity rate variation (Ader et al., 2014), as detailed in Supporting
Text S5 and Supporting Figures S36-37. For annual period, seismicity rate variation is ~ 24%.
Using the seasonal geodetic strains in Southern California of ~ 0.02 kPa (Kreemer & Zaliapin,
2018), we find ao ~ 0.1 kPa. These seasonal strains are relatively small when comparing to
similar studies (e.g., Amos et al., 2014; C. W. Johnson et al., 2017), likely due to over
smoothing. Alternatively, we can also use seasonal geodetic strains estimated from this study
(IC7 in Supporting Figure S7). Without smoothing, displacements vary ~ 1 mm over 10 km of
distances, resulting in an upper bound of geodetic strains of 10~7, which translates to ac < 10
kPa. For semi-diurnal (12-hr) period, seismicity shows insignificant periodicity with variations <
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26%. Using the semi-diurnal tidal strains of ~ 0.6 kPa estimated from surface displacements
computed with Solid software (Milbert, 2018), as detailed in Supporting Text S6 and Supporting
Figures S38-39, we find ac > 2.5 kPa.

To conclude, the analysis of the 2020 Westmorland swarm provides local estimates of ag ~ 0.4 —
1.2 kPa along with the patches of observed seismicity, while the hydrological and tidal analysis
provides regional estimates of ag ~ 2.5 — 10 kPa. While they are within one order-of-magnitude
from one another, one way to interpret the differences is to attribute parts of the faults that
ruptured during the 2020 Westmorland swarm to be weaker (smaller ao) than the surrounding
areas, making them closer to failure and requiring less amount of driving stress to rupture. This
weak zone might be related to the extent of the reservoir with pressurized fluid (and hence with
lower effective normal stress o) bounded by impermeable rock layers.

Table 3. Estimated values of the parameter ac using independent methods based on seismicity
responses to different types of transient driving stresses.

Methods ao

Dieterich’s model of the 2020 Westmorland swarm (Section 5.4) 1.2 kPa

Dieterich’s model with stress threshold of the 2020 Westmorland swarm

(Section 5.6) 0.4 kPa
Annual hydrological loads, using dCFS from Kreemer & Zaliapin (2018) 0.1 kPa
Annual hydrological loads, using dCFS from this study <10 kPa
Semi-diurnal 12-hr tidal cycles, using dCFS from Solid software >2.5kPa

Table 4. Estimated parameter ao for different studies of various tectonic settings based on the
seismicity response to transient stresses.

Event Estimated ao

Aftershocks of the 1992 M, 7.3 Landers, California earthquake (Gross &

.. 20 — 40 kPa
Kisslinger, 1997)
Aftershocks of the 1989 My, 7.0 Loma Prieta, California earthquake (Gross

.. 10 kPa
& Biirgmann, 1998)
Aftershocks of the 2004 My, 6.0 Parkfield, California earthquake (Cattania
3-8 kPa

etal., 2015)
Aftershocks of the 2011 My, 9.0 Tohoku, Japan earthquake (Cattania et al., 20 — 40 kPa
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2015)

Izu volcanic island earthquake swarm, Japan (Toda et al., 2002) 30 kPa
Seasonal strains in the Himalayas (Bettinelli et al., 2008) 30 kPa
Reservoir-induced seismicity, Val d’Agri area, Italy (Rinaldi et al., 2020) 0.8 kPa
The 2020 Westmorland, California earthquake swarm (this study) 0.4—-1.2kPa
Seasonal strains and solid Earth tides, Westmorland, California (this study) 2.5-10kPa

Many studies utilizing Dieterich’s model find a similar range of ao between 1 — 40 kPa for
various tectonic settings (Table 4), which is unexpectedly small. Recent dynamic simulations of
two-dimensional finite faults found that the assumption of Dieterich’s model that the product of
slip velocity V and the state variable 6 is large compared to the critical slip distance Dgg, i.e.,
V8/Drs > 1, is often violated (e.g., Rubin & Ampuero, 2005), and as a result, the one-
dimensional spring-slider system approximation leads to underestimation of ac by 1 — 2 orders
of magnitude (Ader et al., 2014; Kaneko & Lapusta, 2008). Using a more realistic estimate of ao
~ 50 kPa (~ 100 times our low bound of 0.4 kPa and ~ 5 times our upper bound of 10 kPa) and
best fitted t, ~ 1.7 yr (Table 2), we estimate the background stressing rate 7, = ao/t, ~ 30
kPa/yr. This is consistent with the estimates using maximum total shear strain rate of ~ 1
ustrain/yr from GPS observations (Crowell et al., 2013), and an assumed shear modulus of 30
GPa resulted in a long-term stressing rate © ~ 30 kPa/yr.

6 Discussion
6.1 Summarizing the 2020 Westmorland swarm and the mechanisms involved

We conclude that the 2020 Westmorland swarm resulted from the interplay between a slow slip
event, fluid diffusion, and seismic slip, as summarized in Figure 16 and Supporting Movie S5.
The event began with an episode of shallow slow slip event (Section 4.2) occurring in the
sedimentary cover, which induced a static stress change front that propagated as a logarithm of
time (Section 5.3). Such stress change then drove the most critically stressed fault patches in the
basement to rupture, forming a swarm of primarily non-interacting seismic events (Sections 5.4 —
5.6) that also expanded logarithmically with time (Section 5.3). A pore-pressure diffusion front
could have started to expand as the square root of time after the stress change front broke the seal
containing a pressurized fluid pocket. Upon reaching pre-existing en-echelon fractures
orthogonal to the main fault, pressurized fluid continued to migrate along these fractures causing
seismicity on these structures that expanded diffusively as a square root of time with different
apparent hydraulic diffusivities (Section 5.7). After the fluid pressure stabilized, seismicity
terminated. As this zone of stability expanded as the square root of time, we observed a
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propagating back front marking the zone of seismicity quiescence (Section 5.7). The swarm
terminated within ~ 5 days, but the fits to seismicity using the stress-driven model with
Dieterich’s nucleation (Section 5.4) suggest that aftershocks should continue for ~ 1.7 yr because
of the time-dependent frictional response of faults. Using results from two independent analyses,
static stress triggering (Section 5.1) and seismicity rate modeling with stress-driven models
(Section 5.4 — 5.5), suggest that 45 — 65% of seismicity was driven by the slow slip event, 10 —
35% by inter-earthquake static stress transfer, and 10 — 30% by fluid pressure changes.

We also find that lithology plays a significant role in determining the slip modes. The
sedimentary cover (the top 5 km) primarily slips during aseismic slip events, while the shallow
portion of the basement (between 5 — 8 km depth) primarily slips during earthquakes. Below this
seismogenic zone (depth > 8 km), the faults are probably mostly creeping from ductile
deformation. For continental crust with strain rates of ~ 10" s, we expect the brittle-ductile
transition (BDT) to occur at a temperature of ~ 400+100°C (Violay et al., 2017). With a
geothermal gradient of ~50-60 °C in the Westmorland area (Lachenbruch et al., 1985), the BDT
is expected at 7 — 8 km depth, consistent with the observations. Furthermore, the observed
deformation modes are consistent with the interseismic model based on geodetic data, which has
a surface aseismic creep of 2.7 mm/yr and a locking depth of ~ 10 km (Lindsey & Fialko, 2013).
Earthquakes from the decades-long catalogs (e.g., Lin et al., 2007) are primarily within the 5 — 8
km depth range.

Finally, we try to estimate the contribution of swarms to long-term deformation. For example, if
we compare the long-term slip rate of 17 mm/yr (Crowell et al., 2013) across the fault system
with the average slip of ~ 20 mm during the swarm, a return period of ~ 1 year would be needed
if slip was only releasing as a result of repeated swarms similar to the Westmorland swarm of
2020. However, the seismicity catalog of Southern California clearly shows that the swarms do
not return that frequently at Westmorland (Figure 1b). This disparity can be partially explained
by the observation that the 2020 Westmorland swarm released less moment than a typical swarm
in the area (e.g., Lohman & McGuire, 2007; Wei et al., 2015). Moreover, it may be possible that
significant aseismic slip occurs in the period between swarms, either as a result of smaller
episodic slow slip events or continuous creep.

6.2 Swarm as aftershocks of the slow slip event

The 2020 Westmorland swarm appears quite similar to afterslip-driven sequences of aftershocks
(e.g., Perfettini et al., 2018; Perfettini & Avouac, 2007) but with the mainshock replaced by a
slow slip event. The observed geodetic deformation associated with the 2020 Westmorland
swarm shows rapid onset followed by deceleration (Figure 4), similar to the time evolution of
afterslip (e.g., Ingleby & Wright, 2017; Marone et al., 1991; Perfettini & Avouac, 2004). The
2020 Westmorland swarm was also observed to expand logarithmically with time (Section 5.3),
similar to the expansion of afterslip-driven aftershocks following large earthquakes (e.g., Frank
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et al., 2017; Kato & Obara, 2014; Peng & Zhao, 2009; Tang et al., 2014). For a sequence driven
by a slow slip event that can be modeled with a logarithm function, the aftershocks are expected
to expand as log(t) regardless of whether there is a mainshock before the slow slip event or not
(Perfettini et al., 2018). Once the slow slip event starts, the mechanisms that govern the evolution
of swarms might be the same as those that drive aftershocks.

There are other swarms that have also been interpreted as aftershocks of slow slip events (e.g.,
Lohman & McGuire, 2007; Martinez-Garzén et al., 2021; Segall et al., 2006), but direct
observational evidence in support of that interpretation is rare. This could be a common
mechanism for swarms that would have gone unnoticed. Several studies provided evidence of
aseismic deformation related to the swarm using radar interferometry, GPS, optical leveling data,
or strainmeters (e.g., Kyriakopoulos et al., 2013; Lohman & McGuire, 2007; Wei et al., 2015;
Wicks et al., 2011), but none had the time resolution needed to identify if the aseismic event
preceded the swarms. Others have inferred aseismic forcing from seismicity data (Llenos &
McGuire, 2011; Marsan et al., 2013). Detecting the preceding slow slip event, such as the one
observed during the 2020 Westmorland swarm, requires access to high-rate GPS records in the
near-field and the relatively sophisticated postprocessing of the geodetic time series. With
limited observations thus far, it is uncertain whether the mechanics discussed in this study would
generalize to other swarms in the Salton Trough or other tectonic settings worldwide.

7 Conclusions

The 2020 Westmorland swarm in the Salton Trough was exceptionally well-recorded by a dense
array of seismometers, ground-based GPS/GNSS sites, and space-based radar interferometry,
allowing us to describe the earthquake sequence with unprecedented details (Section 3). Our
study provides evidence of a slow slip event starting between 2 — 15 hours before the swarm
sequence (Section 4). We demonstrate their causal relationship using static stress triggering
analysis (Sections 5.1 — 5.3) and Dieterich’s stress-driven seismicity model based on rate-and-
state friction (Sections 5.4 — 5.6). The model successfully explains the overall spatial and
temporal evolution of seismicity, including the time lag between the slow slip event and
seismicity, and provides constraints on the rate-and-state friction parameter a and pore pressure
(Section 5.8). We have also identified pore-pressure diffusion as a secondary driver which
sustains the swarm sequence, as supported by the existence of propagating back front and the
square root of time expansion of reactivated seismicity along the orthogonal en-echelon
structures (Section 5.7). Our analysis also allows us to quantify the relative contributions of the
different mechanisms described: 45 — 65% of seismicity was driven by the slow slip event, 10 —
35% by inter-earthquake static stress transfer, and 10 — 30% by fluids (Section 6.1). Our
observations and modeling results are consistent with the interpretation of this swarm as
aftershocks of a slow slip event sustained by fluid flow (Section 6.2).
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Figure 1. (a) Regional map of 1981-2019 relocated seismicity from the Hauksson-Yang-Shearer
(HYS) catalog (Hauksson et al., 2012) shown as black dots. This study's high-resolution
relocated seismicity catalog of the 2020 Westmorland swarm is shown as red dots. The mapped
Quaternary faults are from the United States Geological Survey (USGS) QFaults database
(USGS, 2019). The North American-Pacific plate boundary location (red line in inset) is from
Bird (2003). Shorelines are from Wessel & Smith (1996). Salton Sea outline is from Google
Earth images (Google earth V 7.3, 2020). (b) Seismicity records from the Southern California
Seismic Network (SCSN) catalog (Hutton et al., 2010) from 1975-2021 over the Westmorland
area (red box in panel a) with a consistent completeness magnitude of 1.4 over the entire
duration (Supporting Figure S1). (c) Comparison between the cumulative moment release of
seismicity (SCSN catalog) and long-term geodetic strains near the Westmorland area (red box in
panel a). Only geodetic strains across the seismogenic depths, constrained from our relocated
seismicity catalog (Figure 2) to be between 4.5 — 8.5 km, are considered. Geodetic moment
release is estimated using the mean slip rate of 17 mm/yr (Crowell et al., 2013) and a shear
modulus of 30 GPa. During the 2020 Westmorland swarm (annotated by red arrows in panels b
and c), there was a relatively large jump in the cumulative number of events but only a modest
increase in seismic moment release.
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Figure 2. Seismicity catalog of the 2020 Westmorland swarm generated from this study
(Sirorattanakul et al., 2022). (a) Map view of 1,373 high-resolution relocated events color-coded
by depth with a depth histogram as inset. The focal mechanisms are taken from the matching
events in the SCSN catalog. We plot only those larger than M2.7 using relocated locations for
the different depth ranges: (b) shallower than 6 km, (c) between 6 and 6.5 km, (d) between 6.5
and 7 km, and (e) deeper than 7 km. Since the relocation technique used in this study relies on
waveform similarity, which can be inaccurate for large events, we use locations from the SCSN
catalog for events larger than M4. (f) Seismicity rate evolution of the entire catalog of 2,282
events generated from this study, including those detected but not relocated. Our catalog does not
contain magnitudes
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Figure 3. Extracted independent component (IC) related to the 2020 Westmorland swarm, which
includes the spatial distribution (horizontal motion in a and vertical motion in b) and the
associated time function (c¢). Unfiltered (gray) and filtered (black solid) time functions derived
from 5-min GPS position time series are compared with those derived from daily GPS position
time series (black dashed) and the cumulative number of events (red). The filter used is a
Savitzky-Golay 3" order moving polynomial fit with a window of 50 hours (Savitzky & Golay,
1964). The hypocentral times of the two most significant earthquakes are shown as vertical
dashed lines. The geodetic deformations due to these M4 earthquakes are not removed.
Compared to the noise levels of the 5-min GPS, these deformations are too small to be visible.
Relocated seismicity from this study are shown as black dots in panels a and b. Fault traces from
the QFaults database (USGS, 2019) are shown as gray lines. The outline of the Salton Sea (cyan)
is from Google Earth images (Google earth V 7.3, 2020).
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Figure 4. Interferometric Synthetic Aperture Radar (InSAR) Line-Of-Sight (LOS) displacements
from Sentinel-1A. The ascending LOS displacements (track 166, frame 105) include 5 images
and 6 interferograms, while the descending LOS displacements (track 173, frame 480) include 9
images and 20 interferograms. Relocated seismicity from this study is shown as black dots. Fault
traces from the QFaults database (USGS, 2019) are shown as gray lines. The outline of the
Salton Sea (cyan) is from Google Earth images (Google earth V 7.3, 2020).
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Figure 5. Spatio-temporal evolution of relocated seismicity generated from this study in (a) map
view, (b) A-A’, and (c) B-B’ cross-sections color-coded by the logarithm of time since the first
relocated event (white star). The complex behaviors of seismicity expansion are shown using (d)
three-dimensional distance from the first relocated event, (e) depth distribution, (f) distance
along A-A’, and (g) distance along B-B’. Blue solid lines denote the various seismicity
expansion fronts. In particular, the expansions of seismicity on the en-echelon structures E1 and
E2 (blue boxes in panel a) are annotated in panel g. The blue dashed line indicates seismicity
back front marking the expansion of the zone of seismicity quiescence. For panels b and f, only
events within 1 km from the main fault (black box in panel a) are shown. Because the relocation
technique used in this study relies on waveform similarity, a few larger events are excluded.
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Figure 6. Geodetic slip inversion. (a) Location of the fault planes (white lines) and the GPS
stations (black triangles) used in the inversion. Cumulative slip over the swarm duration along
(b) F1 and (c) F2 from the preferred slip model. The intersection of F1 and F2 (black vertical
lines), the inferred aseismic-seismic depth boundary (black horizontal dashed lines), and the
relocated seismicity from this study (black dots) are shown in panels b and c. (d) Moment and (e)
reduced chi-squared as a function of smoothing parameter A. The preferred model uses A = 10%¢
(gray bar). (f) The time evolution of cumulative moment release from the geodetic inversion
(black, filtered with the Savitzky-Golay filter (Savitzky & Golay, 1964) similar to Figure 3c),
which reflects both the aseismic and seismic processes, and the cumulative seismic moment (red)
calculated using magnitudes from the Southern California Seismic Network (SCSN) catalog
(Hutton et al., 2010). The slip model is stationary but evolves according to the cumulative
geodetic moment.

57



1693
1694
1695
1696

1697

Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth
September 30, 2022

Figure 7. Comparison of the observed and predicted values from our preferred slip model for (a)
horizontal and (b) vertical GPS displacements. (c) Observed values, (d) predicted values, and (e)
the residuals for InSAR ascending track. (f) Observed values, (g) predicted values, and (h) the
residuals for InNSAR descending track. The location of the fault planes is shown as white lines.
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Figure 8. Coulomb Failure Stress changes (dCFS) at relocated events from this study with
matching SCSN focal mechanisms. In scenario 1, failure planes are the nodal planes with larger
dCFS induced by the slow slip event. With such nodal planes, the distribution of dCFS induced
by (a) the slow slip event, (b) all preceding earthquakes, and (c) their differences are shown. In
scenario 2, failure planes are the nodal planes with larger dCFS induced by all preceding
earthquakes. With such nodal planes, the distribution of dCFS induced by (d) the slow slip event,
(e) all preceding earthquakes, and (f) their differences are shown. The median value for each
distribution is plotted as a horizontal dashed line. Based on the larger dCFS values, we can
classify the events into different categories, whether they are likely triggered by the slow slip
event, other seismic events, or encouraged by neither, because dCFS values are negative (gray
crosses in panels ¢ and f).
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1710  Figure 9. Map of relocated events from this study with matching SCSN focal mechanisms color-
1711 coded by faulting type and a histogram of the corresponding rake. The faulting types are chosen
1712 from the nodal planes with larger dCFS induced by the slow slip event (scenario 1 in Figure 8).
1713 Only those with positive dCFS are considered.
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Figure 10. dCFS induced by the slow slip event calculated (a) on F1 and (b) at a depth layer of
6.5 km. The values displayed are the maximum assuming either the right-lateral strike-slip plane
F1 or left-lateral strike-slip plane F2 as the failure plane. Time evolution of (c) the maximum
distance between the contours of different dCFS values on F1 (panel a) and the first relocated
event and (d) the depth extent of the same contours. Relocated seismicity from this study is
shown as black dots. The onset of the slow slip event is picked to be ~ 8 hr before the start of the
swarm.
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Figure 11. Exponential model fitting. Comparison of seismicity rate models driven by stress
changes induced (a — d) by the slow slip event and (e — h) by the total geodetic deformation. For
a homogeneous medium and stationary slip model, stress changes are proportional to the (a, )
moment release (unfiltered, normalized using the 5™ and 95" percentiles), which can be
approximated with an exponential function. (b, f) Best fit seismicity rate driven by the best fitted
exponential stress changes. (c, g) Root-mean-squared-error (RMSE) misfit to the normalized
moment and (d, h) and seismicity rate when varying the onset of the deformation. The seismicity
rate used for modeling is derived from all detected events in our catalog, including those not
relocated. The spatial distribution of seismicity is not considered.
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Figure 12. Savitzky-Golay filtered model fitting. Comparison of seismicity rate models driven
by stress changes induced (a — ¢) by the slow slip event and (f — j) by the total geodetically
resolved slip. For a homogeneous medium and stationary slip model, stress changes are
proportional to the (a, f) moment release (unfiltered, normalized using the 5" and 95™
percentiles), which can be filtered with a Savitzky-Golay filter based on moving 3™ order
polynomial fit with 50-hr window. (b, g) Best fit seismicity rate. (c, h) Normalized mean squared
error (MSE) from fitting the seismicity rate, (d, i) best fit Aty/ac and (e, j) best fit t, for the
different window sizes and polynomial orders. The gray areas and thicker lines in (¢ — e, h —j)
correspond to 1o confidence interval based on the chi-squared criterion. The seismicity rate used
for modeling is derived from all detected events in our catalog, including those not relocated.
The spatial distribution of seismicity is not considered.
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Figure 13. Statistics of times between seismic events. Comparison of the probability density of
(a, d) the observed and the modified interevent times calculated by removing the inhomogeneity
of seismicity rates using Dieterich’s model driven by (b, €) the slow slip event and (c, f) total
geodetic deformation which also includes the stress transfer from seismicity. The percentage of
clustering is estimated using the Gamma distribution. This analysis does not consider spatial
information and uses all detected events from this study, including those that are not relocated.
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Figure 14. Effects of a stress threshold. (a) Modeled seismicity rate driven by total geodetically
resolved deformation using stress-driven models based on Dieterich’s nucleation (Dieterich,
1994) with and without stress threshold (Heimisson et al., 2021). (b) is a zoomed-in version of
(a). Two-dimensional synthetic seismicity catalogs are generated using the best fit parameters for
the (c-d) model without a threshold and (e-f) the model with a threshold. The spatial distribution
of dCFS on fault plane F1 (Figure 10a