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Abstract—A distributed denial-of-service (DDoS) attack is a cyber-attack in which attackers from different locations send out many
requests to exhaust the capacity of a server. Current DDoS attack protection services filter out the DDoS attack packets in the middle
of the path from the attacker to the servers. Some of the DDoS protection systems filter them out at the victim server. As a result,
unnecessary attack traffic congests the network and wastes bandwidth. This can be minimized if we block them as early as possible. In
this paper, we propose a DDoS attack protection system by using the filter router. The victim needs to wisely select and send filters to a
subset of filter routers to minimize attack traffic and blockage of legitimate users (LUs). Many filters can easily minimize the attack traffic
and blockage of LUs, but it is costly to the victim. So, we formulate two problems with different settings for selecting filter routers given a
constraint on the number of filters. We propose dynamic programming solutions for both problems. Both problems consider the
blockage of all attack traffic before it reaches the victim. We conduct extensive simulation to support our solutions.

Index Terms—botnet, DDoS defense, DDoS, flooding attack, filter router, network security, filter assignment

1 INTRODUCTION

DENIAL-OF-SERVICE attack (DoS attack) is a cyber-

attack in which the attacker seeks to make a machine
(e.g., web server) or network resource temporarily unavail-
able to its users. DoS attacks are considered a federal crime
under the Computer Fraud and Abuse Act with penalties
that include years of imprisonment [1]. The Computer Crime
and Intellectual Property Section of the US Department of
Justice handles cases of DoS attacks. Therefore, detecting
DoS attacks and identifying attackers have been important
issues in Network Forensics. Moreover, DoS attacks are
increasing day by day in both number and size; CloudFlare
[2] recently reported a 400 Gbps massive DoS attack that
took place in their servers.

There are several types of DoS attacks such as SYN Floods,
Malformed Packets, UDP Floods, Amplification Attacks, and
Distributed Attacks [3]. Ina SYN Flood attack, the perpetrator
sends many SYN messages to set up TCP connection. The
server replies ACK and waits for the client’'s ACK, but the
attacker does not reply ACK and the connection remains
half-open till timeout. The objective of a SYN flood is to sim-
ply fill up the limited slots that the target system has available
for half-open connections. In some cases, it’s easy to detect a
SYN Flood attack if a lot of SYN requests come from an
address in short interval. Detection is harder, however, when
the attacker spoofs IP address, SYNs come from multiple
addresses, and arrival time varies. In a UDP Flood attack, the
purpose would likely be to consume all available network
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bandwidth. Attackers send a large amount of spoofed
requests with large useless payloads. The application wastes
CPU cycles trying to determine the meaning of the garbage.

The objective of the DDoS attack is to generate a lot of
packets from different locations to exhaust the incoming/
outgoing bandwidth of the victim (e.g., web server). A coor-
dinator would send commands to workers, who continue to
send requests to the target. The workers are known as bots
and the network of workers is known as botnet. As users
also send requests through the NAT, it is difficult for the
victim to differentiate between the bot requests and user
requests. Fig. 1a shows the DDoS attack model by a botnet.

The existing works which are based on DDoS detection at
the router level increase router computation overhead. The
works which are based on filtering at the victim increase
the network overhead. The routers that detect DDoS traffic
based on some generalized characteristics cannot detect
DDoS traffic better than the victim. Besides, the characteris-
tics of DDoS traffic are different for different victims. An
effective method of preventing DDoS attacks is to use filter
routers (FRs) in the network infrastructure. FRs are special
types of routers that are capable of packet marking and
receiving filter tasks. Marking a packet means appending the
FR’s IP address to the packets it forwards. A FR does not
mark all the packet it forwards, rather it probabilistically
selects some packets to mark. The task of receiving filter
refers to receiving a filter from a web server. A web server
can block all or part of the traffic destined to it. The FR-based
system does not increase the router computation overhead
and network overhead. The victim can accurately differenti-
ate between the attack and legitimate traffic because it knows
the characteristics of the user traffic very well.

The complete method of using FRs is a four-phase pro-
cess. In the first phase, the FRs probabilistically mark for-
warded packets by appending their own IP addresses. In
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Fig. 1. DDoS attack and traffic topology.

the second phase, the victim discovers the traffic topology
from the marking of the packets. The marked packet con-
tains the FR’s IP addresses and the sequence of the IP
addresses implies their relative positions. After collecting a
sufficient number of marked packets the victim discovers
the traffic topology. Fig. 1b shows the traffic topology which
is discovered by the victim v. In the third phase, the victim
constructs filters, then finds and selects some FRs to assign
the filters. In the last phase, the FRs evict unused filters
from their storage.

Packet marking is used by the victim to find the traffic
topology. There is a tradeoff between topology construction
time and router overhead. When the probability of marking is
low, the router overhead is low and it takes a long time to con-
struct the topology. When it is high, the router overhead is
high and the topology construction is quick. After topology
construction, the victim generates filters and selects a subset
of the FRs to assign them. There are two types of filters:
source-based and destination-based. Using a source-based fil-
ter, a FR can allow/block traffic from specific sources that are
destined for the victim. This type of filter is vulnerable to IP
spoofing attacks. Although destination-based filters can pre-
vent IP spoofing, they are more restrictive. Using a destina-
tion-based filter, a FR can block all traffic, including LU traffic
destined to the victim. A good filter assignment can stop the
attack traffic close to its source, which reduces network over-
head for attack traffic. A bad filter assignment can let the
attack traffic travel a longer way and produce unnecessary
network overhead. It is challenging to find an optimal filter
assignment when the victim has a limited number of FRs that
can be selected. A FR may get filters from multiple victims. It
has limitations on storage and computation power. Therefore,
it evicts filters which are no longer used.

In this paper, we focus on finding the optimal filter
assignment considering that the victim has already con-
structed the traffic topology. We formulate two problems
and propose solutions for them. In the first problem, a lim-
ited number of source-based filters are assigned to the FRs.
For example, if the victim can assign 2 filters, it can select
{FR,y,FRy}, {FRy,FR5}, {FRy, FR,} or another pair of FRs
(see Fig. 1). If the victim selects the first pair of FRs, then no
attack traffic can get into the network, which is highly
expected. If the second pair is selected, then the attack traffic
will travel through the (FRy, FRy) and (FRy, FR5) links. The
amount of attack traffic in each link is not the same. It is
challenging to find a filter assignment for which the total
amount of attack traffic is the minimum. We propose an
optimal solution for this problem by using dynamic pro-
gramming. In the second problem, a limited number of des-
tination-based filters are assigned to the FRs. A destination-
based filter blocks every packet at the FR that is destined to

the victim. If the victim selects the third pair, then all the
legitimate users (LUs) will be blocked and the attack traffic
will travel through the (FR;, FR,) link. It is also challenging
to find a filter assignment so that the total attack traffic and
the number of blocked LUs are both minimized. We pro-
pose another dynamic programming solution for this prob-
lem. Our main contributions are the following;:

1)  We formulate two problems for finding filter assign-
ments with a limited number of filters and provide
optimal solutions using dynamic programming.

2) We conduct extensive simulations with synthetic
and real topology datasets and present simulation
results to support our model.

The remainder of this paper is arranged as follows: In
Section 2, we discuss some related works and their limita-
tions. In Section 3, we present the system model for prevent-
ing DDoS attacks. In Section 4, we define the first problem
and propose a dynamic programming solutions. In Section 5,
we define the second problem and propose another dynamic
programming solution. In Section 6, we present some simu-
lation results that strengthen our proposed solutions. Finally,
Section 7 concludes our paper.

2 RELATED WORKS

There exist many statistical methods, including correlation,
entropy, covariance, divergence, cross-correlation, and infor-
mation gain to detect anomalous DDoS requests [4]. A rank
correlation-based method, Rank Correlation-based Detec-
tion (RCD), is proposed in [5]. An information theoretical
approach using Kolmogorov complexity is used for the
detection of DDoS attacks in [6]. A novel DDoS detection
mechanism is proposed based on Artificial Neural Networks
in [7]. A spiking neural network-based intrusion detection
system is proposed in [8]. The neural network evolves over
time to adopt with the behavior of the inputs. The spiking
neural network cube learns to activate the neuron based on
input data using unsupervised learning. The spiking neu-
rons are trained to generate the output module using super-
vised learning. In [9], the authors present several DDoS
mitigation approaches including prevention of JavaScript
bot code injection and PHP-sensor-based scheme to identify
cross-site-scripting attacks. In [10], the authors propose a
novel flow-table sharing approach to protect against the table
overloading DDoS attacks in SDN-based networks. There are
other methods of detecting DDoS attacks, including [11],
[12], [13], [14], [15], [16], [17].

The authors in [18] introduced a model of randomized
DDoS attacks with an increasing emulation dictionary where
the attackers use the attack definition from the dictionary
that contains request patterns similar to those of the LUs.
They proposed an inference algorithm for identifying the
botnets executing such DDoS attacks. Nowadays, static path
identifiers are used for inter-domain routing objects, which
helps the attackers to launch DDoS flooding attacks. In [19],
the authors present a design dynamic path identification
framework that uses path identifier negotiated between the
neighboring domains as inter-domain routing objects.

In [20], the authors propose a method, RADAR, to detect
and throttle DDoS attacks using adaptive correlation analysis
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(a) Actual network.

(b) v's view.

Fig. 2. System model.

on SDN switches. The system can defend against a wide range
of flooding-based DDoS attacks including link flooding, SYN
flooding, and UDP-based amplification attacks. In [21], the
authors propose a new approach which minimizes the
resource utilization factor for quick absorption of the attack.
In [22], a DDoS protection mechanism called SkyShield, is
proposed by taking advantage of the sketch techniques. To
identify malicious hosts efficiently, they used the abnormal
sketch obtained from the last detection cycle. SkyShield can
leverage other techniques including Bloom filters and
CAPTCHA. In [23], the authors propose a collaborative DDoS
mitigation network system in which one domain helps
another domain. A domain can direct excessive traffic to other
trusted external domains for DDoS filtering. The filtered clean
traffic is then forwarded back to the targeted domain. A three-
tier datacenter design is proposed in [24]. In this design, the
first two tier of private datacenters filter out the attack traffics
and forward the legitimate traffic to the third tier datacenter.
Therefore, the attack traffic are being filtered at the destination
datacenter which is usually far from the attackers” locations.

Most existing works are mainly concerned about the
availability of the server. In fact, the attack traffic may cause
huge network congestion and DoS. Therefore, these techni-
ques cannot protect the network from being contaminated
by attack traffic. A victim and network component collabo-
ration based system can help in this case. A four-phase
DDoS protection system is proposed in [25]. The victim gen-
erates filters and sends them to the upstream FRs. FRs send
the filters to their upstream FRs and thus the filters propa-
gate to the effective FRs. An adaptive version of PFS is pro-
posed in [26]. The system directly sends filters to the highly
capable FRs first, then the filters propagate to the effective
FRs. However, these two systems cannot optimally select
the FRs when there is a limitation on selecting FRs.

3 SysTEM MODEL

Our system is composed of legacy routers (LRs), network
address translators (NATS), filter routers (FRs), attackers,
legitimate users (LUs), and a victim (v). Fig. 2 shows the
complete system model. In reality, there are multiple vic-
tims in a network but for simplicity of explanation, we are
considering a single victim. The end users are connected
to a FR or a LR through NAT. Nowadays, because of the
limited number of public IP addresses, the internet service
providers usually assign private IP addresses to their cus-
tomers. Therefore, most of the users are connected to the
internet through NATs. A FR is a special kind of router
which is capable of two functionalities. First, it can do
packet marking, which is used to construct traffic topology
at the victim. Second, it can receive filters from the victim

and apply the filters to block the attack traffic according to
the filter definitions. There are two types of filters: source-
based and destination-based. The source-based filter speci-
fies the blocking of traffic based on the source address. For
example, a source-based filter can be understood with: if
source address is X, then discard the packet. If we use a
source-based filter at F'R3 (assume X and Y are the IP
addresses of the NATs connected to FR; and FR,, respec-
tively), then FR3; will discard packets coming from NAT-
X, but forward packets from NAT-Y.

The advantage of using source-based filters is that a FR
can block the attack traffic by its source IP address and for-
ward legitimate traffic. If the LU and attacker both remain
behind the same NAT, then it is impossible to block only
attack traffic. The limitation of the source-based filter is that
it cannot protect if an attacker spoofs the IP address of a LU.
If an attacker creates a packet with Y as the source address,
then the packet will not be blocked at FR3;. To protect
against DDoS attacks with IP spoofing, we can use destina-
tion-based filters. A destination-based filter is: if the destina-
tion address is X, then discard the packet. For example, if we
use a destination-based filter at FR3 (assume that X is the IP
address of v), then all the packets, including legitimate and
spoofed attack packets, will be blocked by FR3. The destina-
tion-based filter is more restrictive. When a FR uses it, it
blocks all the attack and legitimate traffic destined for the
victim. Therefore, spoofed attack traffic cannot penetrate.

In this model, the LRs and the FRs can co-exist without any
problem. For example, in Fig. 2a, there are some LR between
the FRs. In the victim’s view Fig. 2b there are no LRs. This is
because the LRs do not mark the forwarding packets and their
existence is not identified by the victim. The implementation
of the FRs can also be done with small changes. The firmware
of the routers can be updated to adopt the packet filtering and
marking functionalities. Nowadays, many routers and soft-
ware defined networking switches run on Linux systems.
These routers and switches have support for custom devel-
oped plugins (for example, Pica8 p-3922). A plugin can be
developed to implement the filtering and marking functional-
ities which will turn a regular a software-defined-networking
switch intoa FR.

The attackers are usually user devices with compromised
programs that can generate traffic destined for a target. The
programs are controlled by a master. The master can send
attack commands to the programs. This type of program is
called bot, and a network of bots is called a botnet. Although
it is hard to differentiate the DDoS traffic from legitimate
traffic, there exist several methods based on arrival time,
packet size, and packet content for detecting attack packets
[4]. In this paper, we are not focusing on the detection of
attack packet. The victim finds the source address of attack-
ers using these methods. The victim also knows the packet
rate of each attacker. For example, if there are 100 attackers
(or LUs) each with 1 Mbps attack traffic (or legitimate traffic)
behind a NAT-X (having IP X), then the victim will identify
X as an attacker (or LU) with 100 Mbps attack traffic (or legit-
imate traffic).

The complete protection process consists of four phases.

1) Packet marking by FRs: The process of probabilisti-
cally appending the FR’s own IP address in a special
field of packet header.
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time=0

Fig. 3. Formation of topology.

2)  Construct traffic topology: The process of a victim
constructing the topology from the appended IP
addresses of packets it receives.

3)  Construct filter and assign to FRs: After analyzing the
received packets over a period, the victim can iden-
tify the IP addresses of the attacker. Then, it needs to
find some FRs and send some filters to block the
attack traffic.

4)  Evict unused filter from FR: A FR has limited storage.
When a filter is not used for a period of time, that FR
evicts the filter from its storage.

In phase 1, the FR probabilistically marks the packets it for-
wards by appending its own IP address. The algorithm is
simple; the router picks a random number and if the number
is less than the marking probability, then it decides to mark
the packet. Marking a packet means appending the FR’s IP
address to the header of it. The marking probability is the
probability of a packet being appended by the FR’s IP
address. For example, if the marking probability of a FR is
0.5, then on average 50 percent of the packets forwarded by
that FR contain the IP address of the router in its header. Let
the marking probability be 0.5. Then, the victim v may get
packets with {FRy, FRs}, {FRs, FRs}, or {FRy, FR,}. The
victim may also get packets with { Ry, FR3}, { FRs, FRy4}, or
{FR,, FRs}. The {FR;, FR3} marking indicates that FR;
remains before the F'R; along the path from the user.

In phase 2, the victim constructs paths from all the sources
after gathering enough information from the marked pack-
ets. The victim can easily form a directly acyclic graph
(DAG) combining all the paths. Fig. 3 shows an example of
topology formation technique. In the beginning (time=0),
there is no knowledge about topology. The victim assumes
that all users are directly connected with it because none of
the packets are marked by any FRs. At time 1, the victim
gets some packets from S, Sy, and S3. These packets are
marked by FRs {FR4}, { FR5, FRs}, and {FR7, FR3}, respec-
tively. The packet from S; indicates that FR; remains
between S; and v (S} — FR; — v). Similarly, the packets
from S, indicate that FR3 remains before v and FR; remains
before FR3; (Sy — FR; — FR3 — v). The packet from Ss
indicates that F'R3 remains before v and FR; remains before
FR3 (S5 — FR; — FR3 — v). Combining all these informa-
tion we can infer that FR3 might be a parent of both FR;
and FR;. The victim might be connected with F'R; and FR,.
We can also infer that S}, S», and S3 might be connected to
the FRy, FR;5, and FR;. At time 3, more packets arrive at v
and the topology changed a little bit. FR3 is found to be a
child of FR,. A new FR; is discovered at this time. At time

4, the topology changed with an addition of FR. We can see
that the more v observes, the more knowledge it gathers
about topology, and the closer it gets to the actual topology.
Thus the victim can formulate a DAG of the traffic topology.

For simplicity, we will consider a tree instead of a DAG.
We consider that bots and LUs are behind the NAT of the
internet service provider. We color the bots/attackers as
black and LUs as white. The FRs which forward the end
users’ traffic first are called entry nodes. { FR1, FR,} are the
entry nodes in Fig. 2. The FRs are colored as black, white, or
gray. A black (or white) FR means it only forwards messages
from attackers/bots (or LUs). A gray FR forwards packets
from both LUs and attackers.

In phase 3, some of the FRs in the traffic topology are
selected to assign filters. The traffic topology is simplified by
removing nodes with no forks. A node with at least two chil-
dren is called a fork node. Non-fork nodes are not efficient
for assigning filters. Instead, selecting the child node reduces
attack traffic in the network. Therefore, an optimal filter
assignment policy should select a set of FRs (g) from the set
of gray and black nodes (G) with minimal blockage of legiti-
mate traffic and contamination by attack traffic, while ensur-
ing that no attack traffic can reach the victim. We define
contamination as the total attack traffic in the network. For
example, if the attack traffic is blocked at F'R3, then the total
contamination is 2 (all attackers’ packet rates are 1). We
denote the contamination in a network for the g filter assign-
ment set by ...

min
vH,GPRED(u)ﬁg

A
Wﬂ(g) = Zaa X dyy dy = dist(a7 n) (1)
a=1

Here, PRED(n) is the set of predecessors of n, «, is the
traffic load of attacker a, dist(a,n) is the number of hops
between a and n. A is the total number of attackers. There-
fore, W, is the total attack traffic load for selecting |g| FRs
out of |G| FRs. If U is the set of LUs, then the number of
blocked LUs for the filter assignment g is denoted by Uy (g).

Uy(9) = {u:u € U and PRED(u) N g # 0}. (2

The best way to minimize blockage of LU and contami-
nation is to block immediately after the attacker. In reality,
there are a huge number of attackers and the victim needs
to select a huge number of FRs to block them, which is not
possible. So, a victim has budget K for selecting a number
of FRs. Therefore, |g| should be less than or equal to .
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TABLE 1
Table of Notations

N Number of nodes

v Victim

B Total attack traffic

K Number of filters

Ay Contains contamination for Problem 1

A Contains cost for Problem 2

Cs(1) § th child of node i

A Maximum node degree of the topology
AL{] Contains attack traffic in subtree rooted by ¢
L] Contains LU traffic in subtree rooted by ¢
Ry Contains filter assignment for Problem 1
Ry Contains blocked traffic for Problem 1

R Contains filter assignment for Problem 2
G Graph containing black and gray nodes
g Assignment set

U Set of LUs

U, Set of blocked LUs

We(g) Contamination after applying g filters
C(g) Cost after applying g filters in Problem 2
10) Weight of contamination in Problem 2

In phase 4, unused filters are removed from the FRs. As
the FRs have limited capacity and computation power, it is
necessary to reduce the workload by removing the filters.
Otherwise, the attacker can flood the FRs by sending useless
filters. This types of filters are evicted soon because they are
most likely not being used.

The filter sent by a user (or victim) is only applicable to
the packets which are destined for that user (or victim).
However, an attacker can spoof the IP of the victim and
send wrong filters to FRs. This spoofed filter can be
detected using a simple handshake protocol. The spoofing
attacker will not be able to handshake with the spoofed IP
address. However, we are focusing on finding an optimal
filter assignment policy, which is discussed in the next
section.

4 SOURCE-BASED FILTER ASSIGNMENT

In this section, we formulate the problem of assigning the
source-based filters to the FRs so that the contamination is the
minimum. Table 1 lists all the notations used in this paper.

4.1 Problem Definition

Problem 1. Find a filter assignment so that the contamination is
the minimum by ensuring that all the attack traffic is blocked
before reaching the victim.

In this problem, source-based filters are used. The con-
tamination is defined by the total amount of attack traffic
in the network. The problem can be expressed as the fol-
lowing;:

minimize W.(g)

3
0 < K, ¥gC G, v G. ®

subject to

The victim v will be white (v ¢ G) if all attacker traffic is
blocked before reaching it. We propose an optimal solution
using dynamic programming.

4.2 An Optimal Solution
To solve the problem, we define the following two problems.

1) Pi(i,5,b) : Find and return optimal contamination in
the tree rooted by i for j number of filters by blocking
b attack traffic. The optimal contaminations, filter
assignments, and blocked attack traffics are stored in
Aifi, g, Rili,j], and Rs[i,j] to reuse in dynamic
programming.

2) P(i,7) : Find and return optimal contamination in
the tree rooted by i for j number of filters by ensur-
ing blockage of all attack traffic. This is the problem
defined in Problem 1. P, (i, j) = Py(4, j, B) where B is
the total attack traffic in the subtree rooted by node .

There are two options to assign filters. P (i, j,b) is the

minimum of the following two options:

Option I: The minimum total contamination, if we assign

1 filter to node i, divide the rest of the j— 1 filters into
JisJ2,---,Ja parts, assign the parts to the subtrees ¢ (i),
¢2(4),...,ca(i), and block by, by, ..., by attack traffic, respec-
tively. Therefore, the cost will be the sum of the minimum
contaminations and the contamination for unblocked attack
traffic in ¢ (%), c2(7), . . ., ca(?). In this case, the filter assigned
to 7 blocks all the attack traffic. Therefore, the unblocked
attack traffic load is O for this option.

A

Py(i, j,b) = gﬁPZPl(c(;(i),ja, bs) @)
Js:bs §—=1

+ dist[cs(1),1] x (AL[cs(i)] — bs).

Here, V5 bs < b and ZSA:1 js=7—1.

Option II: The minimum total contamination, if we divide
the number of filters into ji, js, ..., ja parts, assign them to
the subtrees c;(i),ca(7),...,cad), and block by, bs, ..., ba
attack traffic, respectively. Therefore, the contamination for
this option will be:

A
Pi(i, j,b) = g@i?zpl(cm‘),ja, bs) ®
Js:bs §=1

+ diSt[Cg(’L'), L} X (AL[C@(Z)] — b(g)

Here, 5, bs =b and Y5, js = j. We take the mini-
mum quantity from the above two options. Fig. 6b shows
the high level recursion model of the problem.

Let us consider an N node tree with maximum node
degree A. The nodes are labeled in bottom-up and left-right
order. We define A, as a N x K x B array which contains
optimal contamination and unblocked attack loads for
every node, budget, and blocked attack traffic. For example,
A4[i,7,b] contains optimal contamination in the subtree
rooted by ¢ of budget j by blocking b attack traffic.

We define AL as a 1 x N array which contains the traffic
loads of attackers in subtree rooted by every node. AL[i] is the
attack traffic load of the attacker in subtree rooted by node i.
We define Ry as an N x K x B x (A + 1) array which con-
tains the number of filters assigned to node i and its subtrees
for every node, budget, and blocked attack traffic. For exam-
ple, Ry[i,j,b,1], Ri[4,5,b,2], and Ry, j, b, A + 1] are the num-
ber of filters to the first subtree, the second subtree, and node ¢
of subtree rooted by ¢ for budget j by blocking b attack traffic.
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Fig. 4. Topologies for problems 1 and 2.

R, is the assignment according to ;. We define R, as an
N x K x B x A array which contains the blocked attack traf-
fic at optimal contamination to its subtrees for every node,
budget, and blocked attack traffic. We use a double linked
tree data structure. Each node contains a pointers to its parent,
an array of pointer to children with distance, and the color of
the node. The complete algorithm is shown in Algorithm 1.

Algorithm 1. DP Blocking Strategy for Problem 1

Input: The number of filters K, total attack traffic B, and
topology tree T'.

Output: A set of nodes in 7.

1: Procedure: BLOCK-DP1 K, B, T

2: N < number of nodes in T’

3:  forevery entry node i do

4 Initialize AL[i].

5 for j=0to K do

6: forb =0to Bdo

7.

8

9

Initialize A,[i, j,b], R1[¢, j], and Rsli, j]
CALC-P1(N, K, B)
return ASSIGNMENT(R,, Ry, N, K, B)

4.3 An Example

Let us consider the tree in Fig. 4a. First, we need to simplify
the tree. There is only one node (node 6) without a fork. We
remove node 6 and make 4 the child of its parent 7. The new
distance to 4 from 7 increases by the distance of the deleted
link. The deletion of a node can be done in constant time.
Finding out all non-forked nodes takes O(N) time. There-
fore, the simplification can be done in O(NV) time. Next, we
calculate the distance (dist) of every node from the root.
This calculation takes O(N) as it needs to traverse the whole
tree once again. A part of the dist[i, j| is shown in Fig. 4b.
Next, we compute A;[i,j] and Ry[i,j] for i =1,...,7 and
j=0,1,...,3.

Calculation for Leaf Nodes (Nodes 1, 2, and 4). A;[1,0,0] is 0
because if no filter is assigned to node 1, then no attack traffic
is blocked, and there is no contamination in subtree rooted
by 1. The attack traffic in subtree rooted by 1 does not travel
through any links (there is no link). Therefore, there is no
contamination in the subtree. R;[1,0,0] = [0,0,0], which
means no filter is assigned to the left subtree, the right sub-
tree, or itself. The blocked attack traffic load Rs[1,0, 0] is [0,0],
as no traffic is blocked from the left and right subtrees.
A[1,0,4] is co because if no filter is assigned to node 1, then
we cannot block 4 attack traffic. Therefore, this assignment is
not possible. R;[1,0,4] =[] and R,[1,0,4] =[], which
means this option is not possible. Similarly, we can calculate

Fig. 5. Tables A;, R, and R, for leaf nodes.

the A;[1,4,0], Ri[1,4,0], and Rs[l,j,0] where the j ranges
between 1 and 3 are oo, [—], and [—]. A;[1,1,4] is 0 because, if
a filter is assigned to node 1, then 4 attack traffic is blocked,
and there is no contamination in the subtree rooted by 1.
Ry[1,1,4] = [0,0, 1], which means a filter is assigned to node
1 and no filter is assigned to the left or right subtrees. The
blocked attack traffic load Rs[1,1,4] is [0,0] as no traffic is
blocked from the left and right subtrees. Similarly, we can
calculate the A;[1,7,4], Ri[1,j,4], and R»[1, j, 4] where the j
ranges between 1 and 3 are 0, [0, 0, j] and [0,0].

Calculations of A,[i], R[i], and Rsi] for any leaf node i
are trivial. Fig. 5 shows the values of A;[i], R;[i], and R,|[i]
for the leaf nodes.

Calculation for Node 5 (0 Filters to Block Attack Traffic). For
1 = b, different filter assignments can block 0, 4, 15, or 19
attack traffic. For j = 0, we have one option.

Option 1. 0 filters for nodes 5,1, and 2 (j; = 0, j» = 0). The
total contamination in this option is 4 + 15 = 19. The total
blocked attack load is 0 + 0 = 0. Total unblocked attack traffic
from node 1 is 4, which produces contamination of 4. Optimal
contamination at the subtree rooted by 1 is 0 for j = 0 and
b = 0. Total unblocked attack traffic from node 2 is 15, which
produces contamination of 15. Optimal contamination at the
subtree rooted by 2 is also 0 for j = 0 and b = 0. Therefore, the
minimum contamination for j =0 and b =0 is 4,[5,0,0] =
19. The assignment R, [5,0,0] = [0,0, 0] and blocked traffic at
the optimal contamination is R[5, 0, 0] = [0, 0].

We cannot block 4, 15, or 19 attack traffic with 0 filter.
Therefore, A,[5,0,4] = A1[5,0,15] = A;[5,0,19] = co. Ry[5,0, b]
and R[5, 0,b] is [-] for any bin {4,15,19}.

Calculation for Node 5 (1 Filter to Block 0 Attack Traffic). For
Jj =1, if we want to block 0 (b = 0) attack traffic, then we
have two options:

Option 1. We have one choice in this option.

e Choice (1): Blocking 0 attack traffic using O filter at
node 1, blocking 0 attack traffic using O filter at 2, and
assigning a filter to node 5. (j; =0,j2 =0,b, =0,
by = 0). This choice is invalid because if we assign a
filter to node 5, then 19 attack traffic will be blocked.

Option 1I. We have two choices in this option.

e Choice (1): Blocking 0 attack traffic using O filter at
node 1 and blocking 0 attack traffic using 1 filter at 2
(1 =0,52 = 1,by = 0,by = 0). Contamination for this
choice is A4y[1,0,0]+ dist [5,1](AL[1] — by) + A;[2,
1,0] + dist[5,2)(AL[2] — b)) =0+ 4 + 00 + 15 = 0.

e Choice (2): Blocking 0 attack traffic using 1 filter at
node 1 and blocking 0 attack traffic using O filter at 2
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Fig. 6. Recursion model and complete values of 4, R;, and R,.

(j1 =1,j2 = 0,b; = 0,by = 0). Contamination for this
choice is A;[1,1,0] + dist[5, 1](AL[1] — by) + A;[2,0,
0] + dist[5, 1](AL[2] — by) = 0o + 4+ 0+ 15 = cc.

The minimum contamination in option Il is co. Therefore,
the minimum contamination for j =1 and b =0 is co. So,
Ry[5,1,0] and Ry[5,1,0] are invalid ([—]).

Calculation for Node 5 (1 Filter to Block 4 Attack Traffic). For
j =1, if we want to block 4 (b = 4) attack traffic, then we
have two options:

Option I. We have few choices in this option. Any choice
will assign a filter to node 5, which will block 19 attack traf-
fic. For b = 4, this option is invalid.

Option 1I. We have four choices in this option.

e Choice (1): Blocking 0 attack traffic using 0 filter at
node 1 and blocking 4 attack traffic using 1 filter at 2
(j1 =0,by =0, jo = 1,by = 4). Contamination for this
choice is A1[1,0,0] + dist[5,1](AL[1] — 0) + A4;[2,1,0] +
dist[5,2](AL[2] —4) =00 + 4+ 00 + 11 = co.
e Choice (2): Blocking 0 attack traffic using 1 filter at
node 1 and blocking 0 attack traffic using O filter at 2
(1 =1,bp =0, jo = 0,by = 4). Contamination for this
choice is A[1,1,0] + dist[5,1](AL[1] — 0) + A;[2,0,0] +
dist[5,1](AL[2] —4) = oo+ 4 4 00 + 11 = oo.
e Choice (3): Blocking 4 attack traffic using O filter at
node 1 and blocking 0 attack traffic using 1 filter at 2
(j1 =0,b1 = 4,72 = 1,b; = 0). Contamination for this
choice is A;[1,0,0] + dist[5, 1J(AL[1] — 4) + A;[2,1,0] +
dist[5,2](AL[2] = 0) = oo+ 0 4 0o + 15 = oo.
e Choice (4): Blocking 4 attack traffic using 1 filter at
node 1 and blocking 0 attack traffic using 0 filter at
2 (j1=1,,bp =4,j5 =0,by =0). Contamination for
this choice is A;[1, 1, 0] + dist[5, 1J(AL[1] — b1)+ A;[2,
0,0] + dist[5,1)(AL[2] — by) =040+ 0 + 15 = 15.
The minimum contamination in option Il is 15. Therefore,
the minimum contamination for j = 1 and b =4 is A[5,1, 4]
is 15. So, Ry[5,1,4] and Ry[5,1,4] are [1,0,0] and [4,0],
respectively.
Calculation for Node 5 (1 Filter to Block 15 Attack Traffic). For
j =1, if we want to block 15 (b = 15) attack traffic, then we
also have two options:

Option 1. Although we have few choices in this option,
but every choice will assign a filter to node 5 which will
block 19 attack traffic. For b = 15, this option is invalid.

Option II. We have four choices in this option.

e  Choice (1): Blocking 0 attack traffic using O filter at
node 1 and blocking 15 attack traffic using 1 filter at
2 (j1 =0,by =0,jo =1,by = 15). Contamination for
this choice is A;[1,0,0] + dist[5,1](AL[1] — 0) + A, [2,
1,15] + dist[5,2](AL[2] —15) =0+ 4+ 0+ 0 = 4.

e Choice (2): Blocking 0 attack traffic using 1 filter at
node 1 and blocking 15 attack traffic using O filter at
2 (1 =1,bp =0,jo =0,by = 15). Contamination for
this choice is A4[1,1,0] + dist[5, 1](AL[1] — 0) + A;[2,
0,15] + dist[5, 1)(AL[2] — 15) = 0o+ 4 4+ 00 4+ 0 = co.

e Choice (3): Blocking 15 attack traffic using 0 filter
at node 1 and blocking 0 attack traffic using 1 filter
at 2 (j1 =0,bp = 15,52 = 1,by = 0). Contamination
for this choice is A;[1,0,15] + dist[5, 1](AL[1] — 15)+
Ai[2,1,0] +dist[5,2](AL[2] —0) =00 + 0 + oo +
15 = oo.

e Choice (4): Blocking 15 attack traffic using 1 filter at
node 1 and blocking 0 attack traffic using O filter at 2
(1 =1,,b0 =15,j5 = 0,b, = 0). Contamination for
this choice is A4[1,1,15] + dist[5, 1](AL[1] — 15) + A2,
0,0] + dist[5,1](AL[2] = 0) =004+ 0+ 0+ 15 = oco.

The minimum contamination in option II is 4. Therefore,
the minimum contamination (A4;[5,1,15]) for j=1 and
b=15is 15. So, Ri[5,1,15] and Ry[5,1,15] are [0,1,0] and
[0,15], respectively.

Similarly, we calculate the rest of the values in 4; and R;.
Figs. 6a and 6¢ show the complete value of A;, R, and R,.
A4[7,3] contains the optimal contaminations for 3 filters for
different amount of blocked attack traffic in the topology in
Fig. 4a.

4.4 Assignment Set Formulation

We generate the filter assignment set using R; and R,. The
total amount of attack traffic is 22. Therefore, R;[7,3,22]
contains the assignment at node 7 for budget 3. R,[7, 3, 22] =
[2,1,0] means the left subtree is assigned 2 filters and the
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right subtree is assigned 1 filter. Then, we look up R»(7,
3,22] = [19, 3] which means 2 and 1 filters are used to block
19 and 3 attack traffic at node 5 and 4, respectively. Next,
we need to look up R;[5,2,19] and R;[4,1,3]. R»[5,2,19] is
[1,1,0], which means left and right subtrees both are
assigned 1 filter. We look up R[5,2,19] = [4,15] which
means 1 and 1 filters are used to block 4 and 15 attack traffic
at node 1 and 2, respectively. So, we need to look up
Ry[1,1,4] and Ry[2,1,15]. R[1,1,4] and R;[2,1,15] are both
[0,0,1] which means a filter is assigned to both nodes 1 and
2. Now our assignment set is {1, 2}. Next, we look up R[4,
1,3]. R1[4,1,3] is [0,0,1], which means a filter is assigned to
node 4. Therefore, the final assignment set is {1, 2, 4}.

Next, we see another example where we find assignment
of budget 2. According to the definition, R, [7,2,22] contains
the assignment at node 7 for a budget of 2 filters. R4[7,2,
22] = [1,0, 1] means the left subtree is assigned 1 filter and
the right subtree is assigned 0 filters. Node 7 itself is
assigned 1 filter. Now, our assignment set is {7}. Next we
need to look up R [5,1,15] (R.[7,2,22] = [15,0]). R;[5,1,15]
is [0,1,0], which means right subtree is assigned 1 filter. So,
we need to look up R;[2,1,15] (Ry[5,1,15] = [0,15]). R[2,
1,15] is [0,0,1], which means a filter is assigned to both
nodes 2. Therefore, the final assignment set for budget of 2
filters is {7,2}. The algorithm is shown in Algorithm 3.

For Ay, Ry, and Ry, we need NBK, NBK(A + 1), and
NKB(A) space. For AL and dist we need 2N space.
Therefore, in total we need O(NKBA) space. For a binary
tree topology the complexity is O(N (K B)?) and the space
complexity is O(NKB). O

Algorithm 3. Find Assignment

1: Procedure: Assignment R, Ry, N, K, B

2: if B=0then

3 return ()

4: xi— Nuaj— Kz.b— B, g« {),and Q « 0.
5.  Enqueue(Q, x).
6.
7
8

while Q # () do
x — Dequeue(Q)
if Ry[z.i,x.5,2.b, A + 1] # 0 then

9: K' — Ry[x.i,x.5,2.b,1
10: B — Rylz.i,x.j,2.b,1]
11: J— U 5A:1 ASSIGNMENT(R;, Ry, cs(2.3), K', B')
12: g—gUg U{x.i}
13: else
14: for§ =1toAdo
15: x' i — cs(x.9)
16: x'.j — Ry[x.a,x.j,x.b, 1]
17: x'.b — Ryr.i,x.j,2.b,1]
18: ENQUEUE(Q, z')

19:  returng

Algorithm 2. Calculate A; and R,

1: Procedure: CALC-P1 N, K, B
2: fori=1to N do

3 for j =0to K do

4: forb=0to Bdo
5.
6

min «= 0o, map « ()

for ng, bs : Z?:l ja = j2?=1 bs =10 do

A
7 p— > {Aies(i), js, bs]
=1
+ dist(cs(2),i)(AL[es(7)] — bs)}
8: key&[j17j2>'“7jA707b17b27'~~7bA]
9: Put(map, key, p)
10: for Vs, bs : ZSA:1 js=j—1do
11: -
’ D~ Z{Al [Cﬁ(i)ujs-, bﬁ]
o—1
+ dist(cs(2),1)(AL[es(7)] — bs)}
12: key%[jl7.j2>'"7jA717b17b27'~'7bA]
13: Put(map, key, p)
14: Aq[i, j, b] < MiN(map)
15: Ryli, 7,0, Rali, §, b] «— ARGMIN(map)

Theorem 1. Complexity and space needed of Algorithm 1 are
O(N(KB)™) and O(NKBA).

Proof. Let us consider that the topology is an N node tree
with maximum node degree A and the victim has budget
of K. To find the partitions i, jo, . . . , ja we need O(KA~1)
time if we use the naive nested iteration approach. Simi-
larly, to find the partitions by, by, ..., by we need O(BAY)
time. Therefore, the complexity of Alg. 1is O(N (K B)(M).

Theorem 2. Algorithm 1 provides optimal solution.

Proof. Algorithm 1 uses a dynamic programming bottom-up
strategy to search the optimal assignment. For a one-node
tree, if the node color is not “white”, then there is no solu-
tion for K = 0. This is because without any filter, the attack
traffic will be forwarded to the downstream routers and
finally reach v. For K > 1 there is only one choice for select-
ing FR, which is that node. If that node is selected, the opti-
mal contamination is 0. In each step, the Algorithm 4
chooses the allocation of filters to itself, the left subtree, or
the right subtree which produces the minimum contamina-
tion. Therefore, the Algorithm 1 provides an optimal filter
assignment to the FRs through an exhaustive search. O

5 DESTINATION-BASED FILTER ASSIGNMENT

As we are using destination-based filters for protection
against spoofed DDoS attack, we are blocking some LUs. In
this section, we formulate another problem of assigning des-
tination-based filters to the FRs so that a weighted sum of
the contamination and blocked LUs is the minimum.

5.1 Problem Definition

Problem 2. Find a filter assignment so that the LU blockage and
contamination are the minimum.

It is always better if the victim can select some FRs within its
budget which minimize both the number of blocked LUs
and contamination. To formulate the problem we first define
the cost (C(g)) of filter assignment (g) as the following:

C(g) = oWe(g) + (1 — @)|Un(g)|- (6)
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Here, w = [0, 1] is considered a system parameter which
determines the priority of contamination and LU blockage.
If the LUs of the victim is more important to it than reduc-
ing contamination in the network, then it sets a low value of
w. For example, if the victim wants to block the minimum
number of LUs neglecting the contamination, then it sets
w = 0. If o =0, then the contamination in the network does
not have any effect on the cost and filter assignment.

As discussed in Section 3, the source-based filter cannot
ensure protection against IP spoofing DDoS attacks. For
example, if the attacker attached to node 1 uses the IP
address of the users attached to node 3 (see Fig. 4a). The fil-
ter used at node 1 or 5 would forward the packet. But if the
FRs use destination-based filters, then no spoofed attack
packet can penetrate. Therefore, the victim would use desti-
nation-based filters. The problem can be expressed as the
following optimization problem:

minimize C(g)

7
g <K, Vg G, i G. @

subject to

5.2 An Optimal Solution
To solve the problem, we define the following problem.

1)  Ps(z,7) : Find and return the optimal cost in the sub-
tree rooted by i by ensuring blockage of all attack
traffics before reaching v. The number of LUs, opti-
mal cost, and filter assignments are stored in L, A,
and R to reuse in dynamic programming.

The optimal cost of using j destination-based blocking/
filter in the subtree rooted by 4 is the minimum of the fol-
lowing quantity:

Option I. The minimum total weighted cost, if we assign 1
filter to node i and the rest of the filters to some nodes of the
subtree rooted by i. Therefore, the cost will be a weighted
sum of the minimum contamination and LU in the subtree
rooted by i. When we assign a filter to 4, then the number of
blocked LUs remains constant regardless of other filter
assignments. The problem becomes similar to Problem 1. We
can apply Algorithm 1 to find an optimal assignment in the
subtree rooted by i. First, we assume an attacker is attached
to i. This assumption confines a filter to i. Then we find an
assignment of budget j using Algorithm 1. As i will be
assigned a filter, the other j — 1 filters will be assigned to the
subtree rooted by i. Then the cost for this option will be:

Pi(lv‘]) = wPQ(i’j) + (1 - w)L[Z] ®)

Option 1I. The minimum total weighted cost, if we divide
the number of filters into ji, jo, . .., ja parts and assign them
to the subtrees ¢, (i), c2(4), ..., ca(i), respectively. Therefore,
the cost for this option will be:

A

Py(i, §) =Y Py(es(i), jo)- )

=1

We take the minimum quantity between the above two
options. If there are some attackers attached to node i, we
do not consider option II. This is because, if we assign all
the j filters to its subtree, then the attack traffic from 7 will
reach the victim v, which is not allowed by the constraint of

Fig. 7. Topology for Problem 2.

the problem definition. Fig. 9 shows the high level recursion
model of the problem.

Let us consider an N node tree with maximum node
degree A. The nodes are labeled in a bottom-up and left-
right order. We define A as an N x K array which contains
the optimal cost for every node and budget. For example,
Ali, j] is the optimal cost of budget j on the subtree rooted
by node i. We define L as a 1 x N array which contains the
number of LUs in the subtree rooted by every node. L[i] is
the number of LUs in the subtree rooted by node i. We also
define R as an N x K x (A + 1) array which contains the
number of filters assigned to node ¢ and its subtrees for
every node and budget. For example, R[i, j,1], R[4, j, 2], and
RJi, j, A + 1] are the number of filters to the first subtree, the
second subtree, and node i of subtree rooted by i for budget
Jj. The complete algorithm is shown in Algorithm 4.

Algorithm 4. DP Blocking Strategy for Problem 2

Input: The number of filters K, total attack traffic B, and
topology tree T'.

Output: A set of nodes in 7.
1: Procedure: BLOCK-DP2 K, B, T
2: N < number of nodes in T’
for every entry node i do

Initialize AL[i] and L[i].

for j=0to K do

Initialize A, [i, j], Ali, 7], R1li, j], Reali, j], and R][i, j]

CALC-P1(N,K,B)
CALC-P3(N,K,B)
return ASSIGNMENT-2(R, Ry, Re, N, K, B)

5.3 An Example

Let us consider the traffic topology in Fig. 7 and w = 0.5. We
compute the values of A[i,j], R[i,j] and L[i] fori=1,...,7
and j =0,1,...,3. We can calculate the values of L[i] by tra-
versing the tree once in a bottom up order.

Calculation for Leaf Nodes (Nodes 1, 2, 3, 4 and 5). The leaf
entry nodes are 1,2,3,4, and 5. The calculations of A and R
are straightforward. For example A[l,0] =oc. This is
because without any filter we cannot block all attack traffic.
If we assign 1 filter to node 1, then we are blocking one LU,
then A[1,1]=05x0+0.5x1=0.5. Similarly, A[l,2] =
0.5x 0+ 0.5 x 1 =0.5. R[i, 1] = [0,0,0,1], R[i,2] = [0,0,0,2],
and R[i,3] = [0,0,0,3] fori € {1,2,3,4,5}.

Calculation for Node 6 Using 0 Filters. For node 6 and j = 0,
we have one option which is option II.

Option 1. We assign 0 filters to node 6. Then, we assign 0
filters to subtrees rooted by node 1, 2, and 3 (j; =0, =
0, j3 = 0). Therefore, A[6,0] = A[1,0] + A[2,0] + A[3, 0] = o0
and R[6,0] = [0,0,0,0].
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Fig.8. A, R,and L.

Calculation for Node 6 Using 1 Filter. For j =1, we have
two options for assigning the filter.

Option I. 1 filter for node 6 and no filters for its subtrees
(j1 =0,j2 = 0,73 =0). If we assign 1 filter to node 6, the
number of block LUs is 3 (L[6] = 3). The contamination in
this option is 25 (4;[6,0,0] = 25) which is calculated using
Alg. 1. Therefore, for this option, A[6,1] = 0.5 x 4,6, 0,0] +
0.5 x L[6] =0.5 x 25+ 0.5 x 3 = 14.

Algorithm 5. Compute A and R

1: Procedure: CALC-P3 N, K, B
2: fori=1to N do

3 for j =0to K do

4 L[i) — Y25, Lles(i)]

5: min «—= 0o
6.
7
8

if 7 is attached with attacker then
p— wAili,j, AL[{]] + (1 — @) L[i]

: Pur(map, R1t, j], p)

9: else

10: for Vs : Z?:o js = jdo

11: p = i Ales(i). i)

12: PUT(T?’LO/]?7 [jl,jg, . 7jA, OLp)
13: Ali, j] — MiN(map)

14: RJi, j] < ARGMIN(map)

Option I1. We assign 0 filters to node 6 and rest of the fil-
ters to its subtrees. We have three choices to assign filters to
its subtrees.

e Choice (1): Assign 1, 0, 0 filters to subtrees rooted by
node 1, 2, and 3, respectively (j; = 1,72 = 0, j3 = 0).
Therefore, A[6, 1] = A[L, 1] + A[2,0] + A[3,0] = oc.

e Choice (2): Assign 0, 1, 0 filters to subtrees rooted by
node 1, 2, and 3, respectively (j; =0, jo = 1,73 = 0).
Therefore, A[6, 1] = A[L,0] + A[2, 1] + A[3,0] = ooc.

e Choice (3): Assign 0, 0, 1 filters to subtrees rooted by
node 1, 2, and 3, respectively (j; =0, jo =0, j3 = 1).
Therefore, A[6,1] = A[1,0] + A[2,0] + A[3,1] = oc.

For option II, the minimum cost is co. Therefore, option I

is the minimum (A[6, 1] = 14) and R[6, 1] = [0, 0,0, 1].

Similarly, we calculate the rest of the entries in A and R.

The complete A, L, and R are shown in Fig. 8. According to
the definition, A[8,3] contains the cost for budget K =3,
which is 14.

5.4 Assignment Set Formulation

From R, we can find out which FRs need to be blocked.
R[8,3,0] =2 and R[8,3,1] =1 means 2 and 1 filters are
assigned to the first and second subtrees of node 8, respec-
tively. Then, we need to look up RI[6,2] and RI[7,1]. RI6,

Ps(N, j) P3(N, j)
Pull, i-L, b); ;
1 Ps(L, j1) / \ Ps(R, j2)
i =5
Q|®

Option | Option Il

Fig. 9. Recursion model for Problem 2.

2,00=0, R[6,2,1]=0, R[6,2,2]=0, and R[6,2,3] =2,
means no filter is assigned to its subtrees and two filters
are assigned to itself. Therefore, we need to find the
assignment using Algorithm 3. According to Algorithm 3,
{6,2} is the assignment. Similarly, we can find that a filter
is assigned to node 7. So, the filter assignment is {2,6, 7}
for budget K = 3. The complete algorithm is shown in
Algorithm 6.

Algorithm 6. Find Assignment 2

1: Procedure: Assignment-2 R, Ry, Ry, N, K, B
2: xi<— Nyaxj— K, g« 0, and Q « 0.

3:  ENQUEUE(Q,X).

4:  while Q # () do

5: x <« DEQUEUE(Q)
6.
7
8

if R[z.i,2.5,A + 1] # 0 then
g «— gU ASSIGNMENT(R;, Ry, N, K, B)

: else
9: fork=1toAdo
10: 24— cp(x.i), @.j — Rlx.i,x.j, k]
11: ENQUEUE(Q, )

12:  returng

Theorem 3. Complexity and space needed of the DP Blocking
Strategy for Problem 2 are O(N(KB)(AA)) and O(NKBA).

Proof. Let us consider the topology is a N node tree with a
maximum node degree A and the victim has a budget of
K. To find the partitions ji, js, . . ., ja, we need O(KA-1)
time if we use the naive nested iteration approach. The
algorithm uses Algorithm 1. Therefore, the complexity of
Alg. 4is O(N(KB)* ™).

The additional space needed for A and R are NK and
(A + 1)NK, respectively. The total space needed including
space needed for Algorithm 1is an order of O(NKBA). O

Theorem 4. Algorithm 4 provides an optimal solution.

Proof. Algorithm 4 uses a dynamic programming bottom-
up strategy to search the optimal assignment. For a one-
node tree, if the node color is “black” or “gray”, then there
is no solution for K = 0. This is because without any filter,
the attack traffic will be forwarded to the downstream
routers. For K > 1 there is only one choice for selecting
FRs, which is that node. If that node is selected, the opti-
mal number of blocked LUs is the number of LUs
attached to it. In each step, Algorithm 4 chooses the best
allocation of filters to itself, the left subtree, or the right
subtree. Therefore, Algorithm 4 provides an optimal filter
assignment to the FRs through an exhaustive search. O
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TABLE 2
Topology Parameters
Topology I Topology I
Number of nodes 66 403
Internal user probability 0.1 0.1
Attacker ratio 0.4 0.4
Max Node Degree 4 20
Data Rate(pack/ms) [0.1-0.4] [0.1-0.4]

6 EXPERIMENTAL RESULTS

In this section, we present our experimental settings and
simulation results.

6.1 Experimental Setting

We conduct the experiments with a custom build Java simu-
lator. The main reason for using a custom built simulator is
its scalability. We do not need to analyze transmission time,
bandwidth, or packet drop issues. We only need to count the
number of legitimate (or attack) received (or blocked) pack-
ets. The network topologies we considered contain about
100 — 500 routers. Using NS3 or other similar simulators for
this kind of simulation would take several days. That is why
we built our own Java multi-threaded simulator to get the
results quickly. The simulation result might be slightly dif-
ferent than the real scenario because of the natural packet
drops, failure of the FRs, the variable data rate of LUs/
attackers, and change in the routing paths. Therefore, in the
real scenario, the victim needs to periodically change the fil-
ter assignment. The contamination, blocked /received attack
packet, and blocked /received legitimate packets might not
be significantly different than the victim’s calculation.

We conduct simulations for randomly generated tree
topologies and a subset from a real network topology. To gen-
erate a random tree, we first generate the desired number of
nodes. Then, we randomly pick a root among the nodes. After
that a random node from the generated nodes is picked up
and added as a child to a random node in the tree. The process
continues until all of the generated nodes are added to the
tree. We use a randomly generated topology having node
degree between [0 — 4], internal node user probability
between [0.1 — 0.25], and maximum depth of 6. Each entry
node color and the number of users or attackers are selected
randomly from a uniform distribution. Topology I is a ran-
domly generated tree of 66 nodes and max node degree of 4.
Topology Il is taken from a subset of the Stanford University
AS-733 dataset [27]. The dataset contains 6,474 nodes and we
took a subset (which is a tree) containing 403 nodes. Then we

(b) Topology II.

(a) Topology L.

Fig. 10. Randomly generated topologies.
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Fig. 11. Formation of topology.

randomly assigned users to the tree with an internal user
probability of 0.1. The details are shown in Table 2 and Fig. 10.

We measure the performances of our proposed solutions in
terms of contamination (C), Cost (according to Equation (6)),
blocked LU traffic, the number of blocked attack packets
(AB), the number of received attack packets (AR), number of
blocked legitimate packets (LB), and the number of received
legitimate packets (LR) for the two topologies.

6.2 Simulation Results

We first conduct a simulation with a three level complete
binary tree to see the number of packets needed to find the
topology. Each node is considered as a FR. Each leaf node is
attached with a LU. The root is connected with the victim.
Each LU sends packets to the victim with a constant rate.
Then we assign the same marking probability to all FRs.
Each time when the victim receives a marked packet, it tries
to construct the topology form the marking information it
got so far. If the constructed topology is correct up-to one
level (from the root) then we record the number of total
packets (both marked and unmarked) received by the vic-
tim. The process continues and we record the total number
of packets received by the victim when it succeeds in con-
structing the topology up to two levels and three levels. We
repeat the process by assigning different marking probabil-
ity. Fig. 11 shows the number of packets by the marking
probability. We run the simulation 50 times and take the
average. The marking probability ranges between 0.2 and 1.
A huge number of packets is needed to construct the com-
plete topology when marking probability is below 0.2. We
can observe that the number of packets needed reduces
exponentially with the marking probability.

For the following experiments, we use Topology II to
observe the performances of both approaches for different
budgets. We change the attacker ratio and repeat the experi-
ments. We plot the average and standard deviation of 100
random attacker and LU distributions.

Fig. 12a shows the contamination by the number of
source-based filters. We vary the number of filters from 1 to
40. The highest contamination is with 75 percent attackers,
the lowest is 25, and 50 percent is in between for all budgets.
The contaminations of all attacker distributions decrease by
the number of filters. The higher the number of filters, the
closer the filters are deployed to the attackers. As a result, a
higher number of filters produces a lower contamination.
For 75 percent attackers, the contaminations with 1 and 40
filters are 7,681 and 2,424. Therefore, the contamination is
68 percent reduced. For 25 percent attackers, the contamina-
tions with 1 and 40 filters are 2,503 and 426. Therefore, the
contamination is 82 percent reduced.
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Fig. 12. Simulation results.

Figs. 12b, 12¢, and 12d show the contamination, blocked
LU traffic, and cost for destination-based filters. We keep
the w as 0.5. We observe that the contamination of source-
based filter and destination-based filters are similar. This is
because, we give equal priority to the contamination and
blocked LU traffic. The amount of blocked LU traffic is also
decreasing by the number of filters. As a result, the cost is
decreased by the number of filters. For 75 percent attackers
the blocked LU traffic with 1 and 40 filters are 446 and 402.
Therefore, the blocked LU traffic is reduced by 10 percent.
For 25 percent attackers, the blocked LU traffic with 1 and
40 filters are 1,360 and 427. Therefore, the blocked LU traffic
is reduced by 69 percent.

Fig. 12e shows the contamination by the number of nodes.
We vary the number of nodes from 10 to 210. We keep the
number of filters as 20. Similar to the above experiment, the
highest contamination is with 75 percent attackers, the low-
est is 25, and 50 percent is in between for all numbers of
nodes. The contaminations of all attacker distributions
increase by the number of nodes. The higher the number of
nodes, the higher the number of attackers and the height of
the tree. As a result, a higher number of nodes produces
higher contamination. For 75 percent attackers, the conta-
mination with 10 and 210 nodded trees are 0 and 438. For
25 percent attackers, the contamination with 10 and 210 nod-
ded trees are 0 and 117. In 10 nodded trees, we observe a con-
tamination of 0, because 20 filters are more than enough to
block every attacker at the closest router. Therefore, no attack
traffic enters into the network and contamination is 0.
Figs. 12f, 12g, and 12h show the contamination, blocked LU
traffic, and cost for destination-based filters. We keep the w

(c) Blocked LU traffic (dest-based). (d) Cost (dest-based).
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as 0.5. We observe that the contamination of source-based
and destination-based filters are also similar. The amount of
blocked LU traffic is also increasing by the number of nodes.
As aresult, the cost is increasing by the number of nodes. For
75 percent attackers the blocked LU traffic in 10 and 210 nod-
ded trees are 1 and 63. For 25 percent attackers the blocked
LU traffic in 10 and 210 nodded trees are 2 and 147. The con-
tamination, blocked LU traffic, and cost increase almost line-
arly by the number of nodes.

Figs. 12i and 12j show the contamination, blocked LU
traffic, and cost for destination-based filters. We vary the
value of w from 0 to 1. We keep the number of filters as 30.
The contamination and amount of blocked LU traffic
decrease and increase by w, respectively. For 75 percent
attackers, when w = 0, the contamination and blocked LU
traffic are 4,141 and 327. When o = 1, the contamination
and blocked LU traffic are 2,848 and 431. When w is lower,
the blocked LU traffics are prioritized over contamination.
Therefore, when w =0 the contamination is higher than
when w = 1. Similarly, when w = 0, the blocked LU traffic is
lower than when w = 1.

Figs. 12k and 121 show contamination (C), the number of
blocked attack packets (AB), the number of received attack
packets (AR), the number of blocked legitimate packets (LB),
and the number of received legitimate packets (LR) using
source-based and destination-based filters over time. The
time for this simulation is the system time of the machine we
used for simulation. This time does not reflect the actual time
but it shows the changes of the C, AB, AR, LB, and LR over
time. Topology I is used in this experiment because it is
smaller than Topology II. For this reason, we can observe the
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effect of topology construction better in Topology I than in
Topology II. Here, the contamination is the total number of
attack-packet forwarding events. We can see that, at the
beginning (ignoring the warm-up period from time 0 to
0.025), the C in every approach is higher. The C reduces over
time and becomes gradually more stable. This is because at
the beginning, the victim knows a small subset of the topol-
ogy. Over time, the victim gets more and more information
from the marked packet and constructs the traffic topology.
Finally, the victim’s knowledge about the topology becomes
stable. That is why the AR is high at the beginning, decreases
over time, and finally converges to 0. The AB shows the
opposite behavior for the same reason. We also observe that
the LB is 0 in source-based filter. The AB is initially 0 when
no filter is deployed. Gradually, the AB increases and
becomes stable after some time.

7 CONCLUSION

The DDoS attack is the most powerful attack that makes a
service unavailable to users. It is not possible to protect
any server from DDoS attacks without the help of the net-
work equipment. As the most important component in a
network, routers can be upgraded to filter routers easily.
Besides, the filter router can work in a network with leg-
acy routers. In the four-phase DDoS protection system,
the filter routers block the attack traffic according to the
victim’s instruction. Although the blocking control of an
Internet service provider (ISP) is at the victim’s hand,
who may not belong to the ISP but it will help the ISP
minimize traffic congestion. Therefore, both parties are
benefited. In this work, we present three filter assignment
policies for two different settings. We observe the per-
formances of the proposed policies in synthetic and real
topologies. Both the source-based and destination-based
filters have some advantages and limitations. In the
future, we may formulate another problem for finding an
optimal assignment using the filter type most fitted to a
filter router.
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