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ABSTRACT

Previously, the infrared permittivity tensor of monoclinic β-Ga2O3 crystals has been determined using ellipsometry reflection measure-
ments from two differently oriented monoclinic β-Ga2O3 crystals with surfaces parallel to (010) and (−201). The (010) surface places
the crystallographic a-c plane in the table of the instrument. The permittivity tensor consists of four complex values, and in order to
compute it, four or more combinations of measurements are required at selected table rotations and incidence angles. However, the
(010) orientation also places the transverse optical (TO) modes with Au symmetry parallel to the z-axis of the instrument, and we
find that these modes are not fully excited and, hence, not measurable due to underlying selection rules. This makes additional mea-
surements on surfaces other than (010) necessary. The second orientation has been the (−201) crystal, which places the crystallo-
graphic b axis in the plane of the table to access the transverse Au phonons. In prior work, the overall tensor has been determined by
combining measurements of the two crystal orientations [Schubert et al., Phys. Rev. B 93, 125209 (2016)]. The goal of the work here
is to find single crystal orientations for which all TO modes can be determined from measurements. The use of a set of measurements
employed for such a single crystal is inextricably linked to the choice of incidence angles and table rotations. Consequently, determin-
ing suitable angles for these is linked to the selection of a crystal orientation, which is, therefore, an integral part of the overall goal.
The TO contribution to the permittivity strongly dominates at or near the TO mode wavenumber resonances and, therefore, are used
in this work to identify suitable orientations for a single crystal. Any such crystal orientation will also provide measurements useful to
compute permittivity across the entire measured wavenumber range. In principle, any crystal orientation that does not place the direc-
tion of any TO mode at or near the z-axis may be suitable due to the underlying physics and mathematics of the problem. We
discuss which of these measurement parameters contain the most sensitivity for the (111) orientation. For accuracy, we seek the best
or very good orientations. Our investigation follows a previously demonstrated approach where at a single wavelength, the full tensor
of an orthorhombic absorbing crystal was obtained from a low-symmetry surface of stibnite [Schubert and Dollase, Opt. Lett. 27,
2073 (2002)]. We discuss which of these measurement parameters contain the most sensitivity for the (111) orientation. The methods
presented here will also be useful for other monoclinic materials as well as other materials of different crystal structures, including
orthorhombic and triclinic materials.
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I. INTRODUCTION

Recent interest in crystalline materials with monoclinic sym-
metry is a result of their potential for application in electronic
power devices, scintillators, high-power lasers, frequency stable
laser local oscillators, light slowing and trapping devices, and
optical quantum memory technologies.1–7 The material under
investigation here is the monoclinic phase (β) of gallium oxide
(β-Ga2O3 or bGO), which is thermodynamically stable and can be
grown by bulk and epitaxial methods.8 This particular material has
potential for application in switches and transistors capable of
operating at 10 000 or more volts and large current carrying capaci-
ties.2 Thus, it is a competitor for technologies based on silicon
carbide and gallium nitride. It may be useful in electric vehicles as
well as the transport of electric power. Consequently, measurement
and understanding of the material properties is necessitated.

The topic of this work concerns optically nondepolarizing single
crystals of monoclinic β-Ga2O3. The part of the spectrum under
examination is in the infrared ranging from 300 to 1100 (1/cm) wave
numbers, which corresponds to a wavelength range from 33 × 103 to
9.1 × 103 nm. Ellipsometry is the method used to determine the
optical properties. In this work, we focus on the transverse optical
(TO) modes at their respective wavenumbers at which the permittiv-
ity is strongly dominated by the mode contributions. The material is
anisotropic; therefore, the permittivity is not a scalar but a 3 × 3
tensor. This permittivity tensor appears in Maxwell’s equations,
which are used to model the relationship between the electromagnetic
field in the material and in the surrounding medium. The permittiv-
ity of the crystal may be solved by applying numerical methods to
mathematical models using Maxwell’s equations. The model relies
upon formulating the equations for a reflection or transmission
geometry, and this has been carried out by a number of authors.8–12

Berreman described a convenient formalism he evolved from early
work in radar to treat the case of plane polarized light incident on a
sample.8 We use this model, which is continuum mechanical in that
it makes no explicit reference to the crystal microstructure on the
electronic, ionic, or photonic levels. It is only concerned with the inci-
dent and reflected waves as they relate to the permittivity of the
crystal.

Previously, Schubert used measurements for two separate crys-
tals, (010) and (−201), at five azimuths (table rotations) and three
incidence angles.13,14 In this seminal work, the values of the mono-
clinic permittivity tensor were determined using measurements
from both crystals by simultaneously solving using the Levenberg–
Marquardt numerical method. The process first solved one wave-
number at a time and then followed with additional processing
across the wavenumber. The result was the determination of all
four complex unknown components of the permittivity tensor in a
least-squares sense. Details of this development are fully described
elsewhere.13 It was shown previously that two types of phonons
with Au and Bu symmetry exist in β-gallium oxide. The symbols
refer to the irreducible presentation of the subgroups in C2h (the
monoclinic symmetry class). There are four such groups: Au, Bu,
Ag, and Bg, where the latter two are Raman active. Modes with Au
symmetry (hereafter termed Au modes) are polarized parallel to
the lattice b axis, and modes with Bu symmetry (hereafter Bu) are
polarized within the monoclinic a-c plane; see Fig. 1. These groups

of modes are identified by different symmetry operations under
specific replacements of coordinates. Strain and stress relationships
for optical phonon modes in monoclinic crystals of β-Ga2O3 are an
example.15 Features in the permittivity tensor elements, determined
as a function of wavelength on a wavenumber-by-wavenumber
approach, then permit lineshape analysis to quantify frequency,
amplitude, broadening, and direction information within the
monoclinic lattice.

Preceding work by the authors has shown that solutions for
the permittivity tensor from a single crystal, i.e., from measure-
ments taken from a single surface of a monoclinic crystal, are possi-
ble but may not reveal all phonon modes due to the highly
anisotropic optical nature of the material. There are spectral
regions within which the experimental data contain no sensitivity
to the existence of phonon modes. For example, the Au modes are
not seen using measurements on the (010) crystal regardless of the
angle of incidence or instrument table rotation. On the other hand,
these Au modes are measurable in the case of the (−201) surface.
This has led to the idea that two crystal orientations are required to
measure all 12 TO modes. Indeed, if measurements from (010) and
(−201) are combined in a common analysis, then all modes can be
found.13

The purpose of the work presented here is to determine how
to obtain all TO modes using a single crystal sample and to deter-
mine which crystal orientations are more favorable for accuracy.
We examine the usefulness of the crystal crystallographic plane at
which the crystal is cut by considering the reflection intensity and
then sensitivity of measured ellipsometric parameters (Ψ and Δ) to
the tensor components. We select measurements and test for suit-
able mathematical condition of the Jacobian used in the solution
process. Finally, it is possible to examine the expected optical
response of various differently oriented crystals. The case of (111)

FIG. 1. (a) Unit cell of monoclinic β-Ga2O3 with crystal axes (a)–(c). The
angles between (a) and (b) as well as (b) and (c) are 90°. The angle, β,
between (c) and (a) is greater than 90°. The axes x, y, and z represent permit-
tivity reference axes. In (b), the same crystal as (a) is reoriented to more clearly
show the (a)–(c) plane. Reprinted from Schubert et al., Phys. Rev. B 93,
125209 (2016). Copyright 2016 American Physical Society.
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surface orientation is shown here, for example, to determine if all
of the TO phonon modes are selected and appear with sufficient
intensity, sensitivity, and condition for measurement.16 Selection of
a suitable crystal orientation for ellipsometry measurements for a
low-symmetry crystal depends on a great many factors, such as the
presence of TO phonon modes, their resonant frequencies, and
their orientations within the crystal, for examples. Determining a
suitable crystal orientation will, thus, depend upon the material of
interest and all of the considerations included in this work. To
accomplish this, it is necessary to determine useful incidence
angles and table rotations, and these selections are also described
here. Finally, it is true that any particular set of measurements have
to have a useful solution of the Maxwell equations. Equations with
good mathematical condition can be solved as opposed to a set of
equations with poor condition. Thus, this topic is also evaluated
and discussed. Therefore, there is no simple rule for the selection,
but the steps in making such a selection are described in this work.

II. THEORY

A. Crystal orientation

Figure 1 shows the unit cell of the β-Ga2O3 monoclinic crystal
with a set of three axes (a, b, and c) separated by three angles (α, β,
and γ). Of these angles, γ = 90° is the angle between a and b,
α = 90° is the angle between b and c, and β≠ 90° lies between a
and c. Thus, the b axis is normal to the plane containing the a and
c axes. The only axis of symmetry is b, and there is mirror symme-
try in a–c.17 In the figure, the axes x, y, and z define the permittiv-
ity reference axes with respect to the crystal. The permittivity is
calculated with reference to these axes.

The Miller indices of the plane under examination with refer-
ence to the crystal axes (hkl) correspond to the integer inverse of
the intersections of the plane with the axes in the a, b, c order. A
plane defined in this way must be rotated appropriately from the
standard position given in Fig. 1 to a position that places the plane
of interest parallel to the instrument table. This rotation must also
be used to transform the permittivity tensor in the model. For con-
sistency with prior work, we select the Euler angles to specify the
rotations required. Thus, the rotation is Z3 X2 Z1 (corresponding to
w, θ, ψ) in the sequence of the subscripts as applied to the standard
position to obtain the position for measurement.

The values of Z and X are standard rotation matrices shown
below. In this work, the convention for the sign of the rotation
angle is defined as positive for a rotation that is counterclockwise
when viewed by an observer looking along the axis of rotation and
viewing toward the origin,

Z1 ¼
cos ψ �sinψ 0
sinψ cos ψ 0
0 0 1

2
4

3
5, (1)

X2 ¼
1 0 0
0 cos θ �sin θ
0 sin θ cos θ

2
4

3
5, (2)

Z3 ¼
cos w �sinw 0
sinw cos w 0
0 0 1

2
4

3
5: (3)

The rotation expression is not commutative, sequence matters.
The 3D rotation is needed in order to transform the permittivity
tensor to conform to the position of the crystal in measurement in
which the cut face lies flat on the instrument table.

It can be seen in Fig. 2 that the (010) plane lies in the table
(X–Y plane) and that no rotational transformation is required. The
situation is different for the (−201) plane cut crystal. Figure 3
shows the crystal in its standard orientation with the (−201) plane
in color and its normal as a black arrow.

FIG. 3. This figure shows β-Ga2O3 outlined in black oriented in the standard
position given in Fig. 1. The axes of the crystal are indicated by arrows labeled
(a)–(c). The (−201) plane is indicated by the colored surface. Axes X, Y, and Z
refer to the instrument table in which the X-Y plane lies on the table.

FIG. 2. This figure shows the crystal of β-Ga2O3 outlined in black oriented in
the standard position given in Fig. 1. The axes of the crystal are indicated by
arrows labeled a, b, and c. The (010) plane is indicated by the colored surface
at the bottom, and the normal to the surface is shown as an arrow. Axes X, Y,
and Z refer to the instrument table in which the X-Y plane lies on the table.
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This figure shows the crystal and the instrument axes in the
same position as that shown in the immediately preceding Fig. 2.
In order for the permittivity tensor of a crystal of this orientation
to be solved, it must be transformed to be consistent with the
crystal rotation, which places the plane of interest parallel to the
instrument table. This is shown in Fig. 4.

Figure 4 shows the crystal rotated into the orientation, which
places the (−201) crystal face parallel to the XY plane, which is
required to make a measurement on that face. Taking care to
perform the rotations in the proper sequence, the values required
to transform the permittivity tensor are ψ =−49.92° followed by a
rotation about the new x axis of θ = 90°. Similar rotations are used
for other crystal orientations of interest.

B. Reflection model

Monochromatic light that is incident on a crystal interacts
with it and results in reflection and transmission. In the present
work, we restrict ourselves to linear materials for which the optical
response does not depend upon electric field strength of the inci-
dent wave. The ellipsometry method and mathematics for the light
reflection and transmission are well described elsewhere.8–12 For
the present discussion, the derivation of Berreman is used as previ-
ously noted.8 The continuum mechanical model based on the
Maxwell equations and a selected geometry for the reflection
results in expressions that relate the permittivity of the crystal to
ellipsometry measurements. Measurements may be the Jones
matrix elements or the Mueller matrix elements. In this simple
model, a two-phase, anisotropic substrate-isotropic ambient is
included, where no surface overlayers are considered. Surface over-
layers are often required to account for effects of small-scale rough-
ness, e.g., due to polishing processes and/or surfactants but are
considered irrelevant at infrared wavelengths due to the smallness
of their effective optical thickness. For this particular dataset, we

selected the data identified by the ellipsometer as having the least
estimated experimental error, which is reported in the same file as
the measurements. In other appropriate cases, the Mueller matrix
data could be used.

The incident light causes a reflection from the crystal by
which permittivity can be solved considering boundary conditions
between the surrounding medium and the crystal. This model pro-
vides the necessary mathematical relationship between known
parameters, including the light incidence angle, light wavelength,
light reflection measurements, crystal orientation, and the sought-
for unknown parameters consisting of the values of the permittivity
tensor. More detail is provided by Berreman.8

It is important that we review a point concerning the permit-
tivity reference axes (x, y, z) fixed in the crystal with respect to the
crystal axes (a, b, c); see Fig. 1. First, let us consider the representa-
tion of the ε tensor with respect to the (x, y, z) axes. The general
permittivity tensor for a monoclinic crystal for which we solve is
expressed relative to the permittivity crystal axes by

ε ¼
εxx εxy 0
εyx εyy 0
0 0 εzz

2
4

3
5: (4)

The tensor is symmetric so that εxy = εyx. We refer to this rep-
resentation as the standard reference tensor consisting of diagonal
values and an off-diagonal value. Here, the b crystal axis corre-
sponds to the z direction, and the x direction is aligned with the a
crystal direction. Thus, the remaining axis (y) is not aligned with
the c crystal axis but with an axis c* instead, as the angle between a
and c is not 90° but rather 103.7°.5 Physical rotation of the crystal
with respect to the measurement axes requires that the standard
reference tensor be transformed appropriately, mathematically, for
the model to correspond to the physical orientation.

Because each TO mode corresponds to a distinct direction
within the crystal structure, it is clear that the exciting electric field
at the appropriate frequency must have a component (or generate a
component) in a direction capable of influencing the corresponding
lattice vibration, which is measurable and useful. This is the reason
that not all combinations of light incidence angles, crystal orienta-
tions (with respect to characteristic measurement directions), and
sample rotations (azimuths) are equally capable of elucidating a
given mode. This is more extensively described in our prior work.16

The background in this area is extensive and far too lengthy to be
repeated here in its totality but instead can be accessed through the
citations.

C. TO modes

In this work, we examine the TO modes of which there are
four of the Au type and eight of the Bu type. The Au type mode
directions are parallel to the b axis within the crystal, and the Bu
type modes all have directions lying in the crystal a–c plane.13

Figure 5 shows the mode normals overlaid upon the crystal in the
standard orientation. In prior work, these modes were observed
experimentally at specific wavenumbers that were found to be in
reasonable agreement with quantum mechanical modeling and the-
oretical calculations of long-wavelength active Γ-point phonon

FIG. 4. This figure shows the β-Ga2O3 unit cell outlined in black oriented in the
position, which places the (−201) crystal face parallel to the ellipsometer table.
This rotation corresponds to an initial rotation about the z-axis of ψ =−49.92°
followed by a rotation about the rotated new x axis of θ = 90°, commonly called
Euler rotations in Eq. (1). The axes of the crystal are indicated by arrows
labeled (a)–(c). The (−201) plane is indicated by the colored surface. Axes X,
Y, and Z refer to the instrument table in which the X-Y plane lies on the table.
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frequencies performed by plane wave density functional theory
(DFT) using Quantum ESPRESSO (QE).13

Note the difference between the concepts of normal directions
of phonon displacement (a.k.a. mode normal) and the concepts of
normal electromagnetic propagation modes (a.k.a. normal mode).
The latter applies to electromagnetic waves, which follow from the
solutions of the wave equation as derived from Maxwell’s postu-
lates. On the other hand, the set of eigenvalue/eigenfunction equa-
tions does not deliver the direction under which a certain phonon
mode is polarized. This direction of a mode normal is the result of
the physical arrangement of matter in local and global atomic and
molecular structures. First principles methods, such as density
functional theory, can predict such properties from computational
methods. The rationale following our previous work is to identify
whether or not permittivity values can be determined from given
sets of measurements taken on different surface cuts of monoclinic
symmetry β-gallium oxide. It was found that permittivity solutions
using only (010) measurements did reveal all tensor components
within the monoclinic a-c plane, and these did not reveal εzz
values. Thus, while all Bu modes were found, none of the Au
modes could be seen. The wavenumber-by-wavenumber, numeri-
cally determined values for εzz carried infinite error bars in the
vicinity of TO modes since there was no sensitivity to their physical
behaviors within the measured data. In other words, one can insert
practically any random value for εzz during the model calculations
and that will have no effect on the other solved permittivity param-
eters. The physical cause of this phenomenon, sometimes also con-
sidered analog to selection rules for TO modes in anisotropic
materials, can be found simply in Snell’s law.18 As the frequency
approaches the TO resonance, the index of refraction for electric
field components perpendicular to the surface reaches very large
values. The boundary conditions require the normal component of
the displacement to be continuous across the interface. With the
index of refraction being unity at the ambient side, the electric field
component approaches zero within the anisotropic material when
the frequency reaches toward TO. Thus, the reflected wave contains

no information in the limit toward the TO mode about the TO
mode itself. Hence, one cannot identify via model calculations the
amplitude and center resonance of a TO phonon whose displace-
ment direction is perpendicular to a given surface. Accordingly,
analysis of measurements from the (−201) surface revealed almost
all Au and Bu modes except for those now oriented close to the
surface normal, e.g., Bu(3) at 572 (1/cm) and Bu(5) at 357 (1/cm).
Some of the other Bu modes that did appear were quite noisy. It is
clear that due to these effects, ellipsometry measurements using
either of these crystal orientations will not provide permittivity
spectra, which completely permit identification of all existing
phonon modes (Figure 6).

III. EXPERIMENT

A. Crystals

Bulk single crystals of β-Ga2O3 were grown at Novel Crystal
Technologies, Tokyo, Japan (formerly part of the Tamura
Company) using the edge-defined film-fed growth method.13

Substrates of different crystallographic orientations, (010) and
(−201), were cut from the bulk crystals and then polished on one
side and oriented within a few tenths of a degree. The resulting
samples were 10 × 10mm2 with a thickness of 0.65 mm. The sub-
strates were doped with Sn to an estimated activated electron
density of Nd−Na≈ (2–9) × 1018 cm−3. Cut crystals are analyzed by
XRD prior to shipping. The orientation angles obtained in the
ellipsometry analysis for axis b are in full agreement with the XRD
data information of the two samples. In this work, the angle ψ
refers to the first rotation about the initial Z axis as shown, for
example, in Fig. 2, which rotates the crystal from its initial standard
position; see Eq. (1). The angle θ refers to the second rotation
about the new X axis (resulting from the first rotation) to bring the
plane of interest to be parallel to the table, X_Y, plane; see Eq. (2).

FIG. 5. Figure shows a (010) face of a β-Ga2O3 crystal mounted on the table
of the ellipsometer. The dipole orientations of the Au modes are shown as an
downward pointing arrow. All four Au modes are oriented in the same direction.
The dipole orientations of the Bu modes are shown parallel to the a-c plane,
which in this case is also parallel to the instrument table. Each of the Bu modes
occurs at a different wave number and is numbered in the figure. Axes X, Y,
and Z refer to the instrument table.

FIG. 6. Figure shows a (−201) face of a β-Ga2O3 crystal mounted on the table
of the ellipsometer. The dipole orientations of the Au modes are shown as an
arrow pointing in the Y direction. All four Au modes are oriented in the same
direction. The dipole orientations of the Bu modes are shown parallel to the a-c
plane. Each of the Bu modes occurs at a different wave number and is num-
bered in the figure. Axes X, Y, and Z refer to the instrument table.
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B. Measurements

The original measurements by Schubert et al. were made
across two different spectral ranges using two different ellipsome-
ters. Details of these measurements are given in a prior publica-
tion.13 All measurements were taken directly from data files output
from the ellipsometer, including Ψ and Δ for p-p, p-s, and s-p.
Mueller matrix measurements are also available in the instrument-
generated data files but were not used in this work. The generalized
ellipsometry parameters are simply defined in terms of Jones
matrix elements in reflection,

rpp/ rss ¼ ρpp ¼ tan Ψ pp exp(iΔ pp), (5a)

rps/ rpp ¼ ρps ¼ tan Ψ ps exp(iΔ ps), (5b)

rsp/ rss ¼ ρsp ¼ tan Ψspexp(iΔsp): (5c)

Errors in the measurements due to instrumental factors arise
and are reported along with the measurements as estimated experi-
mental errors.

C. Solutions

The method for solving for the permittivity tensor is briefly
described here and fully described elsewhere.11 Computations are
carried out at each wavenumber using the trust-region dogleg algo-
rithm employing measured Ψpp and Δpp. This algorithm finds a
numerical solution while seeking a match to 10−6 between the four
complex measured and computed data at each wavenumber. A set
of nine complex measurements at a selected wavenumber are
picked from which four are taken at a time for a total of 126 combi-
nations. The algorithm finds values of the permittivity tensor of
Eq. (4), which consists of four complex numbers. If between 20
and 40 solutions are found, these are recorded and the algorithm
moves on to the next wavenumber. If fewer or more than between
20 and 40 are found, the stopping condition of function tolerance
is adjusted up or down accordingly by a factor of 1.1. Adjustments
in the function tolerance continue until the target number of found
solutions falls between 20 and 40.

IV. RESULTS AND DISCUSSION

A. Determination of a single crystal orientation choice

The first step in selecting a single crystal orientation, which
potentially would reveal all the modes of interest, is to examine the
angle between the mode normals and the Z axis of the measure-
ment table. If the angle is 0, they are parallel, the sine, thus, is 0
and that is “bad,” and if perpendicular, the angle is 90°, so the sine
is 1, which is “good.” This step is necessary but not sufficient. The
first two angles of an Euler rotation (ψ and θ in that order) can
bring any crystal plane from the initial standard orientation shown
in Fig. 1 so that the specified crystal face is parallel to the measure-
ment table. Thus, the mode normal to the Z axis angle as a func-
tion of crystal cut can be found beginning with the standard crystal
orientation in Fig. 1, rotating for a range of values of ψ and θ, and
computing the angles. Each mode is computed individually, and an

example is shown for a Bu 3 TO mode in Fig. 7. The orientation of
(010) is shown for reference. The magnitude of the sine of the
angle between instrument Z and mode normal is plotted according
to the colorbar reference to the right in the figure. Thus, the center
of the dark region corresponds to parallel (sine = 0) and the light to
perpendicular (sine = 1). We shall term this kind of dataset a
“mode rotation array.”

Figure 7 is periodic due to the periodicity of angle space and
is plotted thusly to allow convenient display, which may include
negative angles. Note the circle labeled “(010),” which indicates the
rotational combination, which places an (010) plane parallel to the
instrument table, X-Y plane. A number of other rotations would
also accomplish that, for example, ψ = 0 and θ = 0, and there are
others also not noted in the figure. Because the BU modes for this
orientation all lie in the X-Y plane as can be seen in Fig. 5, this
kind of pattern is repeated for every BU TO mode for a (010) cut.

By contrast, Fig. 8 shows the mode rotation array for all Au
modes, which lie at the same orientation, as seen in Fig. 5, to be
aligned with the Z axis. Interestingly, the plot of the magnitude of
the sine of the angle between Au mode normal and Z axis is not a
function of table rotation (equivalent to w) as can be readily under-
stood from Fig. 5. This alignment has been shown by experiment
to result in the Au modes not affecting experimental data measured
from the (010) orientation where measurement is insensitive to εzz.
The object here is to select a point in the θ and ψ plane of all mode
rotation arrays, which will provide useful experimental data.

It has been observed that modes Bu 3 and Bu 5 are also insen-
sitive to the permittivity components in solution for the (−201)
crystal orientation. Examination of the mode rotation array in
Fig. 9 shows that the Bu 5 mode normal is nearly parallel to the Z
axis as can be seen clearly in the figure.

FIG. 7. This figure shows the Bu 3 mode rotation array, which is a plot of the
magnitude of the sine of the angle between the Bu 3 TO mode and the table Z
axis for differently cut bGO crystals. Euler angles θ and ψ parameterize the
surface orientation of a given crystal cut. The label (010) marks the point in the
plane corresponding to that crystal cut.
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Finding the optimum crystal cut for mode solutions can be
accomplished using the following approach. First, select the modes
of interest by a chosen criterion. For example, the criterion could
be that all the modes fall within the measured wavenumber range.

Then, compute mode rotation arrays for all modes of interest, as
shown, for example, for three mode rotation arrays in Figs. 7–9.
Since mode amplitudes differ, examination of all modes in the
aggregate takes this difference into account by weighting each by its
amplitude to produce a set of mode rotation array “footprints.”
These new footprint arrays are then normalized and expressed as a
percentage of individual footprint maximum to give each equal
standing in determining the usefulness of crystal orientations. A
different weighting could be chosen on a different basis than equal
standing.

Each mode rotation array footprint has a unique value at each
orientation expressed as the intersection of θ and ψ. Thus, if all 12
TO modes are considered, at each point in the ranges of θ and ψ,
one of these modes will have the smallest footprint. The impor-
tance of this minimum is that at each corresponding orientation,
all other modes will have a greater footprint. Thus, if the minimum
footprint is sufficiently visible, all the other modes will be more
visible at that orientation. Figure 10 shows a plot of the overall
minimum of the normalized footprints of all Bu and Au modes.
We shall call the values of this set of minima the orientation
“score” in percent arising due to normalization. It is possible but
not necessary to optimize this choice as it is clearly evident that
many choices will be sufficient. An optimal choice by this numeri-
cal method is (101); however, it does not guarantee sensitivity to be
evaluated following. The overall unsuitable (010) and (−201) are
seen for which the footprints are zero or near zero. Note that (111)
has a score of about 40%; yet, there are better choices with greater
values. It now becomes necessary to examine the sensitivities.

FIG. 9. This figure shows the Bu 5 mode rotation array as a plot of the magni-
tude of the sine of the angle between the Bu 5 TO mode and the table Z axis
for differently cut bGO crystals. The label (−201) marks the point in the plane
corresponding to that crystal cut. Note that the mode normal and the Z axis are
nearly aligned. Experiment confirms that this mode is not solved for the (−201)
crystal cut.

FIG. 10. This figure shows plots of the minimum value of the sine of the angle
between the mode direction and the table Z axis times normalized mode ampli-
tude for all modes for differently cut bGO crystals. Black dots indicate the loca-
tion of the crystal orientations indicated adjacent to the dots. The horizontal
axis, ψ, is the first Euler rotation from the standard position, and the vertical
axis, θ, is the second rotation.

FIG. 8. This figure shows the Au mode rotation array as a plot of the magnitude
of the sine of the angle between the Au 1 TO mode and the table Z axis for dif-
ferently cut bGO crystals. The label (010) marks the point in the plane corre-
sponding to that crystal cut.
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The choice of orientation can be made on other considerations,
such as availability of the crystal cut. Some possible nonoptimal but
potentially sufficient examples are shown in Table I, which include
(111), (212), and (210) as well as the not useful (010) and (−201).
These are chosen for illustration purposes only. The table lists the
sine of the angle between each mode and the instrument z-axis. A
sine of zero indicates that the measurement is not sensitive to that
mode. A sine that is close to zero indicates that a signal-to-noise
ratio problem can be expected, which would result in a noisy solu-
tion. Note that for Au modes, values are summed over all modes.

Table I lists the angle between mode normals and the instru-
ment z-axis for five separate crystal orientations. All four Au modes
are at the same angle, and values given are sums for all modes. The
Bu modes are listed individually. Mode wave numbers are shown to
three digits of accuracy. Note that two of the modes that are within
the data range, Bu(3) and Bu(5), do not appear in (−201) data solu-
tions; hence, we suggest that the threshold for measurements is
somewhere between 0.5 and 0.6. The other modes appear in mea-
surements on (−201). The other three orientations are all well above
this threshold with the possible exception of (212) Bu(1). Table I
column (010) lists the sine of the angle from each TO mode to the
instrument Z axis. The Au mode angles are 0. This does not mean
that the values of εzz are zero, but that they are not determinable, in
the vicinity of the TO mode. The sines of all of the Bu mode angles
are 1, and examination of (010) solutions shows all Bu modes.17

Column 2 contains the sines of the angles for the (−201) crystal
plane. The sine of the angle for the Au modes is maximum at 1.
Examination of (−201) solutions shows the appearance of the three
Au modes, which lie in the range of wave numbers in the measure-
ment. At the same time, the values of the sines of the angles for the
Bu modes have changed significantly. Examination of (−201) for
these modes reveals that not all of the Bu modes appear.17 Several
mode contributions do not give rise to features in the ellipsometry
measured data above the noise floor, and thus, computational
methods do not detect the presence of a phonon mode. Modes Bu
(3) and Bu(5) are absent in the solutions as they correspond to small
factors in the table. We note that in principle, these modes with
small sine values (meaning, modes that are almost parallel to the
surface normal) could be measured if the measurement accuracy
were improved so that their response would appear distinctly above
the measurement error shown in part in Fig. 11.

Figure 11 shows the experimental error to be the best for
wavenumbers greater than about 400 with the exception of a 100
wavenumber band around 700 wavenumbers. Measurements for
wavenumbers less than 400 show rather significant estimated exper-
imental errors on the order of the measurement itself. This explains
the challenge of getting accurate measurements for wave numbers
other than in the low-error ranges. A consequence is that outside
of the best ranges, the solution algorithm is computing with noise.

B. Simulation of (111) measurements

Finally, we arrive at an examination of a newly selected crystal
orientation, which is not optimal and is chosen because the Au

FIG. 11. This figure shows the measurements plus estimated experimental error
as a function of wavenumber for (010) (a) Ψpp and (b) Δpp. at w = 62.5° and a
table rotation of 0°. This error is computed by and provided by the measuring
instrument. Each measurement is plotted as a point with a vertical bar from plus
to minus the estimated experimental error, which due to scale appears as verti-
cal bars.

TABLE I. Angles between mode normals and instrument z-axis for crystal orientations. Boldface indicates potentially very useful orientations and italic indicates likely unusable
orientations. Normal type indicates marginal usefulness.

Mode
Wavenumber

(1/cm)
(010) (−201) (111) (212) (210)
sin(κ) sin(κ) sin(κ) sin(κ) sin(κ)

Au all 663, 449, 297, 155 0 1 0.5447 0.7924 0.4555
Bu(1) 743 1 0.9993 0.8585 0.6659 0.9261
Bu(2) 692 1 0.7093 0.9673 0.9302 0.8928
Bu(3) 572 1 0.5581 0.9046 0.7845 0.9998
Bu(4) 432 1 0.8753 0.927 0.8381 0.8921
Bu(5) 357 1 0.07111 0.9919 0.9827 0.9556
Bu(6) 279 1 0.6956 0.97 0.9354 0.8935
Bu(7) 262 1 0.3186 0.9999 0.9999 0.9281
Bu(8) 214 1 0.8574 0.9999 0.637 0.9843
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modes appear to be above the margin of noise. Also, we select the
(111) orientation knowing beforehand that the crystal surface will
be oriented such that none of the crystals a, b, and c axes are either
within or perpendicular to (111); see Fig. 13.

The effect on the location in space of the TO phonon mode
dipole orientation due to rotation as shown in Fig. 12 is shown in
Fig. 13 for visualization. It can be seen in this figure that none of
the mode normals are parallel to the table Z axis. Consequently, all
modes should be detectable in data measured by ellipsometry
under various angles of incidence and table rotations as was pre-
dicted in Fig. 10, which also shows orientations with better scores.

To determine to what degree permittivity solutions would
reveal all modes from measurements on a (111) crystal, we first
need simulated measurements obtained considering the tensor and
measurement geometry. In prior work, we used table rotations of

0°, 45°, 90°, and 135° along with incidence angles of 50°, 60°, and
70°. The initial purpose here is to discover if Au and Bu modes can
be determined from theoretical measurements at these table rota-
tions and incidence angles. The issue of improving the choice of
initial rotation on the table will be dealt with the following.

It is then a simple matter to compute theoretical measure-
ments using this tensor transformed to correspond to the crystal
rotation of (111) and the Maxwell equations as expressed by
Berreman.8 At each wave number, 12 different measurements were
computed for different incidence angles and table rotations. Finally,
we perform solutions using the computed measurements, four at a
time from a group of nine as already described. The only difference
in the solution process is due to the absence of experimental error.
For confirmation, we sought and found all 126 solutions rather
than a number in a range for 20–40 solutions.

FIG. 12. This figure shows the unit cell of the crystal in dark lines with crystal axes a, b, and c identified at the tip of arrows from the origin. In this figure, the crystal has
already been oriented to place the (111) surface in the plane of the measurement table, shown shaded here. The angles required to accomplish this rotation from the stan-
dard position are ψ = 22.5° and θ = 147° with w set to 0° as the starting point for table rotations of 0°, 45°, 90°, and 135°, which are additive to w, the third rotation. Axes
X, Y, and Z refer to the instrument table.
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C. Sensitivity to table rotations and incidence angles

Once the crystal cut is determined, the next question is what
incidence angles and table rotations to select for the set of measure-
ments. This is far less urgent because they can be adjusted in the
ellipsometer and do not require obtaining a new crystal. The first
consideration is the intensity of the reflection. As has been shown
in our prior work, intensity of the reflection is sufficient for practi-
cally all wave numbers for the pp and ss reflections and insufficient
for the ps and sp reflections. Consequently, we select the Ψpp and
Δpp measurements, which rely on these pp and ss reflections. In
this notation, p refers to the component of the E field, which is
polarized parallel to the plane of incidence and s refers to the E
field component perpendicular to the plane. The order of the sub-
scripts refers to the polarization of the incident and reflected light,
respectively. The opposite sequence does appear occasionally in the
literature.

The next consideration is the sensitivity of the measurements
to the underlying components of the permittivity tensor (εxx, εyy,
εzz, and εxy). Computing sensitivities with respect to the real
and imaginary parts of the four permittivity components shown in
Eq. (4) results in eight three-dimensional plots of sensitivity as
functions of table rotation, wt, and incidence angle, α, at each wave-
number. For this, we consider just the wavenumbers for the TO
modes. Sensitivity is obtained by computing the derivatives of Ψpp

and Δpp with respect to each of the eight parameters to be solved.
Given the choices of subdivisions of the angles, this gives rise to
2 × 8 × 12 = 196 plots (Ψpp Δpp, tensor components, modes). Each
plot consists of 80 × 180 = 14 400 points for a total of >2.8 × 106

points.
What is needed is to select at least nine combinations of inci-

dence angle and table rotation from which to select four at a time.
In prior work, we actually had 12 combinations (wt = 0°, 45°, 90°,
and 135° by α = 50°, 60°, and 70°). The goal is to choose a new set

of 9 or more, which could be an improvement over those listed just
above. The approach used is as follows. First, a sensitivity limit is
selected. Observation of the individual plots suggested 1% as a sen-
sitivity limit from which to start. It can be seen that most modes
and parameters result in sensitivities ranging from 0.1% or so to
greater than 1%. It stands out that the sensitivities of the permittiv-
ity components associated with the Au modes (εzz) are many
orders of magnitude lower, on the order of 10−4%, which correlates
with the previous finding that these components were not able to
be computed for measurements on (010). Figure 14 is a plot of sen-
sitivity for the Bu1 mode with the real part of εxx shown as con-
tours. There are 97 other plots like this to include the 12 modes for
each of 8 permittivity components.

In order to examine all 196 figures, a method of consolidation
is required. First of all, we will consider one mode at a time, thus
requiring the analysis of eight figures like that in Fig. 14. The
method employed is to first choose a cut-off sensitivity and set all
points in the sensitivity plot so that all points below are zero. The
result is a figure that indicates a region that does not meet the crite-
ria and that is being recorded as zero, and the remaining region
that meets or exceeds the criteria is set to unity. The figure of this
kind is shown in Fig. 15, which displays Fig. 14 with a minimum
sensitivity set to 3% as an example.

For illustrative purposes only, Fig. 15 displays the result of
limiting sensitivity to 1%. This is restrictive as it is only an
example, but it can be seen that greater than 1% can be obtained
for a range of table rotations from approximately 50°–100° at a 50°
angle of incidence and for greater than 60° angle of incidence sensi-
tivity is less than 1%.

It is useful to consider all relevant sensitivities one mode at a
time. To accomplish this, a new data set is formed by choosing a
cut-off sensitivity and then setting all points, which fall below it to
zero and all points above it to 1. Thus, the range of sensitivity
applicable to any selected group, such as the one considered here,
which is all parameters in mode Bu1, can be found by multiplying
these arrays together. The result is Fig. 16, which shows the region
within the plot for which all parameter sensitivities for mode Bu 1
exceed 1% for a (111) crystal. The narrow stripes are regions for
which the sensitivity for the remaining six parameters is less than
1% and regions greater than 1%. It is concluded that a wide range
of incidence angles and table rotations will acquire useful data for
mode Bu 1 from a (111) crystal.

D. Condition of measurements in a solution

Finally, it becomes necessary to determine if Au and Bu
modes can be solved from sets of four measurements at particular
table rotations and incidence angles by determining the mathemati-
cal condition of sets of eight real number equations and eight
unknowns resulting from the four complex measurements. Thus,
the usefulness of sets of four measurements can be determined. It
is already understood that placing all of these four measurements
at the same incidence angle or at the same table rotation very likely
provides a poor mathematical condition. Each individual mode
responds differently to these angles; in fact, the response of the
material at every wavenumber is different. To avoid the necessity of
examining over a thousand sets of combinations of table rotation

FIG. 13. This figure shows the crystal as defined by black lines along its edges
rotated so that the (111) plane is parallel to the measurement table. The location
in space of the TO mode normals is are for the eight Bu modes and are labeled
for the four co-linear Au modes. The rotation to achieve this orientation is
ψ = 22.5°, θ = 147° with initial w set to 0°. None of the modes are parallel to
the z-axis. Axes X, Y, and Z refer to the instrument table.
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FIG. 15. This figure shows logic plots displaying regions of the sensitivity, (°/unit) or (°), of the Ψ and Δ measurements to the real part of the permittivity parameter εxx as
functions of table rotation wt and incidence angle α for a (111) crystal. Sensitivity is the numerical derivative of the angle. (a) refers to Ψpp and (b) refers to Δpp, divided
by the listed unitless denominator parameter. Regions depicted in higher shading have greater than 1% sensitivity and in lower shading, less than 1%. Regions with
greater sensitivity can be expected to be useful in solution.

FIG. 14. This figure shows contour plots of the sensitivity (°/unit) or (°) of the Ψ and Δ measurements to the real part of the permittivity parameter εxx as functions of
table rotation wt and incidence angle α for a (111) crystal. (a) refers to Ψpp and (b) refers to Δpp. The sensitivity parameter is listed on each contour in percent. Regions
with greater sensitivity can be expected to be more useful in solution. All of the sensitivities in this plot are large and predict usefulness in solution.
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and incidence angle, we examine only at the previously used table
rotations and incidence angles as an example. In practice, the
angles determined in the sensitivity analysis above would be used
to produce a similar study.

There are 126 combinations of sets of 4 measurements taken
from 9 measurements. To check if a given set of four can

potentially be solved, we compute the condition at solution for
which there exists a Jacobian matrix, which is an 8 × 8 matrix of all
of the first-order partial derivatives of the equation parameters
with respect to the tensor components. A simple test of the
Jacobian reveals the probability of achieving accurate solutions
because it must be well conditioned to facilitate its use in the

FIG. 16. This figure shows logic plots displaying regions of the sensitivity, (°/unit) or (°), of the Ψ and Δ measurements to the real part of all the permittivity parameters
as functions of table rotation w and incidence angle α for a (111) crystal. Sensitivity is the numerical derivative of the angle: (a) refers to Ψpp and (b) refers to Δpp, divided
by the listed unitless denominator parameter. Regions depicted in higher shading have greater than 1% sensitivity and in lower shading less than 1%. Regions with greater
sensitivity can be expected to be potentially useful in solution.

FIG. 17. Figure displays the 126 combinations of 9 measurements taken 4 at a time for solution. Each selection is marked with a diamond, and each vertical combination
is tested for mathematical condition to determine solvability. The vertical axis lists 4 of 9 selected and the horizontal axis corresponds to each of 126 measurement
combinations.
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numerical process. The “condition number for inversion” or the
“condition number” is equal to the ratio of the largest to the small-
est singular values of the Jacobian. A condition number near 1
indicates a well-conditioned matrix, and larger values indicate
increasingly ill-conditioned matrices. A list of the combinations is
provided in Fig. 17, which shows the 126 combinations across the
horizontal axis and the selected measurements on the vertical axis.
Table II lists the measurement conditions for the nine measure-
ments from which four are repeatedly selected. As can be seen in
Fig. 18, the condition varies significantly for each combination of
four measurements.

The figure shows a visual of each of the 126 combinations of 4
measurements out of 9, which are used in Fig. 18. Each column
displays four of the nine measurements listed from one to nine as
shown in Table II. The first number of the horizontal axis is the
“selection index,” which extends to 126, as shown in Fig. 18.

The condition also depends upon wave number, and therefore,
mode wavenumbers only are presented here. Thus, Fig. 18 shows

all 126 results for Bu modes for the example crystal orientation
(111). In this figure, the logarithm to the base 10 is represented by
as shading as shown in the bar on the right. Dark shading corre-
sponds to usable condition, which fades to light shading as the
highest condition number displayed.

A number of interesting features are immediately evident in
the figure. First note that each horizontal line corresponds to a
selection of four measurements from the nine. It is evident that
there are many combinations for which the condition is usable.
Thus, the figure identifies the measurements, which may be
excluded in the solution process if desired, although at present, as
126 are attempted, so not all of the combinations are needed. The
point here is that many combinations have a good condition.

Figure 19 shows all 126 results for Au modes for the example
crystal orientation (111). In this figure, the logarithm to the base 10
is represented by a shading as shown in the shading bar. Dark blue
corresponds to usable condition, which fades to light shading as
the highest condition number displayed.

It is evident that there are many combinations for which the
condition is usable. Thus, the figure identifies the measurements,
which may be excluded in the solution process if desired.

These figures indicate that a large number of measurement
combinations will be solvable in the (111) case. Considering the
speed of parallel computing used here, the overload of attempting
to solve using poor condition combinations did not present a
problem. The time to identify which combinations not to use was
greater than just trying each and letting the algorithm stopping
conditions rule them out.

V. SUMMARY AND CONCLUSIONS

The desired result of identifying potentially useful single
crystal orientations that allow measurement and computation of all

TABLE II. Lists nine measurements from which nine are taken at a time.

Measurement number Incidence angle (°) Table rotation (°)

1 70 0
2 70 45
3 70 90
4 70 135
5 60 0
6 60 45
7 60 90
8 60 135
9 50 0

FIG. 18. Displays the condition as indicated in the shading bar, which displays
the logarithm to the base 10 of the condition of the mode-measurement combi-
nation. The vertical axis corresponds to each of 126 measurement choices.

FIG. 19. Displays the condition as indicated in the shading bar, which displays
the logarithm to the base 10 of the condition of the mode-measurement combi-
nation. The vertical axis corresponds to each of 126 measurement choices.
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phonon modes of interest has been achieved. In the past, infrared
permittivity tensors of monoclinic β-Ga2O3 crystals have been
determined using ellipsometry reflection measurements from two
differently oriented crystals, (010) and (−201). The (010) orienta-
tion does not allow measurement of the Au TO modes even as it
clearly places the Bu modes in their optimum orientations. The
(−201) orientation places the Au modes in the optimum orienta-
tion; however, the Bu modes are not well oriented.

This work shows the steps to identify crystal orientations,
which reveal all TO modes. At first, each mode normal must not be
parallel with the ellipsometer Z axis. Examination of the rotation
space, Euler ψ and θ starting from the standard orientation, is dem-
onstrated for particular modes. A minimax solution is shown,
which permits identification of suitable crystal orientations consid-
ering all TO modes. Next, for this crystal orientation, suitable
choices of incidence angle, α, and table rotation, w, are evaluated.
This is shown as sensitivity of measurements (Ψpp and Δpp) to the
real and imaginary parts of permittivity tensor components εxx,
εyy, εzz, and εxy as a function of incidence angle, α, and table rota-
tion, wt. Sensitivity is taken to be the first derivatives, for example,
dΨpp/d Real(εxx). The sensitivities can be examined individually for
improved insight, examined one mode at a time, or examined for
all modes under consideration. It is seen that useful values that can
work in combination in the next step can be selected. Either way,
these numbers can be easily changed once the crystal is in the
instrument. Finally, we examine the computation feasibility using
the condition of 126 combinations of four measurements taken
from a subset of nine. For this, we examine all mode wave numbers
in order to make a selection. Further experimental work is called
for in order to confirm these findings. These methods will also be
useful for other monoclinic materials as well as other materials of
different crystal structures, including orthorhombic and triclinic
materials.
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