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Abstract: The Event Horizon Telescope (EHT) Collaboration has successfully produced images of

two supermassive black holes, enabling novel tests of black holes and their accretion flows on horizon

scales. The EHT has so far published total intensity and linear polarization images, while upcoming

images may include circular polarization, rotation measure, and spectral index, each of which reveals

different aspects of the plasma and space-time. The next-generation EHT (ngEHT) will greatly

enhance these studies through wider recorded bandwidths and additional stations, leading to greater

signal-to-noise, orders of magnitude improvement in dynamic range, multi-frequency observations,

and horizon-scale movies. In this paper, we review how each of these different observables informs

us about the underlying properties of the plasma and the spacetime, and we discuss why polarimetric

studies are well-suited to measurements with sparse, long-baseline coverage.

Keywords: interferometry; polarimetry; black holes; magnetohydrodynamics; radiative transfer;

accretion; Messier 87; Sagittarius A*

1. Simulating Black Hole Accretion Flows

The Event Horizon Telescope (EHT) collaboration has produced the first images of
supermassive black holes (SMBHs), ushering in a new era of spatially resolved astrophysics
at the event horizon [1–14]. The images have been very constraining for general relativistic
magnetohydrodynamics (GRMHD) models, which evolve plasma in a Kerr spacetime
under the assumptions of ideal MHD. EHT science has focused mainly on constraining
three free parameters: spin, the magnetic field state, and Rhigh, which is related to the
ion-to-electron temperature ratio [5,8,13]. The SMBH spin, which we will denote as a•,
is the dimensionless angular momentum of a SMBH described by a Kerr metric that
can vary between |a•| ∈ [0, 1). A SMBH’s spin reflects its recent assembly history and
affects its accretion and feedback processes see [15]. Meanwhile, the accretion flow’s
magnetic field structure may vary between “MAD” and “SANE” states. In a Magnetically
Arrested Disk (MAD), the magnetic flux at the horizon saturates, and the magnetic fields
grow dynamically important, resulting in azimuthal asymmetries including flux eruption
events [16–18]. This contrasts with “Standard and Normal Evolution” (SANE), where
the magnetic fields remain turbulent and dynamically unimportant [19,20]. Finally, the
ratio of the ion to electron temperature in different regions is highly uncertain, since the
mean free path of the particles is much larger than the size of the system, and ions are
heated more efficiently [21–23]. EHT studies have encapsulated this uncertainty with the
post-processing parameters Rlow and Rhigh, which describe the asymptotic ion to electron
temperature ratio at low and high plasma β, respectively, [24], where β is the ratio of gas to
magnetic pressure. Less thoroughly studied parameters include the electron distribution
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B is the magnetic field strength, and Θe is the electron temperature2 (in units of the electron
rest mass energy). Each of these quantities can vary by orders of magnitude among different
models, and thus even the total flux is informative for jointly constraining these parameters.
To match the total flux of a given system, the fluid in ideal GRMHD simulations can be
rescaled via n → Mn, B →

√
MB, and u → Mu, where u is the internal energy and M

is a scalar. After doing so, both MAD and SANE simulations are capable of matching the
total flux of EHT sources at a single frequency, as well as broad image characteristics such
as the image size [5,13]. However, this rescaling causes SANE simulations to typically have
orders of magnitude larger number density than MADs, due to their intrinsically weaker
magnetic fields and lower temperatures [8,13]. Consequently, any additional observables
sensitive to these variables immediately help break degeneracies and distinguish between
models.

For example, the degeneracies between n, B, and Θe can be partially resolved with
the spectral index, α ≡ d log I/d log ν. Spectral index is mainly sensitive to the optical
depth τν as well as the temperature and magnetic field strength in the combination BΘ2

e

(on which the critical synchrotron frequency is dependent), e.g., [45]. Ricarte et al. [41]
show that GRMHD models span a wide range of spectral indices, and that SANE models
typically exhibit more negative spectral indices than MADs at a fixed optical depth due to
their lower temperatures. Although lacking by construction in ideal GRMHD simulations,
spectral index can also provide insight into synchrotron cooling processes that affect the
temperature.

In the ngEHT era, multi-frequency VLBI will enable spatially resolved spectral index
maps. Since the most important parameters (Θe, B, and τν) all decline with radius, spectral
index maps should generically grow more negative as radius increases. Equivalently, the
image becomes smaller as the frequency grows larger, e.g., [46]. One example from Ricarte
et al. [41] is shown in Figure 2: a MAD simulation of Sgr A* with a• = 0, Rhigh = 40,

and a non-thermal “kappa” electron distribution function3 with κ = 5 [47,48], inclined
at 50◦. The true spectral index map across 214 to 228 GHz is shown in the top central
panel, while a one-zone analytic prediction is shown in the top right, using a κ = 5 eDF
combined with the plasma variables computed in the bottom row. To obtain the analytic
prediction, each pixel is treated as a one-zone model using plasma properties computed
via an emissivity-weighted average along the geodesic. In this simulation, both τν and B
decline with radius, but Θe stays in a relatively narrow range. Thus, the decline of α with
radius can be attributed to a decline in τν and B. Models also exhibit a generic spike in α

in the photon ring, whose geodesics plunge into regions with strong magnetic fields and
acquire a larger optical depth due to their longer path lengths in the emitting region.
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magnetic fields projected onto the line-of-sight. In the idealized vertical case, the EVPA
pattern becomes more sensitive to the direction of the fluid’s motion [8].

50 µas

Toroidal Radial Vertical

Figure 3. Polarization pattern of a ring of emission around a Schwarzschild black hole threaded with
magnetic fields of different geometries: toroidal, radial, and vertical adapted from Figure 3 of [8].
The toroidal and radial magnetic field cases clearly illustrate the fact that synchrotron emission is
polarized perpendicular to the magnetic field projected onto the sky. The orientation of the ticks in
the vertical field case encodes the direction of the fluid’s motion [8], chosen here to be clockwise on
the sky. These maps were computed using the analytic ring model of Narayan et al. [51]. Here, the
color map encodes the total intensity, and unlike in Figure 1, the linear polarization ticks do not scale
with the polarized intensity.

EHT studies have identified the linear polarization fraction (on both resolved and
unresolved scales) as well as the morphology of polarization ticks as important observ-
ables for theoretical interpretation. This “twistiness” can be quantified by the complex
number β2, the rotationally symmetric component of a Fourier decomposition of the po-
larization pattern [55]. M87* and Sgr A* both exhibit percent level spatially-unresolved
linear polarization fractions at 1.3 mm and ∼10–20% level resolved polarization fractions,
e.g., [7,56], much lower than the ideal value of 70% for a uniform parcel of emitting plasma,
e.g., [57–59], as do other AGN observed with cm-VLBI, e.g., [60,61]. This could be due
to both Faraday depolarization and disordered magnetic field structures. For the EHT
observations of M87*, Event Horizon Telescope Collaboration et al. [8] found that the low
polarization fraction was attributable mainly to Faraday rotation in GRMHD models. Com-
bining resolved linear polarization information with an upper limit on circular polarization,
Event Horizon Telescope Collaboration et al. [8] found that MAD models were favored
over their SANE counterparts for M87*, which could not be concluded based on total
intensity alone. Fundamentally, this can be attributed to linear polarization’s sensitivity to
the geometry of the magnetic field, as well as Faraday rotation’s sensitivity to cooler elec-
trons that may otherwise be invisible. MAD models tend to have more ordered fields with
stronger poloidal components, which produces twistier polarization patterns. Meanwhile,
SANE models tend to require orders of magnitude larger mass density to compensate
for their intrinsically weaker magnetic fields and lower temperatures, resulting in much
greater Faraday depths. In retrograde systems, images can exhibit flips in the handedness
of the polarization spiral with radius, quantified as a sign flip in the imaginary component
of β2. This results from a flip in the angular velocity of inflowing streams due to frame
dragging [62].

Sgr A* also exhibits interesting time variability in linear polarization, especially during
flares, which are accompanied by large polarization fractions, swings in polarization angle,
and “Q-U loops” on the timescale of hours [63–67]. These can be interpreted as the motion
of hotspots or other structures as they light up different parts of the magnetic field structure
during their orbit [52,68–72]. The hotspots themselves may originate from “flux eruption
events” and magnetic reconnections that occur naturally in MAD accretion flows [73–75].
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Thus, time variability of linear polarization offers unique insights into the magnetic field
structure and direction of orbital motion that could potentially be linked to the inclination
and spin of Sgr A*. The GRAVITY Collaboration has detected centroid motion coincident
with a flare [66,76]. Spatially resolved movies created by the ngEHT would help test the
hotspot interpretation, motivating high-cadence monitoring of this source.

4. Rotation Measure

In an ionic plasma, circularly polarized waves of opposite handedness propagate at
different speeds, resulting in a circular birefringence effect known as Faraday rotation. The
EVPA of propagating emission rotates an amount sensitive to the density, temperature,
and line-of-sight magnetic field. As examined in several studies, internal Faraday rotation
is important for depolarizing and scrambling images of GRMHD models of black hole
accretion flows [8,42–44]. The magnitude of Faraday rotation has a wavelength-squared
dependence, thus it is useful observationally to define the rotation measure RM = dχ/dλ2,
which offers insights into physical parameters of the Faraday rotating plasma. For a
linearly polarized emitter entirely behind a uniform Faraday screen, the RM is related to
the properties of the screen via

RM = 8.1 × 105 rad m−2
∫ observer

source
frel(Θe)

ne

1 cm−3

B||
G

ds

pc
, (1)

where ne is the electron number density, B|| is the component of the magnetic field parallel
to the photon wave-vector, and frel is a correction term suppressing Faraday rotation at
relativistic temperatures [77]. For relativistic plasmas, frel(Θe) ≈ log(Θe)/(2Θ2

e ), while
frel asymptotes to 1 as Θe → 0. Here Θe ≡ kBTe/mec2, kB is the Boltzmann constant, Te is
the electron temperature, me is the electron rest mass, and c is the speed of light [78]. In
GRMHD models, the plasma responsible for synchrotron emission is sometimes completely
separate from the plasma responsible for Faraday rotation. For example, some large Rhigh
SANE models exhibit a cold Faraday rotating midplane sandwiched between emission
from their hot jet sheaths [44]. Moreover, while the EVPA probes the magnetic field as
projected onto the sky, Faraday rotation is sensitive to the magnetic field along the line-
of-sight. Hence, rotation measure and linear polarization can offer a view into electron
populations that may otherwise be undetectable from total intensity alone.

At the time of writing, narrow observing bandwidths inhibit our ability to create
spatially resolved rotation measure maps with currently published EHT data, but spatially
unresolved RM measurements at millimeter wavelengths exist for Sgr A*, the core of
M87*, and several other LLAGN, e.g., [79–84]. Note also that rotation measure from AGN
generally increases with increasing frequency, e.g., [85] and can reach values of the order of
107rad m−2 [86] due to the opacity effect probing regions close to the central engine at the
ngEHT frequencies. Without spatial resolution, unresolved rotation measure measurements
are difficult to interpret because the assumptions underlying Equation (1) are not believed
to generally hold. In GRMHD models, Faraday rotation occurs co-spatially with the plasma,
can vary by orders of magnitude in different locations, and can also flip sign across the
image due to turbulence [44]. As a result, unresolved EVPA measurements may exhibit
significant temporal variation and not strictly follow a λ2 law. Figure 4 plots a rotation
measure map of a MAD GRMHD model of M87*, with the spatially unresolved RM written
at the bottom of each panel. This turbulence can explain the intra-week time variability of
the RM observed for M87* [59]. On the other hand, Sgr A* has exhibited a constant sign of
RM for decades, suggesting the existence of a more stable (but still variable) foreground
Faraday screen [84]. Spatially resolved rotation measure maps could help disentangle
the Faraday screen and give insights into both the turbulence of the accretion flow and
the magnetic field structure of jets. This may be of increased importance, since EHT
observations of Sgr A* indicate that GRMHD models are too variable [13].
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7. Studying Polarimetry with Interferometry

Thus, far, the discussion has focused on the polarimetric properties of simulated black
hole images or images reconstructed from interferometric visibilities. In practice, since the
measured visibilities are actually samples of the Fourier transform, image reconstruction
can introduce significant systematic uncertainties. Reconstruction methods must find
images consistent with incomplete and noisy information in Fourier space, to which there
can be multiple families of solutions. Images cannot be constructed at all without sufficient
uv coverage (or strict image priors). Thus, it can be useful to study signals in their native
visibility space.

The visibility-domain response of polarimetric observables has some key differences
from that of total intensity. For instance, the visibility amplitude for total intensity is
guaranteed to be maximal for the zero baseline because the image is positive. However,
because the Stokes parameters Q, U, and V are not constrained to be positive, their visibility
functions may not be maximal on the zero baseline. This simple property can be used
to make powerful inferences from sparse measurements (e.g., from the EHT or the space
VLBI project RadioAstron). For instance, a single measurement of |Ṽ(u)| > |Ṽ(0)| would
demonstrate that the image does not have uniform sign of circular polarization. Likewise,
if
∣

∣P̃(u)
∣

∣ 6=
∣

∣P̃(−u)
∣

∣, where P̃(u) ≡ Q̃(u) + iŨ(u), then the linear polarization field must
have variations in direction. This test can be performed with as few as two stations, but each
must have dual polarization receivers. In addition, because polarization breaks the trivial
baseline reflection degeneracy that is present in total intensity, the polarimetric structure
can be compared on baselines u and −u, effectively doubling the angular resolution relative
to total intensity alone!

Another significant difference between the total intensity and polarization is that the
linear polarization images can have changes in both amplitude and direction, allowing
it to have significant image substructure relative to the intensity image. In the visibility
domain, this substructure translates to a relative increase in the power on long baselines in
polarization versus total intensity. In the limit of a heavily resolved source, the polarimetric
signal may exceed that of the total intensity, even for a source with a low fractional
polarization!

This can be quantified using the interferometric fractional polarization, m̆(u) ≡
[

Q̃(u) + iŨ(u)
]

/ Ĩ(u). On a zero baseline, this complex quantity corresponds to the unre-
solved fractional polarization, m̆(0) = (Qtot + iUtot)/Itot, where the “tot” subscript denotes
an image-integrated quantity. However, unlike the image fractional polarization, |m̆(u)|
can exceed unity on long baselines. This was found out from ground-based observations of
for Sgr A* [92] as well as within the RadioAstron Space VLBI survey of AGN [93]. These
observations had one common feature: a very high angular resolution corresponding to sev-
eral Gλ spatial scales. In general, for a heavily resolved source with polarized substructure,
we expect |m(u)| to generically grow with increasing baseline length.

From a calibration perspective, the interferometric fractional polarization has the ben-
efit of properties analogous to VLBI closure quantities, since the source of rapidly varying
gains at VLBI sites (e.g., changing atmospheric delay and reference frequency errors) are
equivalent for both polarization feeds. In addition, the interferometric fractional polariza-
tion is resilient to the effects of interstellar scattering, which is likewise not significantly
birefringent (see Figure 7). Finally, |m(u)| is a useful observable to measure the relative
coherence of the polarization field. For a perfectly uniform polarization field, |m(u)| will
be independent of baseline length. However, for a polarization field that varies on spatial
scales much smaller than the the beam size of the interferometer, |m(u)| will grow roughly
as 1/| Ĩ(u)|, as the observations resolve the structure in total intensity without resolving
the structure in polarization.

In Figure 8, we plot total intensity and linear polarization maps of two models of
M87* with very different polarization characteristics. The top model is a MAD simulation
with a• = 0.9 and Rhigh = 1, which exhibits an ordered polarization pattern due to
ordered magnetic fields and little Faraday rotation. Meanwhile, the bottom model is a
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P̃(b, ν) =
∫

d2
θ P(θ, ν)e−2πi ν

c θ·b (2)

⇒ ν∂ν P̃(b, ν) =
∫

d2
θ [ν∂νP(θ, ν)− 2πiθ · uP(θ, ν)]e−2πiθ·u, (3)

where ∂ν denotes a partial derivative with respect to ν. The first term in the square brackets
of Equation (3) accounts for the frequency dependence of the image, while the second
accounts for the changing dimensionless baseline with frequency. For the first term, an
image with spectral index α has P ∝ να, so |ν∂νP| ∼ |αP|; likewise, an image with finite
rotation measure has P ∝ e2iλ2RM, so |ν∂νP| ∼ 4

∣

∣RM × λ2P
∣

∣. Roughly speaking, we expect
that the relative dominance or subdominance of spectral index versus RM are independent
of baseline length, so the relative effects on long baselines are likely similar to those for
unresolved measurements of a source. For instance, the effects of rotation measure for
observations of Sgr A* at millimeter wavelengths are likely to vastly dominate the effects
of spectral index. Sgr A* has α = 0.0 ± 0.1 [94] but 4 × RM × λ2 ≈ −2.7 [59]. The second
term gives a relative contribution that increases as the image is increasingly resolved.
It becomes significant when the spanned frequencies change the baseline length by the
inverse field-of-view, F.

8. Discussion and Conclusions

The EHT and upcoming ngEHT enable us to probe accreting supermassive black holes
via a variety of multi-frequency polarimetric observables. In this contribution, we have
discussed the many ways in which the physical properties of underlying accretion flow
are mapped onto these observables. Total intensity and spectral index encode the density,
temperature, and magnetic field strength of emitting plasma in different regions. Linear
polarization encodes the geometry of the magnetic field, and its depolarization via Faraday
rotation offers an observational probe into what may be otherwise invisible cool electrons,
and a different component of the magnetic field vectors. Rotation measure maps probe
this cooler Faraday rotating electron population directly, and can probe the magnetic field
direction, which can reveal turbulent structures. Finally, circular polarization encodes
both overall geometry and direction of the magnetic field via emission, Faraday rotation,
and Faraday conversion. We have discussed that even if imaging proves prohibitively
challenging for some datasets, constraining information exists already in visibility space.
For some models, low polarization fractions in spatially unresolved measurements hide
large polarization fractions in spatially resolved measurements. In the ngEHT era, we will
have access to not only single snapshots, but also movies, with a much larger dynamic
range in intensity than is presently possible with the EHT. Multiple snapshots will also
enable cleaner theoretical connections via time averaging, e.g., [95,96]. This will enable an
unprecedented deluge of data about the nearest SMBHs that will help us understand their
accretion and feedback processes.
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Notes

1 That is, the ion-to-electron temperature ratio asymptotes to a value of 40 in high-β regions, which typically occur in the mid-plane.
This is a typical value in EHT GRMHD studies, e.g., [5,8,13].

2 Θe is the temperature normalized by the electron rest mass energy, Θe = kBT/mec2, where kB is the Boltzmann constant, T is the
temperature in Kelvin, me is the electron rest mass, and c is the speed of light.

3 These distributions are characterized by a thermal core with the addition of a high energy power-law tail, with slope p = κ − 1.
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