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Abstract— This work presents an online trajectory

generation algorithm using a sinusoidal jerk profile. The

generator takes initial acceleration, velocity and position

as input, and plans a multi-segment trajectory to a goal

position under jerk, acceleration, and velocity limits.

By analyzing the critical constraints and conditions, the

corresponding closed-form solution for the time factors and

trajectory profiles are derived. The proposed algorithm

was first derived in Mathematica and then converted into

a C++ implementation. Finally, the algorithm was utilized

and demonstrated in ROS & Gazebo using a UR3 robot.

Both the Mathematica and C++ implementations can be

accessed at https://github.com/Haoran-Zhao/Jerk-

continuous-online-trajectory-generator-with-

constraints.git

I. INTRODUCTION

Due to their outstanding agility and adaptability, industrial
robot arms have proliferated to reduce cost, increase through-
put, and ensure safety of personal and property. To achieve
movement tasks, trajectory generation is a critical topic that
has been developing since the first robot released. Moreover,
trajectory generation is an important section in almost every
robotics textbook [1]. Trajectories are often planned in the
task space (Cartesian space) [2]–[4] because movements in
the task space are more intuitive and trajectories can be
easily observed or adjusted after planning. However, it is
often challenging to avoid kinematic singularities and respect
kinematic and dynamic constraints in task space planning.
Another leading method is to plan a trajectory in the joint
space [5]–[7], which can provide a non-singular solution and
meet both kinematic and dynamic constraints. Both methods
can ensure that the robot passes through desired waypoints in
the task space. However, the latter method cannot guarantee a
straight path because the inverse kinematic conversion causes
a non-linear relationship between Cartesian space and joint
space.

Most published work on interpolating methods for tra-
jectory planning with waypoints use polynomial interpola-
tion [8]–[11]. Using higher degree polynomials can improve
accuracy and satisfy higher level constraints. For instance, a
cubic polynomial can satisfy velocity constraints, a quintic
can satisfy acceleration constraints, and a 7th order polyno-
mial can satisfy jerk constraints [10]–[13]. However, higher
degree polynomials can also cause oscillation known as
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Fig. 1. Kinematic profile of a 15-phase jerk-continuous trajectory. See
video overview at https://youtu.be/aqUpL7RO9BY.

Runge’s phenomenon and lead to unstable convergence [12],
[14].

To address these issues, piecewise polynomials are used
in many practical situations. Splines are a class of piecewise
functions that are defined by multi-order polynomials. They
are simple to construct and they can accurately approx-
imate complicated shapes [15], [16]. When compared to
polynomial fits, splines yield similar results to lower degree
polynomials and avoid Runge’s phenomenon. Trajectory
planning algorithm can be further categorized according to
their computation cost as either online or offline algorithms.
Polynomial based algorithms are often computed offline with
given waypoints. Often optimization methods or iterative
computation are implemented to find the control sequence
[11], [12], [17]. However, offline computation can not react
to sensor or interface inputs.

To achieve online trajectory planning, most presented work
uses a trigonometric kinematic profile to provide a closed-
form solution. This reduces computational burden [2], [13],
[17]. In [13], an online methodology to generate smooth
trajectories using sinusoidal jerk profiles was proposed. The
trajectory planner takes an initial and final position as input,
and plans the trajectory to respect maximum jerk, accel-
eration, and velocity constraints. Because the jerk profiles
are designed using a sinusoidal pattern (so that they are
differentiable away from 0), the magnitude of the jerk is
bounded by the amplitude, and the integrated acceleration
and velocity can also be bounded by carefully designing the
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time factors of the trajectory segments corresponding to the
inputs. This methodology solves the trajectory problem by
splitting it into phases. The duration of each phase is called
a time factor. The closed-form solution for the time factors
and the trajectory profile were well explained in [13]. By
analyzing the closed-form equation of the accumulated final
displacement of the planned trajectory, the peak jerk varies
correspondingly with a cube of 1/K, where K is the ratio of
the general trajectory minimum time and individual degree
of freedom minimum time. Therefore, the ratio K is the key
condition to achieve phase synchronization of all degree-of-
freedom by changing the time factors and the magnitude of
peak jerk of each degree of freedom. Moreover, the phase
synchronization relies on a symmetric trajectory profile,
which is only possible if the acceleration and velocity is
initially zero. These constraints on intial conditions limit the
efficiency of the motion conducted by the planned trajectory
because the robot must stop at each waypoint and cannot
incorporate new information from the sensors or interface
while implementing the motion. To address these issues, the
current acceleration and velocity should also be taken as
inputs.

In this work, we present an algorithm that extends the
methodology in [13] by enabling non-zero initial acceleration
and velocity. The proposed algorithm can also handle cases
when the initial velocity or acceleration are beyond the max-
imum constraints, or cause the system to overshoot the goal
position. A brief review of the previous work is presented
in Section II-A. The extended algorithms for generating a
trajectory with non-zero initial acceleration and velocity are
illustrated in Section II-B. Case studies are discussed in
Section III, with ROS&Gazebo simulation results. Section IV
concludes with a discussion on the current work and potential
future work. The closed-form equations of the proposed
algorithms are published in Mathematica and C++ [18].

II. METHODOLOGY

An online trajectory generation algorithm with sinusoidal
jerk pattern under kinematic constraints is presented in this
section. The main concepts from [13] are briefly summarized
in Section II-A to make this paper understandable and self-
contained. Next, the extension that enables non-zero initial
acceleration and velocity is presented in Section II-B. All
the mathematical computation and critical constraints will
be discussed to find the closed-form solution of the time
factors which are used to generate the trajectory segments.

A. Jerk-continuous trajectory generation with zero initial

kinematic inputs

A three-phase sinusoidal jerk profile trajectory planning
method was first proposed in [19], and it was adopted and
implemented for industrial robot and manipulator tools [20]–
[22]. The three-phase trajectory consists of the symmetric
sequential connection of an acceleration phase, a constant
velocity phase and a deceleration phase. Although the trajec-
tory is designed to utilize peak jerk, the main weakness is that
modern robots cannot maintain jerk and acceleration at the
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Fig. 2. Kinematic profiles for the eight types of 15-phase jerk-continuous
trajectories.

maximum values. Fang [13] proposed another sinusoidal jerk
profile planner with a fifteen-phase sinusoidal jerk profile to
address this weakness. The idea is to maintain the constant
peak velocity phase as long as possible by keeping the
acceleration and jerk quantities in their saturation state for
the longest possible time. The jerk is continuous, and there
are eight partial sine jerk phases, four constant jerk phases,
two constant acceleration phases, and one constant velocity
phase. This is similar to Fig. 1, but the duration of all
phases are defined by T1, T2, T3 and T4. The sinusoidal jerk
profile for each segment is defined as the following piecewise
function:

J(t)=

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Jpeak sin
⇡⌧i
2T1

t0  t < t1, t12  t < t13
Jpeak t1  t < t2, t13  t < t14
Jpeak sin

⇡
2 (1 +

⌧i
T1
) t2  t < t3, t14  t  t15

0 t3  t < t4, t7  t < t8,

t11  t < t12
�Jpeak sin

⇡⌧i
2T1

t4  t < t5, t8  t < t9
�Jpeak t5  t < t6, t9  t < t10
�Jpeak sin

⇡
2 (1 +

⌧i
T1
) t6  t < t7, t10  t < t11

.

(1)
The ⌧i = t � ti values represent the relative time in
the time range of the ith interval, and i = 1, 2, . . . , 15.
The corresponding acceleration, velocity and displacement
profiles can be derived sequentially by integrating the lower-
level profiles. Equations for each segment can be found
in [13].

An additional parameter ↵ in [13] was introduced that
controls the sinusoidal profile. The parameter ↵ is defined
as the ratio of the sine jerk profile duration (T1) and the
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Fig. 3. Overshoot trajectory profile generated by the proposed algorithm.

total duration of sine and constant jerk profile (T1 + T2):

↵ =
T1

T1 + T2
,↵ 2 [0, 1]. (2)

When ↵ approaches 0, T1 also approaches 0, and the
sinusoidal jerk trajectory planner approximates a bang-bang
jerk controller. Oppositely, when ↵ approaches 1, T2 ap-
proaches 0, and the 15-phase sinusoidal jerk trajectory plan-
ner approaches a 3-phase sinusoidal jerk trajectory planner.
To generate a minimum time trajectory with this sinusoidal
jerk pattern, the main problem can be subdivided into the
following four cases:

1) Case 1: Maximum acceleration and velocity are
attainable (|Apeak| = Amax, |Vpeak| = Vmax), and
T1, T2, T3 and T4 are not zero.

2) Case 2: Maximum acceleration is attainable but
maximum velocity is unattainable (|Apeak| = Amax,
|Vpeak| < Vmax), and only T4 is zero.

3) Case 3: Maximum acceleration is unattainable but
maximum velocity is attainable (|Apeak| < Amax,
|Vpeak| = Vmax), and only T3 is zero.

4) Case 4: Maximum acceleration and velocity are
unattainable (|Apeak| < Amax, |Vpeak| < Vmax), and T3

and T4 are zero.

The details for computing the time factors are explained well
in [13], and will not be further discussed. To apply this to a
multi-joint robot, the trajectory duration is computed for each
degree of freedom, and the execution time is the maximum
duration over all the joints.

B. Jerk-continuous trajectory generation with non-zero ini-

tial kinematic inputs

The proposed trajectory generation algorithm that takes
non-zero initial kinematic inputs still consists of 15 phases
as shown in Fig. 1. However, the time factors of segments ⌧1

to ⌧4 are replaced by the time factors ta1, ta2, ta3, the time
factors of segments ⌧5 to ⌧7 are replaced by the time factors
tb1, tb2, and the time factors of segments ⌧9 to ⌧15 are re-
placed by the time factors tc1, tc2, tc3. This is needed because
non-zero kinematic inputs break the symmetric property of
the original design concept, thus, the segments ⌧1 to ⌧7 are no
longer symmetric with the segments ⌧8 to ⌧15. Using three
sets of time factors provides a greater variety of jerk and
acceleration profiles to handle more complicated cases than
can be handled by two sets time of time factors. For instance,
if the initial velocity and acceleration are maximized, a
long displacement is required. After substituting the initial
conditions and ta1 ⇠ ta3 to the first four phase segments,
the sinusoidal jerk profile of the first four phases are:

J(t) =

8
>>><

>>>:

Jpeak sin
⇡⌧i
2Ta1

t0  t < t1
Jpeak t1  t < t2
Jpeak sin

⇡
2 (1 +

⌧i
Ta1

) t2  t < t3
0 t3  t < t4

, (3)

where t1 � t0 = ta1, t2 � t1 = ta2, t3 � t2 = ta1, and
t4�t3 = ta3. The general acceleration, velocity, and position
profile of each phase segment are:

8
>>><

>>>:

a(t) = a(ti) +
⇣R t

ti
J(t) + Ca

i+1(t) dt
⌘

v(t) = v(ti) +
⇣R t

ti
a(t) + Cv

i+1(t) dt
⌘

p(t) = p(ti) +
⇣R t

ti
v(t) + Cp

i+1(t) dt
⌘

, (4)

where ti is the end time of the previous phase segment.
C⇤

i+1 is the compensation term of each profile to ensure the
current segment starts from the end of the previous segment.
The closed-form profile of each segment is listed in the
Mathematica file [18]. The sinusoid profile parameter is

↵ =
t⇤1

t⇤1 + t⇤2
. (5)

Here ⇤ presents the three time factor sets a, b, and c. As
in [13], the parameter ↵ defines ta2, tb2 and tc2 according to
(5) and the values ta1, tb1 and tc1, simplifying the closed-
form solution. It is possible to use three ratio parameters
for the three sets of time factors, but only one parameter ↵
is used in the computation to reduce the complexity of the
closed-form solution. As Fig. 1 shows, the whole trajectory
can be classified as three parts, the first part is from t0 ⇠ t7,
the second part is from t7 ⇠ t8, and the third part is
from t8 ⇠ t15. The acceleration reaches and maintains peak
magnitude at time t3 and t11, and the velocity reaches and
maintains peak magnitude at time t7 and t8. t4 is mainly
decided by the length of the required displacement because
it is the coasting time at the maximum velocity. However, not
every trajectory profile can reach the maximum acceleration
or velocity from the given initial states, so the time factors
ta3, tc3 and t4 can be zero after planning. Therefore, the
trajectory profile consists of time factor combinations with
and without ta3, tc3 and t4, resulting in the eight types
shown in Fig. 2. As shown in Fig. 1, Case 1 presents the
first part colored in yellow, Case 2 presents the second



part colored in green, and Case 3 presents the third part
colored in red. For Case 1, after substituting the time
factors ta1, ta2, ta3, tb1, tb2, and integrating from t0 ⇠ t7,
the equations for the final acceleration, velocity and position
at t7 are:

a(t7) = a0 +
4Jmaxsata1

⇡
+ Jmaxsata2 �

4Jmaxsatb1
⇡

� Jmaxsatb2 (6)

v(t7) =
1

2⇡
2Apeak⇡(ta3 + 2tb1 + tb2) + Jmaxsa((2ta1

+ ta2)(4ta1 + ⇡ta2)� 4t2b1 � 4tb1tb2 � ⇡t2b2
� 2tb1(2tb1 + ⇡tb2)) + 2⇡(a0(2ta1 + ta2) + v0) (7)

p(t7) = p0 +
8Jmaxsat3b1

⇡3
+

1

6
(3Apeak(ta3 + 2tb1 + tb2)

2

+ 3a0(2ta1 + ta2)(2ta3 + 2ta1 + ta2 + 4tb1 + 2tb2)

+
1

⇡3
Jmaxsa(48(�2t3a1 + t3b1) + 24⇡(�t2a1ta2

+ t2b1tb2) + ⇡3(3ta3ta2(2ta1 + ta2) + 3ta2(2ta1+

ta2)tb1 + 3ta1ta2(ta1 + 2tb1) + t2a2(ta2 + 3(ta1+

tb1)) + 3ta2(2ta1 + ta2)tb2 � 3t2b1tb2 � 3tb1t
2
b2 � t3b2)

� 6⇡2(�4ta1(2ta1 + ta2)tb1 + 2t3b1 + 2t2b1tb2+

tb1t
2
b2 + 2t2b1(tb1 + tb2)� ta1(2ta1 + ta2)(2ta3+

2ta1 + ta2 + 2tb2))) + 6(ta3 + 2ta1 + ta2 + 2tb1+

tb2)v0) (8)

Case 2 is the coasting phase at maximum velocity, so the
acceleration a(t8) and velocity v(t8) are the same as a(t7)
and v(t7), and position p(t8) = p(t7) + v(t7)t4. For Case
3, after substituting the time factors tc1, tc2, tc3, and t4, and
integrating from t0 ⇠ t7, the equation of the velocity and
position at t15 are:

v(t15) =
Jmaxsv

�
8t2c1 + 2(2 + ⇡)tc1tc2 + ⇡t2c2

�
+ ⇡v(t8)

⇡
(9)

p(t15) = p(t7) +
1

2
Apeak(2tc1 + tc2 + tc3)

2+

1

2
Jmaxsvtc2(4t

2
c1 + tc2(tc2 + tc3) + 2tc1(2tc2+

tc3)) +
1

⇡
Jmaxsvtc1(8t

2
c1 + 2tc2(tc2 + tc3)+

4tc1(2tc2 + tc3)) + (4tc1 + 2tc2 + tc3 + t4)v(t7)
(10)

The sa and sv in the above equations are the sign of the jerk
profile of Case 1 and Case 3. Because the acceleration profile
of Case 3 is symmetric about tc3, and the initial acceleration
a(t8) = 0, the final acceleration is a(t15) = 0. First, the
solutions for a trajectory that does not contain the maximum
velocity coasting phase (t4 = 0) is discussed.

Type I: (ta3 = 0, t4 = 0, tc3 = 0). For this type, the Apeak

of Case 1 and Case 3 are assumed to be less than Amax, thus
the relationship between ta1 and tb1 can be found by setting
(6) to zero.

tb1 = ta1 +
(a0⇡↵)

Jmax⇡sa + 4Jmaxsa↵� Jmax⇡sa↵
(11)

Then substitute (5) and (7) into (10) and (9), then ta1
and tc1 can be found by setting the final displacement
(10) equal to Pgoal and final velocity (9) equal to zero.
However, the closed-form solution of ta1 and tc1 can not
be directly solved because each equality equation contains
second or third order powers of ta1 and tc1. This issue is
addressed by collecting coefficients of tc1 using (9) after
substitution, then collecting coefficients of ta1 using (10)
after substitution, then rewriting these two equality equations
with new coefficients. The coefficients were solved in the
general form using Mathematica. This results in a sextic
equation in ta1. All real, positive roots for ta1 are then
substituted into an equation to solve for tc1, and only the
values of ta1 that result in a positive, real tc1 are retained.

Type II: (ta3 = 0, t4 = 0, tc3 6= 0) Because tc3 is not
zero, the acceleration of the third part of the trajectory can
reach Amax. The acceleration reachable by one jerk bump
can be presented as (6) without the last two terms on the
right. Moreover, a(t8) is zero, and tc1 is

tc1 =
Amax⇡↵

Jmaxsv(⇡ + 4↵� ⇡↵)
. (12)

The relationship between tb1 and ta1 is the same as (11). The
relationship between ta1 and tc3 can be found by setting (9)
equal to zero.

tc3 =
�1
Amax

✓
v0 +

2a0ta1(1 + ↵)
↵

+
a2
0⇡(1 + ↵)

2Jmaxsa(⇡ + 4↵� ⇡↵)
(13)

+
A2

max⇡(1 + ↵)
Jmaxsv(⇡ + 4↵� ⇡↵)

+
Jmaxsat

2
a1(⇡ + 4↵+ (4� ⇡)↵2)

⇡↵2

◆

Finally, ta1 is computed by substituting all terms into (10),
generated a quartic equation, where ta1 is the positive real
root of this equation.

Type III: (ta3 6= 0, t4 = 0, tc3 = 0) the acceleration in
Case 1 can reach Amax, so ta1 and tb1 can be directly solved
using (6). The closed-form solutions are:

ta1 =
(a0 �Amax)⇡↵

Jmaxsa(⇡↵� 4↵� ⇡)
(14)

tb1 =
Amax⇡↵

Jmaxsa(4↵+ ⇡ � ⇡↵)
(15)

The relationship between ta3 and tc1 are found by setting
(9) to zero.

ta3 =
1

2AmaxJmax⇡sa(⇡(↵� 1)� 4↵)↵2

✓
(2A2

max � a20)

⇡2↵2(1 + ↵) + 2Jmax⇡sav0↵
2(⇡ + 4↵� ⇡↵)+

2J2
maxsasvt

2
c1(1 + ↵)(⇡ + 4↵� ⇡↵)2

◆
(16)

Similar to Type II, tc1 can be solved by substituting all terms
into (10), and ta1 is the minimum positive real root of this
quartic equation.

Type IV: (ta3 6= 0, t4 = 0, tc3 6= 0) Because both Case
1 and Case 3 can reach Amax, the tc1, ta1 and tb1 can
be computed using (12), (14), and (15). The relationship



between tc3 and ta3 can be found using the final velocity
equality equation:

tc3 =
1

2Amax2Jmaxsasv(⇡ (↵� 1)� 4↵)

✓
2A2

max2⇡sa

(1 + ↵)� a20⇡sv(1 + ↵) + 2sv
⇣
A2

max1⇡(1 + ↵) +Amax1

Jmaxsata3(⇡ + 4↵� ⇡↵) + Jmaxsav0(⇡ + 4↵� ⇡↵)
⌘◆

.

(17)

The term Amax2 is the maximum acceleration reached in
Case 1, and Amax2 is the maximum acceleration reached in
Case 3. The time ta3 is computed by substituting all terms
into the final displacement equation and setting it equal to
Pgoal. Unlike with Type II and Type III, after substitution
the equation is a quadratic equation, and ta3 is the root.
Sometimes both roots can be positive real numbers, so they
can both be used as candidate solutions. Usually only the
larger root is the correct answer.

The method to solve Type V⇠Type VIII are similar to
Type I⇠Type IV, but t4 is not zero. Because t4 is the duration
time of the coasting phase at maximum velocity, t4 can be
easily solved after all the other time factors are computed.
First, let t4 be equal to zero and substitute all time factors
into the final displacement (10). The difference between pgoal
and the displacement computed from the equation pcompute is
the distance traveled with maximum velocity. Thus, t4 can
be solved with

t4 =
|pgoal � pcompute|

Vmax
(18)

With the given inputs, the planner computes the time
factors according to the eight types, and the results satisfy:
(i) All time factors should be non-negative real numbers.
(ii) Vpeak results calculated by (7), v(t7)a and v(t7)b must
equal each other.
(iii) Apeak results calculated by (6), a(t7)a and a(t7)b must
equal each other.
(iv) Vpeak computed using (7) must not exceed the maximum
velocity magnitude.
(v) Apeak of Case 1 and Case 3 must not exceed the
maximum acceleration magnitude.
(vi) Final acceleration a(t15) is zero.
(vii) Final velocity calculated using (9) is zero.
(viii) Final position calculated with (10) is the target position.
The threshold used in the program is 1e�06. The jerk-
continuous trajectory with arbitrary initial state and kine-
matic constraints is minimized by using one of the eight
profile types. Theoretically, the eight profile types cover
all the trajectory cases, however, experiments show the
algorithm may not always find the optimal solution when
it can first accelerate or brake down to ±Vmax and then
coast. Thus, a pre-check is implemented into the algorithm
to address this issue. First, the displacement pta needed to
ramp up or down from initial state to maximum ±Vmax is
calculated, then the displacement ptb needed to brake from
±Vmax to zero is computed. If the total distance of pta and
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Fig. 4. Trajectory profile coasting at maximum velocity.

ptb is in same direction as pgoal and less than pgoal, then
there is a coasting phases with Vmax. The time factor t4 can
be calculated using (18). Because this scenario is one of
Type V⇠Type VIII, the methods to solve other time factors
is reusable. Finally, the process to compute the time factor
and profile of the sinusoidal jerk continuous trajectory with
given initial state under constraints is shown as Algorithm 1,
which is programmed in Mathematica and C++ [18].

Algorithm 1: SINUSOIDAL JERK-CONTINUOUS
ONLINE TRAJECTORY GENERATION
Data: a0, v0, p0, pG,↵, Jmax, amax, vmax

1 Pre-check if solution can coast at Vmax;
2 if Yes then

3 Generate trajectory profile
4 else

5 Candidates  Compute time factor of all 8 types;
6 TimeFactors  CheckIfValid[Candidates];
7 ProfileGenerator[TimeFactors];
8 end

9 Return: hjerk, accel, vel, posi

III. CASE STUDIES

The sinusoidal jerk continuous trajectory generation algo-
rithm proposed in this paper is not limited to the scenarios
discussed in the previous section shown as Fig. 2. It can also
address the overshooting problem, where the initial velocity
and/or acceleration cause the system to overshoot either Vmax
or the target position pG. Here we presented an extreme case
which cannot be solved by the original algorithm presented
in [13]. As shown in Fig. 3, the initial position and target
position are the same, the initial velocity exceeds Vmax, and
the initial acceleration is Amax. The trajectory planned by
Algorithm 1. First the acceleration and velocity are ramped
down to �Amax and �Vmax, then it coasts with �Vmax, and



Fig. 5. Minimum time for a change in position of 0 (top) and 10
(bottom) over different initial accelerations and velocities. While the time is
continuous with no position change, with a non-zero position change there
is a discontinuity.

finally it arrives at the target position with zero accelera-
tion and velocity. This example also demonstrates that if
the initial velocity or acceleration causes the velocity or
acceleration to break the kinematic constraints, the proposed
algorithm can bring the kinematics back to the safe range.

Another case with the initial velocity at the maximum
velocity is shown in Fig. 4. The solution trajectory first ramps
down the initial acceleration, then brings the velocity back to
Vmax and starts coasting. Finally, it stops at the goal position.

A minimum-time trajectory generation study is shown in
Fig. 5. The input for generating the plot are following: v0 2
[�10m/s, 10m/s], a0 2 [�10m/s2, 10m/s2], p0 = 0m,
pG = {0m, 10m}, Jmax = 10m/s3, Amax = 10m/s2,
and Vmax = 10m/s. As the figure shows, the x and y-
axis are initial acceleration and velocity input, and the z-
axis is the duration of the planned trajectory. The minimum
time strongly depends on the initial state, and for some
configurations the duration has a discontinuity, where the
system transitions from being able to directly go to the goal
position to an being obligated to overshoot.

t0 t1 t2 t3 t4 t5 t6
p0

pG
Position

Sine Jerk
Ruckig

t0 t1 t2 t3 t4 t5 t6
0
V0

Vpeak
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t0 t1 t2 t3 t4 t5 t6
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0

Apeak
Acceleration

t0 t1 t2 t3 t4 t5 t6
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0

Jpeak
Jerk

Fig. 6. Trajectory profile comparison with Ruckig [23] when ↵ = 1e�6.
For this small ↵ value, the difference is tiny.

The mathematics discussed in Section II and the algorithm
shown in Algorithm 1 were initially derived and implemented
in Mathematica, then converted into C++. All files and codes
can be accessed at [18]. To confirm that the computation
results are the same after conversion into C++, a data set
of 10000 random inputs were generated by MATLAB. The
initial acceleration, velocity, position and target position are
all bidirectional. Then the trajectory time factors of the
two version were compared and mutually compared. The
trajectory profiles of random picked inputs of two version
were plotted and compared to ensure they are identical.
The algorithm was also checked by comparing to results
from in [23]. Figure 6 shows a general trajectory profile
without brake phases generated by Ruckig [23] and our
algorithm when ↵ = 0.000001, which approximates a bang-
bang jerk controller. The input settings for both algorithms
are: v0 = 1m/s, a0 = 0.35m/s2, p0 = 0m, pG = 5m,
Jmax = 10m/s3, Amax = 3m/s2, and Vmax = 3m/s. The
two trajectory profiles overlapped with each other and the
total time are both 2.617 18 s.

Finally, the proposed algorithm was implemented and
simulated with a UR3 in ROS&Gazebo. Because the pro-
posed trajectory can generate jerk, acceleration, and position
profiles, MoveIt [24] jogging servo was utilized to control
the robot arm UR3, and the input command is the velocity
profile generated by the planner. In this simulation, as shown
in Fig. 7, the robot joints followed the planned trajectory and
reach the goal position. All the simulation code is available
at [18].

IV. CONCLUSION

This paper proposed a sinusoidal, jerk-continuous online
trajectory generation algorithm with non-zero initial states
under kinematic constraints. The design logic was discussed
in Section II, and the significant formulas are listed in Sec-
tion II. All the closed-form equations can be accessed in the
online Mathematica file. Moreover, the 15-phase proposed
solution can also address the issue of overshooting and
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Fig. 7. The joint position recorded from the simulation in ROS&Gazebo
using a UR3 robot arm.

constraints violation. Furthermore, the proposed algorithm
was compared with Ruckig’s online trajectory planner [23]
when ↵ is close to zero. Finally, simulation results for
controlling a UR3 were presented. Because the primary goal
of the proposed algorithm is to generate an online trajectory
with a non-zero initial state under constraints with a sine jerk
profile, the planned trajectory may or may not be a minimum
time trajectory. Due to constraint satisfaction challenges,
the algorithm sometimes does not find a 15-phase solution.
Instead the system brakes to zero velocity and acceleration,
then computes the 15-phase solution to reach the target
position. This occurred in 16 of the 10,000 trials.
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