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Abstract: The next-generation Event Horizon Telescope (ngEHT) will be a significant enhancement

of the Event Horizon Telescope (EHT) array, with ∼10 new antennas and instrumental upgrades of

existing antennas. The increased uv-coverage, sensitivity, and frequency coverage allow a wide range

of new science opportunities to be explored. The ngEHT Analysis Challenges have been launched

to inform the development of the ngEHT array design, science objectives, and analysis pathways.

For each challenge, synthetic EHT and ngEHT datasets are generated from theoretical source models

and released to the challenge participants, who analyze the datasets using image reconstruction and

other methods. The submitted analysis results are evaluated with quantitative metrics. In this work,

we report on the first two ngEHT Analysis Challenges. These have focused on static and dynamical

models of M87* and Sgr A* and shown that high-quality movies of the extended jet structure of M87*

and near-horizon hourly timescale variability of Sgr A* can be reconstructed by the reference ngEHT

array in realistic observing conditions using current analysis algorithms. We identify areas where

there is still room for improvement of these algorithms and analysis strategies. Other science cases

and arrays will be explored in future challenges.

Keywords: very long baseline interferometry; black holes; active galactic nuclei; radio astronomy;

imaging; instrument design; telescopes; algorithms; data analysis
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1. Introduction

1.1. The ngEHT

The Next-Generation Event Horizon Telescope (ngEHT) [1,2] will build on the success
of the Event Horizon Telescope (EHT), the mm VLBI array, which has imaged the black
hole shadows of M87* and Sgr A* [3–16]. The array will be transformatively enhanced
with the current design envisioning ∼10 additional stations, a quadrupled bandwidth, and
frequency coverage, including 86 [17], 230, and 345 GHz. Multiple operating modes will
make it suitable for a wide array of science cases. The primary science goals will involve
making movies of M87* and Sgr A* resolving the plasma dynamics on event horizon scales,
providing black hole photon ring measurements sufficiently accurate to put constraints on
black hole spin, and increasing the sample of black hole shadows imaged [18,19].

1.2. Challenge Motivation

End-to-end science simulations, which cover the full source physics, observation,
calibration, and analysis processes, are of great value for the design and optimization
of new instrumentation in astrophysics. These simulations realistically predict what the
capabilities of the new instrument will be and which science questions it will be able to
answer and can help guide the instrument design and analysis algorithm development.
The ngEHT Analysis Challenges aim to provide such end-to-end simulations, bringing
together expertise in all relevant areas to be applied to a well-defined set of problems. The
challenge concept was inspired by the EHT Imaging Challenges [20]. In these challenges,
EHT imaging experts imaged synthetic EHT datasets of different source models, which led
to the rapid development of imaging algorithms and strategies tailored to the specifics of
EHT datasets. While the EHT Imaging Challenges were aimed at maximizing the image
quality that can be obtained from a known instrument, the ngEHT Analysis Challenges
aim to help guide the development of a new instrument. Additionally, the ngEHT concept
allows for the expansion of the imaging into two new dimensions, which are frequency
(the ngEHT will operate at 2–3 distinct frequency bands simultaneously) and time (movie
making). While not the focus of the challenges reported in this work, we aim to extend the
ngEHT Analysis Challenges to model fitting and parameter estimation as well.

1.3. Challenge Procedure

For each challenge, we generate synthetic datasets from a set of source models. The
source models (see also [21]) are representative of a specific ngEHT science case, may be
static or time-variable, and may be generated for different (potential) ngEHT frequencies
(86, 230, and 345 GHz in this work). The synthetic datasets are generated for different
arrays (here, the 2022 EHT array and an ngEHT reference array) and contain different levels
of data complexities (e.g., systematic weather or instrument noise). For each challenge,
the synthetic datasets and other information and instructions are released to the challenge
participants through the ngEHT Analysis Challenge website1. Participants then upload
their analysis results through the same website before a pre-set deadline. Image and movie
reconstructions are then uniformly plotted for visual comparison and evaluated using
quantitative metrics (see Section 3). Participation is open to anyone, with access to the
downloads provided upon request to the organizers.

1.4. Outline

In this work, we report on the first two ngEHT Analysis Challenges. Section 2 details
the reconstruction algorithms used by the challenge participants, and Section 3 describes the
submission evaluation metrics. Challenge 1 and 2 source models, synthetic data generation,
and results are presented in Sections 4 and 5, respectively, and the conclusions and outlook
are discussed in Section 6.
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2. Reconstruction Methods

In radio interferometry, image reconstruction is an underconstrained problem, as
the finite number of telescopes and baselines cause only a limited number of Fourier
components of the image (visibilities) to be measured. Hence, an infinite number of images
could fit the data, and additional assumptions need to be made in order to arrive at a
unique image solution. Different image reconstruction algorithms tackle this problem in
different ways. The algorithms can be divided into inverse modeling, regularized maximum
likelihood (RML), and Bayesian methods. The section below describes the algorithms used
for the image reconstructions in this work, separated into methods reconstructing static
images and methods reconstructing movies.

An alternative method to reconstruct the sky brightness distribution is fitting (geo-
metrical) models to the interferometric data. Since such reconstructions have not been
submitted for the challenges described in this paper, we do not discuss them here. We aim
to explore these methods in future challenges, aimed at measuring specific black holes and
accretion parameters.

2.1. Static Imaging

2.1.1. CLEAN

The CLEAN algorithm is a well-known inverse modeling imaging technique. The basic
algorithm was developed by Högbom [22], with other variants developed later. CLEAN

deconvolves a sampling function (known as the dirty beam) from the measured brightness
(or dirty map) of a radio source. The imaging procedure via CLEAN involves a number
of iterations, where in each iteration, the algorithm creates a point-source component,
the CLEAN component, at the position of the brightness peak in the dirty image. Then, it
convolves the CLEAN component with the dirty beam, subtracting it from the dirty image
and transferring it to the clean map [22]. The cleaning iterations continue until a specific
cleaning halting requirement is met. In the case of noisy data, the user can steer the
process by limiting the searching area with CLEAN windows. Finally, the generated set of
CLEAN components is convolved with a Gaussian restoring beam. The image quality can
be further enhanced via self-calibration and references thereafter [23], which corrects the
amplitude and phase information using the current image estimate. The residual dirty
image, representing the image noise level, may be added to the clean map as the final step.

During the last decades, this technique has been widely used for imaging astronomical
targets, as well as for a broad range of other applications [24]. Together with eht-imaging

and SMILI (Section 2.1.2), it was one of the methods used for reconstructing the first EHT
images of M87* [3–8] and Sgr A* [11–16].

The strategy followed for the ngEHT Analysis Challenges used a semi-scripted ap-
proach, in a similar fashion to the one in [13], employing the CLEAN algorithm via the
software DIFMAP and references thereafter [25].

2.1.2. RML Methods: EHT-Imaging and SMILI

RML methods calculate each pixel of the source image I by fitting directly to the
data D, with the fidelity of the final image to be adjusted by specific regularization terms,
e.g., [26–28]. The data D consists of separate data products d. These are typically visibility
amplitudes, closure phases, or (log) closure amplitudes, see, e.g., [29]. These regularizers R
could entail the entropy, sparsity, smoothness, or other properties of the image. For more
details on regularizer definitions, see Appendix A of Event Horizon Telescope Collaboration
et al. [6]. RML methods find an image that minimizes a specified objective function,

J(I) = ∑
d

αdχ2
d(I)− ∑

R

βRSR(I), (1)

consisting of goodness-of-fit (χ2
d) and regularization (SR) terms, weighted by hyperparame-

ters (αd and βR).
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Both the eht-imaging [29,30] and SMILI [31,32] frameworks are suitable for directly
using the closure phases and (closure) amplitudes, making them ideal for high-frequency inter-
ferometric imaging [33]. As for CLEAN, multiple rounds of self-calibration are often performed.

Various submitters used different regularizers and weights for producing reconstruc-
tions of Challenge 1 and 2 data. For the M87 datasets, an informed prior was often used
consisting of a small Gaussian with most of the flux, corresponding to the core, and a large
disk with little flux to capture the extended emission from the jet. For the Sgr A* images, a
disk or Gaussian prior was often used, deblurring the data and, in some cases, applying a
constant noise floor to mitigate the intergalactic scattering before imaging. eht-imaging
was also used to produce multi-frequency images, regularizing the spectral index map [34].

2.2. Dynamical Imaging

2.2.1. EHT-Imaging

The dynamical imaging module of eht-imaging (abbreviated to ehtim-di in this
work) generalizes static imaging using a regularized maximum likelihood approach to
reconstruct movies of time-variable sources [35]. Specifically, the reconstruction consists
of a series of Nt images (movie), M = {I1, I2, . . . , INt

}. These images are determined by
minimizing an objective function,

J ≡ ∑
d

αdχ2
d(M)− ∑

R

βR

[

1
Nt

Nt

∑
j=1

SR(Ij)

]

+ ∑
x

γxRx(M). (2)

The objective function consists of three components:

• Like for static RML imaging, a data term which defines the log-likelihood of the
reconstruction with respect to whatever data products are fit.

• A spatial regularization term, where for each regularizer, we compute a weighted sum
over individual image regularization terms, SR(Ij).

• A dynamical regularization term with temporal regularizers Rx(M) with associated
hyperparameters γx. This term computes a penalty function that can be used to favor
reconstructions that evolve smoothly in time (R∆t), that have small variations relative
to the mean (R∆I), or that evolve according to fluid motion with a steady flow (Rflow).

For the dynamical imaging reconstructions in the analysis challenges, we first fit a
simple geometrical model to the full dataset, i.e., a thick “m-ring”; see [14,36]. We then
used this model as both a prior (for relative entropy of individual images) and initializa-
tion of reconstructed movies, with a typical frame separation of 1 min for Sgr A∗. We
fit amplitudes and closure phases, with iterative self-calibration of the visibility ampli-
tudes. The imaging was performed using gradient descent with the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [37], as implemented in Scipy [38].

2.2.2. StarWarps

The StarWarps algorithm [39] reconstructs time-variable sources by simultaneously
reconstructing both the image and its time evolution. StarWarps reconstructs Nt images
M = {I1, I2, . . . , INt

}, using the observational data snapshots D = {D1, D2, . . . , DNt
} at the

corresponding timestamps. It employs a dynamical imaging model ϕ at each timestamp j:

ϕDj |Ij
= NDj

( f j(Ij), Rj), (3)

ϕIj
= NI1(µj, Λj), (4)

ϕIj |Ij−1
= NIj

(AIj−1, Q), (5)

where NDj
( f j(Ij), Rj) refers to the multivariate normal distribution of Dj with mean f j(Ij)

and the covariance Rj. Λi = diag[µi]
T

Λ
′diag[µi], where Λ

′ is defined in terms of the pri-
ors; see Equation (13) of [39] for more details. µi is the mean of a multivariate Gaussian
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distribution and Λ describes the covariance, setting the spatial regularization. f j(Ij) de-
scribes the functional relationship between the source image Ij and the contemporaneous
observed data Dj. The global time evolution of the source between timestamps j − 1 and j
is described by the evolution matrix A, so that Ij ≈ AIj−1, and any additional perturbations
of the source are constrained by the covariance matrix Q. The process hence reduces to
static imaging for (A = 1, Q = 0). The joint probability distribution is then given by:

p(M, D; A) ∝
Nt

∏
j=1

ϕDj |Ij

Nt

∏
j=1

ϕIj

Nt

∏
j=2

ϕIj |Ij−1
. (6)

In StarWarps, we jointly solve for the image reconstructions as well as A. First, we learn A

using the Expectation-Maximization (EM) algorithm and then reconstruct the images with
that A.

For the analysis challenge image reconstruction with StarWarps, we used the visibility
amplitudes, log closure amplitudes, and the bispectrum (triple amplitudes and closure
phases) as our data products, with 2% added systematic noise. We used the EHT 2017
image of Sgr A* [11] blurred with a 25 µas Gaussian kernel as a prior; see also [40].

2.2.3. Resolve

The algorithm resolve2 approaches the imaging task for the (ng)EHT from a proba-
bilistic, Bayesian perspective. It is based on Bayes’ theorem:

P(M|D) =
P(D|M)P(M)

P(D)
, (7)

where D refers to the measured data, and M denotes the time-varying sky brightness
distribution. The quantity P(M|D) is called posterior probability densityand contains all
information on M after taking the information from the data D into account. In the case
of the dynamic Sgr A* model, we consider M to be a discretized quantity with spatial
dimensions 200 × 200 and a temporal axis of length 720—in total, 2.88 · 107 degrees of
freedom. Therefore, the posterior can be considered to be a function R

28,800,000 → R
>0.

The prior probability density P(M) represents our knowledge of the source before
the data are considered. Since the sky brightness distribution represents a flux density, we
can safely assume that its values are non-negative. Additionally, we know a priori that
the emission is correlated in both the spatial and temporal directions. Thus, we assume
generic homogeneous and isotropic spatial and temporal correlation structures whose
specific form is learned from the data alongside M. For more details on the prior, refer to
Arras et al. [41,42].

The likelihood P(D|M) encodes our knowledge of the measurement process. In gen-
eral, the calibration pipeline of the (ng)EHT provides visibilities whose phases suffer from
temporally uncorrelated station-based effects. The amplitudes of the visibilities are approx-
imately correct and only subject to small time-correlated station-based effects. Therefore,
we use closure phases and self-calibrated (non-closure) amplitudes in the likelihood.

After combining prior and likelihood, our best guess for the time-variable behavior
of the source is given by the expectation value of the posterior:

∫

MP(M|D) dM. Since
evaluating such high-dimensional integrals directly is virtually impossible, we use Metric
Gaussian Variational Inference [43] that provides approximate solutions to Bayes’ theo-
rem efficiently. As a result, we obtain a collection of approximate posterior samples that
can be averaged to obtain an approximate posterior mean. Additionally, the variability
of the approximate posterior samples represents the uncertainty of the computed solu-
tion. This uncertainty could be propagated to downstream analyses of the time-variable
reconstruction of the source.

For the ngEHT analysis challenges, we adopted the implementation of resolve of
Arras et al. [42] where resolve has been applied to the 2017 EHT observation of M87*.
For evaluating the interferometry measurement equation (i.e., the non-equidistant Fourier
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transform), we use the implementation presented in Arras et al. [44]. Variations of resolve
have been verified and tested against standard methods in various contexts [41,42]. To
enable comparisons to results of algorithms that do not quantify uncertainties, we will
depict only the posterior mean of the sky brightness distribution s in the following.

2.2.4. DoG-HiT

DoG-HiT is a multi-scale RML imaging algorithm [45]. DoG-HiT models the image by
a set of wavelets (a dictionary Γ) constructed by the difference of the Gaussian method:
I = ΓI [45,46]. With DoG-HiT, we aim to recover the array of wavelet coefficients I that
represents the true sky brightness distribution best. The wavelets define filters in the
Fourier domain that are ring-like. Hence, every wavelet compresses the spatial information
from a specific band of baselines in the uv-coverage. For DoG-HiT, the scales are fitted to
the uv-coverage, thus giving rise to wavelets most sensitive to gaps in the uv-coverage
and wavelets most sensitive to Fourier coefficients sampled by baselines. In the spirit of
compressed sensing, DoG-HiT utilizes a sparsity promoting penalization by a l0 penalty
term on the wavelet coefficients. In detail, we solve the following optimization problem
consisting of data fidelity terms for the closure quantities (χ2

cp and χ2
camp), the l0 penalty

term and a total flux constraint by an updated forward-backward splitting approach [45]:

Î ∈ argmin
I

[

χ2
cp(ΓI ) + χ2

camp(ΓI ) + α · ‖I ‖l0 + Rflux(I , f )
]

, (8)

where Rflux is a total flux indicator function with flux f , and Γ denotes the wavelet dic-
tionary. DoG-HiT is a data-driven, automatic imaging pipeline that depends on only one
hyper-parameter (the relative weighting of the penalization term α). It has been demon-
strated to produce high-quality, super-resolved reconstructions for static sources in a
relatively short time with minimal manual interaction and without the need for extensive
parameter surveys. e.g., compare the Challenge 1 reconstructions with DoG-HiT in Section
6 of [45].

The dynamic reconstructions are based rather straightforwardly upon the success of
this static imaging. We utilize the automatic static imaging pipeline to construct a mean
image from the full length of the observation without taking the dynamics of the source
into account. DoG-HiT computes a set of statistically significant wavelet coefficients from
the mean image as a byproduct (the multiresolution support). Then the mean image (with
a relatively bad fit to the data due to not respecting the source dynamics) is subtracted from
the self-calibrated visibilities, and the observation is cut into frames of six minutes. The
residuals are minimized frame by frame with StarWarps with implicit dynamic variability
imposed by StarWarps. A small StarWarps internal regularization parameter is used, but,
in constrast to StarWarps, the reconstruction is performed in a multiscalar constrained min-
imization framework (multiresolution support constraint), i.e., only the wavelet coefficients
classified as significant during the static image reconstruction are allowed to vary. This
introduces a correlation between frames and consistency to the mean static image.

DoG-HiT is still under development and is currently extended to dynamic, polari-
metric reconstructions [47] with promising first results on synthetic data (see upcoming
Challenge 3 reconstructions). A finer set of directional-dependent wavelet functions [46]
allows for dynamic reconstructions in a constrained minimization reconstruction on frames
independently, thus replacing StarWarps during the current DoG-HiT dynamic imaging
pipeline and relying on a completely unsupervised, automatic wavelet approach only. On
the one hand, such an unsupervised, automatic imaging procedure is desired as it reduces
the human bias in the reconstruction; on the other hand, driving by an astronomer could
be crucial to address data issues, in particular for challenging data sets such as what will be
produced by the ngEHT.
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3. Submission Evaluation Metrics

Submitted reconstructions were evaluated with several quantitative quality metrics.
These metrics, which all probe different aspects of what makes a high-quality reconstruction,
are summarized below.

3.1. Data Fit Quality

The goodness-of-fit of the submitted reconstructions to the provided synthetic data was
quantified by computing the reconstruction visibilities using the synthetic data uv-coverage
and then calculating the χ2-metric on closure quantities, χ2

cphase and χ2
lcamp. These quantities

are the closure phases, which are the sum of visibility phases measured simultaneously
on a closed triangle of baselines, and the (log) closure amplitudes, respectively, which are
ratios of visibility amplitudes on a baseline quadrangle; see, e.g., [48]. Closure quantities
are robust against station-based calibration errors.

3.2. Ground Truth Image Similarity

Apart from the goodness-of-fit to the synthetic data, another important quality metric
is the similarity of the reconstruction to the ground truth source model. We quantify
this similarity using the normalized cross-correlation. The normalized cross-correlation
between two images X and Y is

ρNX =
1
N

N

∑
i=1

(Xi − 〈X〉)(Yi − 〈Y〉)

σXσY
. (9)

Here, N is the number of pixels in the images, Xi and Yi are the pixel values of images X
and Y, respectively, 〈. . .〉 denotes an average, and σX and σY are the standard deviations of
the pixel values of images X and Y, respectively. The value of ρNX will be equal to 1 for
identical images (maximal correlation), 0 for completely uncorrelated images, and −1 for
perfectly anticorrelated images. Using the implementation in eht-imaging, the two images
are regridded to contain the same number of pixels with equal pixel size and aligned
to maximize ρNX. For M87 reconstructions, we are often most interested in the arrays’
ability to reconstruct the large-scale and low-surface brightness jet emission. Therefore, we
also compute ρNX on the log pixel values (ρNX,log). In order to suppress the influence of
low-surface brightness image noise, which may appear at a certain flux level depending
on the particularities of the reconstruction algorithm, we limit the dynamic range of the
ground truth and reconstructed images to 104 in this case.

3.3. Effective Resolution

ρNX also provides a way to compute the effective angular resolution obtained by
the reconstructed image. Following Event Horizon Telescope Collaboration et al. [6], we
blur the ground truth model images with a circular Gaussian with varying FWHM and
calculate ρNX,FWHM with respect to the ground truth model images using Equation (9).
For a submitted reconstruction with a particular ρNX,rec with respect to the ground truth,
the effective resolution θeff is then the (interpolated) FWHM for which ρNX,rec is equal to
ρNX,FWHM.

3.4. Dynamic Range

Dynamic range is usually defined as the ratio between the brightest and dimmest
pixel value in an image and has been frequently used in radio astronomy to assess the
ability of an array to reconstruct low-surface brightness features. For images reconstructed
with CLEAN algorithms, the dynamic range can be naturally calculated as the ratio between
the brightest CLEAN component and the noise floor (Section 2.1.1). However, for images
reconstructed with other algorithms (e.g., RML-based approaches), formally defining a
dynamic range metric that works universally and reflects our intuitive sense of dynamic
range is non-trivial. This difficulty has two main causes. First, not all imaging methods
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naturally produce a noise floor, such as CLEAN and have many (near)-zero pixel values.
Second, many imaging algorithms produce spurious structures due to, e.g., sparse uv-
coverage, so that the lowest reconstructed pixel brightness cannot be used to robustly
define a dynamic range metric.

To evaluate the challenge reconstructions, we use a dynamic range proxy following
Bustamante et al. [49]. This metric considers the ratios between the brightest pixel of the
ground truth image Igroundtruth and the absolute pixel residuals of the reconstructed image
Ireconstructed with respect to the ground truth,

D =
max(Igroundtruth ∗ G2D

θeff
)

∣

∣

∣
Ireconstructed − Igroundtruth ∗ G2D

θeff

∣

∣

∣

. (10)

Here, ∗ denotes convolution, |. . .| indicates that we take the absolute values, and
G2D

θeff
represents a two-dimensional circular Gaussian with an FWHM equal to the effective

resolution θeff of the reconstructed image. From D, which has the form of an image, we
can calculate a dynamic range proxy by selecting the qth quantile of the pixel values:

Dq = quantile(D, q). (11)

By using the residuals, this metric penalizes spurious structures in the reconstructed
image and does not rely on a noise floor being calculated as part of the imaging process. A
disadvantage is that it requires the ground truth image and hence cannot be applied to real
data. Setting q too low will make the metric dominated by outliers in the residual image,
while setting it too high will not penalize high residuals strongly enough. We set q = 0.1
for our dynamic range proxy D0.1. Because of its sensitivity to q and the chosen blurring
kernel, we emphasize that this metric should not be regarded as giving the dynamic range
of the image but rather as a dynamic range proxy that can be used to compare different
reconstructions of the same source model.

4. Challenge 1

4.1. Rationale and Charge

The primary objectives of the first challenge were to set up a framework for the
generation of synthetic ngEHT data based on theoretical source models, to conduct the
organized submission and cross-comparison of reconstruction results from multiple people,
and to obtain a first idea of the benefits and challenges of ngEHT datasets as compared
to the current EHT. The model and data properties were therefore kept relatively simple.
Participants were asked to submit image reconstructions for each provided synthetic
dataset. The challenge was not blind, i.e., the participants had access to the input source
models and synthetic data generation script. The challenge was launched on 18 June 2021,
and the submission deadline was 16 July 2021. It was advertised to the ngEHT simulations
group. All information is available on the challenge website: https://challenge.ngeht.org/
challenge1/ (accessed on 19 December 2022).

4.2. Source Models

For Challenge 1, we used two static, unpolarized models of M87 and Sgr A*, re-
spectively. Both models are displayed in Figure 1 and described below. More detailed
descriptions and comparisons of the source models used for Challenge 1 and 2 can be
found in Chatterjee et al. [21].
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Figure 1. Source models used for Challenge 1.

4.2.1. M87

The Challenge 1 M87 model is a magnetically arrested disk (MAD) general relativistic
magnetohydrodynamics (GRMHD) frame from a rapid spinning black hole a∗ = 0.94 with
electron thermodynamics from reconnection heating; see [50] for details. The GRMHD
simulation was performed with the BHAC code [51] using three levels of adaptive mesh
refinement (AMR) in logarithm Kerr-Schild coordinates. The numerical grid covers
384 × 4192 × 192 cells in radial, azimuthal and theta directions and extends up to 2500
gravitational radii (GM/c2, where G is Newton’s gravitational constant, M is the black hole
mass, and c is the speed of light) in the radial direction. The mass accretion rate and MAD
parameter (see [52]) were monitored, and after obtaining a steady state, we performed the
general relativistic radiative transfer (GRRT) calculations with the radiative transfer code
BHOSS [53,54].

During the radiative transport, we included non-thermal particles via the kappa
electron distribution (see [55]) in the jet sheath while excluding the highly magnetized
spine by using a cut in the magnetization at a value of 1 (typically referred to as a sigma
cut). The power-law slope of the kappa distribution was set by a particle in cell (PIC)-
motivated sub-grid model depending on the local magnetization and plasma-beta following
Ball et al. [56]. In addition, we included a fraction of the magnetic energy density to
accelerate the non-thermal particles (see [57,58]). In the jet wind and disk region, we used
a thermal electron distribution, where the electron temperature is directly obtained from
the GRMHD simulation. In order to guarantee capturing a small scale structure on the
horizon scale and at the same time the large-scale jet structure, we used a field of view
(FOV) of 1 mas using a resolution of 4096 × 4096 pixels. Since the GRMHD simulations are
scale-free, we normalized our GRRT simulations by setting the mass (6.5 × 109M⊙) and
distance (16.9 Mpc) of the black hole in M87 and iterated the mass accretion rate until a
compact flux density of 0.8 Jy at 230 GHz was obtained.
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Figure 4. M87 reconstructions submitted for Challenge 1. Images are shown on a log scale with a
1 mas field of view in the top set of panels. The same images are shown on a linear scale with a
200 µas field of view in the bottom set of panels.

All M87 reconstructions recover the black hole shadow, whereas the jet features are
only recovered by some. The low surface brightness structure in the M87 jet is already
visible in some EHT2022 reconstructions. The jet reconstructions improve significantly
with ngEHT1 coverage, as attested by both visual inspection of the images and the quality
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metrics. The eht-imaging submissions perform best, although the ρNX ranking of individ-
ual submissions changes depending on whether the linear or log-scale images are used for
the comparison. ρNX,log and D0.1 are more sensitive to the reconstruction of the extended
jet structure and generally show a clearer improvement of ngEHT1 versus EHT2022 recon-
structions. The CLEAN and SMILI reconstructions show poorer jet structure recovery than
eht-imaging, although they may potentially be improved by adapting the specific scripts
used for these reconstructions. The reconstruction quality is generally better for 230 GHz
than for 345 GHz due to the higher flux and better uv-coverage at 230 GHz. Reconstructions
with relatively high χ2 values often have relatively low ρNX values. The multi-frequency
analysis (ehtim-mf) is an exception with relatively good reconstruction quality (especially
as shown by ρNX,log and D0.1) for relatively high χ2 values. The multi-frequency analysis is
especially useful for reconstructing the jet features at 345 GHz, as these are reconstructed
significantly more poorly with other methods.
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Figure 5. Sgr A* reconstructions submitted for Challenge 1. Images are shown on a linear scale with
a 200 µas field of view.

For the Sgr A* model, the black hole shadow is recovered by all arrays except the
EHT2022 array at 345 GHz: the uv-coverage is too sparse for a high-fidelity image recon-
struction in this case (Kitt Peak, the LMT, and the SPT cannot observe at 345 GHz yet).
ngEHT reconstructions at 345 GHz are significantly sharper than EHT2022 and ngEHT
reconstructions at 230 GHz. ngEHT reconstructions at 230 GHz are generally less noisy
than EHT2022 reconstructions at the same frequency, but for Sgr A*, the real value of
ngEHT coverage will be in dynamical reconstructions (Section 5). The χ2

lcamp are generally
high for Sgr A* reconstructions, which is likely due to the comparison with the provided
synthetic data, which includes interstellar scattering, while submitters may have deblurred
the visibility amplitudes in the reconstruction process.
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Table 1. Reconstruction quality metrics for Challenge 1.

Source Array ν (GHz) Submitter Method χ2
cp χ2

lcamp ρNX ρNX,log θeff D0.1

M87 EHT2022 230 L. Blackburn ehtim 1.1 1.01 0.93 0.87 5.4 856
M87 EHT2022 230 L. Blackburn ehtim-mf 5.17 4.36 0.88 0.9 9.8 797
M87 EHT2022 230 N. Patel ehtim 3.66 1159.56 0.77 0.52 21.2 418
M87 EHT2022 230 TeamIAA SMILI 0.99 1.06 0.83 0.79 14.6 409
M87 EHT2022 230 TeamIAA CLEAN 2.94 879.77 0.8 0.8 17.7 529
M87 EHT2022 230 TeamIAA ehtim 1.79 1.03 0.89 0.91 8.9 564
M87 EHT2022 230 A. Raymond ehtim 2.28 1.77 0.9 0.72 8.0 291
M87 ngEHT 230 L. Blackburn ehtim-mf 2.62 1.43 0.89 0.96 8.9 1681
M87 ngEHT 230 L. Blackburn ehtim 1.07 1.01 0.93 0.95 5.4 1604
M87 ngEHT 230 N. Patel ehtim 3.5 89.74 0.83 0.52 14.6 640
M87 ngEHT 230 TeamIAA SMILI 1.01 1.03 0.87 0.85 10.8 708
M87 ngEHT 230 TeamIAA CLEAN 1.32 138.45 0.84 0.91 13.6 1828
M87 ngEHT 230 TeamIAA ehtim 1.08 1.01 0.91 0.97 7.1 1727
M87 ngEHT 230 A. Raymond ehtim 1.65 2.14 0.92 0.73 6.2 532
M87 EHT2022 345 L. Blackburn ehtim-mf 2.36 1.06 0.91 0.87 5.7 1403
M87 EHT2022 345 L. Blackburn ehtim 1.19 0.62 0.91 0.72 5.7 984
M87 EHT2022 345 N. Patel ehtim 1.2 7.29 0.79 0.53 16.7 734
M87 EHT2022 345 TeamIAA SMILI 1.19 0.62 0.79 0.66 16.7 645
M87 EHT2022 345 TeamIAA ehtim 1.22 0.62 0.88 0.81 8.2 700
M87 EHT2022 345 TeamIAA CLEAN 3.34 2.77 0.82 0.38 13.7 320
M87 EHT2022 345 A. Raymond ehtim 1.19 0.62 0.88 0.74 8.2 546
M87 ngEHT 345 L. Blackburn ehtim 1.15 0.97 0.92 0.89 4.9 1570
M87 ngEHT 345 L. Blackburn ehtim-mf 1.25 1.13 0.91 0.94 5.7 2244
M87 ngEHT 345 N. Patel ehtim 1.2 9.99 0.79 0.54 16.7 853
M87 ngEHT 345 TeamIAA CLEAN 1.31 4.39 0.84 0.75 11.8 651
M87 ngEHT 345 TeamIAA SMILI 1.16 1.0 0.85 0.71 10.9 766
M87 ngEHT 345 TeamIAA CLEAN 1.31 4.39 0.84 0.75 11.8 651
M87 ngEHT 345 TeamIAA ehtim 1.16 0.98 0.9 0.92 6.5 1638
M87 ngEHT 345 A. Raymond ehtim 1.17 1.0 0.91 0.75 5.7 782
Sgr A* EHT2022 230 N. Patel ehtim 6.08 347.88 0.8 - 45.5 -
Sgr A* EHT2022 230 TeamIAA ehtim 1.11 33.13 0.95 - 14.3 -
Sgr A* EHT2022 230 TeamIAA CLEAN 140.97 130.2 0.9 - 23.4 -
Sgr A* EHT2022 230 TeamIAA SMILI 1.47 23.19 0.85 - 32.6 -
Sgr A* EHT2022 230 A. Raymond ehtim 3.02 8.27 0.89 - 25.2 -
Sgr A* ngEHT 230 N. Patel ehtim 20.23 122.65 0.65 - 100.0 -
Sgr A* ngEHT 230 TeamIAA SMILI 1.4 8.81 0.95 - 14.3 -
Sgr A* ngEHT 230 TeamIAA CLEAN 2.3 23.3 0.9 - 23.4 -
Sgr A* ngEHT 230 TeamIAA ehtim 1.06 10.61 0.97 - 10.1 -
Sgr A* ngEHT 230 A. Raymond ehtim 1.14 1.87 0.93 - 18.1 -
Sgr A* EHT2022 345 N. Patel ehtim 1.03 20.32 0.64 - 61.9 -
Sgr A* EHT2022 345 TeamIAA CLEAN 71.44 66.33 0.79 - 24.5 -
Sgr A* EHT2022 345 TeamIAA ehtim 1.03 1.95 0.65 - 57.8 -
Sgr A* EHT2022 345 TeamIAA SMILI 1.63 1.7 0.34 - 100.0 -
Sgr A* EHT2022 345 A. Raymond ehtim 1.03 0.85 0.78 - 26.0 -
Sgr A* ngEHT 345 N. Patel ehtim 2.18 15.58 0.64 - 61.9 -
Sgr A* ngEHT 345 TeamIAA ehtim 1.14 1.19 0.93 - 7.5 -
Sgr A* ngEHT 345 TeamIAA CLEAN 2.24 4.48 0.87 - 14.0 -
Sgr A* ngEHT 345 TeamIAA SMILI 1.17 1.23 0.89 - 11.7 -
Sgr A* ngEHT 345 A. Raymond ehtim 1.14 1.15 0.9 - 10.6 -
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5. Challenge 2

5.1. Rationale and Charge

With the challenge infrastructure and initial participant imaging efforts set up in the
first challenge, the second challenge was more realistic and science-oriented and different
from the first challenge in two aspects.

First, the ground truth source models were dynamic instead of static. For Sgr A*, with
variability on timescales of ∼ minutes, the charge to the participants was to reconstruct
a movie of the source evolving across a single day of observations. We used two source
models to test reconstruction capabilities for different variability properties: a GRMHD
model with turbulent variability, and a shearing hotspot in a RIAF disk, exhibiting a
more coherent variable structure. Hints of such coherent variability of Sgr A* at 230 GHz
consistent with an orbiting hotspot have been observed by Wielgus et al. [68]. For M87*,
with variability on timescales of ∼ days, we used a bright jet GRMHD model like in the first
challenge but evolved it over a period of five months, simulating a full-day observation
every week. The charge was to reconstruct a movie of the large-scale and low-surface
brightness jet emission, connecting it to the dynamics near the black hole shadow.

The second aspect in which this challenge differed from the previous one is that
the synthetic observations included significantly more realistic effects. Contrary to the
idealized data generated for Challenge 1, which only includes thermal noise, the Challenge
2 data sets have been generated under the assumption of realistic observing conditions and
include data systematics originating from weather, instrumental, and calibration effects
(see Section 5.3). The results of this challenge thus reflect what would actually be seen by
an array built with the described specifics, using current reconstruction algorithms.

Challenge 2 was launched on 25 October 2021. It was advertised more broadly than the
first challenge to the full ngEHT community. The first submission comparisons were com-
pleted in January 2022, and due to the complexity of the datasets and ongoing development
of reconstruction algorithms, reconstructions were submitted until August 2022.

5.2. Source Models

This section describes the dynamical source models used for Challenge 2. See Chatter-
jee et al. [21] for more detailed model descriptions and comparisons.

5.2.1. M87

The Challenge 2 M87 model is a GRMHD movie with 20 frames that are spaced
20GM/c3 (∼1 week) apart. The pixel resolution is 2048 × 2048, with a field of view of
1 mas. The images were ray-traced from a H-AMR [69] simulation (MAD, spin 0.94) using
ipole [70]. Rhigh was set to 160 and accelerated electron heating was included, setting
κ = 3.5 [57]. We only use the Stokes I information from the model. The model is shown in
Figure 6.

5.2.2. Sgr A*

For Challenge 2, two dynamic source models were used for Sgr A*: a GRMHD model
exhibiting turbulent variability and a RIAF + shearing hotspot model with more ordered
variability properties. Sample frames of the source models used for Challenge 2 are shown
in Figure 7.

The GRMHD model is a MAD model with a spin of 0.5. The images were ray-traced
in Stokes I with BHOSS [71], assuming thermal electrons. The 500 frames are spaced
10 GM/c3 (221 s) apart. The pixel resolution is 2048 × 2048, with a field of view of 400 µas.

The second Sgr A* model is a RIAF [72] plus shearing hotspot [61] semi-analytical
model. The hotspot parameters are inspired by [73], and the black hole spin was set to 0.1.
The pixel resolution is 313 × 313, with a field of view of 315 µas. The frames are spaced
30 s apart and form a 4-h movie of a hotspot shearing and falling in, which is repeated a
few times over the course of the 24-h observation.
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Figure 6. Ground truth M87 source models used for Challenge 2. For each frequency, three movie
frames are shown. Images are shown on a log scale, which is normalized to the brightest pixel value
across each set of three movie frames, with a dynamic range of 103.5.

5.3. Synthetic Data

The synthetic data for Challenge 2 includes significantly more systematic effects than
Challenge 1 (see also Section 5.1). In the SYMBA pipeline [74], atmospheric absorption, emis-
sion, delays and turbulence are simulated, and antenna pointing offsets are added to the
simulated datasets with MeqSilhouette [75,76]. These are then calibrated by performing a
fringe fit, a priori amplitude calibration with rPICARD [77], and network calibration with
eht-imaging.

The station locations, dish sizes, aperture efficiencies, and receiver temperatures are
identical to those used in Challenge 1 (Figure 2, Section 4.3). For each site, the input
precipitable water vapor (PWV), ground temperature, and ground pressure were calculated
from the Modern-Era Retrospective Analysis for Research and Applications, version 2
(MERRA-2) from the NASA Goddard Earth Sciences Data and Information Services Center
GES DISC, [78], processed with the am atmospheric model software [79] (see [74] for details.
All weather quantities were based on median conditions on 1 April (2000–2020) as registered
in the MERRA-2 climatological data. The atmospheric coherence time at 230 GHz was
assumed to be 20 s for a PWV of 1 mm, 3 s for a PWV of 15 mm, interpolated linearly
between these values for the different sites and scaled linearly with frequency. Pointing
offsets were assumed to be stable across each 10-min scan and drawn randomly from a
Gaussian distribution with an RMS of 2 arc-seconds.

5.4. Results

Seven submitters or teams provided dynamical reconstructions of the Challenge 2
datasets. Reconstruction quality metrics for all submissions are shown in Table 2.
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Figure 7. Ground truth Sgr A* source models used for Challenge 2. For each model and frequency
(rows), three movie frames (columns) are shown, with interstellar scattering applied to the first
frame in the rightmost column. Images are shown on a square root scale, which is normalized to the
brightest pixel value across each set of three movie frames. The scattered movies were used as inputs
for the Challenge 2 synthetic data generation.

5.4.1. M87 GRMHD

Six frames of the 86 and 230 GHz M87 reconstructions are shown in Figures 8 and 9,
respectively. At 86 GHz, EHT2022 coverage allows reconstruction of the central component
and overall shape of the extended jet emission, but all reconstructions contain spurious arti-
facts. With ngEHT1 coverage, these artifacts become far less severe or disappear completely,
and the jet dynamics can be imaged as the jet features move outwards over the course of
several weeks. The 230 GHz reconstructions provide significantly more detail, both in the
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extended jet and in the visibility of the black hole shadow. The reconstructions again show
a strong improvement of ngEHT1 compared to EHT2022, although the EHT2022 reconstruc-
tions from the resolve algorithm already show some jet dynamics with EHT2022 coverage.
Figures 10 and 11 show spectral index and individual frequency image reconstructions,
respectively, from resolve when solving for all frequencies simultaneously and imposing
a prior on the spectral index map (resolve-mf) for the first movie frame only. This method
leads to remarkably high-quality images for all frequencies and arrays, even showing
the black hole’s central brightness depression at 86 GHz. These results demonstrate that
utilizing information from simultaneous multi-frequency observations can significantly
boost the reconstruction quality; see also [17].

0 weeks

Ground Truth, 86 GHz

4 weeks 8 weeks 12 weeks 16 weeks 19 weeks

86 GHz, EHT2022
P. Arras, J. Knollmüller
resolve

86 GHz, EHT2022
N. Kosogorov
ehtim

86 GHz, ngEHT1
P. Arras, J. Knollmüller
resolve

86 GHz, ngEHT1
N. Kosogorov
ehtim

86 GHz, ngEHT1
R. Emami
ehtim

Figure 8. Selection of Challenge 2 M87 86 GHz submissions. Images are shown on a log scale, which
is normalized to the brightest pixel value across each set of three movie frames, with a dynamic range
of 103.5 and field of view of 1 mas.
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Figure 9. Selection of Challenge 2 M87 230 GHz submissions. Images are shown on a log scale, which
is normalized to the brightest pixel value across each submitted set of movie frames, with a dynamic
range of 103.5, on a field of view of 1 mas.
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Figure 10. Spectral index maps of the Challenge 2 M87 ground truth model (first frame) and resolve

reconstructions of the spectral index map with the EHT2022 and ngEHT1 arrays. The ground truth
spectral index map was blurred with a Gaussian with a FWHM of 9.4 µas.

86 GHz, EHT2022
P. Arras, J. Knollmüller
resolve-mf

230 GHz 345 GHz

ngEHT1

Figure 11. Multi-frequency resolve reconstructions of the Challenge 2 M87 model at 86, 230, and
345 GHz (first frame) with the EHT2022 and ngEHT1 arrays.

The reconstruction quality metrics show that images with low ρNX or ρNX,log often
have relative high χ2 and low θeff and D0.1, with the resolve and especially the resolve-mf
reconstructions performing best overall, with the caveat that the resolve-mf reconstruc-
tions were only performed for the first movie frame. For single-frequency reconstructions,
θeff reaches 21.2 µas at 86 GHz and 6.6 µas at 230 GHz (median values across the 20 recon-
structed frames); the super-resolution with respect to the nominal array resolution (60 and
23 µas for 86 and 230 GHz, respectively) is significant (up to a factor 3.5) for most recon-
structions. For multi-frequency reconstructions, the supper-resolution factor increases even
further, up to 8.6 at 86 GHz. χ2-values generally increase as a function of frequency, which
is likely due to increased data complexity with more severe systematics. The 345 GHz
reconstructions often showed difficulty in reconstructing the extended jet structure, which
could be due to the sparser coverage and more severe corruptions and noise.
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Table 2. Reconstruction quality metrics for Challenge 2. Tabulated values are medians across the
reconstructed frames except for the resolve-mf reconstructions, which were only done for the first
movie frame. For the Sgr A* models, the metrics were evaluated on a common UT range for all
reconstructions (see text for details).

Model Array ν (GHz) Submitter Method χ2
cp χ2

lcamp ρNX ρNX,log θeff D0.1

M87 GRMHD EHT2022 86 P. Arras, J. Knollmüller resolve 1.94 2.01 0.83 0.92 24.5 1156
M87 GRMHD EHT2022 86 P. Arras, J. Knollmüller resolve-mf 1.71 4.82 0.96 0.97 7.0 3970
M87 GRMHD EHT2022 86 N. Kosogorov ehtim 7.16 2.69 0.8 0.82 32.0 585
M87 GRMHD ngEHT1 86 P. Arras, J. Knollmüller resolve 1.45 1.4 0.85 0.96 21.2 3054
M87 GRMHD ngEHT1 86 P. Arras, J. Knollmüller resolve-mf 1.43 1.73 0.95 0.99 8.2 7248
M87 GRMHD ngEHT1 86 R. Emami ehtim 1.84 1.69 0.8 0.89 30.4 1315
M87 GRMHD ngEHT1 86 N. Kosogorov ehtim 2.06 1.58 0.8 0.93 30.4 919
M87 GRMHD ngEHT1 86 N. Kosogorov CLEAN 193.55 10,266.39 0.75 0.74 46.8 749
M87 GRMHD EHT2022 230 P. Arras, J. Knollmüller resolve 2.03 3.25 0.92 0.96 7.3 3881
M87 GRMHD EHT2022 230 P. Arras, J. Knollmüller resolve-mf 2.03 6.67 0.93 0.97 7.1 6424
M87 GRMHD EHT2022 230 N. Kosogorov ehtim 4.16 3.15 0.88 0.54 12.6 429
M87 GRMHD ngEHT1 230 P. Arras, J. Knollmüller resolve 2.53 2.35 0.92 0.98 6.6 8742
M87 GRMHD ngEHT1 230 P. Arras, J. Knollmüller resolve-mf 2.57 3.12 0.93 0.99 7.1 12,154
M87 GRMHD ngEHT1 230 J. Vega ehtim 2.55 2.3 0.91 0.97 8.1 4807
M87 GRMHD ngEHT1 230 R. Emami ehtim 2.55 2.47 0.89 0.83 10.9 2061
M87 GRMHD ngEHT1 230 N. Kosogorov ehtim 2.85 2.81 0.89 0.71 11.4 1060
M87 GRMHD ngEHT1 230 N. Kosogorov CLEAN 325.47 385.28 0.79 0.6 22.6 226
M87 GRMHD EHT2022 345 P. Arras, J. Knollmüller resolve-mf 5.26 5.79 0.93 0.97 7.2 6994
M87 GRMHD ngEHT1 345 P. Arras, J. Knollmüller resolve-mf 6.39 6.89 0.92 0.98 7.3 9732
M87 GRMHD ngEHT1 345 R. Emami ehtim 6.14 5.38 0.59 0.42 61.8 61
M87 GRMHD ngEHT1 345 N. Kosogorov ehtim 5.99 4.94 0.81 0.47 16.6 563
M87 GRMHD ngEHT1 345 N. Kosogorov CLEAN 12.41 16.28 0.83 0.67 14.4 1157
Sgr A* RIAFSPOT EHT2022 230 A. Fuentes StarWarps 1.85 1.78 0.83 - 37.3 -
Sgr A* RIAFSPOT EHT2022 230 H. Müller DoG-HiT 5.61 5.12 0.77 - 56.8 -
Sgr A* RIAFSPOT ngEHT1 230 M. Johnson ehtim-di 7.39 11.78 0.87 - 24.4 -
Sgr A* RIAFSPOT ngEHT1 230 A. Fuentes StarWarps 4.24 3.05 0.89 - 23.0 -
Sgr A* RIAFSPOT ngEHT1 230 R. Emami StarWarps 6.87 11.98 0.83 - 43.3 -
Sgr A* RIAFSPOT ngEHT1 230 H. Müller DoG-HiT 33.31 38.91 0.84 - 33.0 -
Sgr A* RIAFSPOT ngEHT1 345 A. Fuentes StarWarps 5.37 3.63 0.85 - 28.6 -
Sgr A* RIAFSPOT ngEHT1 345 R. Emami StarWarps 5.7 3.86 0.74 - 56.8 -
Sgr A* GRMHD EHT2022 230 A. Fuentes StarWarps 9.49 3.61 0.68 - 56.0 -
Sgr A* GRMHD EHT2022 230 H. Müller DoG-HiT 153.81 32.15 0.68 - 57.4 -
Sgr A* GRMHD ngEHT1 230 M. Johnson ehtim-di 3.99 7.14 0.87 - 18.4 -
Sgr A* GRMHD ngEHT1 230 A. Fuentes StarWarps 3.97 7.47 0.85 - 21.1 -
Sgr A* GRMHD ngEHT1 230 R. Emami StarWarps 4.0 6.91 0.87 - 17.5 -
Sgr A* GRMHD ngEHT1 230 H. Müller DoG-HiT 13.88 8.18 0.8 - 29.0 -
Sgr A* GRMHD ngEHT1 230 P. Arras, J. Knollmüller resolve 5.57 4.52 0.84 - 21.9 -
Sgr A* GRMHD ngEHT1 345 R. Emami StarWarps 4.94 4.19 0.61 - 56.9 -

5.4.3. Sgr A* GRMHD

Finally, Figure 14 shows eleven frames of all Sgr A* GRMHD submissions at 230 GHz,
spanning the best times window (11.3–13.5 h UT). Like for the Sgr A* RIAF+hotspot
model, the EHT2022 reconstructions are static. In the StarWarps reconstruction, the ring
morphology is recovered, but the detailed emission along the ring is not. The ngEHT1
reconstructions are generally much sharper, and the azimuthal brightness variations are
reconstructed accurately, with the ehtim-di and StarWarps submissions showing the best
quality metric values (Table 2). Due to the relatively stable and turbulent nature of the
variability in this model, the reconstruction of temporal variations is more difficult to assess
than for the other source models.
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methods. Since DoG-HiT is the most recently developed algorithm used in the challenges
and is completely automatic without special manual adaption to the data sets, these results
are promising and can inform further development. SMILI and CLEAN have been applied to
Challenge 1 data only, where they did not perform as well as eht-imaging in reconstructing
the extended M87 jet.

The reconstructions from any algorithm do not necessarily show its maximum poten-
tial performance. Between algorithms, there are differences in the freedom that the user
has to steer the reconstruction process. CLEAN traditionally requires significant user input
and steering (e.g., defining CLEAN windows) but has been adapted to a more automated
approach for EHT analysis [14]. RML methods such as eht-imaging and SMILI require
setting regularizers and weights but also allow some input on the reconstruction procedure
by setting, e.g., convergence criteria and blurring steps between image rounds. On the
other hand, DoG-HiT depends on just one free parameter. The outcome of Bayesian methods
generally depends on the set priors. From the results of these challenges, each method’s
dependence on user input is difficult to assess and would require dedicated parameter
surveys. Based on, e.g., the eht-imaging submissions, the results can certainly depend
strongly on the user. However, for submissions reconstructed with the same method but
with strongly different resulting images, the χ2 are a good indicator of the reconstruction
quality. For the lower-quality image reconstructions, either the used parameters or the
script setup often did not allow a good fit to the data.

Regarding data generation, one lesson learned is that the used schedule of 10-min
scans and 10-min gaps makes reconstructing the rapid variability of Sgr A* challenging,
and in fact, it is remarkable that dynamical imaging algorithms were able to reconstruct
the one-hour period and rapidly shearing Sgr A* hotspot orbit with just three scans and a
duty cycle of 50%. A denser schedule with shorter gaps could potentially improve these
reconstructions significantly and also help in reconstructing the rapid variability from
GRMHD simulations. Furthermore, the Challenge 2 345 GHz data have proven difficult to
image, which is likely attributable to the severe atmospheric effects considering the weather
parameters were medians for April at all sites. Since, in reality, 345 GHz observations
would likely only be scheduled on days with excellent weather at suitable sites, a next
challenge should be performed with more optimistic 345 GHz weather conditions. The
experience from these challenges has shown that both eht-imaging and SYMBA are viable
and well-performing pathways for generating synthetic ngEHT data. User-friendly tools to
generate synthetic ngEHT data from a centralized repository of instrument and weather
parameters using both pathways are under development [2].

ngEHT Analysis Challenge 33 is an extension of Challenge 2 to full Stokes and will
show how well various algorithms can reconstruct dynamics in polarization. Challenge 4
will focus on more specific ngEHT science goals, such as measuring the photon ring size and
black hole spin, involving modeling methods as well, e.g., [85]. The merit of simultaneous
multi-frequency observations allowing for frequency phase transfer, e.g., [86,87], will
be explored in this challenge as well (see also [17]). Future challenges could also involve
varying the number and locations of stations. While the impact of a single station’s presence
or location diminishes as the array grows and becomes more robust against station losses,
the effect of using partial instead of the full array or using different sets of new sites could
be tested in end-to-end simulations (see also [2]).

The ngEHT Analysis Challenges have brought together expertise in theoretical mod-
eling, synthetic data generation, and image reconstruction, spurring development in all
these areas. The continued challenges will involve polarization, model fitting, and science
interpretation to form a complete and end-to-end process of ngEHT simulations, which
helps in maximizing the science potential of the array.
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