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Nowadays, additive manufacturing (AM) has been increasingly leveraged to produce human-centered products,
such as orthoses and prostheses as well as therapeutic helmets, finger splints, and other personalized devices.
This study reviews the state-of-the-art research in human-centered AM with a highlight on the role of artificial
intelligence (AI). Notably, Al is increasingly involved in the decision-makings throughout the three stages of AM
product development, i.e., design, fabrication, and assessment, and it brings emerging opportunities for cost-
effective human-centered products development. Therefore, in this paper, recent research in Al-enabled
customized design, fabrication, and assessment has been summarized. Furthermore, research opportunities

and challenges for broader adoptions of Al in AM applications are thoroughly discussed, particularly for human-

centered AM products.

1. Introduction

The increasing demand of highly personalized, high value-added
products urges manufacturing enterprises to enhance their flexibility
in design and manufacturing practices. This fast-growing trend also
leads to a critical field in manufacturing called customized
manufacturing, in which the design and fabrication are based on a
customer or user’s unique specifications, including build-to-order (BTO)
parts, one-offs, short production runs, as well as mass customization [1].
Customized manufacturing has been applied in many fields. Typical
examples include small high-value-products such as bespoke jewelry,
and medical devices tailored to specific human body such as clear
aligners and therapeutic helmets [2]. Among these applications, it can
be observed that one of the most attractive aspects is to fabricate the
human-centered products and devices, which requires very high levels
of customization while maintaining highly competitive quality and cost.

Recently, the emerging additive manufacturing (AM) technology is
playing a key role in accelerating the development and broader adoption
of customized manufacturing. Given its high flexibility, toolless fabri-
cation, and potential to quickly scale up, AM can be well-suited to the
customized manufacturing in the development of human-centered
products, e.g., the biomedical products [3]. Fig. la reported by the
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SmarTech Analysis shows the current and projected trend of the rapid
growth of the AM market from 2014 to 2027 [4]. AM consists of a large
variety of processes, which are developed to handle complex geometries
and novel materials through layer-by-layer fabrication [5]. These AM
processes can be applied to different areas where human-centered
customized products are needed, such as orthopedics, sports, and
dentistry. Compared to the solely task-focused product development,
human-centered product development focuses more on the customer-
s/users, particularly, their individual needs and requirements. Although
it becomes more complex, it significantly improves the product effec-
tiveness, human well-being, user satisfaction, as well as the accessibility
and sustainability. Thus, human-centered product development has
attracted more and more attentions in advanced manufacturing [6].

For example, as illustrated in Fig. 1b [7], the AM penetration rate in
orthoses and prostheses (O&P) production has been increasing rapidly,
indicating that AM is expected to be one of the major components in the
O&P market. In the literature, Chen et al. [8] provided a comprehensive
review for the AM applications in human-centered O&P. Nadagouda
etal. [2] identified that AM can be applied in the personalized medicines
through five aspects, namely, regenerative medicine, implants, cardio-
vascular medicine, orthopedics, and dentistry.

Although AM has provided unprecedented opportunities in the
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Fig. 1. (a) The fast-growing trend of the AM market size, reported by the
SmarTech Analysis [4]; and (b) the increasing AM penetration rate in O&P
production market, reported by the SmarTech Analysis [7].

development of human-centered products, particularly, in the medical
related applications, there are still many practical challenges that limit
its broader adoptions, including personalized material and product
design, customized process optimization, and quality assurance.
Therefore, driven by the advancement of artificial intelligence (AI),
various strategies have been developed in the literature to overcome the
barriers in design, fabrication, and assessment of customized AM [8]. In
general, Al is the ability of machines, computers, or robotics to imple-
ment or “mimic” the cognitive functions associated with human minds,
for example, the ability of learning and problem-solving. The capability
of Al techniques grows very fast in recent decades, and it has demon-
strated the excellent potential in many fields, such as bioinformatics [9],
service systems [10], and advanced manufacturing [11]. More impor-
tantly, the recent studies have also identified that the incorporation of
Al such as deep neural networks (DNN), can successfully enable the
cognitive learning, reasoning, and self-correction activities for many
advanced manufacturing applications [11]. According to [11], in the
advanced manufacturing research communities, the attention of Al
keeps increasing over the past 40 years with a steady increase of the
related publications.

Notably, Al is extensively adopted in various aspects of AM and it is
difficult to provide an exclusive list. Instead, this paper focuses on two
major objectives: (1) explore the state-of-the-art research in Al-enabled
development of human-centered products using AM; and (2) identify
emerging opportunities and challenges to further integrate Al and AM to
better meet the demands in the human-centered product manufacturing.
With these goals in mind, this paper is organized following the structure
which highlights the three major stages of customized AM, as illustrated
in Fig. 2. First, a state-of-the-art review for the Al-enabled human-
centered AM is summarized in Section 2, which is according to the three
stages in customized AM, namely, product design (Section 2.1), fabri-
cation (Section 2.2), and assessment (Section 2.3). Subsequently, the
opportunities and challenges in Al-enabled customized AM are identi-
fied in Section 3, and the overall conclusions are drawn in Section 4.
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Fig. 2. A generic workflow for human-centered AM product development.

2. Al-enabled human-centered AM: state of the art

Asillustrated in Fig. 2, this section summarized the state of the art for
the Al-enabled human-centered AM in terms of each individual stage,
namely, design customization, process optimization, and product qual-
ity assessment.

2.1. Al-enabled design customization in AM

AM of human-centered products starts from the design stage. In the
literature, design for AM (DfAM) has been extensively explored with the
principal of designing and optimizing the product as well as the
manufacturing processes to achieve desired quality and performance
with minimized time and cost [12]. As AM products usually have
complex geometries (especially the human-centered AM discussed in
this paper), DfAM needs to account for a variety of design variables and
their complicated interactions. This, in turn, poses a significant chal-
lenge for traditional design approaches. To address this challenge,
recent years have witnessed an increasing uptake of Al and machine
learning in DfAM. With rich data collected in AM design, fabrication,
and inspection, Al methods are leveraged to conduct design search and
optimization in a fast and cost-efficient way. For example, designers
have implemented Al in the geometry optimization of AM products
[12-14]. Notably, the geometries of designed products, as well as their
support structures, need to be carefully optimized to achieve desired
property or minimized mass or costs. As opposed to sorely depending on
the knowledge and experience of the designer, the use of Al significantly
accelerates the design process by time-efficient exploration of compre-
hensive design space. Yao et al. [15] integrates hierarchical clustering
with support vector machine (SVM) methods to identify a subset of AM
design features based on specific design tasks. Leary et al. [16] devel-
oped an optimization approach to modify the theoretically optimal to-
pology to enable support-free fabrication process. Tang et al. [17]
leveraged machine learning as a surrogate model in the design optimi-
zation for customized porous lattice shoe soles.

Also, Al has been increasingly employed in the material design in
DfAM. As discussed in [18], AM is associated with a special need for
material design and development as materials used for traditional
manufacturing techniques may need to be modified for AM processing.
The AM material design, such as revising the components of known
materials and developing new materials, can be accelerated by Al For
example, data mining approaches have been used to modify the
aluminum alloys to make the material better suited for the processing of
laser bed powder fusion (LBPF) [18]. Also, genetic algorithms, decision
trees, and other Al-related approaches are also used in the design of
alloys with specific desired properties [18].

Furthermore, in the interface of material science and AM, machine
learning and deep learning approaches have been widely used to assist
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in the design of metamaterials that to be fabricated using AM. Meta-
materials are with extremely complex geometries to achieve desired
performances that may not be obtained from natural materials, such as
negative Poisson ratio [19]. The benefit of Al is more profound when
such complex geometries are designed. For example, Tang et al. [20]
used an experiment-obtained meta-model with the artificial neural
network approach to identify the manufacturing constraints, which
were further considered to redesign the arm of quadcopter in the lattice
structure to improve the stiffness. Despres et al. [21] proposed a graph
autoencoder for the geometric optimization of microlattice architec-
tures. With a large training data set generated using the genetic algo-
rithm, the graph autoencoder was used to identify optimal lattice
structure to achieve the desired mechanical property, i.e.,
force-displacement characteristics. In [22], the authors explored both
the solid and lattice spaces to optimize the geometry of solid lattice
hybrid structures. A bidirectional evolutionary structural optimization
model was used to optimize the strut thickness in the structure. Wang
et al. [23] leveraged Laplace-Beltrami spectrum to describe the geom-
etry of unit cells of metamaterials and established an indexed library,
coined as “metamaterial genome”. Such a library facilitated efficient
design and evaluation of unit cells, which could be further assembled
into the full structure. In [24], a variational autoencoder and a
graph-based optimization approach were integrated to generate micro-
structures with desired properties and ensure the compatibility between
adjacent microstructures in the assembly process to achieve the final
multiscale metamaterial.

Notably, how to establish the process-structure-property (P-S-P) re-
lationships is a major concern in geometry optimization and material
development. In the literature, Al has been leveraged to establish such
highly-nonlinear relationships. For example, Jung et al. [25] employed a
Gaussian process regression model with limited full-field simulation
results to develop the S-P relationship for various microstructures. Jiang
etal. [12] constructed DNN models to build bi-directional links between
the three components, i.e., process, structure, and property. Yan et al.
[26] used a data-driven approach for comprehensive multi-scale, mul-
ti-physics modeling of the P-S-P relationships and established a design
loop for AM processing and materials. In [27], the authors managed to
visualize the P-S-P data with a self-organizing map for data-driven
microstructure design.

2.2. Al-driven AM process optimization

2.2.1. AM process selection

AM process selection has been extensively investigated in the liter-
ature. Mancanares et al. [28] introduced various AM technologies and
presented an Analytic Hierarchy Process (AHP) based method to rank
the most appropriate AM technologies and machines based on key
relevant machine parameters. Wang et al. [29] reviewed decision
theory-based methods for AM process selection published by 2017.
Furthermore, they reviewed the limitations of the shared sequential
decision process and proposed a new iterative design approach for the “a
posteriori” articulation instead of the “a priori” articulation of those
existing methods. Furthermore, the inherent nature of AM makes it
necessary to integrate product design, material selection, and process
selection of AM in a holistic manner. Therefore, most recent AM process
selection methods jointly considered process selection with product
design [30,31] and material selection [32-34]. Similarly, the AM pro-
cess selection is often integrated with DfAM [35-37]. For example,
Vaneker et al. [36] presented a holistic framework for DfAM that in-
volves three stages of product development, i.e., AM process selection,
product redesign, and product optimization.

Due to the high complexity of the problem, various multi-criteria
decision-making schemes have been extensively used. A few typical
examples include AHP [28,30,32,33,35], Technique for Order Prefer-
ence by Similarity to an Ideal Solution (TOPSIS) [38], fuzzy logic based
operators [39], and hybrid schemes that integrate multiple methods
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[40]. Among all those schemes, two categories of selection criteria have
been primarily considered, which are, (1) technical and economic
viability include manufacturability analysis, cost, build time, accuracy,
part weight and buy-to-fly ratio [30,33,35], and (2) sustainability
include energy demand and CO; emissions for the entire product life-
cycle [41].

2.2.2. AM parameter optimization

There are multiple review papers that are dedicated to the process
optimization of various AM processes [42-44]. Similar to the generic
optimization framework, the AM parameter optimization problem can
be formulated using three critical components: (1) decision variables,
(2) constraints, and (3) objective function. In this section, the relevant
literature is summarized for each component, respectively. The decision
variables involved in AM process optimization may include the slicing
parameters (such as build orientation [45], layer thickness [46,47], and
printing paths [44]) which are universal for different AM processes, and
all the adjustable process parameters which vary with the specific AM
process (such as laser power, laser scanning speed, and hatch spacing for
laser-based AM [42,48]). The constraints usually enforce the feasible
region of the decision variables [49]. For example, to make sure the
fabricated parts satisfy the quality requirements, Tian et al. [47]
modeled the geometric accuracy as a function of the AM process pa-
rameters and set the accuracy to remain within the upper and lower
bound while minimizing the part-level energy consumption. Further-
more, the constraints need to be specified based on the machine capa-
bilities. Regarding the objective functions (i.e., goals), there are
single-objective and multi-objective AM parameter optimization
methods. Single-objective problems usually only have one specific
objective, such as optimizing the manufacturing costs [50], part quality
(such as density, microstructure, geometric accuracy, and surface
quality) [44,48,51-53], energy and material consumption [47,54], and
mechanical properties [55]. On the other hand, multi-objective prob-
lems aim to jointly optimize two or more objectives. For example, Ali-
zadeh et al. [46] proposed a data-driven method to jointly optimize the
energy consumption and final part geometric accuracy. Furthermore,
there are multiple studies that aimed to simultaneously optimize mul-
tiple geometric accuracy features or multiple mechanical properties
[56-58].

With respect to modeling the objective functions, two categories of
methods have been proposed to describe the effect of process parameters
on the final outcomes. Data-driven approaches usually leverage exper-
imental data generated from systematic Design of Experiments (DoE).
Furthermore, accelerated optimization methods were proposed to
reduce the sample size while achieving comparable optimized results
[56,59]. Subsequently, supervised machine learning techniques (both
regression and classification) have been extensively used [46-48,58,
60]. For example, artificial neural networks are leveraged to establish
the relationship between process parameters and density, dimensions
and surface quality [61]. Alternatively, computation-based approaches
developed physics-based models to characterize the relationship be-
tween AM parameters and the outcomes [43,62,63]. To alleviate the
computational intensity of those high-fidelity physics-based models,
surrogate modeling techniques have been extensively used [64-66].
After the relationship between process parameters and the outcome of
interests are established, the AM process optimization can be achieved
by using the desired outcome to solve for the process parameters.

Therefore, it may be noted that Al and machine learning play a
critical role in the AM process optimization. This observation aligns with
the discussions in multiple review papers [42-44]. For example, Jiang
and Ma [44] has envisioned that machine learning methods can be a
powerful tool for AM process optimization. Furthermore, Shamsaei et al.
[42] introduced a few recent studies on using Al in AM process opti-
mization while pointing out a few challenges in adopting Al in AM
optimization. More detailed discussions about the challenges will be
summarized in Section 3.
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2.3. Al-assisted quality assessment in AM

This section deals with the last step of the human-centered custom-
ized products development in AM, i.e., assessment. The assessment in
AM is a broad topic, and it can be considered from multiple aspects, such
as metrology [67-70], sustainability [71-74], dimensionality [75-78],
and property [79,80], which have been widely explored and surveyed.
Meanwhile, these studies also identified the importance of quality
assessment in AM, particularly, for the development of human-centered
customized products, as they are usually highly quality critical in
practice, such as the therapeutic devices and prosthetic implant. Thus, a
number of studies have developed various approaches for effective and
efficient quality assessment [81,82] in the AM.

In general, the quality assessment for AM-built human-centered
products consists of two aspects, namely, subjective assessment and
objective assessment (Fig. 3). Subjective assessments are usually quali-
tative analysis and can be conducted through usability tests, ergonomics
methods, etc. [83]. On the other hand, objective assessment involves
quantitative analysis of process/product quality. For example, as a
group of commonly applied quality assessment techniques, traditional
geometric dimensioning and tolerancing (GD&T) approaches have been
successfully incorporated to assess the AM-built customized medical
devices [84], such as the personalized ankle-foot orthoses using selective
laser sintering (SLS) [75], and anthropological dental collections [85].

Recently, in the era of industry 4.0, as the environment of AM has
become data-rich, Al techniques have also attracted AM researchers’
attention, and a number of AM-oriented AI approaches have been
developed for AM quality monitoring and control. The importance and
great potential of Al in the AM quality assurance have been recognized
in multiple recent review articles [86-89]. Since these articles have
already surveyed the existing studies before 2019 in a comprehensive
manner, we aim to mainly review the most recent Al-assisted AM quality
assessment techniques reported since 2020. Notably, the existing studies
are mainly focused on incorporating AI to assist the objective
assessment.

According to the recent studies, Al contributes to two main objec-
tives in the quality assessment of AM: (1) quality monitoring, and (2)
quality prediction and control. For both objectives, Al is expected to
characterize the patterns in the AM systems data, which include
metrological data [90], heterogeneous sensor signals (such as vibrations
[91] and acoustics [92]), images (including optical [93], XCT [94], and
thermal images [95]), point cloud [96], and their integrations [97],
thereby providing the assessment outcomes. More specifically, quality
monitoring can be mainly categorized into defect detection, geometric
deviation inspection, and process shift identification. For example, to
achieve timely defect detection, Liu et al. [98] proposed an integrated
manifold learning approach using high dimension sensor data, and
Baumgartl et al. [99] implemented a DNN model for analyzing the
in-process image data. For the geometric deviation monitoring and
process shift detection, based on the point cloud data, Li et al. [100]
incorporated machine learning algorithms to implement geometrical
defect detection, and Ye et al. [101] proposed a point cloud fusion al-
gorithm for surface geometrical shift detection in process. Furthermore,
for the porosity assessment, which is critically needed in many
powder-based AM, Tian et al. [102] developed a fused neural network
model for porosity detection, and Liu et al. [103] established a
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physics-informed machine learning model for the porosity assessment in
metal AM. Moreover, Esfahani et al. [104] developed an in-situ process
certification method based on image series analysis and machine
learning.

For the quality prediction and control in AM, recent studies mainly
focus on the prediction, prescriptive compensation, and correction for
the critical quality characteristics, such as the defects, geometric devi-
ation and process condition. For example, in quality prediction, Akhil
et al. [105] developed an image-based surface texture prediction
approach for selective laser melting (SLM) using machine learning. Xia
et al. [106] leveraged different supervised machine learning models to
predict the layer-wise surface roughness in wire arc AM. Wang et al.
[107] extended the convolution learning framework to predict the 3D
geometric deformation in AM. In addition, for the prescriptive
compensation and control, the emerging Al techniques such as the
transfer learning and adversarial networks demonstrated their strong
capabilities in AM. For instance, Cheng et al. [108] developed a hybrid
transfer learning framework for geometric accuracy control, and Li et al.
[109] incorporated the conditional adversarial networks to implement
3D geometric deviation in material extrusion AM.

According to the most recent studies reviewed above, it can be
observed that integrating the cutting-edge Al techniques (such as DNN,
transfer learning, and adversarial learning) to handle the complex
assessment tasks and further maximize the value of data has become a
key research trend. Although the application of AI in AM has been
extensively investigated, the research in the assessment for AM-based
human-centered customized product development is still relatively
limited, particularly, the incorporation of Al to facilitate the subjective
quality assessment.

3. Challenges and opportunities for future research

Although the current research progress in the Al-driven customized
AM product development is very significant, many gaps still exist. In this
section, three important topics are summarized as recommendations for
future research.

3.1. Data complexity in Al-enabled customized AM

The successful application of Al methods heavily relies on sufficient
data of high quality, and the actual demand for data is positively
correlated with the complexity of the data generated. Consequently, one
of the most critical challenges in the scale-up of Al-enabled human-
centered AM product development is to address the data complexity
issues. The highly customized design and complex fabrication process
complicates the data generated from AM in the following two aspects.

3.1.1. High data heterogeneity

The heterogeneity of AM data can be summarized as three aspects:
(1) data format heterogeneity is resulted from the multiple stages of the
product development; (2) machine-to-machine heterogeneity comes
from different AM machines and/or different sensing setups; and (3)
sample-to-sample heterogeneity is attributed to high design variability
due to product customization. Consequently, directly applying the
conventional Al techniques may not work well. Therefore, there is an
urgent need in developing effective AM-oriented Al methodologies. For
example, various powerful machine learning methods, such as transfer
learning [110], adversarial learning [111], multitask learning [112],
and federated learning algorithms [113], can be tailored for the specific
characteristics of AM data.

3.1.2. High dimensionality vs. limited data availability

The high dimensionality issue is a long-term problem, and it has been
extensively investigated. Particularly, the representation learning tech-
niques, such as the popular autoencoder [114,115], data decomposition
[95,116,117], and manifold learning [98], have been widely applied to
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the complex high dimensional AM data. However, it still lacks a sys-
tematic and flexible methodology to effectively handle the high
dimensional data collected from the highly customized manufacturing
scenarios in human-centered AM. Thus, dimensionality reduction are
still open and important directions in this area. On the other hand,
customized AM also suffers from the limited data availability issue,
which is also a broad topic, and it consists of multiple aspects, including
small sample sizes, incomplete data, invalid data, imbalanced data,
unlabeled data, and duplicated data. Although a large variety of tech-
niques are available to address these issues, methodologies that can
jointly handle these data insufficiency issues are still limited.

Addressing the above-mentioned commonly occurred data
complexity issues will enable a more effective and efficient human-
centered customized products development in AM, which could
further facilitate the functionality of AM. Moreover, it is also worth
noting that the potential solutions to address these data complexity is-
sues can also greatly benefit other critical areas, such as the infrastruc-
ture systems (e.g., data quality assurance) [118] and healthcare
analytics [119], since the similar data issues are also widely noticed in
these fields.

3.2. Data sharing and cyber-physical security

As suggested by Shamsaei et al. [42], the key to any successful Al
applications in AM is sufficiently comprehensive training data which
can be used for reliable model estimation. However, data availability
has become a major limitation in the successful adoption of AI or ma-
chine learning related techniques in AM applications, and the case is
even more prominent for customized AM applications which are asso-
ciated with very limited labeled data for training.

We summarize three levels of challenges in successful Al-enabled
customized AM in terms of data sharing. First, the current Al-enabled
modeling and optimization studies are usually focused on one product
design at a time, and the models estimated from one design cannot be
directly extended to a new design. In customized AM, however, very
small or even single-piece batches are very common. Therefore, it is
prohibitively expensive to generate a sufficiently large data set for each
individual design for either experimental or computation-based ap-
proaches. Second, even though transfer learning can be leveraged to
aggregate the data collected from different part designs [110,120-123],
the proprietary nature of customized AM leads to significant privacy
concerns that prohibit raw data sharing and aggregation among multiple
AM users [124,125]. Third, excessive data sharing and exchange during
the design and fabrication for Al-enabled customized AM will be
exposed under high risks of cyber-physical attacks. As illustrated in
Fig. 4, excessive data transfer and sharing is necessary in the AM
fabrication. AM related cyber-physical attacks include AM design data
theft and design/process tampering [126-129]. The significant flexi-
bility of AM and the single-piece production batches can further broaden
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the attack space of the customized AM products, making them more
vulnerable than products fabricated by conventional manufacturing
processes and even AM products fabricated in large batches [130,131].

Accordingly, there are three major research questions to be
addressed for successful Al-enbled customized AM.

Research Question 1: How to properly aggregate AM data of
diversified part designs for process optimization, monitoring, and
control for brand-new designs in customized AM. Even though
transfer learning schemes have been used in the data-driven
modeling for AM, the high variability in AM product design has
not been properly addressed. The different product designs have a
significant impact on the P-S-P relationships and thus need to be
properly factored in the AI models for more reliable analysis and
prediction. One of the promising solutions involves leveraging
computational models to explain the variability induced by product
designs, leading to physics-informed AI models. A few recent works
have already demonstrated success in some specific AM process
modeling problems [132-134], which can be further extended to
benefit broader applications in customized AM.

Research Question 2: How to establish a data sharing mechanism to
facilitate secured data sharing between multiple users without
disclosing users’ privacy information and among different product
lifecycle stages. The design, process, and assessment data generated
in the customized AM applications contain significant privacy in-
formation of the users. Therefore, privacy protection is of critical
importance in data sharing for customized AM. One promising di-
rection is to leverage the privacy-preserving machine learning which
has demonstrated significant success in computer science [135-137].
In addition, some case studies have demonstrated the great potential
for privacy-preserving machine learning and federated learning in
the manufacturing [138,139] and health care applications [140]. In
addition, a collaborative data sharing mechanism among different
stages in the AM produce lifecycle can facilitate effective data
management and smart decision making through efficient data
communications [141].

Research Question 3: How to develop effective measures to
enhance the cyber-physical security by protecting various AM data
(including CAD design, g-code, and process data) from data theft and
tampering during the data sharing and exchange. Even though there
are extensive studies in the protecting cyber-physical security of AM,
there is still a significant need for an effective and efficient frame-
work to assure the security in both cyber and physical domains. For
data security, the blockchain and encryption techniques have been
used in securing g-code and process data for AM [142-145]. How-
ever, those solutions still need to be comprehensively tested to
evaluate their effectiveness and efficiency for customized AM
applications.
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Fig. 4. Material and information flow in the cyber-physical systems of AM (Reproduced from [130]).
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For process/part authentication, most of the current studies focus on
one specific AM process and a few typical potential attacks [146-149].
However, due to the infinite attack space, it is challenging to develop a
comprehensive training data for process/product authentication. To
address this issue together with the small batch characteristics of
customized AM, leveraging AM design information and process knowl-
edge would essentially reduce the demands in large sample sizes for Al
methods. For example, physical hashes and other physically uncloneable
identities can be established from the implemented g-codes for part
authentication of each individual design [150-152].

3.3. Human-in-the-loop manufacturing

It is worth mentioning that human interventions are expected in the
AM of human-centered products. Comparing with machines, humans
offer a much higher level of flexibility and intelligent decision-making
capability. It is believed that human and machine need to collaborate
to fulfill complex manufacturing tasks (e.g., the design and
manufacturing of human-centered products discussed in this paper). The
great potential of human-in-the-loop manufacturing has also been
identified in many recent related literature [153-155]. Thus, it is
important to integrate humans into the design, fabrication, and quality
inspection processes. Recent advances in robots, Al, Internet of Things
(IoT), and metaverse technologies provide unprecedented opportunities
for humans to better interact and intervene product design and
manufacturing (Fig. 5). Nevertheless, leveraging those technologies to
facilitate human-in-the-loop AM of human-centered products are still in
its infancy. In this section, we would like to briefly discuss three
sub-directions for future research.

3.3.1. IoT-enhanced human-machine/robot cooperation

The human-machine/human-robot cooperation has long been an
active research area that aims at improving productivity, reducing costs,
and minimizing human errors [156]. It also plays a very important role
in the recent development of human-centered manufacturing [157]. The
rapid maturation of natural language processing (NLP), gesture recog-
nition, among others, significantly enhanced the ability of machines and
robots in identifying and interpreting human actions. This provides a
great opportunity to share or transfer human skills into the
manufacturing process. Moreover, the emerging technology of the IoT
(also known as Industry 4.0) maps human operators, machines, robots,
and other entities in a networked structure, which enables the seamless
communication, data exchange, and information sharing among entities
[158,159]. This, in turn, further removes the barriers in
human-machine/human-robot cooperation and improves the level of
flexibility and responsiveness. An increasing number of studies have
been reported, which proposed new approaches to leverage the IoT for
better human-machine/human-robot cooperation. For example, Garcia
et al. [160] developed a natural human-machine interfaces to integrate
the decision-making capabilities of human operators into an IoT-enabled
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Fig. 5. Human-in-the-loop AM with robots, Al, IoT, and AR/VR.
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platform for the control, coordination, and cooperation with an indus-
trial robot for assembly. Cimini et al. [161] also discussed the mutual
impact of the IoT and human in the human-in-the-loop cyber-physical
production system and highlighted the opportunities. In this direction,
some remaining challenges, among others, that need to be further
explored and tackled in future research include: (1) how to better
facilitate the delivery of mutual understandable and executable mes-
sages among humans and machines/robots, (2) how to better extend the
cooperation scope from one human and one machine/robot to multiple
human operations and a large number of machines/robots (e.g., swarm
robots [162]) even when the entities are with different locations (e.g.,
far from each other). New simulation, optimization, and control models
are needed to collectively ensure the effective and efficient
coordination.

3.3.2. Interpretable Al for human operators

Many Al algorithms, especially those involving deep learning, lack
the interpretability and are oftentimes considered as blackboxes. To
human operators in human-centered AM, “how and why the decision is
made” is sometimes more important than “what decision is made”. Thus,
it is important to improve the interpretability of AI algorithms so as to
unveil the blackboxes for well-informed decision making. In the litera-
ture, interpretable AI has been increasingly discussed for years. In
addition to the widely used interpretable models such as logistic
regression and decision trees, many researchers attempted to address the
“lack of interpretability” problem of deep learning by either improving
the interpretability of DNN models or finding alternatives that demon-
strate comparable performance. For example, Argarwal et al. [163]
developed neural additive nets to allow more interpretability with
state-of-the-art accuracy. Zhou and Feng proposed a deep forest model
[164], in which random forests were leveraged to replace neurons for
the construction of a deep learning structure so that the model was more
interpretable [96]. For more existing works on interpretable machine
learning, please refer to [165]. Still, there are some challenges to be
addressed, including how to maintain a comparable accuracy while
enhancing model interpretability, how to better quantify the perceived
interpretability of human operators, and how to leverage only a limited
number of training samples as human-centered AM is likely to have very
small sample sizes.

3.3.3. AR/VR for the design and manufacturing

The development of virtual reality (VR), augmented reality (AR) and
related technologies provides a great opportunity to overlay machine-
generated information in graphical representations and demonstrate in
the real-world environment [166], which also offers great opportunities
to the improvement of AM systems [167,168]. Such contextualized in-
formation helps human operators better understand the underlying
dynamics of manufacturing processes and machine conditions so as to
make informed decisions. For example, with AR, workers wearing
HoloLens were able to interact with the in-situ obtained 3D geometry of
the part for quality inspection [169]. Also, VR/AR has been increasingly
adopted to assist human in the visualization of the DfAM process. Eck-
ertz et al. [170] employed AR to accelerate the design-and-review pro-
cess that iterates between the designer and the customer. In [171], the
authors discussed the advantages of VR over traditional CAD tools in
assisting engineers to design and evaluate complex parts. It is antici-
pated that AR/VR will empower a higher-level of interactivity among
various participants in the human-centered AM processes. To achieve
that, some open questions remain for future research to address,
including (1) how to improve the resolution and accuracy of AR/VR
models to better emulate the design and manufacturing processes and
provide augmented information to human operators; (2) how to incor-
porate real-time streaming data collected using advanced sensors and
cameras into AR/VR models and contextualize the information to
human operators; and (3) how to integrate Al in the AR/VR visualization
to promote the interoperation between the operators and the machines.
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4. Conclusions

This paper aims to review the most recent research in the Al-enabled
human-centered AM products development, and identify the trend and
future research opportunities in this area. In this work, the existing
studies are categorized into three aspects based on the sequential stages
in AM, namely, design, fabrication, and assessment. Enabling Al in the
product design stage provides a promising solution to account for a
variety of design variables and their complicated interactions in design
and thereby achieve desired performance in production. Moreover, with
the integration of Al in the AM fabrication and assessment stages, the
fabrication process for the customized human-centered products can be
optimized, and the quality performance can be assessed thoroughly as
well in an efficient manner.

The three steps in the human-centered AM products development
summarized above also indicated the remaining challenges and future
research opportunities, as identified in three directions: (1) develop
advanced AM-oriented Al techniques to handle the data with high het-
erogeneity, high dimensionality, but low availability in the highly
customized scenarios; (2) make full use of physics knowledge in the Al
methods for customized AM applications while assuring process security
and data privacy; and (3) integrate humans into the design, fabrication,
and quality inspection processes, through interpretable AI, IoT-
enhanced human-machine corporation, AR/VR, etc.
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