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Abstract—Intrusion detection through classifying incoming
packets is a crucial functionality at the network edge, requiring
accuracy, efficiency and scalability at the same time, introducing
a great challenge. On the one hand, traditional table-based switch
functions have limited capacity to identify complicated network
attack behaviors. On the other hand, machine learning based
methods providing high accuracy are widely used for packet
classification, but they typically require packets to be forwarded
to an extra host and therefore increase the network latency.
To overcome these limitations, in this paper we propose an
architecture with programmable data plane switches. We show
that Binarized Neural Networks (BNNs) can be implemented
as switch functions at the network edge classifying incoming
packets at the line speed of the switches. To train BNNs in a
scalable manner, we adopt a federated learning approach that
keeps the communication overheads of training small even for
scenarios involving many edge network domains. We next develop
a prototype using the P4 language and perform evaluations. The
results demonstrate that a multi-fold improvement in latency and
communication overheads can be achieved compared to state-of-
the-art learning architectures.

I. INTRODUCTION

Edge networking attracts significant research interest with

the rapid growth in the amount of mobile devices. Meanwhile,

more security threats emerge in edge networking scenarios

such as the botnet [1] where a hijacked edge device may

infect more devices across different edge domains to conduct

large-scale attacks. Therefore, it is necessary to deploy firewall

functions and other security mechanisms at the network edge

to identify harmful traffic flows from normal ones [2].

Machine learning algorithms such as neural networks are

widely adopted for classifying incoming packets. Taking the

values of packet header fields and flow statistics as input

features, these algorithms are able to learn the pattern of

attacks from collected network traces and make predictions

for future inputs with high accuracy. However, traditional

switches at the network edge only support relatively simple

functions such as specific packet header fields matching and

table lookup. Therefore, an unknown packet incoming to a

switch has to be forwarded to a remote server or host where the

learning algorithms run. The delay incurred makes it unlikely

to process packets at a high speed. In addition, a large number

of flow rules will be generated in this procedure and have to
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be stored in the switches, whose memory is usually limited

and becomes another bottleneck [3].

The development of Software Defined Networking (SDN)

and the programmable data plane concept in recent years bring

new opportunities towards addressing the above challenges.

SDN separates the control and data planes of a network,

enabling an external network entity, known as the controller,

to manage the data plane switches in a programmable manner.

Furthermore, SmartNIC products and P4 language [4] enhance

the capability of the switch itself, which is now capable of

offloading services that are traditionally run in remote servers

with general (and powerful) CPUs [5].

Binarized Neural Network (BNN) [6] can be used to deploy

machine-learning-based packet classification in the form of

in-network services inside the switches. BNN compresses all

the weights of a neural network into single bits, therefore

significantly reducing the computation and memory require-

ment of performing the inference to a level that a data plane

switch may afford. It also converts all computations (e.g., real-

valued dot production and activation functions) into bitwise

operations, which are supported by typical programmable data

plane switches.

While the use of BNNs can expedite the inference process

by enabling the offloading of it directly on the data plane

switch level, there still exist challenges about the training

process of these learning models. It is unclear how to train the

BNNs in a scalable manner e.g., in large networks with many

interconnected edge domains, many gateways and switches.

When a new attack pattern appears only in specific domains,

other gateways should also be informed, even if the attacker’s

packets do not go through them, so as to make more efficient

training decisions in future. Meanwhile, the communication

overheads either among gateways or between the gateways

and the cloud being responsible for the training should also

be considered. Even worse, it is possible that edge domains are

controlled by multiple parties who do not want to share their

network traces with others for training, since the information

leak itself is another security threat.

Federated learning [7] is a technique suitable for online

training in this scenario, which aggregates local weight updates

from each gateway without asking their collected packets,

and then calculates new model parameters for gateways. We

explore a novel way of combining federated learning and BNN

to set up a scalable packet classification architecture with high

performance and low costs while preserving the privacy of
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network traces.

Specifically, we make the following contributions:

• We propose a learning framework for packet classification

combining BNNs and federated learning achieving high

accuracy with low memory and communication costs. To

the best of our knowledge, this is the first work combining

these concepts together.

• We design an architecture based on programmable net-

work switches for providing security service to multi-

party edge device owners while performing packet clas-

sification at the line speed of the switches and updating

learning models in a scalable manner.

• We develop a prototype of the proposed architecture in

P4 language and evaluate its performance and costs in

a network testbed with real devices and traffic traces.

We find that a multi-fold improvement in latency and

communication overheads can be achieved compared to

state-of-the-art learning architectures.

The remainder of this paper is organized as follows. After

discussing our contribution over related works in Section II,

we describe the main challenges of the packet classification at

the network edge and propose a system architecture in Section

III. In Section IV, we describe the learning model inference

and training mechanisms, as well as the federated learning

framework. Section V demonstrates how such architecture and

mechanisms are implemented as a prototype, and Section VI

evaluates its performance. We conclude the paper in Section

VII.

II. RELATED WORK

SDN and In-network Processing. Software Defined Net-

working (SDN) provides programmable and centralized net-

work management by separating the control and data planes.

By placing multiple controllers in different domains, SDN can

scale well in a multi-domain edge network scenario [8]. As

for the data plane, a trend is to make switches programmable,

such as the development of P4 language [4]. P4 enables in-

network processing by deploying services in switches instead

of servers. [5] investigates various in-network processing ap-

plications which show high efficiency and lower costs com-

pared to traditional methods. [9] adopts such approach at the

network edge.

Learning Methods. Machine learning has been widely

used for packet classification and intrusion detection such as

approaches in [10] [11] promising high accuracy. However, a

remote host or server is typically required to run the learning

algorithm, introducing additional latency and preventing pack-

ets from being processed at the line speed of the switches. This

is true even for the SDN-based learning methods [12] where

learning is performed in the control plane (SDN controller)

and the data plane (switches) only plays the role of flow table

storing and matching. To overcome this limitation, we seek

for a data plane-compatible algorithm for higher processing

speed.

Binarized Neural Networks. BNN is a type of neural

network with only binary weights and activation functions [6],

the inference process of which can be converted into bitwise

operations. [13] demonstrates that BNN can achieve much

faster speed and cost less memory while maintaining a high

level of accuracy. Such features make it suitable for embedded

devices with limited capacity [14]. [15] and [16] attempted to

implement BNN in smart network devices. We make similar

attempts while also performing realistic networking tasks, i.e.,

packet classification. In addition, we propose an online training

scheme, which is scalable by adopting federated learning

techniques.

Distributed / Federated Learning. For better scalability,

neural networks can be trained in a distributed manner. Fur-

thermore, the concept of federated learning is proposed [7],

which keeps the training data locally to preserve privacy. Fed-

erated learning has been applied for the security issue in edge

scenarios, e.g., IoT [17] and mobile networks [18]. Reducing

communication overhead is a major concern in distributed and

federated learning. One promising approach is to quantize

or binarize the weight updates, such as SignSGD [19]. The

distributed learning procedure also shows good compatibility

with programmable data plane devices. [20] and [21] propose

in-network methods for accelerating the aggregation phase of

distributed training. In this paper, we explore methods for

effective intrusion detection at the network edge by combining

the advantages of federated learning, BNN and programmable

data plane.

III. SYSTEM ARCHITECTURE

In this section, we describe the architecture design of the

proposed system for network security. The system consists of

a central cloud and several edge network domains. For each

domain, there is a gateway node responsible for forwarding

packets from and to the devices of that domain. It also

performs packet classification to identify attacks from normal

traffic flows. Each gateway is SDN-enabled with separated

control and data plane i.e., an edge controller and a switch.

Both planes are programmable. Previous works have shown

the feasibility and benefits of this type of gateway design

and implementation for edge networking scenarios [9]. In this

work, we make a step further and propose specific mechanisms

for effective packet classification achieving high accuracy

with low memory and communication costs. We first list a

number of challenges we need to address before presenting

the proposed mechanisms.

A. Challenges

A high-performance architecture for packet classification at

the network edge has multiple requirements:

1) High Accuracy & Low False Alarm Rate. The

gateway should be capable to identify attacks from

normal flows. Besides, the false alarms (normal packets

incorrectly classified as attack packets) must be kept to

a low rate, otherwise normal packets may be blocked

and network functions will be hampered.

2) Line-Speed Packet Processing. The gateway should

perform the packet classification by itself instead of
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forwarding packets to a remote host or server and

waiting for reply. This requires the classification algo-

rithm (inference process of the learning algorithm) to be

lightweight enough so that the gateway can run it locally

in real time.

3) Model Updates. An edge domain can be highly dynamic

with new devices joining the network and new traffic

flows generated over time. The gateway should be able

to use the new network traces to improve the classifi-

cation algorithm, i.e., re-train the model over time. The

training task can be offloaded to the control plane or

remote cloud server, but the updated model must be

finally downloaded to the gateway data plane.

4) Scalability and Privacy. It is common in an edge

networking scenario that the amount of devices and

domains is large. A solution can hardly scale up unless

the communication overheads between the cloud server

and gateways during training can be controlled in a

reasonable manner. In addition, devices of different edge

domains may belong to different owners who are not

willing to share their network traces for training.

B. Design Choices

In order to meet all requirements above, we choose the

binarized neural network (BNN) and federated learning as

the main components of our architecture. We describe each

component in the following, as depicted in Figure 1.

Gateway Data Plane (Programmable Switches). The data

plane refers to a packet forwarding device with programma-

bility such as P4-enabled switches, SmartNICs and FPGAs. A

BNN is deployed in each gateway’s data plane for classifying

incoming packets. The data plane extracts certain bits from

incoming packet’s header as the BNN input and a binary

output (i.e., attack or normal traffic) is acquired by a series of

bitwise operations. After this inference process, the gateway

performs ordinary packet forwarding for normal traffic and

is able to send attack samples to the control plane if online

training is active. With both the classification and forwarding

functions inside the data plane, line-speed packet processing

can be achieved.

Gateway Control Plane (Edge Controllers). Each gateway

is managed by a separate edge controller with a general CPU

or GPU. The controller may be deployed locally in the gateway

or in another host within the same domain. The controller

maintains a neural network with the same structure as in the

data plane, except that the weights and activation functions

are not binarized. This neural network is used for re-training

the classification algorithm over time by performing backward

propagation with the new network traces collected by the data

plane. The controller also keeps an API writing weight values

to the data plane, and an API communicating with the cloud

server for federated learning. The detailed methods will be

introduced in the next section.

Cloud Server. For scalable training of the classification

algorithm, a federated learning technique [7] is deployed in

the cloud server. The federated learning can be regarded as a
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BNN Inference 

(Forward Propagation)
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(Backward Propagation)
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Gateway #2
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Control Plane

IoT Devices

Cloud

Aggregation
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Update New 

Weights

Attack: 

Discard

Fig. 1. An architecture deploying BNN and federated learning for network
security at the edge.

service provided by the cloud, and each gateway can choose

whether to subscribe to this service, decided by its owner. Each

gateway subscribing to the service, after each epoch of local

training, it sends the local updates to the cloud that acts as

the aggregator. When the aggregator receives messages from

all the gateways, it calculates the new model weights based

on the local updates and broadcasts the new model weights to

the gateways.

The procedures of BNN inference in the data plane, model

training in the control plane and weight aggregation in the

cloud as well as the implementation details of these mecha-

nisms will be described in the next sections.

IV. PROBLEM DEFINITION & SOLUTION

In this section, we formally define the packet classification

problem at the network edge and describe how we adopt BNN

and federated learning techniques to solve it.

A. Problem Formulation

We consider a system of a cloud server c and N edge

network domains. Each domain contains a gateway which

is the pair of a data plane switch and its edge controller

(collocated with the switch or hosted in a different device

within the same domain). The set of all gateways is denoted

by N.

A data plane switch is able to parse headers of different

protocols contained in a packet and determine where the

packet should be forwarded (or blocked) according to specific

header fields, which can be regarded as packet-level features.

The switch may also use flow-level features such as the

packet/byte count of a flow to make appropriate forwarding

decisions. It is straightforward to represent both types of

features by a bit string. Therefore, given a group of features

supported by the gateway, we can concatenate them with a

fixed sequence to get a 1D vector. Each element of the vector

is binary, i.e., either −1 or +1. We denote this vector as x0,

which is the input for the packet classification.

The purpose of packet classification is to find a function ŷ =
fn(x0) at each gateway n ∈ N, where ŷ is a 1D binary vector

indicating the prediction of the packet type. For example, as
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Algorithm 1 Inference Process

Input:

x0: binary input sample

W b
n,l: binary weights of layer l in gateway n’s data plane

Output:

y: binary prediction

1: for l = 1 : L− 1 do

2: xl ← sign(XnorDotProduct(xl−1,W
b
n,l))

3: end for

4: y ← sign(XnorDotProduct(xL−1,W
b
n,L))

a simple case, ŷ has only one binary element, taking value of

+1 if the incoming packet belongs to a normal traffic flow, or

−1 if it belongs to an attack.

B. Inference: Binarized Neural Networks

To achieve line-speed packet processing, we require that an

incoming packet is classified directly in the gateway instead of

forwarded to the edge controller or any other remote server. In

other words, each gateway n executes fn(x0) in its data plane

independently without help from either its edge controller or

gateways of other domains.

Neural network is one of the most popular methods for

packet classification. However, it requires a large amount

of dot product operations on real-valued vectors, as well as

activation functions which are usually non-linear. Originally

designed for packet forwarding, most data plane devices do

not support these operations. To overcome this difficulty, we

deploy BNN [6] that has weights of only binary (+1 or −1)

values and sign function as the activation function. More

specifically, consider a neural network with L fully-connected

layers. We denote the neuron weights of layer l by a 2D vector

W b
n,l and denote the input of this layer by xl−1. Then, the

output of layer l is:

xl = sign(xl−1 ·W
b
n,l) (1)

If both xl−1 and W b
n,l are binary vectors, this operation

is equivalent to the Hamming weight of two bit strings’

XNOR. Similarly, the whole inference procedure of L layers is

described in Algorithm 1. In the next section, we will demon-

strate how we implement it completely in a programmable

data plane device.

C. Training: Federated Learning Technique

To classify packets with high accuracy, a neural network

needs to be trained in order to get optimal weights. Although

BNN is efficient when performing the inference, it cannot

be trained directly because gradients cannot be calculated

from binary functions. We adopt a similar method as [6],

which keeps the real-valued weights denoted by Wn. When

calculating the loss function by forward propagation, binary

weights are used. However, during the backward propagation

as the next step, real-valued gradients are calculated and

applied for the weight update. In our approach, we store Wn

and perform the backward propagation in the edge controller

Algorithm 2 Training Process

Input:

Xn, Yn: batch of inputs and labels trained at gateway n
L(Ŷn, Yn): loss function

W t
n: real-valued weights in gateway n’s control plane

W b,t
n : binary weights in gateway n’s data plane

δt: learning rate

Output:

W t+1
n ,W b,t+1

n : updated weights of each gateway

1: for n ∈ N do

2: Ŷn ← ForwardPropogation(X,W t
n,W

b,t
n )

3: gn ← BackPropogation(L(Ŷn, Y ),W t
n)

4: end for

5: (At the cloud) ∆W ← δtsign[
∑N

n=1
sign(gn)]

6: for n ∈ N do

7: W t+1
n ←W t

n +∆W
8: W b,t+1

n ← sign(W t+1
n )

9: end for

of the gateway n, leaving the data plane for binary forward

propagation only. Besides this one-time training, it is also

possible for the data plane to report the inference results of

incoming packets to its controller in real time, so that training

can be performed again over time in the controller to improve

the classification accuracy.

[13] suggests that replacing the output layer with real-

valued weights and activation functions during the forward

propagation will positively impact the accuracy in practice.

Such improvement is also possible in our architecture. The

data plane can send to the controller the output bit string of

its BNN’s last hidden layer and make the controller finish the

calculation of the output layer using the real-valued weights.

The details of the interaction between control and data planes

will be described in the next section.

So far, we have discussed the BNN training within one edge

domain. In a network with N domains, each domain’s gateway

may receive different packet samples. In order to learn more

comprehensive attack patterns, we adopt federated learning [7]

across all domains by connecting all gateway controllers to a

cloud server. In federated learning, each gateway calculates

the weight gradients with a batch of local input samples and

sends the local updates to the cloud. Receiving updates from

all gateways, the cloud will aggregate them and announce new

weight values.

Scalability of federated learning is one of our main con-

cerns. With a large number N of domains, the communication

overheads between controllers and the cloud are not negligible

if each controller reports all its real-valued weight updates in

every learning batch. To save bandwidth, we take another bi-

narization approach, SignSGD [19]. According to this method,

each gateway now reports the 1-bit sign of local updates. Then,

the cloud will have a “majority vote” and announce the result,

which are also single bits. More specifically, we denote a

local update of gateway n by gn, then the new weights after
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Fig. 2. P4-based prototype of the proposed gateway in one domain.

communicating with the cloud are calculated by:

W t+1
n = W t

n + δtsign[
N∑

n=1

sign(gn)] (2)

where δt is the learning rate. Both down-link and up-link

messages during federated learning are compressed to single

bits, while the convergence persists as proven in [19]. The

complete BNN federated learning process is described in

Algorithm 2.

Intuitively, SignSGD is expected to cooperate well with

BNN because W b
n will not change unless the update to Wn

is large enough, i.e., from a negative value to a positive one

or the other way around. Updates without impact on W b
n will

become a waste of resources. On the other hand, (2) appears

to be a suitable way of updating. We will further show the

efficiency of this proposed method in the evaluation section.

V. IMPLEMENTATION

In this section, we develop a prototype of the proposed

architecture. Among various available programmable data

plane methods, we choose the representative P4 language [4]

to implement our system. P4 is capable of achieving rela-

tively complicated logic of packet header parsing and stateful

processing, and it can be compiled for various targets, i.e.,

different types of software/hardware switches.

A. P4 Data Plane

The data plane device (gateway) in each domain runs a

P4 program which is the key component of our proposed

architecture. It is responsible for the following functionalities.

Feature Extraction. Protocol-independence is one of the

most significant features of P4. By defining different network

protocol headers in a P4 program, the data plane device is

able to extract any header fields (e.g., fields of IP, TCP and

even application layer protocols like HTTP) from an incoming

packet and interpret them as bit strings. We concatenate several

such strings together as the input of the BNN. Moreover,

P4 also provides multiple ways (e.g., meters, counters and

registers) to extract flow-level statistics. Such features can be

used as the input of the BNN in the same way.

// an example of 120-bit input and 120 neurons in each layer

control MyIngress(...) {

register<bit<120>>(1024) weights;

bit<120> Input = 0;

bit<120> NextLayerInput = 0;

bit<1> Activated;

action Activation(bit<120> NeuronInput){

bit<8> popcnt = ... // calculate Hamming weight

Activated = popcnt>60;

NextLayerInput = NextLayerInput<<1 + (bit<120>) Activated;

}

action LayerProcess(bit<10> IndexOffset){

bit<120> weight = 0;

weights.read(weight, (bit<32>)IndexOffset+0);

Activation(˜(weightˆInput));

weights.read(weight, (bit<32>)IndexOffset+1);

Activation(˜(weightˆInput));

... // process all neurons in the same way

}

apply{

...

// a function extracting header fields and statistics

BuildInput();

LayerProcess(0); // first layer processing

Input=NextLayerInput;

NextLayerInput=0;

LayerProcess(120); // second layer processing

Input=NextLayerInput;

NextLayerInput=0;

LayerProcess(240); // third layer processing

...

}

...

}

Fig. 3. Implementing BNN with P4 codes

BNN Implementation. We use a register to store each BNN

neuron’s weight as a bit string. The registers are stateful so that

they can be written and read dynamically. When processing

each layer, bitwise XNOR operations are performed between

the input bit string and every neuron in the layer. The activation

function can be realized by calculating the Hamming weight of

the XNOR output. Although P4 does not provide built-in func-

tions for it, there are various works [22] providing algorithms

that enable fast calculations, and the parallel algorithm among

them can be easily implemented in P4. Figure 3 roughly shows

how BNN can be implemented using the P4 grammar and data

structure. In addition, we also implement the same logic in C

language for supported devices.

Packet Forwarding. The BNN can coexist with layer-2/3

or any custom packet forwarding mechanism in the same P4

program. In this prototype, we consider a simple case where

a packet from the flow regarded as an attack will be directly

discarded. We combine the BNN with a flow table matching

the incoming packet’s 5-tuple. If the packet hits an entry in the

flow table, it will be processed accordingly without being sent

to the BNN. Otherwise, the BNN performs inference and adds

a new entry to the table. In both cases, line-speed processing

is achieved, and this method further improves the efficiency

as well as reduces computation costs. The whole workflow of

the data plane is depicted in Figure 2.

Control Protocol. We define a new layer-4 protocol for the

control plane to update the weight values of the data plane. It
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typedef bit<120> MaxInputSize;

header weightupdate_t {

bit<32> index;

MaxInputSize value;

}

...

parser MyParser(...){

...

state parse_ipv4 {

packet.extract(hdr.ipv4);

transition select(hdr.ipv4.protocol) {

17: parse_udp;

6: parse_tcp;

61: parse_weightupdate;

default: accept;

}

}

state parse_weightupdate {

packet.extract(hdr.weightupdate);

transition accept;

}

}

Fig. 4. An example of P4 header definition for weight updates

contains two header fields as shown in Figure 4, the index of

target neuron and a bit string representing the weight values

of this neuron. When the data plane device receives a packet

carrying this header from the controller, it will neither forward

this packet nor call the BNN. Instead, it writes the new weight

value to its register. This protocol can also be used by the data

plane to send the output of the BNN’s last hidden layer to the

controller during the online training process, as described in

the previous section.

B. Control Plane and Cloud Server

We deploy another host with a general CPU in the same

domain as the controller for each gateway. In order to perform

online training, each controller should hold a neural network

with real-valued (rather than binary) weights. We implement

such networks by TensorFlow [23] and use Scapy [24] for the

communications with the data plane. We also deploy a server

as the cloud for federated learning. It receives local updates

from each controller through UDP packets and conducts the

aggregation. We evaluate this prototype with different topolo-

gies, which will be described in detail in the next section.

VI. EVALUATION

In this section, we deploy the proposed architecture and

algorithms in a network testbed and evaluate them with a mix-

ture of emulations and real device experiments to demonstrate

the performance and costs in multiple aspects.

A. Testbed Setup

We set up a network testbed containing multiple desktop

computers with Linux operating system, connected through

Ethernet cables. Each domain as well as the cloud server is

represented by one computer. Each domain contains multiple

hosts and one gateway, which are deployed in a Mininet [25]

virtual network. We compile the data plane P4 program to

BMv2 [26] software switches. The BNN implemented inside

the data plane contains one fully-connected hidden layer with

120 neurons and a single-neuron output.

We consider the following publicly available datasets con-

taining network traces to train and test the packet classification

algorithm.

• CICIDS2017 [27]. This dataset has a labeled record of

multiple types of attacks and benign flows. Statistics are

summarized for each flow. We take two thirds of records

for training and the remaining for testing. We convert

the layer-4 destination port, bidirectional total amount of

packets and bytes into a 144-bit input vector to the BNN.

All these statistics can be easily acquired by a P4-enabled

switch.

• ISCX Botnet 2014 [28]. This dataset collects heteroge-

neous botnet and malware traffic in realistic scenarios as

well as non-malicious traffic. Its test set contains larger

diversity than the training set to evaluate whether an

algorithm is able to handle unknown traffic patterns. For

the evaluations, we replay the TCP and UDP flows in this

dataset to the gateway. Different from the last dataset, we

choose a very common group of packet-level features, 5-

tuple (IP addresses, layer-4 protocol and ports) and IP

packet length as a 120-bit input vector.

B. Performance of Inference

First, we concentrate on Algorithm 1 and evaluate the clas-

sification performance within the scope of one domain and one

gateway. Ignoring the federated learning method temporarily,

we conduct an offline training on the gateway’s BNN with

the complete dataset and Adam [29] optimizer. For compari-

son, we also adopt other state-of-the-art learning algorithms,

including the decision tree (DT) and linear support-vector

machine (SVM) methods implemented by scikit-learn [30], as

well as another neural network (denoted by NN) having the

same structure as our BNN except that the activation function

is non-linear (sigmoid function) and all weights are real-valued

with 32-bit precision. Comparison with this NN will indicate

if the binarization leads to performance loss.

We measure multiple metrics characterizing the perfor-

mance of inference, calculated as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(3)

precision =
TP

TP + FP
, recall =

TP

TP + FN
(4)

where TP , FP , FN , TN are abbreviations denoting the

amount of true positives, false positives, false negatives, and

true negatives. We finally calculate the F-1 score defined as

the harmonic mean of precision and recall:

F1 = 2 ∗
precision ∗ recall

precision+ recall
(5)

Flow-Level Classification. Table I contains our measure-

ment of accuracy, precision and recall rates on CICIDS2017

dataset, where algorithms classify a flow based on several

statistics. We observe that the real-valued NN has the same
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level of performance with DT. Our proposed BNN method

has only slightly lower accuracy (0.6%) after the binarization.

It also behaves better than SVM. At the same time, the BNN

compresses the memory required for weight value storage to

1/32 compared with the real-valued NN and makes it possible

to run the algorithm as a data plane switch function (at the

line speed of the switches). Besides, although DT has a good

performance here, it lacks an effectively training algorithm in

a distributed manner [18]. In contrast, we will demonstrate

how the BNN can be trained across different domains using

the federated learning framework in the next subsection.

Method Accuracy Precision Recall F1

BNN 0.983 0.966 0.963 0.965

NN 0.989 0.967 0.987 0.977
DT 0.989 0.962 0.993 0.977

SVM 0.957 0.889 0.937 0.913

TABLE I
PERFORMANCE METRICS ON CICIDS2017 DATASET.

Packet-Level Classification. While we have shown that our

method is valid when performing classification based on flow

statistics, we now concentrate on the packet-level features, i.e.,

matching on header fields, which permits the switch to react

to incoming packets in real time. This is the major use case

of the proposed method as a switch function. We measure

performance metrics on the Botnet 2014 dataset with such

packet-level features as inputs in Table II. As in the previous

table, we observe that the binarization incurs minor accuracy

loss only (1.05%). Besides, BNN behaves better than both DT

and SVM (6% and 7% more accuracy) under this setting.

Method Accuracy Precision Recall F1

BNN 0.945 0.945 0.766 0.846

NN 0.953 0.992 0.767 0.865
DT 0.900 0.735 0.767 0.751

SVM 0.890 0.700 0.763 0.730

TABLE II
PERFORMANCE METRICS ON BOTNET 2014 DATASET.

A high recall rate is especially important for packet classi-

fication, since the incorrect blockage of non-malicious traffic

(false negatives) may hamper normal network functionalities.

Therefore we also measure the precision and recall rates in

Table II and calculate the F-1 score, which shows a similar

tendency as the accuracy performance.

Moreover, by adjusting the threshold of the Hamming

weight calculated in the output layer, a tradeoff can be

achieved as depicted in Figure 5, which means that a better

(higher) recall rate can be acquired at a cost of sacrificing

some precision.

Packet Processing Latency. We next examine how the line-

speed packet classification can be achieved in our proposed

architecture. We send a subset of the Botnet 2014 dataset

containing 2000 successive packets from a host to the gateway.

As described in last section, the gateway data plane (the

programmable switch) keeps both the BNN and a flow table
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Fig. 5. The precision-recall curve.

matching the source IP addresses and TCP/UDP ports of

incoming packets. In order to measure the network latency

of every packet correctly, the switch marks the packets of

malicious flows in the DSCP field instead of dropping them.

Figure 6(a) plots the distribution of network latency of each

packet. A small portion (around 5%) of packets are processed

with a larger latency, having an order of magnitude of 10 ms.

These are unknown input samples the gateway encounters for

the first time without having a table entry, and therefore the

switch uses the BNN to process them. The remaining 95%
packets are processed with a much smaller latency (less than

2 ms), because they just require a one-time flow table match

operation.

We next focus on the latency caused by running BNN in

the control plane, which involves more complicated calcu-

lations. We deploy an alternative architecture (Scheme II in

Figure 6(b)) where the neural network is deployed in the

edge controller within the same domain. In this case, the

data plane switch has to forward an unknown packet to the

controller before making forwarding decisions. This is similar

to the traditional intrusion detection approaches. To evaluate

the performance of the two different architectures, we disable

the flow table and make the BNN to process all packets. The

box plots of latency are depicted in Figure 6(c). We notice that

both the average value and the variation of packet processing

latency are lower when deploying the BNN directly in the data

plane. Moreover, unlike the emulation environment, there is

usually also propagation delay between the data and control

planes in reality. Therefore, we introduce extra delay at the

link of the control path (the third and forth box plots). As

a result, the packet processing latency increases accordingly,

demonstrating further the efficiency of our programmable data

plane approach.

Hardware Support. The BMv2 software switch is not

designed for production-grade performance. Therefore, we

also deploy a Netronome Agilio CX SmartNIC with 10 GbE

ports. It is programmable by supporting a mixture of P4

and C codes, permitting us to further optimize the proposed

functionality by implementing the header parsing in P4 and

BNN in C to take full advantage of this high-performance

device. We will deploy such hardware in a larger scale to

have more realistic evaluations as a future work. We also make
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Fig. 7. The (a) accuracy and (b) control message overheads during federated learning with the network scaling.

both our BMv2 and Agilio codes publicly available [31] for

the benefit of the research community.

Main Takeaways. (1) The proposed BNN method performs

packet classification with high accuracy based on both flow-

level (flow statistics) and packet-level (header fields) fea-

tures. (2) The BNN method outperforms several state-of-the-

art learning methods in accuracy and F-1 score, with only

slight performance loss during the binarization. (3) Imple-

menting BNN in the data plane as a switch function achieves

faster packet processing speed (line speed) than traditional

approaches that deploy similar functions in a remote host.

C. Performance of Federated Learning

Having shown the performance of the proposed architecture

within a single domain, we now extend the scenario to a multi-

domain network and evaluate the federated learning method

(Algorithm 2). We assume that there are N domains each con-

taining a gateway with the same P4 program. Correspondingly,

the dataset is split into N subsets, and each gateway can only

get access to one of them.

Accuracy with Distributed Training. First, we consider a

case without federated learning (denoted as local learning),

where each gateway does not connect to the cloud and is

trained based on its subset only. We evaluate the trained

BNN in each domain’s gateway with the original test set. The

average accuracy is depicted by red bars with cross texture

in Figure 7(a), which severely degrades (less than 80% in

the worst case compared with 94.5% when training with the

complete dataset). On the other hand, if the federated learning

described in Algotihm 2 is adopted during training, we can

get an accuracy (blue bars in Figure 7(a)) which is almost

as good as the offline trainig with the complete dataset. Such

conclusion holds with different N values.

Communication Overhead. Although federated learning

makes it possible to have a scalable solution for training

gateways in multiple domains, the communication overhead

of both uploading (gateways sending local updates) and down-

loading (the cloud announcing the aggregated update) will be a

problem, especially when there is a large amount of domains,

which is the reason why we apply the binarization technique

the second time during this communication. We analyze two

types of traffic overheads; between the cloud and gateway

controllers, as well as between each gateway’s control and

data planes.

When analyzing the overheads, we compare with traditional

federated learning approaches, where local updates are updated

with real values usually represented by 32 bits. Then, the cloud

will aggregate updates by calculating the average values. It

will broadcast the aggregated weight updates also in 32 bits.

It is straightforward that the SignSGD method we adopt will

significantly reduce the traffic overheads between the cloud

and each edge controller, because only a single bit for every

weight is required in our approach, leading to 1/32 up-link

traffic overhead. The same analysis can also be applied for

down-link overhead.

The control message overhead from a gateway controller to

the data plane switch updating the binarized neural weights

also decreases. Another benefit of replacing the real-valued
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weights with single bits is that the controller does not need to

send a control message if all binarized weights of the same

neuron remain unchanged after training with a new batch.

Therefore, less messages and overheads are required when the

BNN converges. In Figure 7(b), we plot the control message

overhead between all pairs of control and data planes during

the first one thousand batches of federated learning. With the

network converging quickly after training with 500 batches,

the overhead reduces to less than 0.5% compared with the

case that we use the real-valued NN and traditional federated

learning method.

Main Takeaways. The proposed architecture enabled by

federated learning leads to (1) much more accurate classifi-

cation compared with training each gateway independently,

and (2) small traffic overheads in communications between

the cloud and edge controllers, as well as between the control

and data planes.

VII. CONCLUSION

In this paper, we explored new methods for enhancing

security at the network edge with SDN and programmable

data plane. We designed an architecture running BNNs in edge

gateways as switch functions to detect attacks from incoming

packets. We also proposed a federated learning framework

for gateways of multiple edge network domains to learn new

attack patterns online and collaboratively. Evaluations on a

real prototype we developed demonstrate that our method can

achieve line-speed packet processing with high classification

accuracy and low false alarm rate. Moreover, our solution

is scalable with small communication overheads between the

control and data planes of each edge domain, as well as

between the cloud and each edge controller.
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