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ABSTRACT

Exploring and understanding magnetism in two-dimensional (2D) van der Waals (vdW) magnetic materials present a promising route for
developing high-speed and low-power spintronics devices. Studying their magnetic properties at the nanoscale is challenging due to their low
magnetic moment compared to bulk materials and the requirements of highly sensitive magnetic microscopy tools that work over a wide
range of experimental conditions (e.g., temperature, magnetic field, and sample geometry). This Perspective reviews the applications of
nitrogen-vacancy center (NV) based magnetometry to study magnetism in 2D vdW magnets. The topics discussed include the basics, advan-
tages, challenges, and the usage of NV magnetometry.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091931

I. OVERVIEW

After the demonstration of the intrinsic magnetic behavior in 2D
Cr2Ge2Te6 and CrI3 materials in 2017,1,2 a wide range of other vdW
materials have been investigated.3 The advantages of 2D magnets in
comparison with bulk crystals, such as easy and low-cost fabrication
and a wide variety of control mechanisms, make them and their hetero-
structures promising candidates for the next generation of spintronic
devices.4–7 For example, the extensively studied materials CrI3 (a semi-
conductor) and Fe2GeTe3 (a metal) are soft ferromagnets in the bulk
crystal8,9 and become hard ferromagnets when exfoliated to a few
atomic layers.10–16 Another advantage of 2D materials is that the atomi-
cally thin nature of the material makes it susceptible to adatom engi-
neering and proximity effects.17,18 By placing graphene on top of a
ferromagnetic insulator, anomalous Hall measurements showed that the
graphene becomes ferromagnetic.19,20 Additionally, layer-by-layer
engineering and twisting and van der Waals bonding in these materials
provide a myriad of magnetic phenomena at the nanoscale, including
edge-topological magnetic states,20 unconventional superconductivity,21

and topological spin textures such as skyrmions32 and moir�e magne-
tism.23 Dopant and defect-induced ferromagnetism has been predicted
theoretically24,25 and demonstrated experimentally in 2D transition
metal dichalcogenides (TMD) such as MoSe2, WS2, MoS2, VSe2, and

MnSe2.
26–30 This progress has led to the proposal of the usage of 2D

magnets in spintronics.6,7 Examples include the tunneling magnetoresis-
tance devices,31,32 anomalous Hall effect,14 spin transistors,33 spin
valves,34 spin filters and magnetoelectric switches,16 and magnetic mem-
ories based on skyrmions.22 However, despite this progress, little is
known about the mechanisms governing the nanoscale fundamental
magnetic processes in 2D vdWmagnets.

A wide range of magnetic probing techniques have been used to
study their magnetic properties. Standard techniques include magneto-
transport measurements,31,35–39 magneto-optical Kerr effect microscopy
(MOKE),1,2 and magnetic force microscopy (MFM).40 MOKE is sensi-
tive enough to detect ferromagnetism in few-layer magnets, such as
Cr2Ge2Te6,

1,2 but it lacks spatial resolution (�300nm).41,42 MFM uses
magnetic tips to image the stray magnetic fields generated at surfaces of
magnetic materials and has a good spatial resolution�10nm, limited by
the magnetic tip size and the local magnetic gradient.43 Apparent con-
trasts in MFM due to magnetic forces are often contaminated by other
long-range forces associated, for instance, with surface charges, that
make it hard to interpret the measured magnetic signals quantitatively.44

MFM also lacks the magnetic sensitivity to image weakly magnetized
materials.44 Advanced microscopy techniques, such as ferromagnetic res-
onance force microscopy (MRFM),45 suffer from limited knowledge
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about the magnetic tip, and magnetic tip influences the local properties.
Spin-polarized current-based tunneling microscopy (SP-STM) provides
a very good magnetic sensitivity with a spatial resolution of few nano-
meters,46,47 but it requires electrically conductive samples. Scanning
superconducting quantum interference devices (SQUIDs) integrated to
SPM have been used to probe weakly stray-field produced materials, i.e.,
to measure quantum Hall edge currents in graphene48 and image orbital
ferromagnetism in twisted bilayer graphene.49 It offers a magnetic sensi-
tivity down to 5 nT/Hz1/2 with a spatial resolution below 100nm, but it
needs lower temperatures and complicated SQUID probe designs.50–52

Recently, a technique has emerged for measuring magnetic fields
at the nanoscale based on optical detection of the electron spin reso-
nances of nitrogen-vacancy (NV) centers in diamond,53 opening up
frontiers to study condensed matter phenomena.54 NV magnetometry
can detect weak static and dynamic magnetic stray fields with frequen-
cies from DC to> few GHz and works at a wide range of experimental
conditions, i.e., temperatures from 0.35 to 600K,55–58 and applied
magnetic fields up to 4 T.59 It is until very recently where NV magne-
tometry has been used to study vdW 2D magnets, including CrI3,

13,23

VI3,
60 CrTe2,

61 and CrBr3.
62 There are very excellent Review/

Perspective papers on studying the magnetic properties of 2D magnets
by using various techniques,4,5,40,63,64 and only a few of them include
short discussions of using NV magnetometry.40 In this Perspective
paper, we mainly discuss the advantages and challenges of using NV
microscopy to study 2D vdW magnets by including the basics of NV
magnetometry sensing/imaging schemes and recent NV-magnetic
measurements on 2D magnets, as well as the outlooks of the field.

II. INTRODUCTION TO NV-BASED MAGNETOMETRY
SCHEMES

The NV center is a lattice defect in diamond54,65–67 with remark-
able properties, including sensing magnetic fields,68–75 electrical

fields,76–79 and temperature,80–82 even at extremes pressure condi-
tions.83,84 The negatively charged NV center, a substitutional nitrogen
adjacent to a vacancy site [Fig. 1(a)], is an S ¼ 1 electron spin state
that can be initialized by optical excitation (500–550nm) and detected
through spin-dependent photoluminescence (650–800nm) known as
optically detected magnetic resonance (ODMR)53 [Figs. 1(b) and
1(c)]. Intersystem crossing to metastable singlet states takes place
preferentially for NV centers in the ms ¼ 61 states, allowing optical
readout of the spin state via spin-dependent fluorescence.53 The appli-
cation of a magnetic field breaks the degeneracy of the ms ¼ 61 state
via the Zeeman effect and leads to a pair of transitions whose frequen-
cies depend on the magnetic field component along the NV symmetry
axis.53 The NV electron spin has millisecond spin coherence time at
room temperature85–87 and is among the best quantum sensors found
in nature.88 Magnetic field sensing via NV center can be divided into
two broad categories based on the spectral characteristics of the mag-
netic fields to be detected. For example, DC sensing schemes are sensi-
tive to static, slowly varying, and broadband near static magnetic
fields, whereas AC sensing schemes typically detect narrowband time-
varying magnetic fields of frequency up to few GHz.54,89,90 NVmagne-
tometry is now widely used to detect static and dynamic magnetic
stray fields, temperature, electric field, and strain in solid-state materi-
als, opening up new frontiers in condensed matter research.54

The Zeeman shifts of NV’s electron spin states are used for DC
sensing bymeasuring the peak positions of NV’s spin resonance frequen-
cies.53 The optimized DC magnetic sensitivity is limited by photon-shot-
noise given by Refs. 91–93 as gDCffi (cNV R)

�1 1/(I0 t)]
1=2[1/T2

�]
1=2, where

cNV ¼ 28 GHz/T is the NV gyromagnetic ratio, R is the ODMR con-
trast, I0 is the NV fluorescence rate, T2

� is the decoherence time of
NV, and t is the measurement time. For standard surface NV mea-
surements T2

� ¼ hundreds of ns to 1.5 ls, giving a DC sensitivity of
4–10 lT/Hz1/2 for single NVs and < 0.1–1 lT/Hz1/2 for NV

FIG. 1. NV-magnetometry. (a) NV center in the diamond lattice. (b) Energy levels of the NV center. The NV spin is pumped into the j0i state by off resonance optical excitation, and
the ground-state spin can be manipulated by microwave excitation. NV ODMR spectra [above (c)] and magnetic field dependence of NV resonances [below (c)]. (d) Schematic of
NV-SPM for studying magnetic properties of 2D magnets. (e) Schematic of NV-WFM for studying magnetic properties of 2D magnets. (b) and (c) are reproduced with permission
from Fescenko et al., “Diamond magnetic microscopy of malarial hemozoin nanocrystals,” Phys. Rev. Appl. 11, 034029 (2019). Copyright 2021 American Physical Society.93
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ensembles (densities � tens of ppb to few ppm).91 The variation of
the magnetic sensitivities is related to the number of NVs and fluo-
rescence collection efficiency91 (discussed below). The DC magne-
tometry scheme is a quick and simple approach to extracting static
unknown stray magnetic field BNV (variable magnitude and direc-
tion) from magnetic surfaces. Measuring along one of the diamond
orientations allows retrieving vector stray field components (Bx, By,
and Bz) and indirectly retrieving the vector magnetization.13,54,94

An AC sensing scheme is preferred to study dynamic magnetic
phenomena in 2D magnets,95 and it offers better magnetic sensitivity
and frequency selection as compared to DC sensing protocols.54,69,96

The NV-magnetometry AC sensing scheme is based on using well-
established electron spin resonance pulse sequences such as Hahn
echo to extend T2

� to T2 (usually one order of magnitude longer).91

The typical AC magnetic sensitivity for such protocol is about 50–100
nT/Hz1/2 for single NVs and can be boosted to few nT/Hz1/2 by using
pulse dynamical decoupling (DD) protocols and photonics diamond
engineering.91 For example, single NV centers can detect random AC
(up to 20 kHz) magnetic fields with a sensitivity of �50–100 nT/Hz1/2

[100]. This AC sensing pulse protocol can be modified to perform
double spin resonance experiments and detect high frequency (few
GHz) spins.54,69,70 By using a spin-correlation pulse protocol,98 the
NV AC sensitivity can be pushed down to few nT/Hz1/2, limited by
the NV spin-lattice relaxation T1 (few milliseconds at ambient condi-
tions).91,92,98,99 The spin-correlation pulse protocol is later integrated
with DD pulse protocols to probe 30 nuclear 11B spins in atomically
thin hBN100 and map the distribution and direction of the photocur-
rent flow in the 2D MoS2 material90 with sensitivities to current densi-
ties as low as 20 nA/lm, comparable to state-of-the-art SQUID.101 By
using NV ensembles in combination with a narrowband synchronized
readout protocol,102,103 AC magnetic sensitivities down to tens of
pT/Hz1/2 are obtained.104,105

III. SCOPE TO DEVELOP FAST, HIGH SPATIAL
RESOLUTION, AND HIGHLY SENSITIVE NV
MAGNETOMETRY-BASED IMAGING METHODS
TO STUDY 2D VDWMAGNETS

There are two approaches for using NV magnetometry for mag-
netic imaging: single NV scanning probe microscopy [NV-SPM, Fig.
1(d)] and NV ensemble wide-field microscopy [NV-WFM, Fig. 1(e)].
We discuss below in detail the basics of both approaches, advantages,
and challenges in comparison with existing magnetic imaging methods.

NV-SPM is proposed first by Degen;106 NV-SPM is based on
scanning a diamond probe with a single NV center across a magnetic
sample and measures the stray fields generated from its surface [Fig.
1(d)]. Magnetic imaging with NV-SPM was first realized from DC
magnetic stray fields generated by Ni nanoelements68 but has been
extended to imaging skyrmions in ferromagnetic multilayers/
films,94,107,108 spin textures in antiferromagnets,107,109–112 magnetic
vortices in high Tc superconductors,

54,113 and moir�e superlattices of
twisted 2D magnet CrI3

23 and to probe magnetic dynamic excitations
in ferromagnetic materials.114,115

NV-SPM has some advantages to probe magnetism at the nano-
scale in comparison with exiting techniques because (1) it provides high
spatial resolution (�50nm), limited by the distance of NV center in the
diamond probe from the target surface and by the ambient large tip
oscillation amplitude and lowQ-factor.13,58,109,116–118 By using ion beam

implantation and slow oxidative etching of implanted diamond, NVs
can be created as shallow as 2nm from the diamond surface.118

Integrating NV-SPM with an ultra-high vacuum system enhances the
diamond tip Q-factor by orders of magnitude, which allow for a lower
tip oscillation amplitude.119 By using these two approaches, the NV-
SPM spatial resolution can be pushed down to below 20nm; (2) com-
mercial diamond tips are available with a single NV center at all dia-
mond orientations that allows measuring samples with different
magnetization configurations (e.g., out-of-plane and in-plane); (3) mea-
surements work for both conductive and non-conductive samples, i.e.,
no surface treatment is required; (4) NV center weakly interacts with the
sample, thus, less perturbation, in contrast to MFM; and (5) high sensi-
tivity to static and dynamicmagnetic properties91 (discussed above).

NV-SPM is a still evolving magnetic imaging technique that can
be generalized as a standard tool if the challenges discussed below are
taken care of. First, it is a slow imaging technique. A typical static mag-
netic image of 100 � 100 pixels2 (a dwell time of � few seconds per
pixel) takes several hours to complete. This is mainly limited by three
factors: A long averaging time (tens to hundreds of ms) is required to
get a good signal-to-noise ratio, a high number (>20) of MW fre-
quency sweeping points across the ODMR spectrum (linewidth
�5–10 MHz) is needed to resolve weak (<10 lT) stray magnetic
fields, and data fitting is used to determine the local magnetic field
information per pixel.13,40,54 There are recent efforts to speed up NV-
SPM. Recently, Ambal and McMichael demonstrated a lock-in ampli-
fier detection scheme by using a proportional–integral–derivative
(PID) feedback controller to track the NV’s ODMR peak with a dwell
time of 0.1–1 s.120,121 However, this method fails to track sudden
changes in the local magnetic field.120 To circumvent this issue,
Dushenko et al.122 used an optimized Bayesian algorithm and demon-
strated 45 faster acquisition time in comparison with the traditional
frequency sweep technique. In this method, the Bayesian algorithm
predicts the next best frequency to measure based on previous mea-
surements by learning from each measurement123 as opposed to the
sequentially (step-by-step) frequency sweep. Very recently, Welter
et al. used a spectrum demodulation method and imaged stray fields
above antiferromagnet a-Fe2O3 at pixel rates of up to 100Hz (dwell
time ¼ 0.01 s) with an image resolution exceeding one megapixel.124

This technique is specifically useful for magnetic samples with a large
signal dynamic range (� few mT).124

Another approach used to speed up NV-SPM imaging is to opti-
mize the NV’s fluorescence collection efficiency in the diamond probe.
Placement of the NV center in the diamond probe based on nanopillar
geometry boosts the NV fluorescence in comparison with bulk sub-
strates.125 Hedrich et al. fabricated diamond probes with a truncated
parabolic profile and optimized the fluorescence signal from single
and near-surface NV centers to �2.1 Mc/s,126 one order of magnitude
better than conventional nanopillar tips (�200Kc/s).117 Therefore,
combining the parabolic profile of the diamond tip with PID-based
tracking or mathematical analysis (e.g., Bayesian algorithm) and spec-
trum demodulation methods could cut down the NV-SPM imaging
time from few tens of seconds to few tens of minutes.

Other challenges of NV-SPM include (i) the requirement of opti-
cal and microwave excitation that sometimes sets up a limit on the pos-
sible materials to be studied. Laser can excite direct-bandgap 2D
magnets and may induce fluorescence in the NV wavelength detection
bandwidth.24,127 Microwave can excite thermal magnon modes in the
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material and may lead to NV fluorescence quenching and or ODMR
broadening.128,129 It is possible to reduce these effects by using pulsed
AC sensing detection schemes;54,91 (ii) the requirement to align the
applied magnetic field along the NV axis to prevent spin level mixing,53

which leads to a decrease in the NV ODMR contrast and, therefore,
deteriorates the NV-SPM sensitivity; and (iii) cryogenic measurements
are affected by the reduced photoluminescence contrast, explained by
the strain-dependent variations of the NV’s orbital g factor.56 Very
recently, NV-SPM imaging has been performed at a temperature of
350 mK,130 providing opportunities to study high correlated magnetic
phenomena in 2D vdWmagnets.

NV-WFM: NV-SPM imaging is preferred to map high spatial
resolution and small sample regions (�100 lm2) with magnetic struc-
tures below 100nm. With NV-ODMR peak tracking techniques and
diamond probe engineering (discussed above) could speed up NV-
SPM imaging. Though it still may take extra hours to acquire mega-
pixel images or scan bigger regions (area >400 lm2).13 NV-WFM has
emerged as an alternative technique to spatially map solid-state mate-
rials and biomolecules.57 The imaging modality is based on using a
diamond chip implanted with a dense layer of NV centers (few nano-
meters to tens of micrometers) near its surface, interrogated in a wide-
field optical microscope with an sCMOS camera, to map the magnetic
stray field, lattice strain, temperature, and current density of samples
or devices placed in proximity57 [Fig. 1(e)]. The high density of NVs
(a few ppm) allows a DC magnetic sensitivity <0.1 lT/Hz1/2 and AC
magnetic sensitivity down to tens of pT/Hz1/2, depending on the detec-
tion volume.57,91,97 It is used initially to map biomaterials, such as live
cells labeled with magnetic nanoparticles131 and malarial biocrystals93

and later extended to study magnetism of rocks,132 and to map local
strain in diamonds.133,134 NV-WFM imaging modality is well suited
for rapid analysis (few tens of minutes) of multiple micrometer-sized
samples (scanning area >400 lm2) and allows to study of condensed
matter (strain, temperature, and magnetism) phenomena in vdW
magnets with sub-300nm spatial resolution.57 Measuring the ODMR
peaks from the four NV orientations enables vector magnetometry,135

which is useful for reconstructing the vector magnetization/magnetic
moment of 2D magnets. Recently, this modality has been used to
study 2D vdWmaterials, for example, to map current density in a gra-
phene ribbon136 and stray magnetic field map of VI3 crystals

60 (further
discussion below). Compared with other magneto-optical imaging
techniques, such as MOKE, NV-WFM imaging features a similar spa-
tial resolution (�300nm, limited by optical diffraction) but presents
the advantage of being quantitative, enabling the absolute magnetiza-
tion of individual flakes to be determined.57 We discuss below few
examples of recent contributions of using NV-SPM and NV-WFM
magnetometry to study magnetism in 2D vdWmagnets.

IV. RECENT CONTRIBUTION OF NV MAGNETOMETRY
TO STUDY 2D MAGNETS

Recently, Thiel et al. used NV-SPM to quantitatively study the
magnetic properties of CrI3 monolayers and directly image magnetic
domains with a spatial resolution of �50-nm.13 Figure 2(a) shows NV
measured stray-magnetic field BNV image on an area containing bilayer
and trilayer CrI3 in an applied magnetic field of 172.5 mT. The imaging
is performed by measuring the NV full ODMR peaks at each pixel
(dwell time of 2 s). The stray magnetic fields come mostly from the
edges of the trilayer flake, as expected for a largely uniform

magnetization of few-layer CrI3.
137 The 2D out-of-plane magnetization

map of CrI3 in Fig. 2(b), retrieved by using a reverse-propagation pro-
tocol,138 shows a uniform magnetization of the trilayer CrI3 with an
average magnetization of�13 lB/nm

2, where lB is the Bohr magneton.
Additional measurements on different CrI3 samples with even and odd
numbers of layers confirmed the zero net and homogenous magnetiza-
tion, respectively, consistent with antiferromagnetic exchange cou-
pling.31,139 The change in the magnetic order from ferromagnet in bulk
CrI3 crystal

11 to antiferromagnetic in CrI3 layers
10,11,13,139 is explained

by the interplay between the structure (stacking order) and exchange
coupling.13 To further explain this effect, NV-SPMmeasurements were
performed on nine-layer flake CrI3 [Fig. 2(c)]. The spatial variations of
the exchange coupling due to the locale change of the stacking order
resulted in regions with varying numbers of anti and ferromagnetically
coupled layers.13 The magnetization was found to be discretized in inte-
ger multiples of the monolayer magnetization. This domain formation
mechanism conserves the parity of well-separated regions on the sam-
ple [histogram in Fig. 2(d)] and can be explained by adding or remov-
ing a CrI3 monolayer during sample preparation.13

Sun et al.62 employed similar cryogenic NV-SPM to study the
existence of magnetic domains in atomically thin CrBr3. CrBr3 is a
ferromagnetic insulator with a unique spin system to study ferromag-
netism in the 2D limit.140 The authors studied magnetic domains in
few-layer samples of CrBr3 by quantitatively mapping the stray

FIG. 2. NV-SPM imaging of CrI3 layers. (a) NV magnetic stray field map measured
at a magnetic field 172. 5 mT, optical image of CrI3 flake is shown in the inset. (b)
Map of the magnetization distribution of the same region, determined by reverse
propagation of the NV stray field map in (a). (c) Spontaneously occurring magnetic
domains observed in the nine-layer flake of another CrI3 sample. (d) Histograms of
magnetization pixel values obtained in the odd- and even-numbered regions of the
data in (c). The figure reproduced with permission from Thiel et al., “Probing mag-
netism in 2D materials at the nanoscale with single-spin microscopy,” Science
364(6444), 973–976 (2019). Copyright 2019 American Association for the
Advancement of Science.13
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magnetic field.62 They showed that domain wall pinning is the domi-
nant coercivity mechanism by observing the evolution of both the
individual magnetic domains and the average magnetization under
variable applied magnetic fields.62 Song et al. used NV-SPM to study
the magnetism of twisted layers of the 2D magnet CrI3 and imaged the
magnetic domains in both twisted monolayer and twisted trilayer
structures.23 For twisted trilayers, a periodic moir�e pattern of ferro-
magnetic and antiferromagnetic domains was shown.141 In a recent
NV-SPM study, Fabre et al. observed room-temperature ferromagne-
tism with in-plane magnetic anisotropy in microsized CrTe2 flakes
(thickness �20nm).61 The analysis of NV-SPM measurements indi-
cated that the orientation of the magnetization of these flakes is not
determined only by shape anisotropy, which suggests the presence of
magnetocrystalline anisotropy.61

NV-WFM was employed recently by Broadway et al. to directly
study the magnetic processes in few-layer flakes of VI3.

60 VI3 is a mag-
netic semiconductor that has a hard ferromagnetic behavior in bulk
substrates with an out-of-plane anisotropy and a high coercive field Hc

of 1 T at low temperatures.142,143 An optical image of a VI3 sample on
a Si substrate [Fig. 3(a)], prior to transfer to diamond, shows flakes of
different thicknesses from three atomic layers up to 10nm. The NV
magnetic field (BNV) image of the same sample, after transfer to dia-
mond [Fig. 3(b)], revealed magnetic signals of up to 50 lT at an
applied magnetic field of 5 mT and at a temperature of 5K. Using a
similar approach in reference,13 the map of the out-of-plane magneti-
zation (Mz) is reconstructed in Fig. 3(c) and found to be in the range
of �50 lB/nm

2. A complete and abrupt switching of most flakes is
observed at coercive field Hc 	 0.5–1 T, independent of VI3 flake
thickness, as shown in Fig. 3(d). Hc decreases as the temperature
approaches the Curie temperature Tc (	50K). To understand the

switching processes in the VI3 flakes, 1 s pulses of magnetic field are
applied in the -z-direction of the samples (initially magnetized in the
þz-direction) and the NV-ODMR imaging is performed by increasing
the magnetic field pulse amplitude up to 1.3 T and temperature up to
50K. The magnetization was found to reverse abruptly, and Hc

decreases with the increase in temperature [Fig. 3(e)]. This observation
has a similar signature of magnetic domain nucleation-type as in
ferromagnetic systems.144 Further NV-WFM measurements from the
zero-field cooled state to high magnetic fields up to 0.4 T and at 5K
are performed on the same flake. The domain wall depinning field in
the range of 0.1 T to 0.4 T increases with the decrease in the flake
thickness.60 These values, expected from thin flakes, are way less in the
case of bulk crystals (� few mT) measured by MOKE.143

These demonstrations of using NV magnetometry in both NV-
SPM and NV-WFM are promising, paving the way toward the wide-
spread use of this technique as a powerful microscopy tool to study
magnetism in 2D vdWmagnets.

V SUMMARY AND FUTURE PERSPECTIVE

NVmagnetometry is still an emerging technique with impressive
progress over the last few years. We highlighted some of the progress
toward a wide usage of such techniques: The commercialization of
single NV diamond probes with different orientations that allow mea-
suring 2D magnets with any magnetization orientation; the commer-
cialization of turn-key RT and cryogenic NV-SPM microscopes may
expand the usage to non-NV experts, the demonstration of 350 mK
NV-SPM operation may provide opportunities to study high corre-
lated magnetic phenomena in 2D magnets;55 the integration of lock-in
detection, Bayesian approach, or demodulation methods can speed up
the acquisition time of NV-SPM.122–124 The usage of NV-WFM can
help in rapid analysis of multiple micrometer-sized samples and allow
for studying condensed matter (strain, transport, temperature, and
magnetism) phenomena in vdWmagnets.57

In comparison with standard magnetic imaging techniques, NV
magnetometry has several advantages summarized here: its high sensi-
tivity to surface magnetic samples,13,40,58,109 detection of dynamic mag-
netic excitation,37,69,145 and sensitivity to other parameters, such as
electric field, local strain, and temperature, that make it an ideal hybrid
quantum sensing platform for 2D magnets. However, the requirements
of magnetic field alignment, laser, and high-frequency MW excitation,
and short (few nanometers) NV-to-target sample distance58,128 add few
limitations to NVmagnetometry. By complementing NVmagnetometry
withmagneto-transport measurements and with other magnetic probing
techniques, it can be an ideal tool to study spin textures, spin dynamics
and relaxation, and the origin of magnetism in 2D vdW magnets. For
example, there are many recent studies where NV magnetometry (both
NV-SPM and NV-WFM) is integrated with magneto-transport mea-
surements to study current-induced nanoscale fragmentation of non-
uniform antiferromagnetic domain patterns in CuMnAs devices146 and
study spin–orbit torque induced deterministic magnetic switching and
chiral spin rotation in non-collinear antiferromagnet Mn3Sn,

147 opening
a new door to study antiferromagnetism in 2Dmagnets.
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