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Optimizing Gradual SDN Upgrades
in ISP Networks

Konstantinos Poularakis

Abstract— Nowadays, there is a fast-paced shift from legacy
telecommunication systems to novel software-defined net-
work (SDN) architectures that can support on-the-fly network
reconfiguration, therefore, empowering advanced traffic engi-
neering mechanisms. Despite this momentum, migration to SDN
cannot be realized at once especially in high-end networks of
Internet service providers (ISPs). It is expected that ISPs will
gradually upgrade their networks to SDN over a period that
spans several years. In this paper, we study the SDN upgrading
problem in an ISP network: which nodes to upgrade and when we
consider a general model that captures different migration costs
and network topologies, and two plausible ISP objectives: 1) the
maximization of the traffic that traverses at least one SDN node,
and 2) the maximization of the number of dynamically selectable
routing paths enabled by SDN nodes. We leverage the theory
of submodular and supermodular functions to devise algorithms
with provable approximation ratios for each objective. Using real-
world network topologies and traffic matrices, we evaluate the
performance of our algorithms and show up to 54% gains over
state-of-the-art methods. Moreover, we describe the interplay
between the two objectives; maximizing one may cause a factor
of 2 loss to the other. We also study the dual upgrading problem,
i.e., minimizing the upgrading cost for the ISP while ensuring
specific performance goals. Our analysis shows that our proposed
algorithm can achieve up to 2.5 times lower cost to ensure
performance goals over state-of-the-art methods.

Index Terms—Software defined networks, gradual deploy-
ment, ISP networks.

I. INTRODUCTION

Motivation

OFTWARE Defined Networking (SDN) [2] enables
Sunprecedented network management flexibility through
the separation of the network control and data planes, and
the centralization of the former in designated network entities
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referred to as controllers. A controller maintains a global view
of the network state, including network topology, traffic load,
and link failures, and can leverage this information to dynam-
ically select the routing paths for each network flow. This
approach departs significantly from traditional IP protocols,
like Open Shortest Path First (OSPF) [3], that are destination-
based and route traffic along shortest paths using static link
weight metrics. SDN, therefore, empowers advanced Traffic
Engineering (TE) mechanisms that can respond on-the-fly to
network changes and support fine-grained routing decisions
per flow. Today, many Internet Service Providers (ISPs) rely
on Multiprotocol Label Switching (MPLS) [4] to achieve such
flexibility and steer traffic without being constrained by short-
est paths. Nevertheless, MPLS has a number of shortcomings,
e.g., it relies on pre-determined source-destination paths that
are hard to maintain and time-consuming to re-configure.
On the other hand, with SDN, a central controller can be
used to change network configuration in almost real-time and
achieve per-flow QoS objectives such as end-to-end delay
and end-to-end bandwidth. This makes SDN a particularly
attractive technology.

However, as it happens with most novel network protocols
and architectures [5], migration to SDN cannot be realized
at once. This is particularly true for the large and expensive
core networks of ISPs. Namely, the one-step SDN upgrade of
entire ISP networks is practically impossible since it poses an
enormous operational burden, and also raises performance and
security risks [6]. On top of that, such upgrades require huge
capital expenditures since network components (e.g., back-
bone routers) are very expensive. Besides, upgrading newly
installed legacy routers is economically prohibitive.! Given
the above, it is expected that ISPs will opt to migrate to
SDN incrementally, i.e., by gradually upgrading their network
nodes over a period that spans several years. In these incre-
mental SDN deployments, the controllers will manage only
the SDN-enabled nodes, while the remaining legacy network
will still use OSPF-like routing protocols.

Even in such hybrid SDN networks, the ISPs can accrue
important benefits. Namely, for the traffic that crosses at
least one SDN node, it is possible to apply various sophis-
ticated policies such as access control, firewall actions, and
other middlebox-supported in-network services [8]. More-
over, using the SDN nodes it is possible to dynamically control
the routing path of the flows by overriding the underlying

A typical router replacement window is 3 to 5 years; more importantly
a network’s routers have out-of-phase cycles, i.e., need to be replaced in
different times, e.g., see Lifecycle Financing from Cisco Capital. Also, router
costs vary significantly from a few tens of thousands of dollars to more than
$100K [7].
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Fig. 1. A network that is partially upgraded to SDN. The two SDN nodes
can act as firewalls or dynamically control the routing path.

legacy OSPF or MPLS protocol and thus, create a more
flexible network [9]. In line with prior works, we will use
the term programmable traffic to differentiate the traffic that
traverses at least one SDN node from that not traversing any
SDN nodes. Both in-network services and the availability of
alternative routing paths (that can be dynamically selected) are
extremely useful for ISPs. Besides, if the flow crosses more
than one SDN nodes, the ISP has even more dynamic routing
options and hence can further increase the TE flexibility of its
network.

Let us show the potential of this approach with a simple
example. Consider the hybrid SDN network shown in Figure 1
that routes a flow from source node 1 to destination node 3.
Here, only two of the seven nodes are upgraded with SDN
capabilities (nodes 1 and 4). Using OSPF, the flow is always
routed along the shortest path. However, node 1 can dynami-
cally decide to drop (instead of forwarding) the packets, acting,
e.g., as a firewall. It can also override the OSPF shortest path
by routing the packets through node 4. The packets will then
follow the alternative path 1 which is the OSPF shortest path
connecting node 4 with 3. Such flow rerouting is important
when a link of the shortest path fails or becomes temporarily
congested. Since node 4 is also upgraded to SDN, it can
similarly defer packets towards alternative path 2. In other
words, as the number of SDN-enabled nodes increases, the set
of alternative paths increases as well. Hence, there exist more
degrees of freedom (or, flexibility) in performing dynamic TE.

To gain the maximum benefits, it is important to identify
which SDN upgrade schedule is suitable for a given network.
Namely, every ISP needs to carefully select which nodes to
upgrade, and when exactly to do so. Especially this latter
aspect of timing has many implications. First, like every new
technology, the initial high cost of SDN decreases with a
high pace over time [10]. Hence the ISPs face a dilemma of
early upgrade that will allow them to reap the new technology
benefits immediately and a slow upgrade that will reduce their
capital expenditures. More practical, the ISPs need to decide
how many nodes to upgrade in each period, which for ISPs
usually amounts to 6-12 month intervals. Second, the routers
are highly heterogeneous since they serve a different amount of
traffic and have a different remaining lifetime, and this further
perplexes these decisions.

In summary, every ISP has to address the following two
questions: (i) How many nodes to upgrade in each period?
Should it upgrade all nodes as early as possible or wait for
the prices to fall?, and (ii) After deciding the number of nodes
to be upgraded, which specific nodes to select? The ISP’s goal
might be to maximize the volume of programmable traffic
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or the TE flexibility by increasing the dynamically selectable
alternative paths, based on the ISP’s priorities and preferences.
Despite the very important recent prior works on hybrid SDN
networks, e.g., see [9], [11] and Section VIII for a detailed
overview, we currently lack a systematic understanding regard-
ing the above issues. Therefore, our goal in this work is to
investigate policies for SDN upgrade scheduling in large (and
expensive) operational ISP networks, and focus mainly on the
impact of time-dimension and the interplay between traffic
programmability and TE flexibility benefits.

Methodology and Contributions

We develop a methodology to address the above two ques-
tions posed by ISPs regarding SDN migration. We introduce
a model of SDN upgrades general enough to capture different
migration costs, as well as ISP topologies and traffic demands.
We then utilize this model to derive the optimal scheduling for
router upgrades in the ISP network over a period that may span
several years. We consider two ISP objectives. First, we tar-
get the maximization of the programmable traffic, i.e., the
traffic that traverses at least one SDN node (Objl). This
upgrading policy, if designed properly, can have significant
benefits [9], [11], since it allows an ISP to control how the
traffic flows in its own network. The second objective (0Ob;j2)
aims to maximize the TE flexibility. This objective is achieved
by increasing the number of alternative paths through the SDN
upgrades. For each one of the two objectives, we formulate a
rigorous optimization problem and devise the desirable SDN
upgrading policy (or, schedule): which nodes to upgrade and
when.

In both cases, finding the upgrading policy requires the
solution of challenging combinatorial optimization problems.
Namely, we show that for Objl this problem is NP-Hard even
to approximate to any factor better than 1—1/e. For the special
case in which all the node upgrades take place at the same time
period, we show that a modified version of a classic greedy
algorithm, which enumerates all possible triplets of nodes as
candidate solutions, achieves the best possible approximation
ratio. We also show a simple way to extend this algorithm
for the general case where the node upgrades can take place
at different time periods. We also present a second class of
more sophisticated algorithms with improved approximation
ratios by expressing Obj1 as the maximization of a submodular
set function [12], i.e., a function that satisfies the diminishing
returns property.

Then, we study Obj2 (maximizing TE flexibility). This
is a more complex problem which can be expressed as
the maximization of a function with bounded supermodular
degree [13]. Using this result, we present another greedy-
based algorithm that approximately solves this problem. For
the sake of completeness, we also consider the “dual” version
of the upgrading problem (Obj3), where the above objectives
are treated as constraints and subject to them we minimize
migration costs. For a simple, yet practical, case an approxi-
mation algorithm is proposed using a binary search technique.

We evaluate the performance of the proposed algorithms
using two datasets of real network topologies and traffic
matrices [14], [15]. The results clearly differentiate situations
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in which upgrades should be spread over many instead of
one-time step.

The contributions of this work are summarized as follows:

e SDN Upgrading Problem. We introduce the problem
of gradually (and partially) upgrading an ISP network
to SDN, using general models of costs and different
objectives. The upgrades can take place at different time
periods, introducing different costs at each period due
to technology maturity, the different life-cycle of the
network equipment and other practical limitations.

o Maximizing Programmable Traffic (Objl). For the pro-
grammable traffic maximization objective, we show that
the SDN upgrading problem is NP-Hard to approximate
to any factor better than 1 — 1/e. Then, we present a
simple algorithm matching this factor for the special case
of one time period and show how it can be extended
for the general case. We also present additional more
sophisticated approximation algorithms using the theory
of submodular functions.

o Maximizing TE Flexibility (Obj2). For the objective of
maximizing TE flexibility through the availability of
SDN-enabled routing paths, we show that the optimiza-
tion problem is more complex. We present an approxi-
mation algorithm by expressing it as the maximization of
a function with bounded supermodular degree.

o Minimizing migration costs (Obj3). For the “dual” prob-
lem of minimizing migration costs, we show that it is fun-
damentally different from the above problems. We also
present an approximation algorithm using a binary-search
technique.

o Dataset-driven Evaluation. We evaluate the proposed
algorithms using real-world network topologies and traf-
fic matrices. We find that our approach can increase
by 54% the amount of programmable traffic compared
to two state-of-the-art methods in practical scenarios.
We also find that by optimizing Objl, benefits are also
realized for Obj2 (and vise versa) and we explore the
interplay between the two objectives. Finally, we show
that our proposed algorithm for Obj3 can achieve up to
2.5 times lower cost to ensure performance goals over
two additional state-of-the-art methods.

The rest of the paper is organized as follows. Section II
describes the system model and formalizes the SDN upgrad-
ing problem for Objl. In Sections IIl and IV, we present
theoretical results about the computational complexity of this
problem and approximation algorithms. Section V considers
Obj2 and presents an approximation algorithm. We tackle
the cost minimization version of the problem (Obj3) in
Section VI. Section VII presents the dataset-driven evaluation
of our proposed algorithms, while Section VIII reviews our
contribution compared to related works. We conclude our work
in Section IX.

II. MODEL AND PROBLEM FORMULATION
We adopt a general model representing a large ISP core
network with a set AV of N nodes (e.g., I/MPLS routers).
The network traffic consists of a set 7 of F' origin-destination
flows. With traditional IP routing protocols, like OSPF,
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Fig. 2. An example of incremental SDN upgrades for 7' = 2 years. Two
nodes are upgraded each year, increasing the amount of programmable traffic.
(a) Year 1. (b) Year 2.

each flow f follows the shortest path to the destination. With
more advanced protocols, like MPLS, flow f can follow a
different (non-shortest) path based on some source-destination
bandwidth declaration mechanism. In any case, we denote by
Ny C N the set containing the nodes along this initial path
for flow f. The ISP may decide to upgrade some of the nodes
to SDN, and makes these decisions along a time interval of
t=1,...,T time periods, t € 7. Typically, such decisions are
made in an annual or semi-annual fashion, and by accommo-
dating the lifetime of this type of equipment (3-5 years). Thus,
a usual value can be 7" = 5 or 10 time periods. An example
of incremental SDN upgrades is depicted in Figure 2.

Moreover, the global Internet traffic increases with time,
having an expected annual growth rate of 22 percent from
2015 to 2020 [16]. To capture these dynamics, we denote
with Ay (bps) the average rate of flow f at period ¢, where
Aef > Ay, Vt > t'. Although traffic variations may appear
also within the same period, it is expected that in backbone
networks with high aggregation of flows the traffic will not
to be very volatile. The network topology might dynamically
change as well. However, it is expected that the topology of
the backbone of a network is less likely to change within
a few years, e.g., up to five years. Upgrading a node to
SDN requires capital expenditures, e.g., for buying a new
SDN-enabled device, installation costs, etc. These costs typi-
cally differ across nodes. For example, upgrades to edge nodes
are typically less expensive than core network nodes, while it
is definitely more cost-efficient to upgrade a node at the end
of its lifetime (rather than a newly installed one). Besides,
the costs are likely to drop over time as the SDN technology
matures. We denote with by, (in USD) the cost for upgrading
node n at period ¢, where it may be by, # by, n # 1/, and
btn < bt’n, t> t.

We introduce the optimization variable x, € {0,1} that
indicates whether node n € N will be upgraded to SDN at
time period ¢ or not. These variables constitute the upgrading
policy of the ISP:

= (x, €{0,1}:t €T neN). (1)

We consider the case that the ISP has an available monetary
budget B (in USD) that can invest in SDN upgrades. The
ISP may opt to either invest this capital at once or spread

the budget over different time periods. In any case, the SDN
upgrading policy must satisfy the following constraint:

Z Z xtnbtn é B.

teT neN

)
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We note that in the above constraint we assume a fixed cost
bsn, for upgrading node n at time period t. In practice, the ISP
may obtain a discounted price per unit if it orders many SDN
nodes at the same time period. Our model can be generalized
to capture such cases, e.g., by replacing the above linear
constraint with a non-linear constraint. Clearly, each node can
be upgraded to SDN at most once:

megl, Vn e N.

teT

3)

Since the network is upgraded incrementally, some flows
may still traverse only legacy nodes, or they may traverse a
mixture of upgraded and legacy nodes. A flow that traverses
at least one SDN node, can be used to realize a programmatic
interface, e.g., for implementing a firewall or routing traffic to
alternative paths (as we depicted in Figure 1). The volume of
programmable traffic can be expressed as follows:

Ji(z) = Z Z Atfl{zne,\,f Sy w21}
teT feF

“)

Here, 1{.} is the indicator function; it is equal to one if the
condition in the subscript is true, otherwise zero.

The first natural objective of the ISP is to find the upgrading
policy that maximizes the volume of programmable traffic
(PTM problem):

Objl: max Ji(x)
s.t. constraints : (2), (3)

x4, € {0,1}, Vte€T, neN. 5)

This is a challenging combinatorial optimization problem. For
example, in a network of N = 100 nodes and 1" = 10 time
periods there will be 2VT = 21900 possible solutions, and
therefore brute force algorithms that exhaustively search the
solution space will require prohibitively large running time.
The second plausible ISP objective that we examine (Obj2)
is the maximization of the TE flexibility. The latter is directly
proportional to the number of alternative routing paths that
are dynamically selectable through the SDN upgraded nodes.
We present the formulation of this objective in Section V.

III. COMPLEXITY ANALYSIS OF THE PTM PROBLEM

In this section, we investigate thoroughly the complexity of
the PTM problem, and we propose a simple algorithm with a
provable approximation ratio. We begin with the special case
of T'=1 period and then extend our results for any 7.

Theorem 1: For the special case of 7' = 1 time period,
the PTM problem is NP-Hard, but there exists a polynomial-
time (1 — 1/e)-approximation algorithm.

In order to prove Theorem 1, we will consider a variant of
the coverage problem known as Budgeted Maximum Coverage
Problem (BMCP) [17]. The latter can be defined as follows.

BMCP: Given a set of elements £ = {Fy,Es,...,E}
with associated weights {w;}._;, and a collection of sets
S = {51,52,...,Sn} defined over £ with associated costs
{c;}™,, the goal is to find a collection of sets S’ C S, such
that the total cost of sets in S’ does not exceed budget C' and
the total weight of elements covered by S’ is maximized.
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Then, we will prove the following Lemma.

Lemma 1: PTM for T = 1 and BMCP are equivalent
problems.

Proof: Given an arbitrary instance of the BMCP, we con-
struct a specific instance of PTM problem for a single period
t as follows. We create a separate node for each set, i.e., N' =
{1,2,...,|S|}. The upgrading costs of the nodes match the
costs of the sets, ie., by, = cg(n) Where the set S(n)
corresponds to node n. The upgrading budget B matches the
budget C' in the BMCP instance. We also create a separate
flow for each element, i.e., F = {1,2,,...,|&|}. The flow
rates match the weights of the elements, i.e., Ay = WE(S)
where the element E(f) corresponds to flow f.

If there exists a set of nodes which upgrading them to SDN
makes () amount of traffic to traverse at least one SDN node
(programmable traffic), then there will also be a collection
of sets that cover elements with total weight (). The covered
elements will correspond to the flows that traverse the SDN
nodes. The total cost of the node upgrades will be equal to
the total cost of the sets. Hence, the solution to the PTM
problem provides a solution to the BMCP with the same value.
Conversely, given a solution to the BMCP problem, one can
solve the PTM problem by upgrading the nodes corresponding
to the sets picked by the BMCP solution. The two solutions
will have the same value. [ ]

It is known that it is NP-Hard to approximate the BMCP
problem to any factor better than 1 — 1/e [17]. Therefore,
Lemma 1 indicates that the same statement holds for the PTM
problem. Hence, we have proved the first part of Theorem 1.
To prove the second part, we leverage an algorithm in the liter-
ature that is used for solving the BMCP. Specifically, the work
in [17] has shown that a modification of the well-known greedy
algorithm yields a (1 — 1/e)-approximate solution to BMCP
(matching the best possible factor). When applied to the PTM
problem for 7" = 1, this algorithm enumerates all subsets
of nodes with cardinality 3, that have total cost at most B.
It completes each subset to a candidate solution in a greedy
fashion. Specifically, it iteratively upgrades the node with the
highest ratio of the traffic that becomes programmable over
upgrading cost. Another set of candidate solutions consists
of all subsets of nodes with cardinality less than 3, which
have total cost at most B. The algorithm will output the
candidate solution that achieves the highest programmable
traffic volume. The pseudocode of the algorithm is presented
in Algorithm 1, and described in the sequel.

Here, CS1,CS, C N are the two candidate solutions
found by the algorithm. C'S; is initialized to the empty set
(line 1). U denotes the set of nodes that are nor included
in the current candidate solution. AJ;(N’,n) indicates the
additional traffic that becomes programmable when node n
is upgraded, given that the nodes in subset N’ are already
upgraded. The term x(C'S;) indicates the vector @ for which
Tpy = 1 iff n € CSq. Similarly, for x(CS2). For each
possible triplet of upgraded nodes, the algorithm iteratively
upgrades the node with the highest ratio of traffic that becomes
programmable over upgrading cost (line 4). Nodes will be
skipped if their upgrade violates the budget constraint (line 5).
At the end of the loop (line 8), C'S; will be the solution with
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Algorithm 1 Modified-Greedy Algorithm for One Period
t

CS1 — (Z);
for all subsets N’ C N such that IN"| = 3 and
n , bfn < B do
yzﬂi NN
repeat
select n € U that maximizes AJy (N7, n)/bin;
if > o btn < B then
| N — U {n};
end
U—U\{n};
until &/ = 0;
if Ji(z(N)) > Ji(x(CSy)) then
| CS, —N";
end
end
CSo «— argmax { J1(N”),such that N/ C N,
and Zne./\f’ by, < B };
if Jl(w(CSl)) > Jl(a:(CSQ)) then
| Upgrade nodes in C'Sy;
end
Else Upgrade nodes in C'Sy;

N < 3

the best value. C'So will be the best solution of cardinality
less than 3. The algorithm will compare C'S; and C'S3 and
pick the solution with the best value (lines 9-10).

With the Modified-greedy algorithm, we have proved
the second part of Theorem 1. Nevertheless, this algorithm
works only for a single time period (17" = 1). The rest of this
section extends the results for the general case with many time
periods.

Theorem 2: For the general case, there exists an O((1 —
1/e)/log(T'))-approximation algorithm to PTM problem.

We will prove this theorem by extending any approximation
algorithm that works for one period to many periods. Formally,
we prove the following lemma.

Lemma 2: We can extend any a-approximation algorithm
for the T 1 case of the PTM problem, to obtain an
O(a/log(T'))-approximation for the general T > 1 case.

Proof: For each time period t = 1,2,...,T, we define
a new problem that has its own budget B and is independent
of time periods other than ¢. For the problem at period ¢,
the upgrading decisions are denoted by ' = (24, : n € N).
The objective of this problem is to maximize the program-
mable traffic at time period ¢ given by the function v(z?!)
D feF )‘tfl{zne/vf 2 >1}- We note that the function v(z?)

differs from Jy(x) in that (i) it considers only the program-
mable traffic at time period ¢ and (ii) it neglects the impact of
upgrading decisions taken in time periods other than t.

We denote by ALG; and OPT; an a-approximate and an
optimal solution to the problem defined for time period ¢. Our
main idea is to use each ALG; solution to construct a solution
H,; for the original (for multiple time periods) PTM problem.
In the H; solution, we perform no SDN upgrades during the
first ¢ — 1 periods, or after the t*" period. All the upgrades
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take place at the t'" period based on the ALG, solution.
Clearly, this is a feasible solution for PTM problem as it
satisfies constraints (2) and (3). It should hold that J;(H;) >
(T'—t+1) - v(ALG¢). This is because, the programmable
traffic for H, is (i) zero at each of the ¢ — 1 first time periods,
(il) v(ALG,) at time period ¢ and (iii) at least v(ALG}) at
each of the time periods ¢t + 1,¢ 4+ 2,...,T. The latter is
due to the traffic flow demands ()\¢) increase with ¢ for the
same f. Then, we pick the solution H* with the maximum
programmable traffic, i.e., Ji (H*) = max; J; (H;). For each ¢,
it should hold that:

JI(H*) > J1(Hy) > (T —t+1)-v(ALGy)
>(T—-t+1) a-v(OPTy) (6)
and therefore:
1 *

We denote by OPT an optimal solution to the PTM
problem, i.e., J;(OPT) = max, J1(x). Then, we can show
that:

t
1(OPT) Zv (OPT}) (8)
t=1

This is because, when computing the value J;(OPT),
the same budget B needs to be spread across the time
periods t = 1,2,...,T. However, when computing the sum
2;1 v(OPT}), new budget B is available at each time
period ¢, without the upgrading decisions taken in ¢ constrain-
ing the decisions in other periods. By combining equations
(7) and (8), we obtain:

t
1(OPT) gz;a _t_H)J(H*) )
t=

and by using the definition of the 7'*" harmonic number
we get:

log(T)

J1(OPT) < - J(H™) (10)
or equivalently:
o
B>
Ji(H*) > Tog(T) J1(OPT) 11
|

Theorems 1 and 2 analyze the complexity of the PTM
problem and provide a first approximate solution. Although
it is quite simple to implement, Modified-greedy provides an
approximation ratio that worsens (goes to zero) as the number
of periods T increases. To fill this gap, we introduce in the
next section a class of (more sophisticated) algorithms with
approximation ratios that are independent of 7" and therefore
are suitable for upgrade schedules that extend over long time
windows.
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IV. TIGHT APPROXIMATIONS FOR THE PTM PROBLEM

In this section, we present tight approximation algorithms
for the PTM problem by expressing the problem as the max-
imization of a submodular function. We begin by introducing
the definition of submodular functions.

Definition 1: Given a finite set of elements G (referred to
as a ground set) a function H : 29 — R is submodular if for
any sets A C B C G and every element g € G \ B, it holds:

H(AU{g}) - H(A) > HBU{g})— H(B), (12)

i.e., the marginal value of the function when adding a new
element in a set decreases as this set expands.

Let us denote the upgrade of node n at time period ¢ by
an element g4, and define the ground set G consisting of all
elements as:

G=(gtn:teT,neN).

Then, every possible SDN upgrading policy can be expressed
by a subset X C G, where the elements in X correspond to
the time periods and nodes that upgrades took place. Based
on the above, we can write Obj 1 as a function of the set X

13)

H(X) = Z Z Ayl . (14
’ t'n X#£)D
S 2" vz veny a0}
Then, we prove the following lemma:
Lemma 3: The function H(X) is monotone, non-

decreasing and submodular.

Proof: Monotonicity is obvious since any new upgrade
of a node cannot decrease the value of the objective function.
In order to show submodularity, we observe that since the sum
of submodular functions is also submodular it suffices to show

that the function H¢(X) = P |
u £(X) f;[ EARE(WoN nen; G }NXA0}

for a given flow f is submodular. To this end, we consider two
SDN upgrading policies A € G and B C G, where A C B.
We also consider an element g;, € G\ B to be added to both
sets. This corresponds to upgrading node n at period ¢, where
this upgrade was not taken place either in set .4 or B.

The marginal value for adding ¢, to A will be zero if
there exists another element g, € A such that ' < ¢ and
n’ € Ny. This is because the flow f is already programmable
according to policy A. Else if there exists an element gy, €
A such that t” > ¢ and n’ € Ny, then the marginal value

will be Zi;?l Ais. This is because the flow f now becomes
programmable at time ¢ instead of ¢’. Otherwise, the marginal
value will be 327, X, ;.

We now consider the marginal value for adding the element
gin to the set B. We distinguish the following three cases:

(i) If there exists an element g,y € A such that ¢ < ¢
and n’ € Ny then this element will also belong to B. Hence,
the marginal value will be zero for both .4 and 5.

(i) If there exists an element g4v,,» € A such that ¢/ >t
and n’ € Ny then this element will also belong to B.
We distinguish the following two subcases. (ii.a) If there
exists an element gy, € B\ A such that ¢/ < t” the
marginal value for B will be Zf:”t_l Aif < ZZ;:l Aif.
(ii.b) Otherwiss:/, the marginal value for 5B will be equal to
that for A (3201 Aip).
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(iii) In any other case, the marginal value for the set A will
be EiT:t Aif. But, note that by definition this is the largest
possible marginal value for the B set as well. Hence, in all
cases, we show that the marginal value is lower or equal for
the set B than A. [ ]

The ground set can be partitioned into N disjoint sets,
Gi1,Ga,...,Gn, where G, = {gi, : Vt € T}. Since each
node can be upgraded in at most one time period, it should
be X € 7; where:

i ={XCgG : |X¥NG,|<1,Vne N} (15)

Here, the pair (G,Z;) forms a partition matroid con-
straint [12]. Also, due to the budget constraint, it should be
X € 1y where:

T,={XCG: Z bin < B}.
gitn €X

(16)

Here, the pair (G,Z5) forms a knapsack constraint.

There exist various approximation algorithms for the max-
imization of a monotone submodular function subject to a
matroid and a knapsack constraint. The algorithm with the
best approximation ratio was proposed in [18]. This algorithm
uses pipage rounding, a procedure which aims to convert a
fractional solution of an optimization problem into an integral
one, through a sequence of simple updates. It achieves a
(1 — 1/e — e)-approximation ratio for any constant € > 0.
Nevertheless, the value of this algorithm is mostly theoretical,
since it relies on the enumeration of a number of elements
which can be very large in practice.

A more practical choice is the technique presented in [19].
The idea is to reduce the knapsack constraint into a collection
of partition matroids using an enumeration method. Partic-
ularly, let us denote with {uq,us,...,u;} all the different
values of the upgrade costs by,, Vt,n of the elements in the
ground set. For example, [ = 1 if all elements have the same
cost, but [ = NT if each element has a different cost. Then,
we can partition the ground set into the sets G1,G5, ..., G,
where the it" set contains all elements with cost u;. We also
define ¢; = |[B/u;]|. In other words, ¢; is the maximum
number of elements in G/ that can be included in a solution
without violating the knapsack constraint. Clearly, there will
be at most m = Hézl g; different solutions that satisfy
the knapsack constraint, one solution for each combination.
For each combination j € {1,2,...,m} we introduce the
following partition matroid:

={xcg:|xng|<q vie{l,2,....1}} A7

where qf denotes the maximum number of elements in gg
corresponding to the j** combination.

Clearly, instead of maximizing H(.) function with respect
to the Z; N I, constraint, it is equivalent to maximize H(.)
with respect to Z; NZ3,Vj € {1,2,...,m}. The final solution
will be simply the best performing of the m solutions found.
In other words, with this enumeration method, we replace a
knapsack constraint (Z2) with a collection of matroid con-
straints (Z3, j € {1,2,...,m}). Hence, the PTM problem can
be expressed as a collection of m subproblems where at each

Authorized licensed use limited to: Yale University. Downloaded on January 26,2023 at 15:36:50 UTC from IEEE Xplore. Restrictions apply.



294

Algorithm 2 Local Search Algorithm With Input € > 0

Set gyxp+ «— argmax{H ({gin}) | gin € G} and

X — {gt*n*};

while the following operation is possible do
k-exchange operation: if there is a feasible X' such
that: |X'\ X| < Z, |[X\ X'| < 2 H(X') > H(X)
then
| & &
end

end

Set x4y, «— 1 if g4, € G Vi, n, otherwise zero;

subproblem a submodular function is maximized subject to
k = 2 partition matroid constraints.

A local search algorithm provides a (1/(k + ¢))-
approximation for the maximization of a submodular function
subject to k partition matroid constraints [12]. This technique
takes as input a parameter ¢ > 0 and maintains a solution
set X which is always independent in each of the & matroids.
Iteratively, the algorithm tries to add at most 2/¢ elements and
delete at most 2k /e elements from X. If there is a local move
that generates a feasible solution and improves the objective
value, the algorithm repeats the local search procedure with
that new solution, until no improvement is possible. The
procedure is summarized in Algorithm 2.

We emphasize that the enumeration technique that we
presented will be very efficient in cases that many nodes
have the same upgrade costs ([ is a small number) and the
budget is relatively small compared to the upgrading costs
(g; values are small numbers). Nevertheless, there may be
cases in which a large number of matroid constraints need to
be enumerated. In order to reduce complexity in these cases,
a different enumeration method can be applied. For example,
the enumeration method in [18] that approximately reduces
every knapsack to a polynomial-time computable collection of
matroid constraints can be used. The size of the collection can
be tuned depending on how well the knapsack is approximated
by the matroid constraints (cf. [19, Lemma 3.3]).

The pipage rounding and the local search algorithms provide
approximation ratios that are independent of the number of
periods T'. Specifically, the following theorem holds:

Theorem 3: There exists a (1 — 1/e — €)-approximation
algorithm and an (1/(2 + €))-approximation algorithm to the
PTM problem for any € > 0.

V. OPTIMIZING THE TE FLEXIBILITY

In this section, we study the SDN upgrading problem
when the ISP’s goal is to maximize the TE flexibility. This
is achieved through the availability of alternative paths that
can be dynamically activated in such hybrid SDN networks.
Namely, the ISP can use these paths to avoid congestion in
cases that certain links are temporarily overloaded or failed.
For example, as explained in Figure 1, when node 1 is
upgraded the flow can be dynamically routed towards the
alternative path 1; and if node 4 is also upgraded, then the
ISP can also activate alternative path 2, if needed. Note that
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TE flexibility also improves network operation resilience when
the network is under stress (due to attacks or outages) because
it provides alternative paths to reroute the flows.

To formulate this as an optimization problem, we introduce
a set Py for each flow f. This set includes alternative paths
that flow f can follow to reach its destination. For example,
an ISP can analyze historical network data to predict which
paths will be underutilized, and hence they can be dynamically
activated to carry flow f when its shortest path becomes
congested. For each alternative path p € Py, we define a
group of nodes s,y which all need to be upgraded to SDN
in order for path p to become available to route flow f. For
example, in Figure 1 we have Sqiternative_path_1,f = {1} and
Salternative_path_2,f = {1,4}. A generic approach to compute
these groups was presented in [20] and [21].

There will be a TE benefit w, ¢ > 0 if alternative path p €
P is available for routing flow f at time period ¢. A similar
modeling approach of TE benefit has been considered in [20]
and [21]. This benefit will be higher for flows that carry large
volumes of traffic and paths with sufficient spare capacity to
carry these volumes. For a given upgrading policy @, the total
TE benefit (or flexibility) can be expressed as follows:

JQ(SC) = Z Z Z wpftl{nnespf [Zt’ﬁt xtl"] >0}

teT feF pePy

(18)

Here, the benefit w),f, is earned when all nodes in the group
spy have been upgraded to SDN by time ¢. In the special case
that w,r, = 1 ¥p, f,t, the total TE benefit matches the total
number of alternative paths that are enabled by SDN nodes.

The objective of the ISP is to find the SDN upgrading policy
that maximizes the TE flexibility (TEFM problem):

Obj2: max Jo(x)
xr
s.t. constraints : (2), (3), (5)

Obj2 is more complex than Objl, since it depends on the
exact set of SDN nodes that each flow traverses, rather than on
whether the flow traverses at least one of them. In this section,
we present an initial approach to optimize this objective. Our
idea is to express the TEFM problem as the maximization of a
set function with bounded supermodular degree [13]. We begin
with the following definitions.

Definition 2: The supermodular degree of an element g € G
by a function H(.) is defined as the cardinality of the set
Di(g) :=={¢ € G : 3X C G for which H(X U {¢'} U
{g} ) —HXU{¢'}) > HXU{g})— H(X)}. In other words,
the set D};(g) contains all elements ¢’ the existence of which
in a set might increase the marginal value of element g.

Definition 3: The supermodular degree of a function H(.),
denoted by D}}, is simply the maximum supermodular degree
of any element g € G. Formally, D}; = max,c¢ |D};(g)|.

It is not hard to express Jo as a function with bounded
supermodular degree (D}z). In fact, all the nodes that are
included in the same group depend on each other, in the
sense that upgrading only one of them yields no TE benefit,
but when they are all upgraded a benefit is earned (w,s; for
group sps). For example, in Figure 1, the marginal value for
upgrading node 4 is zero if node 1 is not already upgraded,
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Algorithm 3 Super-Greedy Algorithm

X 0
while there exists an element g such that X U{g} is a
feasible solution do
Let g* € G\ X and D}, (g9*) C D}, (g*) be a pair of
an element and a set such that:
(i) X" := X U{g*} UD}; is a feasible solution, and
(ii) it maximizes H(X') — H(X);
X — X'
end
Set xy, < 1 iff g4, € X, otherwise 0O;

since the only available path for the flow would be still
the shortest path. But, if node 1 is already upgraded, then
the marginal value for upgrading node 4 becomes positive
(since routing over alternative path 2 now becomes possible).
Hence, the supermodular degree of function .J2 is 1 in this
example. For a single time period, the supermodular degree
of Js is simply the maximum number of nodes that share
the same group with any other node. Intuitively, the more the
path p diverges from the initial shortest path of the flow f the
more node upgrades are needed to enable such re-routing, and
hence the larger the s,y group becomes. The exact number of
such nodes depends on how the shortest and alternative paths
overlap. In general, it holds 0 < D} < NT — 1.

A variant of the greedy algorithm has been proposed
for maximizing any function H with bounded supermodular
degree DIJ;. We call this the Super-greedy algorithm (see
Algorithm 3). This algorithm starts with an empty solution
set X (line 1) and iteratively augments subsets of elements to
it (lines 2-4). At each iteration, it picks an element g* and a
subset of those elements that increase the marginal value of g*,
i.e., a subset of the set D};(g*). The above choice is made
greedily so that the highest marginal benefit is earned. The
procedure ends when there are no more elements to augment.

The work in [13] has shown that Super-greedy achieves an
approximation ratio for the problem of maximizing a function
with bounded supermodular degree. Nevertheless, a necessary
condition for this result to hold is that the constraints of
the problem form a k-extendible system, which is a class of
constraints that capture the case of k£ matroid constraints, but
not the case of knapsack constraints. For the special case that
all the upgrading costs are equal, the constraints (2), (3) can be
expressed as k = 2 matroid constraints. Therefore, we obtain:

Proposition 1: Super-greedy achieves an (1/ (2(D}2 +1)+
1))-approximation ratio to the TEFM problem for the special
case of uniform upgrading costs.

VI. MINIMIZING THE UPGRADE COSTS

So far, we focused on the investment of a given economic
budget B in SDN upgrades, aiming to optimize a performance
objective (Objl or Obj2). In certain cases, however, an ISP
may be more concerned about meeting specific performance
targets rather than spending a specific budget. These per-
formance targets may span one or multiple time periods.
For example, an ISP may prefer to upgrade its network
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in a way that directly makes 30% or more of its traffic
programmable, while another ISP may opt for 10% the first
year, 20% the second year, etc. Similarly, the targets can
be with respect to Obj2. This gives rise to a different, yet
equally important, version of the SDN upgrading problem. The
objective in this “dual” version is to minimize the cost spent
in upgrades while ensuring specific levels of performance.

For the sake of completeness, in this section, we study such
a minimization version of the SDN upgrading problem where
the targets are with respect to programmable traffic. In each
time period ¢ € 7 the upgrading policy must ensure that at
least P, € [0, 1] portion of the traffic is made programmable,
where typically Py > P, for ¢ > t. Formally, the following
constraints must be satisfied:

2 per AU en, Soci v}
Efe}‘ Aty

The optimal upgrading policy will minimize the total cost
spent in upgrades (UCM problem):

Obj3: mﬂin Z Z Zinbin

teT neN
s.t. constraints : (3), (5), (19)

>P, VteT. (19)

Subsequently, we investigate the complexity of the UCM
problem. We focus on the special, yet practical, case of a
single time period (7" = 1), i.e., one-step upgrade. Even for
this case, we show that the problem is NP-Hard and present
an approximation algorithm.

Theorem 4: For the special case of 7' = 1 time period,
the UCM problem is NP-Hard, but there exists a polynomial-
time (4/34¢) H (A)—approximation algorithm, where € is any
positive constant, A is the maximum number of flows that
traverse a node and H is the harmonic number, i.e., H(q) =

a1/

To prove the above theorem, we show the equivalence to
the following variant of the cover problem [22].

Definition 4 (Generalized Partial Cover (GPC)): Given a
set of elements £ = {E1, Eo, ..., E;} with associated weights
{w;}_, and a collection of sets S = {S1, Sa, ..., Sy, } defined
over £ with associated costs {c;}7”,, the goal is to find a
collection of sets 8’ C S such that the total weight of the
elements covered by &’ is at least L, a specified lower bound,
and the total cost of sets in S’ is minimized.

Specifically, we prove the following lemma.

Lemma 4: UCM for T' = 1 and GPC are equivalent
problems.

Proof: The proof is similar to that of Lemma 1. Given an
instance of the GPC problem, we create a separate node for
each set (with upgrading cost equal to the cost of the set) and a
separate flow for each element (with rate equal to the weight
of the element). If there exists a set of nodes, such that by
upgrading the nodes in this set to SDN makes P, = L or more
traffic programmable, then there will also be a collection of
sets that cover elements with total weight P; or more, having
the same total cost. ]

Building on Lemma 4, we can use the approximation
algorithms that have been proposed for GPC in order to solve
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UCM for a single time period t. Below, we explain one of
these algorithms, proposed in [22].

First, we introduce the auxiliary variable z;,; € {0, 1} which
indicates whether flow f is not programmable in period f.
The respective vector of variables for period ¢ will be z; =
(zif @ f € F). Similarly, we define &; = (24, : n € N).

Second, we define the Lagrangian Relaxation of the UCM
problem (referred to as LR-UCM,). This is realized by dualiz-
ing the constraint in (19) and lifting it to the objective function
multiplied by p > 0:

min § Tnbin + M(
Tt,2¢
neN

PIRETEIE DY Atf)

JeF JeF
st Y @ tap>1, VfEF, (20)
nENf
T, zef € {0,1}, Vne N, feF. (21)

In the above formulation, there is no restriction to make any
flow programmable; however, if the nodes we upgrade leave
a flow f un-programmable (z;; = 1), we incur a penalty
of pAiy.

Third, we use a simple greedy scheme to obtain an approx-
imate solution to the LR-UCM, problem [22]. That is, starting
with an empty solution (z; = 0, z; = 0), we iteratively set
the value of a variable (z, for some n or z; for some f)
from zero to one such that the average gain is maximized.
When a variable x,, is set to one, the average gain will be
the number of flows that become programmable and for which
z¢ = 0 over by,. However, when a variable z; is set to one,
the average gain will be 1 over pA;rH(A). Note, here, that
the cost in the denominator is inflated by a factor H(A). This
greedy scheme will end when every flow f has either become
programmable or z;y = 1.

Fourth, we use as a “black-box” the solution to LR-UCM; to
solve the UCM problem for period t. Specifically, we conduct
a binary search over the possible values of ;1 which consists of
a polynomially-bounded number of calls to the greedy scheme
for LR-UCM;,. The binary search is over the following interval:

2 ZnEN bt":|

T (22)
minger A¢f

uw e {O
The result of the binary search will be two values g7 > o in
the above interval that satisfies:

1) g1 — pe < eminy, by,, where € is any given positive
constant,

2) the programmable traffic corresponding to the solution
for p; is at least P;, and at the same time, the program-
mable traffic for po is at most P;.

The solution for y1, denoted by x}, will always be feasible,
while the solution for 9, denoted by w%, may not be feasible.

The fifth and last step is to create an additional feasi-

ble solution x, by augmenting z? with a subset of nodes
upgraded in x;. We do this greedily by upgrading the node
with the highest ratio of traffic that becomes programmable
over upgrading cost until the P, target is met. Finally, among
the two feasible solutions x; and x}, the one with the lowest
upgrading cost is picked. This solution will be within a factor
of (4/3 + €)H(A) from optimal [22].
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VII. DATASET-DRIVEN EVALUATION

In this section, we evaluate the performance of the proposed
algorithms using real-world network topologies and traffic
matrices. Overall, we find that our approach can increase by
54% the amount of programmable traffic compared to state-
of-the-art methods, especially in practical scenarios where
the network is upgraded in a time window of four or five
years. In general, the ISP acquires more benefits by spreading
the upgrades over many instead of one year. Nevertheless,
this strategy can be detrimental when the SDN costs are
relatively stable over time (up to 20% drop per year). We also
find that by optimizing the objective of programmable traffic
maximization, benefits are also realized for the objective of
TE flexibility maximization (and vise versa). However, there
will be a performance loss (up to a factor of 2), since each
algorithm favors one objective over the other.

We have implemented the following eight algorithms:

1) DEG [33]: This scheme upgrades the nodes with the
highest degrees (number of incoming and outgoing
adjacent links) in the topology graph, until budget B
is spent. All the upgrades take place at the first time
period.

VOL [11], [33]: This scheme upgrades the nodes with
the highest traffic volume that traverses them, until
budget B is spent. All the upgrades take place at the
first time period.

Modified-greedy: The proposed scheme in Algo-
rithm 1 extended for many time periods.

Local search: The proposed scheme in Algorithm 2 for
€ = 2 that can spread upgrades over many time periods.
Super greedy: The proposed scheme in Algorithm 3 that
maximizes TE flexibility.

MUCcPF [27]: This scheme upgrades the node that
covers the maximum number of flows until the minimum
programmable traffic target is met. All the upgrades take
place at the first time period.

Highest ratio [28]: This scheme upgrades the node with
the highest ratio of traffic volume that traverses it over
upgrading cost, until the minimum programmable traffic
target is met. All the upgrades take place at the first time
period.

Binary search: The proposed scheme in Section VI for
e = 0.1 that minimizes upgrading cost. All the upgrades
take place at the first time period.

2)

3)
4)
5)

6)

7

8)

The first four algorithms above will be compared with
respect to Objl subject to a specific budget B. The fifth
algorithm will be evaluated with respect to Obj2 subject to the
same budget. Finally, the last three algorithms will be com-
pared with respect to Obj3 subject to a specific performance
target P;.

The main part of the evaluation is carried out using the
Abilene dataset [14] which is obtained from an educational
backbone network in North America. This network consists
of 12 nodes and 30 directed links as depicted in Figure 3.
The dataset records the traffic matrix, i.e., the data transmitted
between every pair of nodes, every 5 minutes for an overall
period of six months. We use the traffic matrix at 8:00 pm
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37,
Oy

ATLANng

Fig. 3.  The Abilene network. SDN upgraded nodes returned by DEG
(highlighted in light gray), VOL (highlighted in red) and Local Search
(indexed by (1), (2), (3)) algorithms for T = 1 and B = $300K. Node
labels correspond to router names and link labels correspond to aggregate
traffic volumes (in Mbps).

on the first day to set the rates of the respective 144 flows.
The aggregate rate is found to be 5.46 Gbps. These rates
correspond to the ;s values for period ¢ = 1. We increase
the rates in subsequent periods (years) by 22% (A\y = A\—1 -
122%) [16]. The dataset also records the OSPF weights of all
the links, which allows us to find the shortest path between
every pair of nodes (N sets).

We emphasize that we focus on this specific subset of
the dataset because it represents a peak time period when
SDN is more important. Moreover, this dataset is publicly
available online, whereas data from most ISPs is proprietary.
The evaluation code we wrote is publicly available online [35].
We believe that the reproducibility of the results will encour-
age future experimentation with SDN algorithms.

We start with Objl and examine how the proposed algo-
rithms compare with the state-of-the-art methods. Since the
latter neglect the timing issue, and in order to ensure a fair
comparison, we begin our investigation with 77 = 1 time
period, i.e., all upgrades take place within one year. As a
canonical scenario, we set the cost of upgrading a node to SDN
to $100K [7] (bsy, values for ¢ = 1), and we vary the budget B
from $100K to $1M (Figure 4(a)). We observe that as the
budget increases, the volume of programmable traffic increases
for all algorithms. This is because more nodes are upgraded to
SDN which creates more opportunities for the flows to traverse
SDN nodes. There exists a saturation point (B = $900K),
after which no significant changes are noticed. The proposed
algorithms (Modified greedy and Local search) achieve up to
54% more programmable traffic than their counterparts.

To better understand how the algorithms work and why we
obtain the above gains, we depict the upgrading decisions
of the algorithms in Figure 3. While DEG upgrades the
three nodes with the highest degrees (ATLAng, HSTNng and
DNVRng), VOL picks the IPLSng, KSCYng and CHINng
nodes which cover the most heavy-loaded links. Local search
upgrades first the IPLSng node similar to VOL. However,
the next decisions are different as most of the traffic that
KSCYng and CHINng cover is already made programmable
by the upgrade of IPLSng. Therefore, two different nodes will
be picked (WASHng and LOSAng). We note that the Modified
Greedy algorithm will return the same upgrading policy with
Local search, which happens to be optimal in this case.

We note that since the Abilene network is fairly small
(N = 12 nodes) and for 7' = 1 time period, we can compute

the optimal solution in reasonable time by using exhaustive
search methods. That is by enumerating all the 2'2 = 4,096
possible solutions and then picking the solution that yields
the largest programmable traffic. By carrying out this process,
we observed that Modified greedy and Local search algorithms
perform very close to the optimal (less than 1% for the
scenarios in Figure 4(a)). However, we are not able to apply
exhaustive search methods to find the optimal solution in
scenarios of larger T" or larger networks.

We then explore the impact of the number of time periods T’
in Figure 4(b). Here, we keep B = $200K constant, but we
vary T" within 1 to 5 years. To capture technology maturity,
we decrease the SDN upgrading costs by 40% per year,
ie., byp = b1 — by_1n - 40%. For T' = 1, the results match
those in Figure 4(a). For 7" > 1, additional benefits can be
acquired by postponing some of the upgrades after the first
year when the costs will be lower. Local search algorithm
intelligently spreads the upgrades across different years to
achieve the best performance among the four algorithms. The
benefits over the state-of-the-art methods are up to 47%, and
5.5% over Modified greedy for T = 5.

In Figure 4(c), we take a closer look into the distribution of
upgrades over years when the Local search algorithm is used.
We evaluate various scenarios which differ into the annual
decrease rate of the upgrading costs. We find that for relatively
low rates of cost decrease (up to 20%), all the upgrades should
take place within the first year. But, after this point, it is more
beneficial to postpone some of the upgrades in the future. The
distribution of upgrades over years becomes more diverse as
the rate of cost decrease increases.

Then, we explore the interplay between traffic program-
mability (Objl) and TE flexibility benefits (Obj2). As we
showed in previous figures, Local Search is in practice a very
efficient algorithm for maximizing programmable traffic. But,
a large volume of programmable traffic cannot guarantee by
itself a large number of alternative routing paths (and vise
versa). Therefore, it is questionable how well an algorithm
that optimizes one of the two objectives will perform with
respect to the other objective. Figure 5(a) aims to shed light
on this issue by comparing the performance of the Local search
algorithm (which optimizes programmable traffic) and Super-
greedy (which optimizes TE flexibility). Here, to model the TE
benefits, we focus on the 10 flows with the highest rate, for
which TE is most important. Then, we consider as alternative
paths the second and third shortest path for each flow that
does not overlap with the shortest path (P sets). We find that
by optimizing one of the objectives, benefits are also realized
for the other objective. However, there will be a performance
loss (up to a factor of 2), since each algorithm favors one
objective over the other.

We also present evaluation results for Obj3 to examine how
the proposed algorithm (Binary search) compares with the
state-of-the-art methods (MUcPF and Highest ratio). We carry
this out for a single time period ¢ and different values of
the programmable traffic target (). The results are depicted
in Figure 5(b). As expected, the cost spent on upgrades
increases with P, for all the algorithms. Interestingly, the
proposed algorithm requires significantly lower cost than
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its counterparts; up to 2.5 and 1.67 times lower than Highest
ratio and MUCcPF respectively.

Although in our evaluation we used a real network topology
and traffic matrices, it would be also interesting to study the
results in larger networks. Towards this goal, we use the topol-
ogy of the Deltacom backbone network in North America,
which consists of 113 nodes and 161 links, and it is publicly
available online in [15]. Since there is no available information
about the traffic, we generate this artificially. Particularly,
we create F' = 1,000 flows, by picking uniformly at random
origin-destination pairs. We compute the shortest paths based
on the hop count length, and we set the flow rate to be dispro-
portional to it (following the gravity model [36]). In Figure 6,
we repeat the experiment presented in Figure 4(a), but for this
larger network. We find that the proposed algorithms perform
up to 12% better than their counterparts. The saturation point

5
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(a) Impact of optimizing different objectives for 7" = 1. (b) Upgrading cost (Obj3) for different minimum levels of programmable traffic.

is found to be B = $3M, about three times larger than in
the small network. We attribute this difference to the larger
number of nodes (10x) in the Deltacom network and the
topological characteristics, as the Deltacom has a higher link
density which enables SDN nodes to cover more flows. The
running times of the algorithms are typically on the scale of
minutes for the small network and hours for the large network.
For the Local search algorithm specifically, the running time
will be less than 10 minutes even if we consider all the possible
12656 (113 x 112) flows in the large network. These are
acceptable running times in practice since the problem has
to be solved offline by the ISP.

VIII. RELATED WORK

In this section, we present related work on SDN upgrading.
We also put our work in perspective in Table I that lists the
main papers that tackle this problem, categorized based on
their contributions.

Hybrid SDN: Incremental deployment of new protocols and
architectures is an operational paradigm shift [5], and SDN is
no exception to that. Namely, several techno-economic factors
make ISPs reluctant to proceed with immediate full-scale SDN
deployment. This renders hybrid SDN networks an imperative
intermediate step [6]. Such systems are nowadays possible due
to hybrid routers [23], yet their deployment is not without
challenges. For example, the co-existence of multiple control
planes poses risks for fault-free routing, and specific measures
should be taken to avoid this, e.g., see [24].

One of the key traffic engineering goals in these hybrid
networks is to use the SDN routers so as to minimize the load
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TABLE I
RELATED WORKS ON SDN UPGRADING

Reference Objective Joint routing & upgrading  Timing aspect
Max Max Min Min
programmable traffic TE gains upgrade cost path stretch

[27] v v v X X
[28] v X v X X X
[29] v X X X X X
[30],[31] X v X X X X
[11] X X X v v X
[32] X X v X v X
[33],[34] X v X X v X
[20],[21] X 4 X X X v
This work v v v X X v

of congested links, e.g., see seminal work [9], and [25], [26].
For a given set of upgraded nodes, this can be expressed
as an LP problem. However, upgrading decisions are more
challenging as they yield intractable problem formulations.

SDN Upgrading Problem: References [27] and [28] pro-
posed meaningful heuristics for the programmable traffic
maximization and upgrading cost minimization objective
respectively. Reference [29] designed a cover-based approx-
imation algorithm for the programmable traffic maximization
objective. A distinctive feature of the latter work is that the
SDN devices do not replace the legacy ones, but are deployed
in addition to them. In another front, the work in [30] studied
the objective of maximizing the minimum number of loop-
free routing paths enabled by the SDN nodes. This TE-based
objective can have a positive impact on security by eliminating
the routing bottlenecks likely to be utilized by an adversary.
Another approach that deploys SDN nodes in a way that
partitions the network into sub-domains so as to achieve TE
capabilities comparable to full SDN deployment, was proposed
in [31]. While the above works considered similar objectives
to our work, they did not provide approximation bounds (with
the exception of [29]), nor they studied the timing aspect.

Joint SDN Upgrading & Routing Problem: Another series of
works follow a joint SDN upgrading and routing optimization
approach, i.e., the flow routing and node upgrading decisions
are jointly made. The pioneer work in [11] proposed a joint
scheme that deploys SDN nodes and re-routes all flows
through at least one of them (hence all the traffic is made
programmable), with the goal of minimizing the total path
stretch. Another joint scheme that assigns to each legacy node
an SDN node, able to dynamically receive traffic and perform
failover, was proposed in [32]. Here, the objective was to
minimize the total number of upgraded nodes subject to certain
assignment restrictions. Two more joint schemes have been
proposed in the literature; a heuristic that minimizes the max-
imum link usage [33] and a randomized-based approximation
algorithm that maximizes network throughput [34].

We note that although the above joint approaches are
meaningful in certain cases, in general, the ISP will solve the
SDN upgrading and routing problems in different timescales.
A typical SDN upgrade window may span several years.
On the contrary, the routing problem should be solved in a
shorter time scale to respond to dynamic network conditions.
Therefore, in this work, we tackle the SDN upgrading problem

independently from routing, using long-term traffic predictions
(as in [20], [21], [27]-[31]).

Timing Aspect: Besides, one of our main focal points is the
impact of upgrade timing. This is a very crucial and practical
issue in hybrid SDNs given that (i) new technology costs
reduce rapidly [37], (ii) the out-of-phase life-cycles of the
legacy devices render cost-prohibitive massive replacements,
and (iii) the practical, technical and security limitations render
impossible one-time upgrades. Prior works as those above
do not focus on these aspects. On the contrary, few prior
interesting works [20], [21] studied gradual upgrades, yet, they
do not provide tight bounds, nor they analyze the impact of
equipment cost reduction. Clearly, the necessary consideration
of time dimension increases further the problem’s complexity.
To cope with this issue, we carefully employ state-of-the-art
algorithms such as [12], which can provide good-guarantees
even for large networks.

Alternatives to Hybrid SDN: Prior work also tries to achieve
SDN-like flexible path enforcement with legacy networks.
Fibbing [38] injects fake nodes and links into the underlying
link state routing protocol to achieve some level of load
balancing and TE, but its forwarding rule matching is limited
to destination-based, and its expressivity is thus confined
to the expressiveness of IP routing. Besides, with injected
“lies”, Fibbing could lead to debugging issues and incorrect
operation. DEFO [40] leverages segment routing to control
routing paths for carrier-grade traffic engineering but shares
some similar limitations as in Fibbing. Besides, its constraint
programming based middle-point selection largely focuses on
static traffic matrices, while our proposed TE module can load
balance dynamic traffic demands.

IX. CONCLUSION

In this paper, we studied the migration to SDN of high-
end ISP core networks. To this end, we introduced a model of
gradual SDN upgrades general enough to capture different ISP
migration strategies, costs, and objectives. An ISP can apply
our methodology to optimally decide which nodes to upgrade
over a period that may span several years. We focused on
two popular objectives of ISPs, namely, (i) the maximization
of the programmable traffic that traverses at least one of the
SDN enabled nodes, and (ii) the maximization of the traffic
engineering flexibility, i.e., the increase in the number of
alternative paths available to flows achieved by SDN upgrades.
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For these two objectives we characterized the complexity
of the problem and we proposed algorithms to achieve the
optimal upgrading schedule. We also studied the dual problem
of minimizing the cost of SDN upgrades to ensure specific
performance goals. Using two real-world network topologies
and traffic matrices, we differentiated situations in which
upgrades should be spread over many instead of one step and
explored the interplay between the different objectives. Our
results showed that for the first two objectives, the performance
of our algorithms showed up to 54% gains over state-of-the-
art methods and for the dual problem our proposed algorithm
achieved up to 2.5 times lower cost to ensure performance
goals over state-of-the-art methods.
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