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Abstract— As a pervasive issue, missing data may influence
the data modeling performance and lead to more difficulties of
completing the desired tasks. Many approaches have been
developed for missing data imputation. Recently, by taking
advantage of the emerging generative adversarial network
(GAN), an effective missing data imputation approach termed
generative adversarial imputation nets (GAIN) was developed.
However, its modeling architecture may still lead to significant
imputation bias. In addition, with the GAN structure, the
training process of GAIN may be instable and the imputation
variation may be high. Hence, to address these two limitations,
the ensemble GAIN with selective multi-generator (ESM-GAIN)
is proposed to improve the imputation accuracy and robustness.
The contributions of the proposed ESM-GAIN consist of two
aspects: (1) a selective multi-generation framework is proposed
to identify high-quality imputations; (2) an ensemble learning
framework is incorporated for GAIN imputation to improve the
imputation robustness. The effectiveness of the proposed ESM-
GAIN is validated by both numerical simulation and two real-
world breast cancer datasets.

Index— Ensemble learning, GAIN, missing data imputation,
multi-generator generation,

I. INTRODUCTION

As a common data quality issue, missing data may be
caused by many reasons, such as insufficient data collection
and lost records. For instance, in the healthcare systems, some
of the patient information may be missing, and it is also hard
to revisit the patients and recover the missing information [1,
2]. More importantly, in data-driven precise disease screening
and diagnosis, missing data may lead to significant bias to train
the predictive models from data. Hence, it is critically needed
to address the missing data issue. A common approach to
address this issue is to perform data imputation [3].

In recent decades, many imputation approaches have been
developed. Specifically, the missing data imputation
approaches could be categorized into two groups:
conventional methods and machine learning-based methods.
The conventional methods include the statistics-based
imputation [4], matrix completion [5], and statistical model-
based approaches such as the popular expectation
maximization (EM) algorithm [6]. Although they are fairly
easy to calculate, the performance might be unsatisfied when
the underlying data distribution is complex. Hence, the
machine learning-based methods have been developed rapidly
in recent years, such as the k nearest neighbors (k-NN) [7],
MissForest [8], denoising autoencoder (DAE) [9], and the

generative adversarial nets (GAN) [10]-based imputation
approaches. However, due to the interpolation nature of k-NN,
it is also not capable of handling complex data. In addition, the
performance of MissForest may also be limited since it needs
to run separately for each data matrix that needs to be imputed.
As for DAE, it requires the complete data for training, but
obtaining a complete dataset may be very challenging in real-
world applications. Therefore, by taking advantage of the
emerging GAN techniques, the GAN-based imputation
approaches have been developed. By incorporating generator
and discriminator in an adversarial learning architecture, the
complex underlying data distribution could be learnt
effectively without strict assumptions and complete dataset.
For example, Kim ef al. [11] has provided a detailed survey
about GAN-based imputation approaches, such as the
generative adversarial imputation nets (GAIN) [12], MisGAN
[13], and Collaborative GAN [14]. Particularly, for the
multivariate datasets, GAIN [12] is widely applied due to its
superior performance than others.

In GAIN, the samples are generated and the values in the
generated samples are extracted to impute the missing data.
However, the values in the generated samples may be
significantly different from actual values, which may lead to
the imputation bias. In addition, according to the conventional
GAN architecture, the training process of GAIN may also be
instable and the imputation may have very high variation.
Therefore, to address these gaps, a new imputation approach
termed ensemble GAIN with selective multi-generator (ESM-
GAIN) is proposed, and its main contributions consist of: (1)
a selective multi-generation framework is proposed to identify
high-quality imputations and increase imputation accuracy;
and (2) an ensemble learning framework is applied for GAIN
imputation to further improve the model robustness.

The rest of this paper is structured as follows. The missing
data problem is defined and the GAIN is introduced in Sec. II.
Then the proposed research methodology is discussed in Sec.
II. Afterwards, the simulation study and a real-world case
study are conducted in Sec. IV. Finally, the conclusions are
discussed in Sec. V.

II. PROBLEM STATEMENT

Suppose that the data matrix X follows R5*™. That is, X
involves n variables and there are s samples in total. Define
the mask matrix M in R¥*" as a binary matrix and each
element in M is shown as (1). In this way, M © X represents
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the actual values in the data matrix while (1 —-M)(© X
represents the missing values in the data matrix, where ©
means the element-wise multiplication.

0
Mij = {1

IfX;; is missing (1)
Otherwise

This work is based on the recently developed generative
adversarial imputation network (GAIN), which has
demonstrated its superior performance than the conventional
imputation algorithms [12]. Based on the GAN architecture
[10], GAIN also involves two components, the generator G
and the discriminator D. G will generate the fake data matrix
while D will distinguish whether the input values in the matrix
are generated values or actual values. G and D will compete
with each other. Specifically, three different matrices are sent
to the GAIN model. That is, the data matrix X, the mask matrix
M, the hint matrix H. X is to record the actual values and
missing values. M is to describe whether the values are missing
or not as shown in (1). Based on the hint rate parameter h, H
marks the area that the discriminator D should pay more
attention to. In this way, based on different H, the information
passed to D will be different, which may make G learn the
distributions more accurately. In each iteration, the output sent
to the discriminator is shown in (2).

X=MQOX+(1-M)OGXM,Z) 2)

G will simulate the artificial samples, i.e., G(X,M,Z),
based on the noise Z. As shown in (2), with the help of mask
matrix M, if the element is missing, it will be imputed by the
generated value. Otherwise, it will keep the original values in
X. In this way, X could be obtained Then X is sent to D with H
to be distinguished. Based on the above-mentioned processes
for generator and discriminator, the minimax game for GAIN
is shown in (3).

minmax V (D, 6) = Egyu [MT 10g (D(X H))| +
(3)
(1 —M)"[log(1 — D(X, H))]

It is important to note that, only when M © G(X, M, Z) is
similar to M © X, extracting (1 — M) © G(X,M,Z) as the
imputed values are convincing. Therefore, it is essential to
reduce the differences between M © G(X,M,Z) and M O X.
In order to achieve that, the mean square error (MSE) between
G(X,M,Z) and X, L (G (X, M, Z), X), is calculated as the MSE
loss. Then L), is added in the loss for G, L, to update the
generator. Under such circumstances, L; and the loss for D,
Lp, are obtained in (4) where « is a hyper-parameter [12].

Lp = (1= M)Tlog(1 - D(X,H)) — M” log (D(X,H) )

Lg = —(1 = M)Tlog (1 = D(X,H)) + aLy(G(X, M, Z), X) @

Through L,,, the difference between M © G (X, M, Z) and
M (O X could be reduced. However, after the model
converges, M © G (X, M, Z) may be still significantly different
from M © X, which means the estimation to X, i.e.,
G(X, M, Z), is still biased. Besides, due to the GAN structures
[10], the training process of GAIN may be instable and the
imputation variation may be high. Therefore, in order to
address the two limitations of GAIN, the ensemble generative
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adversarial imputation network with selective multi-generator
(ESM-GAIN) is proposed to implement better data imputation
in Sec. II1.

III. RESEARCH METHODOLOGY

In this section, the overall architecture is described in Sec.
III-A. Afterwards, the selective multi-generation framework is
proposed in Sec. III-B, and the ensemble learning framework
for the selective multi-generator is discussed in Sec. III-C.

A. Overall architecture of the proposed ESM-GAIN

The overall architecture of the proposed ESM-GAIN is
shown in Fig. 1. It involves two main novel components: (1) a
new selective multi-generator framework; and (2) integrating
the ensemble learning framework to GAIN. In the proposed
selective multi-generator, the data matrix X, mask matrix M
are sent to k generators, which are applied by inputting k
different random matrix Z. Afterwards, a new selective filter
layer is developed, which is partially inspired by our prior
work, the augmented time-regularized GAN (ATR-GAN)
[15]. All the generated samples are sent to the selective filter
layer to identify the generated samples which are similar to the
actual samples. Then both the selected samples and the hint
matrix H obtained from M are sent to the discriminator D. In
this way, the losses for both generators and discriminators
could be estimated, and the selective multi-generator could be
updated as well.

As shown in Fig. 1, each trained GAIN with a selective
multi-generator could output one imputed matrix. Afterwards,
the ensemble learning framework is then incorporated. If the
element to be imputed is continuous, the mean of such element
from all the imputed matrices is used. Otherwise, the median
is used. In this way, all the missing values could be imputed.

B. Selective multi-generation framework

B.1. Selective filter layer

As described in Sec. 11, the missing values in the actual
samples are replaced by the values from the same location in
the artificial samples. However, M © G(X,M,Z) may be
different from M © X. For each sample, the variables may be
correlated. Hence, any minor changes from the actual values
may lead to large differences between imputed values. Under
such circumstances, when M © G(X, M, Z) is not the same
asM © X, it is not convincing to impute (1 — M) © X by
(1-M) ®© GX,M,Z). Since data matrix X follows RS*™,
denote that the generator may also generate s samples with n
variables as X. In order to make M © G(X, M, Z) closer to
M © X, the selective filter layer, L, is proposed in this work.

Definition 1. (Selective filter layer): Selective filter layer
L is designed to select the artificial samples from X that is
similar as X. Based on the one-to-one Euclidean distance
calculation between the samples in X and X, L can select the
desired samples by judging whether the distance is less than
the threshold &8, formulated with an indicator function I

L =X"Iyxx)<sX) ®)

Based on the selective filter layer, the input of D, X*, could
be obtained as shown in (6). The generated samples that are
more similar to actual data will be selected as X*. Then the
corresponding actual data, X*, will be combined with X* as X*,
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Figure 1 A demonstration of the proposed ESM-GAIN framework.

based on the adjusted mask matrix, M*. Afterwards, X* could
be sent to the discriminator to update the entire model.

X =LGEEMDIE) ©
=M QOX'+(1-M)OX"

B.2. Multi-generator collaboration

Based on the selective filter layer, high-quality samples
could be obtained. However, due to the existence of &, the
number of samples in X* is much less than the number of
samples in X. Since the actual data should have the same
samples as X*, it is not guaranteed that all the actual samples
in X could be selected. Besides, due to the sample size
deduction, the diversity of samples sent to the discriminator is
also limited. Hence, in order to increase the number of actual
samples which could be selected and improve the diversity of
imputed samples, a multi-generator is applied.

Denote that there are k generators, {G;, G, ..., Gy}, to
generate artificial samples. Thus, in each iteration, k groups
of imputed samples, {X;, X, ..., X; }, will be generated. Since
the selective filter layer does not have any neural network
parameters, one common selective filter layer could be applied
for all the generators simultaneously with the input actual
samples, X. Hence, based on the selection layer,
{X;,X,, ..., X, } are transformed to {X}, X3, ..., X}, }. Then with
the corresponding actual samples {X7, X5, ..., X}, }, the samples
that combine the actual values and imputed values,
{X;,X5,..., X} }, could be obtained based on (7).

Xi=M; OX;+(1-M)OX; i=12..,k (7

{X;,X5,..., X} could be sent to the discriminator to
distinguish whether the values are actual values or imputed
values. In this way, the output of the discriminator could be

applied to calculate the losses for all D and {G;, G, ..., G} As
shown in (8). the discriminator needs to consider the average
output of all the generators in Lp. However, since the
generated samples from one generator are not related to other
generators, each generator has its own loss as shown in (8).

k
Ly = ;%((1 —M})log (1~ D(R, H,)) -

M;" log (D (X, Hi)))
~(1 = M)"10g (1 - D(X;, Hy)) +
aly(G;(X,M,Z),X) i =12,..,k

®

Lg,

When the losses converge, the model is considered as well-
trained and could be applied for data imputation. Afterwards,
the k imputed data matrices from the generators,
{X;,X5,...,X}}, are obtained. Therefore, the imputed data
matrix of the model, X, could be obtained by calculating the
mean of each element in the imputed matrices as shown in (9).
Specifically, rounding will be applied to transform the
calculated values of discrete elements to integers.

k
o 1,
R= D%
i=1

There are two hyperparameters to be determined in the
proposed selective multi-generator, i.e., 6 and k. Specifically,
to control the sample size for the output of the selective filter
layer, & could be obtained based on the percentile of calculated
distance [15]. In this way, the number of samples sent to the
discriminator will be the same for each iteration. Afterwards,
6 and k could be determined based on cross validation [15].
Under different § and k, the model is trained and the mean
absolute error (MAE) of the imputation is calculated. Then the
6 and k with the smallest MAE is selected for the imputation.

(€)
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C. Incorporation of ensemble learning

By integrating the proposed selective filter layer and multi-
generator generation, the proposed selective multi-generator is
expected to improve the accuracy of imputation. To further
improve model robustness, an ensemble learning framework is
further incorporated in the proposed method, i.e., ESM-GAIN.

In the ensemble learning framework, m data matrices,
{X1,X,, ..., X}, will be obtained from the data matrix X
through bootstrapping. m is a hyperparameter that could be
determined by cross validation. Based on the data matrices, m
GAINs with selective multi-generator are trained separately.
In this way, the ensemble learning framework could learn the
actual distribution more comprehensively. In addition, during
the training process, each GAIN with selective multi-generator
may apply different h to increase the diversity among different
models. After the training, X is sent to each model and the
imputed matrices, {il, 22, ) Xm}, could be obtained.

Notably, besides the values of the elements, the labels of
the elements, i.e., continuous or discrete, are also sent to G
since the continuous and discrete elements to be imputed will
be considered separately. If the element is continuous, the
mean of such elements from different imputed data matrices is
calculated. On the other hand, if the element is discrete, the
median of such elements from different imputed data matrices
is selected. By calculating the mean/median, the model
robustness could be improved since the inappropriate imputed
values, i.e., outliers, will not interfere with the final output. In
this way, the final imputed data matrix, i.e., X', could be
obtained and output from the ensemble learning framework.

The overall algorithm for ESM-GAIN is shown below.
Based on the bootstrapped data, the GAINs with selective
multi-generator are trained. Afterwards, the entire data matrix
is sent to each selective multi-generator framework to obtain
the imputed data matrices. Finally, the imputed data matrices
are combined to obtain and output the final imputed matrix.

Algorithm 1: ESM-GAIN algorithm

IV. CASE STUDIES

To validate the effectiveness of the proposed ESM-GAIN,
both numerical simulation (Sec. IV-A) and a real-world case
study in healthcare (Sec. IV-B), are applied. The effectiveness
of the proposed data imputation approach can be represented
by the quality of the imputed values. Thus, in this study, the
mean absolute errors (MAE) after data imputation are applied
as an evaluation metric to validate the effectiveness of the
proposed ESM-GAIN in missing data imputation.

A. Simulation study

In the simulation study, the Gaussian process (GP) is
applied to simulate 2000 actual samples with 30 variables,
based on the radial basis function (RBF) kernel. Two values,
0.001 and 0.005, are applied for the parameter 8 in the RBF
kernel. Besides, to make the simulation data closer to real-
world cases, noises are also added. The process to simulate the

data are shown in (10).
X1 Zq
A
X1000 Z1000
XINGP(O, K'), Zj| ~ N(O, 22),

1 2
Ko, 3,) = exp (= 35 (i, =)
6, = 0.001,6, = 0.005,
i=12,j=12..,1000,11,1, = 12,..,30
In this way, the 2000 x 30 data matrix is generated. In
order to demonstrate the effectiveness of the proposed method
under discrete variables, each variable in the data matrix is
categorized into five levels from 1 to 5. The setups of
parameters are shown in Table I.

(10)

Input: Actual data matrix X, Parameter m, k, s and &
Step 1: Bootstrap data matrix X to {X;, X, ..., X;n}
Fori=1tomdo
Forj =1to k do
Step 2: Randomly choose s actual samples X{ from
actual sample set X;
Step 3: Generate s artificial samples )_({ from
generator G
Step 4: Send X/ to the selection layer L to obtain X/*
Step 5: Obtain X/* based on X!* and X/
Step 6: Send X}*, X#*,..., X¥* into discriminator D to
get output D(X}), D(Xf*), s D(i{-‘*)
Step 7: Optimize the model parameters based on the
output of discriminator
Until L, Lg,, ..., Lg, and L, converge:
Step 8: Send X to {G,, G, ..., G} and impute as X
Step 9: Get mean/median from {X;,X,, ..., X, } as X’
Output: X’
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TABLE L. THE DATA AND PARAMETER SETUPS
Setup Value

Sample size 2000 x 30

Number of generators k 2

Number of selective multi-generators m 10
Threshold & 80th percentll.e of the
calculated distance

Batch size s 128

The neural network structures of ESM-GAIN follow
Yoon, et al. [12]. Since the variables turn to discrete variables,
the median is calculated as the output in the ensemble learning
framework. Besides, some benchmark methods, including
MissForest [8], matrix completion [5], the k-NN imputation
algorithm [7], and GAIN [12], are applied to better test the
performance of the proposed method. The experiment for each
approach is conducted three times and the average MAE is
calculated. To make the validation more comprehensively, the
missing value rate increases from 20% to 50% while the
sample size increases from 800 to 2000.

Before comparing the proposed ESM-GAIN with other
data imputation methods, it is important to first test the
effectiveness of the proposed selective multi-generator and the
incorporated ensemble learning framework. Hence, the
ensemble GAIN (no selective multi-generator) and GAIN are
also applied as ablation experiments.

The MAEs under different missing value rates and sample
size are shown in Fig. 2. The MAEs of ensemble GAIN are
mostly smaller than the MAEs of GAIN, showing that the
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ensemble learning framework is effective. The MAEs of ESM-
GAIN are much smaller than the other two methods under each
missing value rate. Hence, the newly added components are
effective to improve the imputation accuracy. Besides, as the
missing value rates increase, the MAEs for all three
approaches increase. Such a pattern is normal since higher
missing value rates means less information for imputation.
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Figure 2 MAE comparisons between ESM-GAIN, ensemble GAIN and
GAIN under different missing value rates (a) and sample size (b).

As shown in Fig. 2(b), compared with GAIN, the MAEs of
ensemble GAIN are smaller when the sample size is larger
than 1200. However, the MAEs of ensemble GAIN are still
comparable since there are no significant differences between
ensemble GAIN and GAIN when the sample size is less than
1200. Besides, the MAEs of ESM-GAIN are always the
smallest under each sample size. Hence, the effectiveness of
newly added components is validated.

In addition, the proposed method is also compared with the
benchmark methods under different missing value rates and
sample size. Notably, the setup of missing value rates and
sample size are the same as the setup for validating the
components in ESM-GAIN. The MAEs for different
approaches are shown in Fig. 3.
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Figure 3 MAE comparisons between ESM-GAIN, GAIN, MissForest, k-NN,
matrix completion under different missing value rates (a) and sample size (b).
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As shown in Fig. 3(a), the MAEs of k-NN imputation,
matrix completion and MissForest are much higher than the
MAESs of GAIN and ESM-GAIN. Besides, compared with the
MAEs of GAIN, the MAEs of ESM-GAIN are also lower
under each missing value rate. In addition, as the missing value
rate increases, the MAESs of all the benchmark methods also
increase. However, the MAEs of the proposed method do not
significantly increase, which also shows the imputation
stability of the proposed method.

Furthermore, as shown in Fig. 3(b), the MAEs of k-NN
imputation, matrix completion and MissForest are still much
higher than GAIN and ESM-GAIN. Besides, the MAEs of the
ESM-GAIN are also lower than GAIN. Hence, it demonstrates
that the proposed method always has the smallest MAE under
each sample size and the proposed method could also have
satisfied stable performance. Overall, the simulation study
demonstrates the outperformance of the proposed method.

B. Real-world case study

In this section, in order to validate the effectiveness of the
proposed method for both continuous and discrete elements,
two datasets for the breast cancer from the UCI database [16]
are applied: (1) wisconsin diagnostic breast cancer (WDBC)
dataset [17]; and (2) the breast-cancer-wisconsin dataset [18].

The WDBC dataset involves 569 samples and each
sample involves 30 continuous variables. Each sample
records the computed features from one image of the cell
nucleus, including radius, texture, perimeter, and so on. The
detailed descriptions about the variables could be found in
[17].

Besides, the breast-cancer-wisconsin dataset involves 699
samples and each sample involves 9 discrete variables. Each
sample also records the features of one cell, including clump
thickness, cell size, cell shape and so on [18]. However,
different from the WDBC dataset, each discrete variable
involves 10 levels, i.e., from 1 to 10.

Yoon et al. [12] has validated that GAIN can perform
much better than the common imputation methods, including
MissForest and matrix completion for the breast cancer data.
Thus, this case study mainly focuses on the comparisons
between the proposed method and GAIN. For the WDBC data
set, since the data contains continuous variables, the mean
values for each element that need to be imputed are calculated
in the ensemble learning framework. As for the breast-cancer-
wisconsin dataset, the median values for each element that
needs to be imputed are calculated. The other setups of the
proposed method in this case are the same as Sec. IV-A. The
average and standard deviations of MAEs for the ESM-GAIN
and GAIN are shown in Table II as the missing value rate is
20%.

TABLE II. THE IMPUTATION PERFORMANCE OF ESM-GAIN AND
GAIN IN TERMS OF MAE (AVERAGE + STD OF MAE)

Breast-cancer-

Algorithms WDBC dataset . .
wisconsin dataset
GAIN 0.0526 + 0.0010 1.1700 £+ 0.0289
ESM-GAIN 0.0505 + 0.0006 1.1027 £ 0.0123

As shown in Table II, for both datasets, the average MAEs
of the proposed method are smaller than the average MAEs of
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the GAIN. In addition, the MAE standard deviations of ESM-
GAIN are also smaller under both datasets, which shows that
the proposed method is more stable than GAIN. Hence, it
shows that the proposed method is more effective than GAIN
for both continuous and discrete datasets.

To further demonstrate the effectiveness of the proposed
method, the comparisons when missing value rate increases
from 20% to 50% are conducted as well. The MAEs of GAIN
and the proposed method are shown in Fig. 4. For the WDBC
dataset, as shown in Fig. 4(a), the MAEs of ESM-GAIN are
always less than the MAEs of GAIN. Specifically, as the
missing value rate increases, the MAEs are also increasing
smoothly. Such a pattern also proves that higher missing value
rates lead to less information for data imputation, resulting in
higher MAEs.
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Figure 4 The MAE comparisons between ESM-GAIN, and GAIN under
different missing value rates based on the WDBC dataset (a) and breast-
cancer-wisconsin dataset (b) from the breast cancer data.

45% 50%

Besides, for the breast-cancer-wisconsin dataset, as shown
in Fig. 4(b), the MAEs of ESM-GAIN are also smaller than
the MAEs of GAIN. Though it is not as smooth as Fig. 4(a), it
is still able to show the trend that the MAEs may increase as
the missing value rate increases. Overall, the real-world case
study also demonstrates that the proposed method outperforms
GAIN for both continuous and discrete datasets.

V. CONCLUSION

In this paper, a new data imputation approach termed
ensemble GAIN with selective multi-generator (ESM-GAIN)
is proposed to impute the missing values in the datasets.
Compared with GAIN, it involves two significant advantages:
(1) a selective multi-generator framework is proposed to
identify the generated samples and improve the imputation
accuracy; (2) the ensemble learning framework is applied to
the GAINs with selective multi-generator to further improve
the model robustness.

In this study, the superior performance of ESM-GAIN over
the benchmark methods is demonstrated by both numerical
simulation data and the breast cancer datasets from UCI data.
In addition, to validate the effectiveness of newly added
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components, the performance of GAIN structure excluding
one or two components is compared against the ESM-GAIN.
Under different sample sizes and missing value rates, the
imputation MAEs of the proposed method can always be
reduced effectively. Besides, the real-world case study also
shows the outperformance of the proposed method. Thus, the
proposed method is very promising for both continuous and
discrete data imputation.
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