

Comment on “Rapid Solid-Phase Sulfurization Growth and Nonlinear Optical Characterization of Transfer-Free TiS_3 Nanoribbons”

Cite This: *Chem. Mater.* 2022, 34, 7090–7090

Read Online

ACCESS |

Metrics & More

Article Recommendations

Zhang et al.¹ have done a commendable job of developing a highly time-efficient method for the synthesis of TiS_3 . While the experimental data presented in their work¹ are of high quality, the current fits to their high-resolution X-ray photoemission spectroscopy (XPS) data for the S 2p core level (Figure 3b of ref 1) are in line with neither prior work^{2–6} nor expectations.

Several prior studies focused on the photoemission spectroscopy characterization of TiS_3 contain rigorous discussions on the S 2p core level XPS spectra.^{2–6} The expectation is that there is more electron donation between Ti and S^{2-} (sulfide) than between Ti and S_2^{2-} (disulfide). This phenomenon manifests itself in higher binding energy for the S_2^{2-} 2p core-level doublet than that of the S^{2-} 2p core-level doublet,^{2–6} as opposed to what is reported in ref 1.

Moreover, in accordance with the multiplicity of the 2p_{1/2} and 2p_{3/2} electronic states, the XPS peak intensity ratio of the fitted 2p_{1/2} core level to the fitted 2p_{3/2} core level associated with each sulfur species should be 1:2, which is not what the current fits indicate. It is also worth noting that, given the high quality of their data,¹ better fits might indicate whether it is the S^{2-} sulfur vacancies or the S_2^{2-} sulfur vacancies that render TiS_3 n-type.^{7,8} In other words, a thorough analysis of such high-quality high-resolution XPS (shown in Figure 3b of ref 1) may actually help single out the exact kind of sulfur vacancies that are responsible for making TiS_3 n-type. This could be accomplished by analyzing the XPS peak ratio of S^{2-} to S_2^{2-} , as for TiS_3 , any XPS peak ratio of S^{2-} to S_2^{2-} besides 1:2 would imply preferential sulfur vacancies. For now, a superficial examination of the current fits¹ hints toward the existence of sulfur vacancies among the S_2^{2-} species.

In conclusion, to fix the existing internal inconsistencies in the paper¹ and to strengthen its message, further analysis and careful refitting of the data presented in Figure 3b of ref 1 is strongly recommended. Not only will redoing the current fits correctly help improve the quality of science that is being communicated by the paper in its present form, but it may also unveil what kind of sulfur vacancies are liable for the observed n-type behavior of TiS_3 .^{7,8}

Archit Dhingra orcid.org/0000-0001-9352-4361

AUTHOR INFORMATION

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acs.chemmater.2c01122>

Notes

The author declares no competing financial interest.

ACKNOWLEDGMENTS

The author is grateful to Peter A. Dowben for useful discussions. This work was supported by National Science Foundation through EPSCoR RII Track-1: Emergent Quantum Materials and Technologies (EQUATE), Award No. OIA-2044049.

REFERENCES

- (1) Zhang, W.; Lv, T.; Deng, C.; Gao, H.; Hu, S.; Chen, F.; Liu, J.; Fan, X.; Liu, Y.; Jiao, B.; et al. Rapid Solid-Phase Sulfurization Growth and Nonlinear Optical Characterization of Transfer-Free TiS_3 Nanoribbons. *Chem. Mater.* **2022**, *34* (6), 2790–2797.
- (2) Yi, H.; Komesu, T.; Gilbert, S.; Hao, G.; Yost, A. J.; Lipatov, A.; Sinitskii, A.; Avila, J.; Chen, C.; Asensio, M. C.; et al. The Band Structure of the Quasi-One-Dimensional Layered Semiconductor $\text{TiS}_3(001)$. *Appl. Phys. Lett.* **2018**, *112* (5), 052102.
- (3) Gilbert, S. J.; Lipatov, A.; Yost, A. J.; Loes, M. J.; Sinitskii, A.; Dowben, P. A. The Electronic Properties of Au and Pt Metal Contacts on Quasi-One-Dimensional Layered $\text{TiS}_3(001)$. *Appl. Phys. Lett.* **2019**, *114* (10), 101604.
- (4) Dhingra, A.; Lipatov, A.; Loes, M. J.; Sinitskii, A.; Dowben, P. A. Nonuniform Debye Temperatures in Quasi-One-Dimensional Transition-Metal Trichalcogenides. *ACS Mater. Lett.* **2021**, *3* (4), 414–419.
- (5) Fleet, M. E.; Harmer, S. L.; Liu, X.; Nesbitt, H. W. Polarized X-Ray Absorption Spectroscopy and XPS of TiS_3 : S K- and Ti L-Edge XANES and S and Ti 2p XPS. *Surf. Sci.* **2005**, *584* (2–3), 133–145.
- (6) Endo, K.; Ihara, H.; Watanabe, K.; Gonda, S.-I. XPS Study of One-Dimensional Compounds: TiS_3 . *J. Solid State Chem.* **1982**, *44* (2), 268–272.
- (7) Island, J. O.; Barawi, M.; Biele, R.; Almazán, A.; Clamagirán, J. M.; Ares, J. R.; Sánchez, C.; van der Zant, H. S. J.; Álvarez, J. V.; D'Agosta, R.; et al. TiS_3 Transistors with Tailored Morphology and Electrical Properties. *Adv. Mater.* **2015**, *27* (16), 2595–2601.
- (8) Dai, J.; Li, M.; Zeng, X. C. Group IVB Transition Metal Trichalcogenides: A New Class of 2D Layered Materials beyond Graphene. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **2016**, *6* (2), 211–222.

Received: April 12, 2022

Revised: May 6, 2022

Published: July 25, 2022

ACS Publications

© 2022 American Chemical Society

7090

<https://doi.org/10.1021/acs.chemmater.2c01122>
Chem. Mater. **2022**, *34*, 7090–7090