
  

  

Abstract— As a pervasive issue, missing data may influence 

the data modeling performance and lead to more difficulties of 

completing the desired tasks. Many approaches have been 

developed for missing data imputation. Recently, by taking 

advantage of the emerging generative adversarial network 

(GAN), an effective missing data imputation approach termed 

generative adversarial imputation nets (GAIN) was developed. 

However, its modeling architecture may still lead to significant 

imputation bias. In addition, with the GAN structure, the 

training process of GAIN may be instable and the imputation 

variation may be high. Hence, to address these two limitations, 

the ensemble GAIN with selective multi-generator (ESM-GAIN) 

is proposed to improve the imputation accuracy and robustness. 

The contributions of the proposed ESM-GAIN consist of two 

aspects: (1) a selective multi-generation framework is proposed 

to identify high-quality imputations; (2) an ensemble learning 

framework is incorporated for GAIN imputation to improve the 

imputation robustness. The effectiveness of the proposed ESM-

GAIN is validated by both numerical simulation and two real-

world breast cancer datasets.  

Index— Ensemble learning, GAIN, missing data imputation, 

multi-generator generation,  

I. INTRODUCTION 

As a common data quality issue, missing data may be 
caused by many reasons, such as insufficient data collection 
and lost records. For instance, in the healthcare systems, some 
of the patient information may be missing, and it is also hard 
to revisit the patients and recover the missing information [1, 
2]. More importantly, in data-driven precise disease screening 
and diagnosis, missing data may lead to significant bias to train 
the predictive models from data. Hence, it is critically needed 
to address the missing data issue. A common approach to 
address this issue is to perform data imputation [3]. 

In recent decades, many imputation approaches have been 
developed. Specifically, the missing data imputation 
approaches could be categorized into two groups: 
conventional methods and machine learning-based methods. 
The conventional methods include the statistics-based 
imputation [4], matrix completion [5], and statistical model- 
based approaches such as the popular expectation 
maximization (EM) algorithm [6]. Although they are fairly 
easy to calculate, the performance might be unsatisfied when 
the underlying data distribution is complex. Hence, the 
machine learning-based methods have been developed rapidly 
in recent years, such as the 𝑘 nearest neighbors (𝑘-NN) [7], 
MissForest [8], denoising autoencoder (DAE) [9], and the 
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generative adversarial nets (GAN) [10]-based imputation 
approaches. However, due to the interpolation nature of 𝑘-NN, 
it is also not capable of handling complex data. In addition, the 
performance of MissForest may also be limited since it needs 
to run separately for each data matrix that needs to be imputed. 
As for DAE, it requires the complete data for training, but 
obtaining a complete dataset may be very challenging in real-
world applications. Therefore, by taking advantage of the 
emerging GAN techniques, the GAN-based imputation 
approaches have been developed. By incorporating generator 
and discriminator in an adversarial learning architecture, the 
complex underlying data distribution could be learnt 
effectively without strict assumptions and complete dataset. 
For example, Kim et al. [11] has provided a detailed survey 
about GAN-based imputation approaches, such as the 
generative adversarial imputation nets (GAIN) [12], MisGAN 
[13], and Collaborative GAN [14]. Particularly, for the 
multivariate datasets, GAIN [12] is widely applied due to its 
superior performance than others. 

In GAIN, the samples are generated and the values in the 
generated samples are extracted to impute the missing data. 
However, the values in the generated samples may be 
significantly different from actual values, which may lead to 
the imputation bias. In addition, according to the conventional 
GAN architecture, the training process of GAIN may also be 
instable and the imputation may have very high variation. 
Therefore, to address these gaps, a new imputation approach 
termed ensemble GAIN with selective multi-generator (ESM-
GAIN) is proposed, and its main contributions consist of: (1) 
a selective multi-generation framework is proposed to identify 
high-quality imputations and increase imputation accuracy; 
and (2) an ensemble learning framework is applied for GAIN 
imputation to further improve the model robustness. 

The rest of this paper is structured as follows. The missing 
data problem is defined and the GAIN is introduced in Sec. II. 
Then the proposed research methodology is discussed in Sec. 
III. Afterwards, the simulation study and a real-world case 
study are conducted in Sec. IV. Finally, the conclusions are 
discussed in Sec. V. 

II. PROBLEM STATEMENT 

Suppose that the data matrix 𝐗 follows ℝ𝑠×𝑛. That is, 𝐗 
involves 𝑛 variables and there are 𝑠 samples in total. Define 
the mask matrix 𝐌 in ℝ𝑠×𝑛 as a binary matrix and each 
element in M is shown as (1). In this way, 𝐌 ⊙ 𝐗 represents 
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the actual values in the data matrix while (𝟏 − 𝐌) ⊙ 𝐗 
represents the missing values in the data matrix, where ⊙ 
means the element-wise multiplication. 

𝑀𝑖𝑗 = {
0         If 𝐗𝑖𝑗  is missing

1                   Otherwise
   𝑖 = 1, … , 𝑠; 𝑗 = 1, … , 𝑛 (1) 

This work is based on the recently developed generative 
adversarial imputation network (GAIN), which has 
demonstrated its superior performance than the conventional 
imputation algorithms [12]. Based on the GAN architecture 
[10], GAIN also involves two components, the generator 𝐺 
and the discriminator 𝐷. 𝐺 will generate the fake data matrix 
while 𝐷 will distinguish whether the input values in the matrix 
are generated values or actual values. 𝐺 and 𝐷 will compete 
with each other. Specifically, three different matrices are sent 
to the GAIN model. That is, the data matrix 𝐗, the mask matrix 
𝐌, the hint matrix 𝐇. 𝐗 is to record the actual values and 
missing values. 𝐌 is to describe whether the values are missing 
or not as shown in (1). Based on the hint rate parameter ℎ, 𝐇 
marks the area that the discriminator 𝐷 should pay more 
attention to. In this way, based on different 𝐇, the information 
passed to 𝐷 will be different, which may make 𝐺 learn the 
distributions more accurately. In each iteration, the output sent 
to the discriminator is shown in (2). 

 𝐗̂ = 𝐌 ⊙ 𝐗 + (𝟏 − 𝐌) ⊙ 𝐺(𝐗, 𝐌, 𝐙) (2) 

𝐺 will simulate the artificial samples, i.e., 𝐺(𝐗, 𝐌, 𝐙), 
based on the noise 𝑍. As shown in (2), with the help of mask 
matrix 𝐌, if the element is missing, it will be imputed by the 
generated value. Otherwise, it will keep the original values in 

𝐗. In this way, 𝐗̂ could be obtained Then 𝐗̂ is sent to 𝐷 with 𝐇 
to be distinguished. Based on the above-mentioned processes 
for generator and discriminator, the minimax game for GAIN 
is shown in (3). 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝐗̂,𝐌,𝐇 [𝐌𝑇 log (𝐷(𝐗̂, 𝐇))] + 

(𝟏 − 𝐌)𝑇[log(1 − 𝐷(𝐗̂, 𝐇))] 

(3) 

It is important to note that, only when 𝐌 ⊙ 𝐺(𝐗, 𝐌, 𝐙) is 

similar to 𝐌 ⊙ 𝐗, extracting (𝟏 − 𝐌) ⊙ 𝐺(𝐗, 𝐌, 𝐙) as the 
imputed values are convincing. Therefore, it is essential to 

reduce the differences between 𝐌 ⊙ 𝐺(𝐗, 𝐌, 𝐙) and 𝐌 ⊙ 𝐗. 
In order to achieve that, the mean square error (MSE) between 
𝐺(𝐗, 𝐌, 𝐙) and 𝐗, 𝐿𝑀(𝐺(𝐗, 𝐌, 𝐙), X), is calculated as the MSE 
loss. Then 𝐿𝑀 is added in the loss for G, 𝐿𝐺, to update the 
generator. Under such circumstances, 𝐿𝐺 and the loss for 𝐷, 
𝐿𝐷, are obtained in (4) where 𝛼 is a hyper-parameter [12]. 

𝐿𝐷 = (1 − 𝐌)𝑇log (1 − 𝐷(𝐗̂, 𝐇)) − 𝐌𝑇 log (𝐷(𝐗̂, 𝐇)) 

𝐿𝐺 = −(1 − 𝐌)𝑇log (1 − 𝐷(𝐗̂, 𝐇)) + 𝛼𝐿𝑀(𝐺(𝐗, 𝐌, 𝐙), X) 
(4) 

Through 𝐿𝑀, the difference between 𝐌 ⊙ 𝐺(𝐗, 𝐌, 𝐙) and 
𝐌 ⊙ 𝐗 could be reduced. However, after the model 
converges, 𝐌 ⊙ 𝐺(𝐗, 𝐌, 𝐙) may be still significantly different 
from 𝐌 ⊙ 𝐗, which means the estimation to 𝐗, i.e., 
𝐺(𝐗, 𝐌, 𝐙), is still biased. Besides, due to the GAN structures 
[10], the training process of GAIN may be instable and the 
imputation variation may be high. Therefore, in order to 
address the two limitations of GAIN, the ensemble generative 

adversarial imputation network with selective multi-generator 
(ESM-GAIN) is proposed to implement better data imputation 
in Sec. III. 

III. RESEARCH METHODOLOGY 

In this section, the overall architecture is described in Sec. 
III-A. Afterwards, the selective multi-generation framework is 
proposed in Sec. III-B, and the ensemble learning framework 
for the selective multi-generator is discussed in Sec. III-C. 

A.  Overall architecture of the proposed ESM-GAIN 

The overall architecture of the proposed ESM-GAIN is 
shown in Fig. 1. It involves two main novel components: (1) a 
new selective multi-generator framework; and (2) integrating 
the ensemble learning framework to GAIN. In the proposed 
selective multi-generator, the data matrix 𝐗, mask matrix 𝐌 
are sent to 𝑘 generators, which are applied by inputting 𝑘 
different random matrix 𝐙. Afterwards, a new selective filter 
layer is developed, which is partially inspired by our prior 
work, the augmented time-regularized GAN (ATR-GAN) 
[15]. All the generated samples are sent to the selective filter 
layer to identify the generated samples which are similar to the 
actual samples. Then both the selected samples and the hint 
matrix 𝐇 obtained from 𝐌 are sent to the discriminator 𝐷. In 
this way, the losses for both generators and discriminators 
could be estimated, and the selective multi-generator could be 
updated as well. 

As shown in Fig. 1, each trained GAIN with a selective 
multi-generator could output one imputed matrix. Afterwards, 
the ensemble learning framework is then incorporated. If the 
element to be imputed is continuous, the mean of such element 
from all the imputed matrices is used. Otherwise, the median 
is used. In this way, all the missing values could be imputed.  

B. Selective multi-generation framework 

B.1. Selective filter layer 
As described in Sec. II, the missing values in the actual 

samples are replaced by the values from the same location in 
the artificial samples. However, 𝐌 ⊙ 𝐺(𝐗, 𝐌, 𝐙) may be 
different from 𝐌 ⊙ 𝐗. For each sample, the variables may be 
correlated. Hence, any minor changes from the actual values 
may lead to large differences between imputed values. Under 
such circumstances, when 𝐌 ⊙ 𝐺(𝐗, 𝐌, 𝐙)  is not the same 
as 𝐌 ⊙ 𝐗, it is not convincing to impute (𝟏 − 𝐌) ⊙ 𝐗 by 
(𝟏 − 𝐌) ⊙ 𝐺(𝐗, 𝐌, 𝐙). Since data matrix 𝐗 follows ℝ𝑠×𝑛, 
denote that the generator may also generate s samples with 𝑛 
variables as 𝐗̅. In order to make 𝐌 ⊙ 𝐺(𝐗, 𝐌, 𝐙) closer to 
𝐌 ⊙ 𝐗, the selective filter layer, 𝐿, is proposed in this work. 

Definition 1. (Selective filter layer): Selective filter layer 
𝐿 is designed to select the artificial samples from 𝐗̅ that is 
similar as 𝐗. Based on the one-to-one Euclidean distance 
calculation between the samples in 𝐗̅ and 𝐗, 𝐿 can select the 
desired samples by judging whether the distance is less than 
the threshold 𝛿, formulated with an indicator function 𝐼 

𝐿 = 𝐗̅ ∙ 𝐼{𝑑(𝐗̅,𝐗)<𝛿}(𝐗̅) (5) 

Based on the selective filter layer, the input of 𝐷, 𝐗̂∗, could 
be obtained as shown in (6). The generated samples that are 
more similar to actual data will be selected as 𝐗̅∗. Then the 

corresponding actual data, 𝐗∗, will be combined with 𝐗̅∗ as 𝐗̂∗, 
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based on the adjusted mask matrix, 𝐌∗. Afterwards, 𝐗̂∗ could 
be sent to the discriminator to update the entire model.  

𝐗̅∗ = 𝐿(𝐺(𝐗, 𝐌, 𝐙)|𝛿) 

𝐗̂∗ = 𝐌∗ ⊙ 𝐗∗ + (1 − 𝐌∗) ⊙ 𝐗̅∗ 
(6) 

B.2. Multi-generator collaboration 

Based on the selective filter layer, high-quality samples 
could be obtained. However, due to the existence of  𝛿,  the 
number of samples in 𝐗̅∗ is much less than the number of 
samples in 𝐗̅. Since the actual data should have the same 
samples as 𝐗̅∗, it is not guaranteed that all the actual samples 
in 𝐗 could be selected. Besides, due to the sample size 
deduction, the diversity of samples sent to the discriminator is 
also limited. Hence, in order to increase the number of actual 
samples which could be selected and improve the diversity of 
imputed samples, a multi-generator is applied. 

Denote that there are 𝑘 generators, {𝐺1, 𝐺2, … , 𝐺𝑘}, to 
generate artificial samples. Thus, in each iteration,  𝑘 groups 

of imputed samples, {𝐗̅1, 𝐗̅2, … , 𝐗̅𝑘}, will be generated. Since 
the selective filter layer does not have any neural network 
parameters, one common selective filter layer could be applied 
for all the generators simultaneously with the input actual 
samples, 𝐗. Hence, based on the selection layer, 
{𝐗̅1, 𝐗̅2, … , 𝐗̅𝑘} are transformed to {𝐗̅1

∗ , 𝐗̅2
∗ , … , 𝐗̅𝑘

∗ }. Then with 
the corresponding actual samples {𝐗1

∗ , 𝐗2
∗ , … , 𝐗𝑘

∗ }, the samples 
that combine the actual values and imputed values, 

{𝐗̂1
∗ , 𝐗̂2

∗ ,…, 𝐗̂𝑘
∗ }, could be obtained based on (7). 

𝐗̂𝑖
∗ = 𝐌𝑖

∗ ⊙ 𝐗𝑖
∗ + (1 − 𝐌𝑖

∗) ⊙ 𝐗̅𝑖
∗    𝑖 = 1,2, … , 𝑘 (7) 

{𝐗̂1
∗ , 𝐗̂2

∗ ,…, 𝐗̂𝑘
∗ } could be sent to the discriminator to 

distinguish whether the values are actual values or imputed 
values. In this way, the output of the discriminator could be 

applied to calculate the losses for all 𝐷 and {𝐺1, 𝐺2, … , 𝐺𝑘}. As 
shown in (8). the discriminator needs to consider the average 
output of all the generators in 𝐿𝐷. However, since the 
generated samples from one generator are not related to other 
generators, each generator has its own loss as shown in (8). 

𝐿𝐷 = ∑
1

𝑘
((1 − 𝐌𝑖

∗)𝑇log (1 − 𝐷(𝐗̂𝑖 , 𝐇𝑖))

𝑘

𝑖=1

− 

𝐌𝑖
∗𝑇

log (𝐷(𝐗̂𝑖 , 𝐇𝑖))) 

𝐿𝐺𝑖
= −(1 − 𝐌𝑖

∗)𝑇log (1 − 𝐷(𝐗̂𝑖 , 𝐇𝑖)) + 

𝛼𝐿𝑀(𝐺𝑖(𝐗, 𝐌, 𝐙), 𝐗)  𝑖 = 1,2, … , 𝑘 

(8) 

When the losses converge, the model is considered as well-
trained and could be applied for data imputation. Afterwards, 
the 𝑘 imputed data matrices from the generators, 

{𝐗̂1
∗ , 𝐗̂2

∗ ,…, 𝐗̂𝑘
∗ }, are obtained. Therefore, the imputed data 

matrix of the model, 𝐗̂, could be obtained by calculating the      
mean of each element in the imputed matrices as shown in (9). 
Specifically, rounding will be applied to transform the 
calculated values of discrete elements to integers. 

 𝐗̂ = ∑
1

𝑘
𝐗̂𝑖

∗

𝑘

𝑖=1

 (9) 

There are two hyperparameters to be determined in the 
proposed selective multi-generator, i.e., δ and 𝑘. Specifically, 
to control the sample size for the output of the selective filter 
layer, 𝛿 could be obtained based on the percentile of calculated 
distance [15]. In this way, the number of samples sent to the 
discriminator will be the same for each iteration. Afterwards, 
δ and 𝑘 could be determined based on cross validation [15]. 
Under different δ and 𝑘, the model is trained and the mean 
absolute error (MAE) of the imputation is calculated. Then the 
δ and 𝑘 with the smallest MAE is selected for the imputation. 

Figure 1 A demonstration of the proposed ESM-GAIN framework. 
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C. Incorporation of ensemble learning 

By integrating the proposed selective filter layer and multi-
generator generation, the proposed selective multi-generator is 
expected to improve the accuracy of imputation. To further 
improve model robustness, an ensemble learning framework is 
further incorporated in the proposed method, i.e., ESM-GAIN.  

In the ensemble learning framework, 𝑚 data matrices, 
{𝐗1, 𝐗2, … , 𝐗𝑚}, will be obtained from the data matrix 𝐗 
through bootstrapping. 𝑚 is a hyperparameter that could be 
determined by cross validation. Based on the data matrices, 𝑚 
GAINs with selective multi-generator are trained separately. 
In this way, the ensemble learning framework could learn the 
actual distribution more comprehensively. In addition, during 
the training process, each GAIN with selective multi-generator 
may apply different ℎ to increase the diversity among different 
models. After the training, 𝐗 is sent to each model and the 

imputed matrices, {𝐗̂1, 𝐗̂2, … , 𝐗̂𝑚}, could be obtained.  

Notably, besides the values of the elements, the labels of 
the elements, i.e., continuous or discrete, are also sent to 𝐺 
since the continuous and discrete elements to be imputed will 
be considered separately. If the element is continuous, the 
mean of such elements from different imputed data matrices is 
calculated. On the other hand, if the element is discrete, the 
median of such elements from different imputed data matrices 
is selected. By calculating the mean/median, the model 
robustness could be improved since the inappropriate imputed 
values, i.e., outliers, will not interfere with the final output. In 
this way, the final imputed data matrix, i.e., 𝐗′, could be 
obtained and output from the ensemble learning framework. 

The overall algorithm for ESM-GAIN is shown below. 
Based on the bootstrapped data, the GAINs with selective 
multi-generator are trained. Afterwards, the entire data matrix 
is sent to each selective multi-generator framework to obtain 
the imputed data matrices. Finally, the imputed data matrices 
are combined to obtain and output the final imputed matrix. 

Algorithm 1: ESM-GAIN algorithm 

Input: Actual data matrix 𝐗 , Parameter 𝑚, 𝑘, 𝑠 and 𝛿 

Step 1: Bootstrap data matrix 𝐗 to {𝐗1, 𝐗2, … , 𝐗𝑚} 

For 𝑖 = 1 to 𝑚 do 

    For 𝑗 = 1 to 𝑘 do  

        Step 2: Randomly choose 𝑠 actual samples 𝐗𝒊
𝑗
 from 

actual sample set 𝐗𝒊 

        Step 3: Generate 𝑠 artificial samples 𝐗̅𝑖
𝑗
 from 

generator 𝐺  

        Step 4: Send 𝐗̅𝑖
𝑗
 to the selection layer 𝐿 to obtain 𝐗̅𝑖

𝑗∗
 

       Step 5: Obtain 𝐗̂𝑖
𝑗∗

 based on 𝐗̅𝑖
𝑗∗

 and 𝐗𝒊
𝑗
       

    Step 6: Send 𝐗̂𝑖
1∗, 𝐗̂𝑖

2∗,…, 𝐗̂𝑖
𝑘∗ into discriminator 𝐷 to 

get output 𝐷(𝐗̂𝑖
1∗), 𝐷(𝐗̂𝑖

2∗), …, 𝐷(𝐗̂𝑖
𝑘∗) 

    Step 7: Optimize the model parameters based on the 

output of discriminator  
    Until L𝐺1

, L𝐺1
, …, L𝐺𝑘

 and L𝐷 converge: 

        Step 8: Send X to  {𝐺1, 𝐺2, … , 𝐺𝑘} and impute as 𝐗̂ 

Step 9: Get mean/median from {𝐗̂1, 𝐗̂2, … , 𝐗̂𝑚} as 𝐗′  

Output: 𝐗′  

IV. CASE STUDIES 

To validate the effectiveness of the proposed ESM-GAIN, 
both numerical simulation (Sec. IV-A) and a real-world case 
study in healthcare (Sec. IV-B), are applied. The effectiveness 
of the proposed data imputation approach can be represented 
by the quality of the imputed values. Thus, in this study, the 
mean absolute errors (MAE) after data imputation are applied 
as an evaluation metric to validate the effectiveness of the 
proposed ESM-GAIN in missing data imputation. 

A. Simulation study 

In the simulation study, the Gaussian process (GP) is 
applied to simulate 2000 actual samples with 30 variables, 
based on the radial basis function (RBF) kernel. Two values, 
0.001 and 0.005, are applied for the parameter 𝜃 in the RBF 
kernel. Besides, to make the simulation data closer to real-
world cases, noises are also added. The process to simulate the 
data are shown in (10). 

𝐗 = 𝟐 × (𝐗𝟏
𝐗𝟐

) + (𝐙𝟏
𝐙𝟐

) , 𝐗𝒊 = [

𝐱1
 

…
𝐱1000

 
] , 𝐙𝒊 = [

𝐳1
 

…
𝐳1000

 
],  

𝐱𝒋~𝐺𝑃(0, 𝜅), 𝑧𝑗𝑙 ~ 𝑁(0, 22), 

𝜅(𝑥𝑗𝑙1
, 𝑥𝑗𝑙2

) = exp (−
1

2𝜃𝑖
(‖𝑥𝑗𝑙1

− 𝑥𝑗𝑙2
‖

2

2
) 

𝜃1 = 0.001, 𝜃2 = 0.005, 
𝑖 = 1,2, 𝑗 = 1,2, … ,1000, 𝑙, 𝑙1, 𝑙2 = 1,2, … ,30 

(10) 

In this way, the 2000 × 30 data matrix is generated. In 
order to demonstrate the effectiveness of the proposed method 
under discrete variables, each variable in the data matrix is 
categorized into five levels from 1 to 5. The setups of 
parameters are shown in Table I.  

TABLE I.  THE DATA AND PARAMETER SETUPS  

Setup Value 

Sample size 2000 × 30 

Number of generators 𝑘 2 
Number of selective multi-generators 𝑚 10 

Threshold δ 
80th percentile of the 

calculated distance 

Batch size s 128 

 
The neural network structures of ESM-GAIN follow 

Yoon, et al. [12]. Since the variables turn to discrete variables, 
the median is calculated as the output in the ensemble learning 
framework. Besides, some benchmark methods, including 
MissForest [8], matrix completion [5], the 𝑘-NN imputation 
algorithm [7], and GAIN [12], are applied to better test the 
performance of the proposed method. The experiment for each 
approach is conducted three times and the average MAE is 
calculated. To make the validation more comprehensively, the 
missing value rate increases from 20% to 50% while the 
sample size increases from 800 to 2000.  

Before comparing the proposed ESM-GAIN with other 
data imputation methods, it is important to first test the 
effectiveness of the proposed selective multi-generator and the 
incorporated ensemble learning framework. Hence, the 
ensemble GAIN (no selective multi-generator) and GAIN are 
also applied as ablation experiments.  

The MAEs under different missing value rates and sample 
size are shown in Fig. 2. The MAEs of ensemble GAIN are 
mostly smaller than the MAEs of GAIN, showing that the 
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ensemble learning framework is effective. The MAEs of ESM-
GAIN are much smaller than the other two methods under each 
missing value rate. Hence, the newly added components are 
effective to improve the imputation accuracy. Besides, as the 
missing value rates increase, the MAEs for all three 
approaches increase. Such a pattern is normal since higher 
missing value rates means less information for imputation. 

 
Figure 2 MAE comparisons between ESM-GAIN, ensemble GAIN and 

GAIN under different missing value rates (a) and sample size (b). 

As shown in Fig. 2(b), compared with GAIN, the MAEs of 
ensemble GAIN are smaller when the sample size is larger 
than 1200. However, the MAEs of ensemble GAIN are still 
comparable since there are no significant differences between 
ensemble GAIN and GAIN when the sample size is less than 
1200. Besides, the MAEs of ESM-GAIN are always the 
smallest under each sample size. Hence, the effectiveness of 
newly added components is validated. 

In addition, the proposed method is also compared with the 
benchmark methods under different missing value rates and 
sample size. Notably, the setup of missing value rates and 
sample size are the same as the setup for validating the 
components in ESM-GAIN. The MAEs for different 
approaches are shown in Fig. 3. 

 
Figure 3 MAE comparisons between ESM-GAIN, GAIN, MissForest, 𝑘-NN, 

matrix completion under different missing value rates (a) and sample size (b). 

As shown in Fig. 3(a), the MAEs of 𝑘-NN imputation, 
matrix completion and MissForest are much higher than the 
MAEs of GAIN and ESM-GAIN. Besides, compared with the 
MAEs of GAIN, the MAEs of ESM-GAIN are also lower 
under each missing value rate. In addition, as the missing value 
rate increases, the MAEs of all the benchmark methods also 
increase. However, the MAEs of the proposed method do not 
significantly increase, which also shows the imputation 
stability of the proposed method.  

Furthermore, as shown in Fig. 3(b), the MAEs of 𝑘-NN 
imputation, matrix completion and MissForest are still much 
higher than GAIN and ESM-GAIN. Besides, the MAEs of the 
ESM-GAIN are also lower than GAIN. Hence, it demonstrates 
that the proposed method always has the smallest MAE under 
each sample size and the proposed method could also have 
satisfied stable performance. Overall, the simulation study 
demonstrates the outperformance of the proposed method. 

B. Real-world case study 

In this section, in order to validate the effectiveness of the 
proposed method for both continuous and discrete elements, 
two datasets for the breast cancer from the UCI database [16] 
are applied: (1) wisconsin diagnostic breast cancer (WDBC) 
dataset [17]; and (2) the breast-cancer-wisconsin dataset [18]. 

The WDBC dataset involves 569 samples and each 
sample involves 30 continuous variables. Each sample 
records the computed features from one image of the cell 
nucleus, including radius, texture, perimeter, and so on. The 
detailed descriptions about the variables could be found in 
[17].  

Besides, the breast-cancer-wisconsin dataset involves 699 
samples and each sample involves 9 discrete variables. Each 
sample also records the features of one cell, including clump 
thickness, cell size, cell shape and so on [18]. However, 
different from the WDBC dataset, each discrete variable 
involves 10 levels, i.e., from 1 to 10.   

Yoon et al. [12] has validated that GAIN can perform 
much better than the common imputation methods, including 
MissForest and matrix completion for the breast cancer data. 
Thus, this case study mainly focuses on the comparisons 
between the proposed method and GAIN. For the WDBC data 
set, since the data contains continuous variables, the mean 
values for each element that need to be imputed are calculated 
in the ensemble learning framework. As for the breast-cancer-
wisconsin dataset, the median values for each element that 
needs to be imputed are calculated. The other setups of the 
proposed method in this case are the same as Sec. IV-A. The 
average and standard deviations of MAEs for the ESM-GAIN 
and GAIN are shown in Table II as the missing value rate is 
20%.  

TABLE II.  THE IMPUTATION PERFORMANCE OF ESM-GAIN AND 

GAIN IN TERMS OF MAE (AVERAGE ± STD OF MAE)  

Algorithms WDBC dataset 
Breast-cancer-

wisconsin dataset 

GAIN 0.0526 ± 0.0010 1.1700 ± 0.0289 
ESM-GAIN 𝟎. 𝟎𝟓𝟎𝟓 ± 𝟎. 𝟎𝟎𝟎𝟔 𝟏. 𝟏𝟎𝟐𝟕 ± 𝟎. 𝟎𝟏𝟐𝟑 

 
As shown in Table II, for both datasets, the average MAEs 

of the proposed method are smaller than the average MAEs of 
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the GAIN. In addition, the MAE standard deviations of ESM-
GAIN are also smaller under both datasets, which shows that 
the proposed method is more stable than GAIN. Hence, it 
shows that the proposed method is more effective than GAIN 
for both continuous and discrete datasets. 

To further demonstrate the effectiveness of the proposed 
method, the comparisons when missing value rate increases 
from 20% to 50% are conducted as well. The MAEs of GAIN 
and the proposed method are shown in Fig. 4. For the WDBC 
dataset, as shown in Fig. 4(a), the MAEs of ESM-GAIN are 
always less than the MAEs of GAIN. Specifically, as the 
missing value rate increases, the MAEs are also increasing 
smoothly. Such a pattern also proves that higher missing value 
rates lead to less information for data imputation, resulting in 
higher MAEs.  

 
Figure 4 The MAE comparisons between ESM-GAIN, and GAIN under 

different missing value rates based on the WDBC dataset (a) and breast-

cancer-wisconsin dataset (b) from the breast cancer data. 

Besides, for the breast-cancer-wisconsin dataset, as shown 
in Fig. 4(b), the MAEs of ESM-GAIN are also smaller than 
the MAEs of GAIN. Though it is not as smooth as Fig. 4(a), it 
is still able to show the trend that the MAEs may increase as 
the missing value rate increases. Overall, the real-world case 
study also demonstrates that the proposed method outperforms 
GAIN for both continuous and discrete datasets. 

V. CONCLUSION 

In this paper, a new data imputation approach termed 
ensemble GAIN with selective multi-generator (ESM-GAIN) 
is proposed to impute the missing values in the datasets. 
Compared with GAIN, it involves two significant advantages: 
(1) a selective multi-generator framework is proposed to 
identify the generated samples and improve the imputation 
accuracy; (2) the ensemble learning framework is applied to 
the GAINs with selective multi-generator to further improve 
the model robustness.  

In this study, the superior performance of ESM-GAIN over 
the benchmark methods is demonstrated by both numerical 
simulation data and the breast cancer datasets from UCI data. 
In addition, to validate the effectiveness of newly added 

components, the performance of GAIN structure excluding 
one or two components is compared against the ESM-GAIN. 
Under different sample sizes and missing value rates, the 
imputation MAEs of the proposed method can always be 
reduced effectively. Besides, the real-world case study also 
shows the outperformance of the proposed method. Thus, the 
proposed method is very promising for both continuous and 
discrete data imputation.   

REFERENCES 

[1] Yoon, J., Davtyan, C., & van der Schaar, M. (2016). Discovery and 

clinical decision support for personalized healthcare. IEEE journal of 

biomedical and health informatics, 21(4), 1133-1145. 

[2] Dogan, A., Li, Y., Odo, C. P., Sonawane, K., Lin, Y., & Liu, C. (2022). 

A Utility-Based Machine Learning-Driven Personalized Lifestyle 

Recommendation for Cardiovascular Disease Prevention. medRxiv. 

[3] Mirzaei, A., Carter, S. R., Patanwala, A. E., & Schneider, C. R. (2022). 

Missing data in surveys: Key concepts, approaches, and applications. 

Research in Social and Administrative Pharmacy, 18(2), 2308-2316. 

[4] Musil, C. M., Warner, C. B., Yobas, P. K., & Jones, S. L. (2002). A 

comparison of imputation techniques for handling missing data. 

Western Journal of Nursing Research, 24(7), 815-829. 

[5] Mazumder, R., Hastie, T., & Tibshirani, R. (2010). Spectral 

regularization algorithms for learning large incomplete matrices. The 

Journal of Machine Learning Research, 11, 2287-2322. 

[6] García-Laencina, P. J., Sancho-Gómez, J. L., & Figueiras-Vidal, A. R. 

(2010). Pattern classification with missing data: a review. Neural 

Computing and Applications, 19(2), 263-282. 

[7] Zhang, S. (2012). Nearest neighbor selection for iteratively kNN 

imputation. Journal of Systems and Software, 85(11), 2541-2552. 

[8] Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric 

missing value imputation for mixed-type data. Bioinformatics, 28(1), 

112-118. 

[9] Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008, July). 

Extracting and composing robust features with denoising autoencoders. 

In Proceedings of the 25th international conference on Machine 

learning (pp. 1096-1103). 

[10] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, 

D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. 

Advances in neural information processing systems, 27. 

[11] Kim, J., Tae, D., & Seok, J. (2020, February). A survey of missing data 

imputation using generative adversarial networks. In 2020 

International Conference on Artificial Intelligence in Information and 

Communication (ICAIIC) (pp. 454-456). IEEE. 

[12] Yoon, J., Jordon, J., & Schaar, M. (2018, July). Gain: Missing data 

imputation using generative adversarial nets. In International 

conference on machine learning (pp. 5689-5698). PMLR. 

[13] Li, S. C. X., Jiang, B., & Marlin, B. (2018, September). MisGAN: 

Learning from Incomplete Data with Generative Adversarial Networks. 

In International Conference on Learning Representations. 

[14] Lee, D., Kim, J., Moon, W. J., & Ye, J. C. (2019). CollaGAN: 

Collaborative GAN for missing image data imputation. In Proceedings 

of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (pp. 2487-2496). 

[15] Li, Y., Shi, Z., Liu, C., Tian, W., Kong, Z., & Williams, C. B. (2021). 

Augmented Time Regularized Generative Adversarial Network (ATR-

GAN) for Data Augmentation in Online Process Anomaly Detection. 

IEEE Transactions on Automation Science and Engineering. 

[16] Lichman, M. UCI machine learning repository, 2013. URL 

http://archive.ics.uci.edu/ml. 

[17] Mangasarian, O. L., Street, W. N., & Wolberg, W. H. (1995). Breast 

cancer diagnosis and prognosis via linear programming. Operations 

Research, 43(4), 570-577. 

[18] William H. Wolberg and O.L. Mangasarian: "Multisurface method of 

pattern separation for medical diagnosis applied to breast cytology", 

Proceedings of the National Academy of Sciences, U.S.A., Volume 87, 

December 1990, pp 9193-9196. 

812

Authorized licensed use limited to: Oklahoma State University. Downloaded on January 23,2023 at 02:54:18 UTC from IEEE Xplore.  Restrictions apply. 


