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Abstract—A receding horizon estimation (RHE) method is
designed in combination with model predictive control (MPC) to
improve the dynamic performance of LC-Based Power Module
with low cost. Symmetrically mirrored to the MPC, the RHE
is configured as a constrained finite time optimal estimation
(CFTOE) problem to solve the quadratic cost function based
on the past sampling information. An integrated RHE-MPC
control method is designed for LC-based power module to
formulate power conversion system with high performance. With
the designed RHE, the sensor count is reduced with less noise.
And the highly accurate RHE contributes to the correction of
possible modeling parameters or sampling errors. The integration
of RHE and MPC improves the steady state and dynamic
performances with less noise, more robust behavior and higher
control bandwidth. The proposed methods have been validated
experimentally on the power module testbench.

I. INTRODUCTION

S
TATE estimation is a key part for power electronics to

reduce the system cost and improve the dynamic per-

formance. Some conventional estimation methods have been

applied in the power converters, such as Luenberger Observer,

Kalman Observer and Sliding Mode Observer, etc [1]. The

state observers are typically leveraged to estimate the state

variables based on the measurement information. An advanced

estimation method, called receding horizon estimation (RHE)

is designed in this paper combined with the model predictive

control (MPC) to improve the steady state/dynamic perfor-

mances and reduce the sensor count [2].

State estimator is a typical technique to improve the power

quality and reduce the cost for power converters. In a power

electronics system, the voltage/current samplings are crucial

parameters that could directly influence the performance of

power control. Due to the hardware limitations, e.g., EMI

noise from the high power traces, measurement error, of the

sensing circuits, the control system could be interfered by the

sampling noise or oscillation. The state estimation can be a

substitute for part of the ADC sampling information to reduce

the noise/oscillation from the corresponding sensors [3]. Also,

the state estimation contributes to the reduction of sensor count

and system cost. Conventionally, the Luenberger Observer is a

basic state estimation method and has been widely used in the

industry applications which is a linear type of observer and

can be easily implemented in the digital control systems [4].

Besides the Luenberger Observer, receding horizon estimation

(RHE) is a more advanced estimation approach that leverages

a series of past measurements to derive the desired accurate

state values by solving a constrained optimization problem

[5], [6]. The RHE has been verified for the application of

virtual flux estimation in electric machine to estimate the

position and speed [7], [8]. Few studies have been focusing on

the applications of different topologies to be interfaced with

wider ranges of load/source. Also, the computation burden

for the RHE on low cost DSP is a crucial topic that needs

to be addressed for the popularization of the technique. This

paper develops a general explicit RHE-MPC method for power

modules that could be applied to various types of power

converters with different load/source interfaces on a low cost

DSP.

Model predictive control (MPC) is an option for the pro-

motion of dynamic performance and resonance damping, espe-

cially in high order filter system [9], [10], [11], [12]. Different

from the conventional proportional-integral (PI) control, the

MPC has been validated to have the advantages of better

dynamic performance, including less rising time, overshoot

and oscillation during transient [13], [14], [15], [16]. Several

MPC algorithms have been studied in the field of power

converters for motor traction or grid-connection [17], [18],

[19]. However, the combination of MPC and RHE for a general

application and low cost implementation purposes have not

been addressed in details. The MPC and RHE are actually

two symmetrical algorithms in the time series where RHE is

focusing on the past sampling information and MPC is for the

future steps. This paper integrates the RHE and MPC on a

generalized power module which could be applied to various

interfaced applications without consuming high computation

burden on the controller.

This paper is organized as follows. Firstly, since the combi-

nation of RHE and MPC are co-designed with a unified state

space model for an LC-based power module, the system mod-

eling of the LC-based power module is introduced. Secondly,

the specific RHE and MPC algorithms are analyzed and imple-

mented on the LC-based power module. Finally, the designed

RHE and MPC algorithms are validated experimentally on the

power module testbench.

II. SYSTEM MODELING

The system modeling of the LC-based power module is

analyzed in this section. The circuitry diagram of the basic LC

power module is shown Fig. 1 which consists of upper/lower

switches, M1 and M2, switch side inductor, Lfs, upper/lower
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Fig. 1: LC-based power module with output side inductor.

output capacitors, Cf,up and Cf,low. An output side inductor,

Lfo, can also be connected to formulate an LCL converter.

The desired number of introduced basic LC-based power

modules can be connected and reconfigured to formulate

different types of topological applications such as multi-phase

DC/DC or DC/AC converters.

The state space equations for the LC-based power module

can be expressed as:

i̇Lfs(t) = −
1

Lfs

vCf (t) +
vin

Lfs

d(t) (1a)

v̇Cf (t) =
1

Cf

iLf (t)−
1

Cf

iLfo(t). (1b)

i̇Lfo(t) =
1

Lfo

vCf (t)−
1

Lfo

vo(t). (1c)

where Lfs, Cf and Lfo are the switch side inductor, output

capacitor and output side inductor, respectively. iLfs, vCf ,

iLfo and vo are the switch side inductor current, output

capacitor voltage, output side current and output voltage.

III. ESTIMATION AND CONTROL

The proposed integrated receding horizon estimation and

model predictive control (RHE-MPC) method for LC-based

power module is analyzed in this section. These two advanced

techniques are all configured by solving the constrained finite

time optimization problems to increase the modeling/sampling

accuracy, reduce the hardware cost, enhance the anti-noise

capability and improve the steady state/dynamic performances.

These two techniques, RHE and MPC, are integrated based

on a monolithic state space model of LC power module by

dealing with two sets of ADC sampling data. The two sets

of sampling data for RHE and MPC are symmetric in time

sequences for the past and future, respectively.

A. Receding Horizon Estimation

Different from the traditional Luenberger observer, receding

horizon estimation is designed to solve a constrained finite

time optimal estimation problem that requires a sequence of

past sampling information [20]. The general theory and the

implementation for the LC-based power module are analyzed

in this section [5], [21].

The RHE method is applied to the LC-based power module

for the optimal estimation [22]. Considering the huge current

ripple on the switch side inductor current measurement, iLfs,

Fig. 2: RHE-MPC Control diagram of LC-based power mod-

ule.

and the challenges to accurately sample the averaged iLfs,the

receding horizon estimator (RHE) is designed for per phase

power module to provide more accurate switch side inductor

current estimation and noise rejection for the MPC controller

[23]. The main purposes of the state estimator are (1) avoid

inaccuracy of inductor current sampling with high current

ripple; (2) improve the anti-noise capability for better control

performance; (3) reduce the sensor cost.

The RHE is implemented by solving the Constrained Finite

Time Optimal Estimation (CFTOE) problem to derive the

optimal estimated values of switch side inductor current,

îLfs, capacitor voltage, v̂Cf , and grid side inductor current,

îLfo, with the samplings of capacitor voltage, vCf , and grid

side inductor current, iLfo. The state-space equations for the

discrete-time RHE can be expressed in standard matrix format

of

X̂k+1 = AEX̂k +BEuk (2a)

Ŷk = CEX̂k +DEuk (2b)

where the variables and matrices for RHE represent

AE =







0 − Ts

Lfs
0

Ts

Cf
0 − Ts

Cf

0 0 0






, BE =





Ts

Lfs

0
0



 , (3a)

CE =

[

0 1 0
0 0 1

]

, DE =

[

0
0

]

, (3b)

X̂k =





îLfs(k)
v̂Cf (k)

îLfo(k)



 , Ŷk =

[

v̂Cf (k)

îLfo(k)

]

. (3c)

Based on the RHE state-space equations in (2), the RHE

solves for the optimal estimated state variable sequence

of X̂M , ..., X̂0 with the known past measurement sam-

pling sequence of YM , ..., Y0 and input variable sequence of

uM , ..., u−1. The cost function of RHE optimization problem

is composed of two parts:
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Fig. 3: Relationship between receding horizon estimation and

model predictive control.

(1) Minimization of error between state equation (2a) and

estimated state variable X̂j+1 which can be expressed as

eX,k = (AEX̂k +BEuk)− X̂k+1; (4)

(2) Minimization of error between state equation (2b) and

measured sampling output variable Yj which can be expressed

as

eY,k = (CEX̂k +DEuk)− Yk. (5)

Thus, the RHE cost function for the CFTOE optimization

can be expressed as

min

−1
∑

k=M

eTX,kQEeX,k +

0
∑

k=M

eTY,kREeY,k (6)

where QE and RE represent the weighing factor matrices of

the penalties that are implemented on the state variables and

output variables, respectively.

The constraints of the RHE controller can be expressed as

eX,k = (AEX̂k +BEuk)− X̂k+1 ∈ EX (7)

eY,k = (CEX̂k +DEuk)− Yk ∈ EY (8)





−ILfs,max

0
−ILfo,max



 ≤ X̂k ≤





ILfs,max

vin
ILfo,max



 (9)

[

0
]

≤ uk ≤
[

vin
]

(10)

[

0
−ILfo,max

]

≤ Yk ≤

[

vin
ILfo,max

]

. (11)

The working mechanisms of RHE and MPC are symmet-

rical with respect to the present state. Specifically, RHE is

dealing with the states from past to present steps and MPC

is optimizing the states from present to the future steps. The

relationship between RHE and MPC has been shown in Fig.

3.

Fig. 4: Explicit implementation of RHE and MPC with online

search tree.

B. Model Predictive Control

The MPC algorithm is derived by solving the constrained

finite time optimal control (CFTOC) problem [24]. A cost

function can be configured to minimize the tracking error

between the state variable vector, x(k), and the references,

x(k), by predicting a series of future input variable, u(k) [25].

The cost function can be generally expressed as:

argmin
x(1),...,x(N)

u(1),...,u(N−1)

N−1
∑

k=0

eTx,kQCex,k+

N−1
∑

k=0

eTu,kRCem,k+eTu,NPCex,N .

(12)

And the constraints are followed by:

s.t. ex,k = x(k)− x(k) (13a)

eu,k = u(k)− u(k − 1) (13b)

x(k) ∈ X (13c)

u(k) ∈ U (13d)

where k > 0 in (12) and (13) means the information are

expected for the prediction of the future instants. The weighing

matrices, QC and RC , provide the penalties on the tracking

errors and control input variations, respectively. The matrix,

PC , is defined as the terminal cost which is a basic term in

MPC that connects the properties between the finite time MPC

and the infinite time LQR. The terminal cost is used to make

sure of the stability, robustness and convergence.

IV. CAPACITOR AND INDUCTOR DESIGN FOR STABILITY

The capacitor and inductor values design for the filtering

circuit are analyzed in this section. The main standard that

needs to follow is the grid current/voltage waveforms quality

[26], [27]. The specification can be found from IEEE STD

519 to choose the value of grid side inductor, Lg , for the

attenuation grid current harmonics.

For the switch side inductor, the minimum inductance,

Lf,min, can be determined by the maximum required current
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Fig. 5: The integrated RHE and MPC control diagram for the

DC/DC interfaced application with LC-based power module.

(a)

(b)

Fig. 6: RHE-MPC (a) experimental and (b) zoomed wave-

forms of output current, capacitor voltage, inductor current

for DC/DC converter.

ripple, ∆iL,max, with the duty cycle of 0.5, d, switching

frequency, fsw, and DC bus voltage, Vdc

Lf,min =
d(1− d)Vdc

fsw∆iL
. (14)

With the desired grid/switch side inductance determined, the

capacitance can be designed by the minimum output voltage

ripple, uripple and the resonant frequency of the LCL filter,

ωres. Specifically, the minimum capacitance is determined by

the output voltage ripple which is expressed as

Cf,up,min + Cf,lo,min =
1− dmin

8Lfuripple[%]f2
sw

. (15)

Then, from the minimum available Cf,up,min and Cf,lo,min,

the value of capacitance can be adjusted to determine the

resonant frequency of LCL filter system as is shown in

ωres =

√

Lf + Lg

LfLg(Cf,up + Cf,lo)
. (16)

Based on (16), the capacitor values can be finally determined

to choose a specific resonant frequency of the LCL filter.

(a)

(b)

(c)

Fig. 7: RHE estimation performance of the experimentally

captured steady state ADC readings of measurement and

estimation for grid-interfaced (a) inductor current (b) capacitor

voltage and (c) grid current.

Fig. 8: MPC tracking performance of the experimentally

captured steady state ADC readings of capacitor voltage for

the DC/DC application.

Then, with the help of ωres and LCL parameters, the control

bandwidth, ωc, can be further designed to avoid the excitation.

V. APPLICATIONS AND RESULTS

The application for the developed RHE-MPC technique in

DC/DC interfaced power converter in Fig. 5 is tested experi-

mentally. The combined RHE-MPC algorithms are configured

in the LC-based power module to control the output voltage,

vo. Specifically, the output capacitor voltage, vCf , and output

current, io, are directly measured as the output variable matrix,
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Yk, in (2). The inductor current, îL, output capacitor voltage,

ˆvCf , and output current, îo, are configured as the estimated

state variable matrix, X̂k. Based on the RHE cost function in

(6) and the corresponding constraints in (7)-(11) to deal with

the past sampling information within the estimation horizon,

the optimal estimation of X̂k will be derived for the purpose

of MPC control process with less noise.

Symmetrically with RHE, the MPC manages the future

sampling information within the prediction horizon to derive

the optimal input variable matrix, uk, of duty cycle by solving

the MPC cost function and the corresponding constriants.

Instead of using the noisy sampling state variables of Xk,

the MPC utilizes the estimated state variables, X̂k, from RHE

to track the output capacitor voltage reference with less noise

and oscillation.

Fig. 6 shows the output current, capacitor voltage and in-

ductor current waveforms of the DC/DC converter with RHE-

MPC method. The DC/DC application results demonstrate

that RHE can reduce the noise and oscillation. Furthermore,

for the DC/DC application, the experimentally captured ADC

readings of measurement and estimation for inductor current,

capacitor voltage and output current are shown in Fig. 7. Fig.

8 shows the MPC reference and measurement for DC/DC

converter output capacitor voltage where the MPC accurately

tracks a voltage reference of 50V. The sampling noise from

sensor is largely reduced by RHE for a more stable perfor-

mance.

VI. CONCLUSION

This paper developed a RHE-MPC combined algorithm to

improve the steady state/dynamic performance of an LC-

based power module. The general theories of RHE and MPC

are introduced. The developed algorithms are implemented

on a DC/DC application by connecting the LC-based power

modules with a resistive load. Half of the current sensors are

saved with the RHE method. The experimental results show

the RHE and MPC have good anti-noise capability.
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