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Abstract—The massive trend toward embedded systems intro-
duces new security threats to prevent. Malicious firmware makes
it easier to launch cyberattacks against embedded systems. Sys-
tems infected with malicious firmware maintain the appearance
of normal firmware operation but execute undesirable activities,
which is usually a security risk. Traditionally, cybercriminals
use malicious firmware to develop possible back-doors for future
attacks. Due to the restricted resources of embedded systems,
it is difficult to thwart these attacks using the majority of
contemporary standard security protocols. In addition, monitor-
ing the firmware operations using existing side channels from
outside the processing unit, such as electromagnetic radiation,
necessitates a complicated hardware configuration and in-depth
technical understanding. In this paper, we propose a physical
side channel that is formed by detecting the overall impedance
changes induced by the firmware actions of a central processing
unit. To demonstrate how this side channel can be exploited
for detecting firmware activities, we experimentally validate it
using impedance measurements to distinguish between distinct
firmware operations with an accuracy of greater than 90%. These
findings are the product of classifiers that are trained via machine
learning. The implementation of our proposed methodology also
leaves room for the use of hardware authentication.

Index Terms—Hardware security, firmware activity, malware,
reflection coefficient, switching activity, impedance difference

I. INTRODUCTION

Current estimates of the number of internet-connected de-
vices speculate that there will be over 40 billion smart devices
in 2025, with more than 30 billion of those being Internet of
Things (IoT) devices [1]. This is a major increase from the
total and distribution of devices in 2015—of the 13.3 billion
internet-connected devices in 2015, only 3.6 billion were
considered IoT. The underlying reason for this drastic increase
in devices is attributed to the popularization of personal smart
devices, home assistants, and the development of low-power
wide-area networks. With this surge in linked devices, the
possibility of cyberattacks increases. One of the most severe
threats to IoT devices is a firmware attack. Recent work [2],
which encompasses the attack surfaces found in IoT devices,
describes how firmware-based attacks can be leveraged for
control hijacking, reverse engineering to obtain sensitive data,

eavesdropping on sensitive packets, and creating system vul-
nerabilities to insert malware. Even if the firmware cannot
be reverse-engineered, firmware updates can be exploited to
distribute malware [3].

Firmware is a form of embedded software that supports
fundamental device functionalities [4]. To begin with, when
a device is turned on, the firmware is the first one to run and
send the necessary instructions for the device to communicate
with other devices or function properly. Without it, even
the most basic of devices will be rendered inoperable. To
prevent this from happening, the firmware is typically stored
on an Erasable Programmable Read Only Memory (EPROM)
or flash memory chip. But with technological advancement,
firmware becomes obsolete even before the hardware does, as
it needs to be updated to improve security, add new features,
address issues, and support new protocols and standards. It is
possible to exploit this flexibility, however, to allow malicious
firmware updates [5].

Malicious firmware and hardware components create an
unacceptable security channel on embedded systems. Ac-
cording to [6], firmware patches are capable of thwarting
potential threats. This solution is appropriate only when the
manufacturer is aware of the problem. It would be great if
the system could detect and respond to threats on its own.
However, embedded systems typically lack the same anti-
malware protection measures as a standard personal computer.
Since the embedded central processing unit (CPU) only has a
limited number of resources, it is difficult to apply the majority
of the standard security strategies. For instance, the authors
of [7] modify the operating system to prevent USB-based
attacks with direct human supervision, in which a USB stick
is used to inject malicious code into secured device firmware
in order to covertly compromise the system’s confidentiality
and reliability. The underlying cause of the issue is the im-
plicit assumption that all extraterrestrial hardware is inherently
trustworthy. Another work in [8] uses a remote software-
based technique to validate the integrity of the peripherals
linked to the system. Similarly, in the paper [9], software-
based attestation is introduced to authenticate the software
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of a device. Here, the complete contents of the memory are
checked using a checksum function. Therefore, a less resource-
intensive solution that can monitor the firmware’s performance
in order to detect any anomalies is necessary.

In this paper, we present a side-channel technique for
observing the activities performed by an embedded system.
This is accomplished by measuring the effective impedance of
the microcontroller unit (MCU) across a range of frequencies
while it is operating. As the MCU executes different instruc-
tions, the effective impedance of the MCU varies. This is
the foundation of our strategy for detecting various firmware
operations. After that, we classify the type of firmware that is
operating on the system by utilizing several machine learning
methods.

II. RELATED WORKS

Previous works discuss and show the feasibility of detecting
firmware activities through side channel analysis. The authors
of [10] demonstrate a work to classify the operating system,
distinguish which software was running and differentiate dif-
ferent malware types running on a single board computer
through EM emissions and an RF probe with near perfect
accuracy. Similarly, authors of [11] propose a method for
identifying malware and classifying it while it is executing on
a Raspberry Pi. Their method uses comparable methodologies
and achieves results that are comparable to those obtained by
the authors of [10]. The authors of the paper [12] detect single
instruction malicious code injections in the firmware of an
Arduino Mega with collected EM emissions. This collected
data was passed through a k-Nearest Neighbor model, where
they were able to classify single-instruction injections. In [13],
a framework for detecting anomalous code executions using
a combination of machine learning and statistical training
techniques is presented.

The impedance-based side-channel information has been
used to detect malicious modifications of hardware [14]–[18].
The authors of [14] use a vector network analyzer (VNA)
to detect hardware Trojans, recycled printed circuit boards
(PCBs), malicious components, and counterfeit processors.
The underlying method to detect hardware anomalies on a
board relies on measuring the equivalent impedance from
various locations on the board. Their process of finding hard-
ware anomalies used the Fréchet between a standard circuit
frequency and an anomalous frequency response. The authors
of [15] implement a hardware modification detection method
by modeling the circuit as a resistor-capacitor circuit. The
basis for the anomaly detection method relies on supplying
the circuit with an AC voltage and measuring the current. Ca-
pacitance measurements are used to detect malicious hardware
modification by comparing the modified device’s reactance
to a standard. Authors of [16] detect and classify certain
types of physical tampering events employing a wide-band
antenna as a nearfield probe. The concept is founded on the
premise that changes in the radio channel affect the frequency
characteristics of an antenna. The work is backed by both a
theoretical foundation and empirical validation. The authors

in [17] explore the frequency region in which these com-
plementary metal-oxide semiconductor (CMOS) gates emit
unintentional side channel information. As current travels
through the various metallic traces in the chip, the tiny
distances between these metal etchings cause electromagnetic
radiation to be unintentionally emitted, which suggests a range
of frequencies to be monitored to detect the firmware running
on the embedded system. The side channel-based analysis of
[18] establishes a relationship between active mode current
and maximum operational frequency. The authors show that
this relationship can be used to detect hardware Trojans.

In this article, we will present our proposal, which is based
on the impedance response of the processing unit and may
be used to identify and classify different sorts of firmware
activities.

III. THEORETICAL ANALYSIS

In this section, we discuss the theory that underpins our
proposed method for evaluating the viability of detecting
firmware activities using a VNA. We propose that this can be
accomplished by identifying the change in effective impedance
caused by the switching activity arising from the firmware
operations of a microcontroller.

The firmware of a device is a specialized type of computer
software that offers low-level control for the device’s specific
hardware in an embedded system. It contains instructions to
assist the hardware start-up, communicate with other devices,
and execute basic input/output functions. The instructions are
executed on the system’s hardware, which contains thousands,
if not millions, of logic circuits. By switching these logic cir-
cuits between their on and off states, instructions are executed.

The architecture of the logic gates in integrated chips
relies on CMOS circuits. CMOS inverter/NOT gate, one of
the basic universal logic gates, is a fundamental building
block in digital logic circuits. Digital logic circuits compute
the tasks by regulating the metal–oxide–semiconductor field-
effect transistors (MOSFETs) of the CMOS circuits. These
MOSFETs are activated by applying a voltage to the gate,
which regulates the drain current. A thin silicon oxide layer
isolates the gate of a MOSFET from the drain and source,
and by inverting the substrate between the drain and source, a
parasitic diode is formed. In addition to exhibiting resistance,
MOSFETs are characterized by the presence of capacitance
between their terminals. This property is a direct consequence
of the structure of MOSFETs. The capacitance of the gate
oxide film determines the capacitance of the gate to drain and
gate to source terminals. Parasitic diode junction capacitance
determines drain to source capacitance.

Fig. 1a depicts an equivalent circuit of CMOS containing
parasitic capacitances. In this example, Cgdp/n represents
the gate to drain capacitance, Cdbp/n represents the drain
to bulk parasitic capacitance (the diffusion capacitance) for
the PMOS/NMOS, and CY represents the capacitance at the
output wire [19], [20]. The expressions of the capacitance are
presented in Table I. The parameters associated with Table I
and their definitions are presented in Table II.
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(a) (b) (c)

Fig. 1: CMOS inverter (a) with the parasitic capacitances, (b) switch model of dynamic behavior, (c) equivalent impedance
circuit.

The output Y of the CMOS inverter varies based on the
input X during the steady state. As shown in Fig. 1b, Rp and
Rn are the effective on-resistance values for the PMOS and
NMOS, respectively. Here, Ceq represents the output capaci-
tance, which is the aggregate of all parasitic capacitance in the
CMOS inverter. Hence, Ceq =

∑
(Cgdp, Cgdn, Cdbp, Cdbp).

Let Rlin,p/n and Rsat,p/n represent the effective on-resistance
in the linear and saturation regions, respectively, for the
PMOS/NMOS, [21], where,

Rlin,p/n =
1
2 (VD − VS − Vt,p/n)

3
8k

′
p/n(

W
L )p/n(VD − VS − Vt,p/n)2

(1)

Rsat,p/n =
VD − VS

1
2k

′
p/n(

W
L )p/n(VD − VS − Vt,p/n)2

(2)

Here, k′p/n represents the trans-conductance, (W/L)p/n rep-
resents the aspect ratio, and Vt,p/n represents the threshold
voltage of the PMOS/NMOS. The voltage at the drain is
denoted by VD, while the voltage at the source is denoted
by VS . Using (1) and (2), Rp and Rn can be estimated as
follows:

Rp/n =
1

2
(Rlin,p/n +Rsat,p/n) (3)

Each of the equivalent impedances, Zp and Zn in Fig. 1c,
consists of equivalent resistance Rp/n and equivalent reactance
Xp/n. Therefore, Zp/n = Rp/n + jXp/n, where Rp/n is the
resistance and Xp/n is the reactance of the PMOS/NMOS.
The combined parasitic capacitance of the PMOS/NMOS
dominates the equivalent reactance Xp/n [19]. Therefore,
Xp/n ≈ −1

ωCeq,p/n
, where Ceq,p/n is the total equivalent

capacitance of the PMOS/NMOS between the output node Y
and the ground node GND.

The output terminal Y is connected to either the impedance
Zp or Zn depending on the gate input X . Due to process varia-
tion and MOSFET geometry, the impedance of the MOSFETs
differs from each other. As a consequence, the CMOS inputs
govern the impedance measured between the source voltage

TABLE I: Expression of the parasitic capacitance

Capacitor Expression

Cgdp 2CopWp

Cgdn 2ConWn

Cdsp KbppADpCJp +KswpPDpCJSWp

Cdsn KbpnADnCJn +KswnPDnCJSWn

CY From Extraction

TABLE II: Definitions of the parameters of parasitic capaci-
tance

Parameter Symbol Definition

Cop, Con Overlap capacitance per unit width

Wp/n Width of PMOS/NMOS

Kbpp/n Capacitor linearization factor of bottom plate

ADp/n Area of drain

CJp/n Bottom junction capacitance

Kswp/n Capacitor linearization factor of sidewall

PDp/n Perimeter of drain

CJSWp/n Sidewall junction capacitance

node VCC and the ground voltage node GND. Other logic
circuits in the CPU exhibit similar input/output impedance
shifting characteristics due to switching as well.

As the CPU executes its instruction set, inputs are applied to
the gate terminals of logic gates in order to perform operations.
In response to changes in the inputs, the impedance between
the source and ground nodes of logic gates alters. Therefore, it
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is to be expected that the overall impedance that exists between
the source node and the ground node would shift in response to
the various operations carried out by the CPU. In other words,
the switching activity of the CMOS results in a change in the
impedance between the source and ground.

To summarize, we conclude that as the CPU changes the
output states of the logic gates, the size of the overall effective
impedance between the source and ground node should change
depending on the task it is performing. Therefore, distinct
impedance signatures should be generated by distinct types
of firmware activities.

IV. EXPERIMENTAL SETUP

The goal of the experimental set-up is to evaluate the feasi-
bility of the technique that we have proposed for monitoring
the activities of a CPU. The Arduino Due 1, a VNA [23],
and a breadboard with some LEDs and resistors to limit the
current drain through the LEDs form up the infrastructure that
is used in the study to collect data. A 5V power supply is used
to power the Arduino Due. Afterwards, a capacitor is used
with the probe to connect the VNA to the 3.3V pin of the
microcontroller so that the observation can be recorded. Since
the Arduino Due operates on 3.3V, monitoring the virtual
impedance of the CPU while the firmware is being executed
can be performed by sampling the 3.3V pin.

The VNA has a measuring range of 500 kHz to 4 GHz. We
use the VNA to measure the forward reflection coefficient,
a parameter that characterizes the amount of reflected wave
in the transmission medium, to calculate the impedance at
10,000 linearly divided frequency points throughout its spec-
tral region. To eliminate the DC component from measured
signals, we put a capacitor in series. This data collected by
the VNA is subsequently processed for classification analysis.
Fig. 2 depicts a diagram that describes the experimental setup.
The VNA is used to perform the measurements. A computer
stores the measured signals and uploads different firmware to
the Arduino microcontroller.

For the purpose of developing firmware operations, we
compose C/C++ code 2 in the Arduino IDE and upload it
to the MCU. This experiment considers the following four
possible firmware operations:

1) Case 1: In this instance, the MCU is powered on but no
operation is being performed.

2) Case 2: Three resistors and LEDs are connected to the
digital pins of the Arduino and switched on and off
at a rate of 1 kHz. These pins, as well as eight other
digital I/O pins, are connected with additional resistors
to ground. The purpose of this is to imitate an operation
for the microcontroller that draws the total maximum
allowable I/O current from all of the I/O pins (130 mA).

1The Arduino Due [22] is powered by the AT91SAM3X8E microcontroller
with 96 KB of SRAM and 3.3V of operational voltage. It operates at 84 MHz
and has a total DC output current of 130 mA across all of its I/O lines

2The firmware activity codes for this experiment are accessible at https:
//github.com/ChristopherThompsonUT/ArduinoRepo

3) Case 3: In this instance, the MCU executes two distinct
programs. The first program periodically turns an LED
on and off at 1 Hz. In the background, as the MCU
performs this operation, another program exponentiates
random four-digit numbers. These numerals are raised
to powers of one through three hundred. This latter pro-
gram replicates possibly dangerous firmware operating
in the background of the system, and is similar to the
device acting as a botnet host. Essentially, the system
preserves the illusion of regular operation but executes
unwanted activities. This is akin to the system being
compromised by the Mirai or BotenaGo malware [24].
The BigNumber Arduino Library [25] is used to reliably
store and handle 256-bit values in order to manipulate
these numbers.

4) Case 4: The Advanced Encryption Standard (AES) is
utilized to replicate the situation in which a MCU is
executing a sensitive task. The Arduino Cryptography
Library [26] is used to encrypt and decrypt strings of
ten ASCII characters that are generated at random.

Using these four scripts, we collect a total of 445 observations
per case, for a grand total of 1,780 observations. Each obser-
vation contains the forward reflection coefficients at the most
relevant and dominating frequency points extending from 500
kHz to 4 GHz (frequency range of the VNA) in the collected
dataset. The step-by-step process for locating those frequency
locations is described in greater detail in V-A. These frequency
points help us to reduce the amount of redundant information
in the dataset.

Fig. 2: Data collection from the microcontroller with a VNA.

Let τ represent the reflection coefficient, Zr represent
the reference impedance, and Zτ represent the impedance
obtained from the reflection coefficient of the medium. Eq. (4)
describes the relation between Zτ and τ .

Zτ = Zr

(
1 + τ

1− τ

)
(4)
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To compute the impedance, we use the recorded reflection
coefficients and eqrefeq:impedance. The reference impedance,
Zr, for the VNA in this case is 50 Ω. We employ impedance
measurements generated from reflection coefficients in the
classification stage.

V. RESULT AND ANALYSIS

This section begins by describing our analysis approach
for detecting firmware activity from a dataset. Following this
is an overview of what we studied. Fig. 3 illustrates the
categorization process in a simplified form. In order to make
use of any machine learning model, an appropriate dataset is
required that is composed of the fingerprints of the activities
carried out by the firmware. The steps involved in this process
are outlined in the subsequent subsections.

Fig. 3: Steps in firmware activity detection and classification

A. Selecting Scanning Region

The VNA in our experimental setup scans 10,000 frequency
points that are linearly split and range from 500 kHz to
4 GHz in frequency. This section focuses on selecting the
appropriate frequencies to investigate for signatures generated
from various firmware activities. We desire to find the optimal
frequency points in order to reduce the computation time and
increase the number of relevant sample points. The procedure
is depicted graphically in Fig. 4.

Fig. 4: Selection of appropriate frequency points

To investigate the frequency points, we collect the responses
of 10,000 of them while performing various tasks on the
microcontroller. A subset of about 20% of the total frequency
points is then investigated to determine which ones are most
strongly connected to various firmware operations. This allows
us to determine the frequencies that are relevant. In order
to do this, we compute the Pearson correlation coefficients
between the responses of each frequency point and specific
firmware activity. On the basis of the correlation coefficients,
the first 1968 frequency points (about 20% of all frequencies
points) that are highly correlated with firmware activities are
selected. These 1968 frequency points also reflect the 70%
correlation coefficients for the correlation coefficient with the
highest value. After that, we select the maximum number of
frequencies that are linearly independent of one another in
order to evaluate the dominant frequency points. This allows
us to reduce the number by an additional factor. In this step, we
once again utilize the Pearson correlation coefficients between
the frequencies. These subsequently lowered frequency groups
exhibit correlation values of less than 90%. Following this two-
step process of frequency selection, we are able to identify 338
frequency points that adequately describe the activities of the
firmware without significantly compromising accuracy. These
338 frequency points represent only a 3.38% of the frequency
range of the VNA. During the data collection process with the
VNA, we concentrate on only these specific frequency points.

B. Feature Selection and Classification

We train and test the classifier models with the help of the
MATLAB Statistics and Machine Learning Toolbox. As dis-
cussed in the preceding subsection, we construct two distinct
datasets, one for the training and the other one for the testing,
utilizing the 338 frequency points that are the most significant
and dominant in explaining the actions of the firmware. One
of these datasets is used for training, and the other for testing.

As depicted in Fig. 3, we first use the training dataset to
produce signatures from various firmware actions in order to
deduce any meaningful use from the dataset. In order to get
this collection of signatures prepared for the machine learn-
ing (ML) classifier, we run a principal component analysis
(PCA) [27] on the training data to determine which features
are accountable for 95% of the variance in the data. This
allows us to prepare the signatures for the ML classifier. To
reduce training time and improve the classifier’s accuracy, it
is desirable to select a subset of the available features. PCA
facilitates the generation of a reduced collection of features
without compromising the variance of the data. Using PCA,
we can explain at least 95% of the variation in the training
dataset using only 34 principal components. In the training
phase of the machine learning classifier, these 34 principal
components serve as features. To prevent overtraining and
to stabilize the models, classifiers are trained using five-fold
cross-validation. For the purposes of validating the models,
we use the testing dataset, which comprises 30% of the total
collected data.
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TABLE III: Comparison of accuracy and precision metric

Classifier F1 Score (Train) F1 Score (Test) Precision Recall Specificity Accuracy

SVM (Kernel: Gaussian) [28] 92.4% 93.7% 93.9% 93.6% 97.9% 93.6%

SVM (Kernel: Cubic) [29] 92.1% 93.3% 93.7% 93.2% 97.7% 93.3%

SVM (Kernel: Quadratic) [30] 92.4% 91.8% 92.2% 91.7% 97.2% 91.8%

Quadratic Discriminant [31] 92.1% 91.5% 91.7% 91.4% 97.1% 91.4%

Subspace KNN [32] 91% 90.9% 91.2% 90.8% 96.9% 90.8%

To evaluate the performance of the ML classifiers, we cal-
culate the precision, recall, specificity, accuracy and F1 scores
[33], [34]. Let TPi, TNi, FPi, and FNi be the true positives,
true negatives, false positives, and false negatives predicted by
a given classifier for prediction class i, respectively. In this
context, a true positive is the number of correctly predicted
positive values, whereas a false positive is the number of
inaccurately predicted positive values. Additionally, a false
negative is the number of values incorrectly predicted as
negative, whereas a true negative is the number of correctly
predicted negative values. Precision measures the proportion of
positive class predictions that correspond to the actual positive
class. Thus, precision evaluates the accuracy for the minority
class and is calculated as [33],

Precision =
1

i

∑
i

(
TPi

TPi + FPi

)
(5)

Recall quantifies the number of correct class predictions
generated for all positive examples in the training set [33].
The recall indicates that positive forecasts were missed.

Recall =
1

i

∑
i

(
TPi

TPi + FNi

)
(6)

The specificity of a classifier is the ratio between the amount
of data that is accurately classified as negative and the actual
amount of data that is negative [33].

Specificity =
1

i

∑
i

(
TNi

TNi + FPi

)
(7)

The accuracy of a dataset’s predictions is the ratio of correct
predictions to the total number of predictions. The accuracy
increases as the number of correct predictions made by the
system increases [34].

Accuracy =
1

i

∑
i

(
TPi + TNi

TPi + TNi + FPi + FNi

)
(8)

The F1 score provides a single value that addresses both
precision and recall concerns in a single number. This is
the mean harmonic of the two fractions [34]. A classifier’s
performance improves as its F1 score increases.

F1 =
2× Precision×Recall

Precision+Recall
(9)

We use (5)-(9) to calculate the performance metrics and
compare the performance of the classifiers. Table III illustrates

the F1 score, precision, recall, specificity, and accuracy for
five ML classifiers. The classifiers perform very well and
classify firmware activities with an F1 score, precision, recall,
specificity, and accuracy of more than 90%, indicating that our
proposed method to detect firmware operations is statistically
viable.

VI. CONCLUSION AND FUTURE WORK

In this study, we demonstrate that a VNA is capable of
detecting aberrant activity in digital logic systems. This is
accomplished by monitoring the effective impedance of an
Arduino Due, measuring the values of the forward reflection
coefficients using a VNA over a range of significant frequen-
cies, extracting features from these, and passing these feature
sets to various machine learning models. The top-performing
classifier is able to determine which firmware is currently
being executed by the system by making use of 34 features,
achieving an accuracy of 93.2% during training and 94.8%
during testing, respectively.

In the future, we plan to apply more feature extraction
techniques to determine if this can potentially improve the
classifiers’ accuracy. In addition, we intend to determine if
our proposed method may be utilized in reverse engineering
to recover critical hardware and algorithmic data. Since we can
discover firmware anomalies in this way, we can investigate
hardware Trojans. Lastly, our proposed strategy may also
investigate how injected components influence the computing
processes of embedded systems.

ACKNOWLEDGMENT

This work was supported partly by the National Sci-
ence Foundation under Grant Nos. 2150248, 2214108, and
2114200.

REFERENCES

[1] “State of the IoT 2020: 12 billion IoT connections, surpassing non-IoT
for the first time,” https://iot-analytics.com/state-of-the-iot-2020-12-
billion-iot-connections-surpassing-non-iot-for-the-first-time/, Nov
2021, (Accessed: 3 September 2022).

[2] S. Schmidt, M. Tausig, M. Hudler, and G. Simhandl, “Secure firmware
update over the air in the internet of things focusing on flexibility and
feasibility,” in Internet of Things Software Update Workshop (IoTSU).
Proceeding, 2016.

[3] H. A. Abdul-Ghani, D. Konstantas, and M. Mahyoub, “A comprehensive
IoT attacks survey based on a building-blocked reference model,”
International Journal of Advanced Computer Science and Applications,
vol. 9, no. 3, 2018.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on January 26,2023 at 13:10:33 UTC from IEEE Xplore.  Restrictions apply. 



[4] C. J. Tan, J. Mohamad-Saleh, K. A. M. Zain, and Z. A. A. Aziz, “Review
on firmware,” in ICISPC 2017, 2017.

[5] A. Cui, M. Costello, and S. Stolfo, “When firmware modifications attack:
A case study of embedded exploitation,” 2013.

[6] O. Caspi, “AT&T Alien Labs finds new golang malware (BotenaGo)
targeting millions of routers and IoT devices with more than 30
exploits,” https://cybersecurity.att.com/blogs/labs-research/att-alien-
labs-finds-new-golang-malwarebotenago-targeting-millions-of-routers-
and-iot-devices-with-more-than-30-exploits, Nov 2021, (Accessed: 3
September 2022).

[7] D. J. Tian, A. Bates, and K. Butler, “Defending against malicious USB
firmware with GoodUSB,” in Proceedings of the 31st Annual Computer
Security Applications Conference, 2015, pp. 261–270.

[8] Y. Li, J. M. McCune, and A. Perrig, “SBAP: software-based attestation
for peripherals,” in International Conference on Trust and Trustworthy
Computing. Springer, 2010, pp. 16–29.

[9] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “SWATT: software-
based attestation for embedded devices,” in IEEE Symposium on Security
and Privacy, 2004. Proceedings. 2004. IEEE, 2004, pp. 272–282.

[10] M. L. Wilt, M. M. Baker, and S. J. Papadakis, “Toward an RF side-
channel reverse engineering tool,” 2020 IEEE Physical Assurance and
Inspection of Electronics (PAINE), 2020.

[11] D. P. Pham, D. Marion, M. Mastio, and A. Heuser, “Obfuscation
revealed: Leveraging electromagnetic signals for obfuscated malware
classification,” Annual Computer Security Applications Conference,
2021.

[12] K. Vedros, G. M. Makrakis, C. Kolias, M. Xian, D. Barbara, and
C. Rieger, “On the limits of em based detection of control logic injection
attacks in noisy environments,” 2021 Resilience Week (RWS), 2021.

[13] H. Agrawal, R. Chen, J. K. Hollingsworth, C. Hung, R. Izmailov,
J. Koshy, J. Liberti, C. Mesterharm, J. Morman, T. Panagos, and et al.,
“CASPER: An efficient approach to detect anomalous code execution
from unintended electronic device emissions,” Cyber Sensing 2018,
2018.

[14] H. Zhu, H. Shan, D. Sullivan, X. Guo, Y. Jin, and X. Zhang, “PDNPulse:
sensing PCB anomaly with the intrinsic power delivery network,” CoRR,
2022. [Online]. Available: https://doi.org/10.48550/arXiv.2204.02482

[15] M. Nishizawa, K. Hasegawa, and N. Togawa, “Capacitance measurement
of running hardware devices and its application to malicious modifica-
tion detection,” in 2018 IEEE Asia Pacific Conference on Circuits and
Systems (APCCAS), 2018, pp. 362–365.

[16] M. S. Awal, A. Madanayake, and M. T. Rahman, “Nearfield RF sensing
for feature-detection and algorithmic classification of tamper attacks,”
IEEE Journal of Radio Frequency Identification, vol. 6, pp. 490–499,
2022.

[17] D. Das, M. Nath, B. Chatterjee, S. Ghosh, and S. Sen, “STELLAR:
A generic EM side-channel attack protection through ground-up root-
cause analysis,” in 2019 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), Tysons, Virginia, 2019.

[18] S. Narasimhan, D. Du, R. S. Chakraborty, S. Paul, F. Wolff, C. Pa-
pachristou, K. Roy, and S. Bhunia, “Multiple-parameter side-channel
analysis: A non-invasive hardware Trojan detection approach,” in 2010
IEEE international symposium on hardware-oriented security and trust
(HOST). IEEE, 2010, pp. 13–18.

[19] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital Integrated
Circuits. Prentice hall, 2002.

[20] A. S. Smith and K. C. Smith, Microelectronic Circuits, 5th ed. Oxford
University Press, 2004.

[21] W. Wolf, FPGA-based system design. Pearson Education, 2004.
[22] “Arduino Due product page,” https://docs.arduino.cc/hardware/due, (Ac-

cessed: 3 September 2022).
[23] “Portable VNA - Vector Network Analyzer,” https://pocketvna.com/,

(Accessed: 3 September 2022).
[24] I. Van der Elzen and J. van Heugten, “Techniques for detecting com-

promised IoT devices,” University of Amsterdam, 2017.
[25] N. Gammon, “Bignumber,” https://github.com/nickgammon/BigNumber,

March 2019, (Accessed: 3 September 2022).
[26] Rweather, “Arduino cryptography library,” https://github.com/rweather/

arduinolibs, 2019, (Accessed: 3 September 2022).
[27] J. E. Jackson, A user’s guide to principal components. John Wiley &

Sons, 2005.
[28] W. Wang, Z. Xu, W. Lu, and X. Zhang, “Determination of the spread

parameter in the Gaussian kernel for classification and regression,”
Neurocomputing, vol. 55, no. 3-4, pp. 643–663, 2003.

[29] A. R. Bagasta, Z. Rustam, J. Pandelaki, and W. A. Nugroho, “Compar-
ison of cubic SVM with Gaussian SVM: classification of infarction for
detecting ischemic stroke,” in IOP Conference Series: Materials Science
and Engineering, vol. 546, no. 5. IOP Publishing, 2019, p. 052016.

[30] A. Patle and D. S. Chouhan, “SVM kernel functions for classification,”
in 2013 International Conference on Advances in Technology and
Engineering (ICATE). IEEE, 2013, pp. 1–9.

[31] A. Tharwat, “Linear vs. quadratic discriminant analysis classifier: a
tutorial,” International Journal of Applied Pattern Recognition, vol. 3,
no. 2, pp. 145–180, 2016.

[32] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE transactions on pattern analysis and machine intelligence,
vol. 20, no. 8, pp. 832–844, 1998.

[33] D. M. Powers, “Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness and correlation,” arXiv preprint
arXiv:2010.16061, 2020.

[34] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2011.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on January 26,2023 at 13:10:33 UTC from IEEE Xplore.  Restrictions apply. 


